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A normalization method of road adhesion coe�cient and tire cornering sti�ness

is proposed to provide the significant information for vehicle direct yaw-

moment control (DYC) system design. This method is carried out based on a

fractional-order multi-variable gray model (FOMVGM) and a long short-term

memory (LSTM) network. A FOMVGM is used to generate training data and

testing data for LSTM network, and LSTM network is employed to predict tire

cornering sti�nesswith road adhesion coe�cient. In addition to that, tire cornering

sti�ness represented by road adhesion coe�cient can be used to built vehicle

lateral dynamicmodel and participate in DYC robust controller design. Simulations

under di�erent driving cycles are carried out to demonstrate the feasibility and

e�ectiveness of the proposed normalization method of road adhesion coe�cient

and tire cornering sti�ness and vehicle DYC robust control system, respectively.

KEYWORDS

direct yaw-moment control, fractional-order multi-variable gray model, LSTM network,
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1. Introduction

With the development of intelligent transportation technology, people are paying more

attention to the acquisition and application of vehicle state and road condition information,

which is significant to improve the vehicle adaptability and safety in the different driving

environments (Ding et al., 2020). Road adhesion coefficient (Wu et al., 2021; Lian et al.,

2022) and tire cornering stiffness (Han et al., 2018;Wang et al., 2022) are generally employed

to represent road conditions. It is significant to obtain the information on road adhesion

coefficient and tire cornering stiffness for vehicle driving safety.

1.1. Road adhesion coe�cient identification

Road adhesion coefficient, which can be represented by the maximum friction

coefficient between tire and road surface, is directly related to the vehicle’s driving, braking
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performance, and handling stability. For the identification and

acquisition of road adhesion coefficient information, it can

perceive the changes of road conditions but also provide necessary

information for vehicle control strategy. As shown in Figure 1, the

identification methods can be divided into two categories (Müller

et al., 2003; Zhang et al., 2022): cause-based identification method

and effect-based identification method.

1.1.1. Cause-based identification method
Cause-based identification method can estimate road adhesion

coefficient by measuring road factors with optical sensors. A laser

line recognition method, which can smooth the texture of road

surface and hold the laser line and edges clearly, is proposed with

an anisotropic diffusion PM filter for road roughness measurement

(Yuan et al., 2015). Android smartphone sensor data are employed

to estimate road surface roughness condition by a simple model

(Douangphachanh and Oneyama, 2014). This type of identification

method requires the installation of sensors. The high cost of sensors

make them difficult to commercialize products. Furthermore, this

type of identification method needs a lot of test training data, and

identification accuracy is mainly affected by experience. Therefore,

the low identification accuracy is the main shortcoming in this type

of identification method.

1.1.2. E�ect-based identification method
Effect-based identification method can estimate road adhesion

coefficient by measuring tire factors. Deformation sensor is used

to measure tire local strain and strain change to calculate road

adhesion coefficient (Breuer et al., 1992). This type of sensor

requires energy self-sufficiency and wireless data transmission;

therefore, it is expensive and difficult to realize commercial

applications. Acoustic sensor is employed to measure the tire/road

FIGURE 1

Classification of estimation methods for road adhesion coe�cient.

noise to calculate road adhesion coefficient (Alonso et al., 2015).

In addition to that, the µ − S curve slope method is one of

the most widely applied methods in the effect-based identification

method. With the information on wheel speed and vehicle speed,

the slip rate of wheel is obtained. The µ − S curve slope can be

calculated by the least squaremethod or Kalman filter; furthermore,

road adhesion coefficient can be calculated (Lee et al., 2004). Road

adhesion coefficient can be estimated based on accelerating process

(Hahn et al., 2002), braking process (Han et al., 2017), and vehicle

lateral kinematics (Junmin et al., 2004). In this type of identification

method, the detection information is affected by tire type, tire

pressure, tire wear degree, and other factors, and the noise is larger.

1.2. Tire cornering sti�ness estimation

Tire cornering stiffness is one of the vehicle model parameters,

which can also describe road condition, especially, vehicle lateral

dynamics system modeling and vehicle controller design. Tire

cornering stiffness can be changed resulting from road friction and

tire slip angle. Therefore, it is hard to obtain directly tire cornering

stiffness data resulting from the non-linear characteristics of tire

principally. Numerous estimation methods have been developed

to acquire tire cornering stiffness data (Han et al., 2018). On one

hand, tire cornering stiffness can participate in vehicle parameter

estimation, such as vehicle sideslip angle (Lian et al., 2015). On

the other hand, it can be also involved in the design of the active

steering control system, such as vehicle direct yaw-moment control

(DYC) system (Lian et al., 2018). The estimation methods of tire

cornering stiffness can be divided into two groups mainly; one

group is simultaneous estimation of tire cornering stiffness with

anther vehicle states, such as sideslip angle. A fuzzy adaptive

robust cubature Kalman filter is designed to estimate sideslip angle

and tire cornering stiffness, and recursive least squares (RLS) is
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FIGURE 2

The structure diagram of a FOMVGM and LSTM-based normalization method.

employed to update filter parameters (Wang et al., 2022). For a

in-wheel motor drive electric vehicle, the adaptive capability of

driving cycle, which is becoming more and more significant in

modern transportation, needs to be improved in trajectory tracking

procedure. Tire cornering stiffness is regarded as a time-varying

parameter, which can be modified by model predictive control

(Li and Yang, 2022). Another group is single estimation of tire

cornering stiffness without other vehicle states. Tire lateral force

sensor is developed and provides a new solution for estimating

tire cornering stiffness both in academic research and industry

circles (Nam et al., 2012). Lateral force information from lateral

force sensors is used in regression model of the RLS method

with forgetting factors and constraints (Lian et al., 2015). An

unscented Kalman filter is used to estimate sideslip angle, and a

forgetting factor RLS method is used to estimate tire cornering

stiffness (Tian et al., 2019). These methods mentioned above

make estimator burden in computational process resulting in

complication, besides noise and various sensor installation and

environmental constraints.

The main contributions of this study are as follows:

(1) A road adhesion coefficient-tire cornering stiffness

normalization method combining a fractional-order multi-variable

Gray model (FOMVGM) with a long short-term memory (LSTM)

network is proposed. Tire cornering stiffness can be represented

by road adhesion coefficient, and tire cornering stiffness estimation

algorithm can be omitted to reduce the computation burden of the

tire cornering stiffness estimation.

(2) A semi-uncertainty dynamic model (SUDM), which is

based on a vehicle lateral dynamic model with road adhesion

coefficient, is proposed. It can ensure the vehicle’s handling stability

and restrain the influence of uncertain factors caused by parameter

perturbation and external environment interference but also make

the single-variable yaw rate control instead of two-variable control

of yaw rate and sideslip angle.

The remaining study is organized as follows. In Section 2, a

FOMVGM and a LSTM network-based normalization method is

proposed and described in details. In Section 3, an SUDMwith road

adhesion coefficient is proposed, and a direct yaw-moment robust

controller based on SUDM is presented. Simulation experimental

results and analysis are presented in Section 4. Conclusions are

summarized in Section 5.

2. A normalization with a FOMVGM
and a LSTM network

A normalization method of road adhesion coefficient and

tire cornering stiffness is proposed, and the structure diagram is

shown in Figure 2. A LSTM network is used to normalize between

road adhesion coefficient and tire cornering stiffness. There is

not enough original data to train and test LSTM network for

road adhesion coefficient and tire cornering stiffness. Therefore,

a FOMVGM, which can deal with small samples, is built to

provide numerous data as the training and testing data for LSTM

network.

2.1. LSTM network-based normalization

LSTM network is proposed to solve the problem on vanishing

gradient. On the basis of recurrent neural network (RNN), each

ordinary node in the hidden layer is replaced by a memory cell

with input gate, forget gate, and output gate. LSTM network can

balance the weight between history input information and current

input information through the calculations of input gate, forget

gate, and output gate and the update of the memory cell state (Shi

et al., 2021). As shown in Figure 3, the regression model of the

LSTM network is constructed with an input layer with four nodes,

and two LSTM layers employed to extract road adhesion coefficient

feature, a full connected layer, and a regression layer with four

nodes.

2.2. A FOMVGM modeling

Driving intention and average adhesion coefficient sequences

are collected at different time intervals, namely, non-equidistant

sequences. They are not suitable for directly participating in

FOMVGM modeling. Therefore, driving intention and average

adhesion coefficient sequences need to be transformed to

equidistant sequences before FOMVGMmodeling.
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FIGURE 3

LSTM network structure.

2.2.1. Non-equidistant sequence transformation
(NEST)

Let x̃(0) =
[

x̃(0) (t1) , x̃
(0) (t2) , · · · , x̃

(0) (tn)
]

be a non-

equidistant sequence, an equidistant sequence can be transformed

by (1).

x(0) =
[

x(0) (1) , x(0) (2) , · · · , x(0) (n)
]

(1)

where,

{

x(0) (1) = x̃(0) (t1) , i = 1

x(0) (i) = x̃(0) (ti) − 1x̃(0) (ti) , i = 2, 3, · · · , n
,1x̃(0) (ti)

is total difference for every interval, and the calculation formulas

of 1x̃(0) (ti) = µ (i)
[

x̃(0) (ti) − x̃(0) (ti−1)

]

, i = 2, 3, · · · , n;

µ (i) = ti−(i−1)1t
1t , i = 2, 3, · · · , n, is the coefficient between

[

x̃(0) (ti) − x̃(0) (ti−1)

]

and 1t = tn−t2
n−1 , i = 2, 3, · · · , n; 1t is

average interval; n is the number of x(0).

2.2.2. FOMVGM(r,2) modeling
Definition 1: A sequence x(r) =

[

x(r) (1) , x(r) (2) , · · · , x(r) (n)
]T

can be obtained with

x(0) =
[

x(0) (1) , x(0) (2) , · · · , x(0) (n)
]T

by r-order accumulating

generation operator (r-AGO), namely,

x(r) = Q (r) x(0) (2)

where, Q (r) =

















1 0 0 · · · 0

C1
r 1 0 · · · 0

C2
r+1 C1

r 1 · · · 0
...

...
...

. . . 0

Cn−1
n−1+r−1 Cn−2

n−1+r−1 · · · C1
r 1

















n×n

; x(0)
(

k
)

≥

0, k = 1, 2, · · · , n; x(r) is the r-order accumulated generating

sequence of x(0); 0 < r < 1; C0
r−1 = 1; Ck−i

k−i+r−1
=

(k−i+r−1)(k−i+r−2)...(r+1)r
(k−i)!

; Ck+1
k

= 0.

Definition 2: A sequence α(1)x(1−r) can be obtained with x(0)

by the r-order inverse AGO (r-IAGO), namely,

α(1)x(1−r)
(

k
)

= x(1−r)
(

k
)

− x(1−r)
(

k− 1
)

(3)

where, α(1)x(1−r) =
[

α(1)x(1−r) (1) , · · · ,α(1)x(1−r) (n)
]T

is the

r-order inverse accumulated generating sequence of x(0).

Definition 2 is applied in model reduction. Model values

obtained by Gray model calculation are based on r-order

accumulated generating sequence x(r). They should be used to fit

or predict original sequences after r-IAGO.

Definition 3: Let a system behavior characteristic sequence

be x
(0)
1 =

[

x
(0)
1 (1) , x

(0)
1 (2) , · · · , x

(0)
1 (n)

]

, correlation factor

sequence be x
(0)
2 =

[

x
(0)
2 (1) , x

(0)
2 (2) , · · · , x

(0)
2 (n)

]

, and adjacent

neighbor sequence of x
(0)
1 be z

(r)
1 =

[

z
(r)
1 (2) , z

(r)
1 (3) , · · · , z

(r)
1 (n)

]

.

A fractional order multi-variable GM(r,2) can be formulated

as follows:

α(1)x
(r)
1

(

k
)

+ az
(r)
1

(

k
)

= bx
(r)
2

(

k
)

(4)

where, z
(r)
1

(

k
)

= 1
2

[

x
(r)
1

(

k
)

+ x
(r)
1

(

k− 1
)

]

, k = 2, 3, · · · , n;

x
(r)
1

(

k
)

and x
(r)
2

(

k
)

can be calculated by Definition 1.

Theorem1: Least square estimation parameters of α(1)x
(r)
1

(

k
)

+

az
(r)
1

(

k
)

= bx
(r)
2

(

k
)

can satisfy as follows:

[

a

b

]

=
(

BTB
)−1

BTY (5)

where, B =

















− 1
2

[

x
(r)
1 (2) + x

(r)
1 (1)

]

x
(r)
2 (2)

− 1
2

[

x
(r)
1 (3) + x

(r)
1 (2)

]

x
(r)
2 (3)

...
...

− 1
2

[

x
(r)
1 (n) + x

(r)
1 (n− 1)

]

x
(r)
2 (n)

















;

Y =













x
(r)
1 (2) − x

(r)
1 (1)

x
(r)
1 (3) − x

(r)
1 (2)

...

x
(r)
1 (n) − x

(r)
1 (n− 1)













.
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The model values of GM(r,2) can be represented as α(1)x̂
(1−r)

1 ,

which is derived from x̂
(r)

1 by r-IAGO.

2.2.3. Equidistant sequence
inverse-transformation (ESIT)

Reduced sequence of FOMVGM is a still equidistant sequence,

which is not corresponded to actual driving intention. Therefore,

reduced sequence needs to be transformed to non-equidistant

sequences ˆ̃x
(0)
1 .







ˆ̃x
(0)
1 (t1) = α(1)x̂

(1−r)

1 (1) , j = 1

ˆ̃x
(0)
1

(

tj
)

= α(1)x̂
(1−r)

1

(

j
)

+ 1α(1)x̂
(1−r)

1

(

tj
)

, others
(6)

where, ˆ̃x
(0)
1

(

tj
)

is the fitting values of GM(r,2), j = 1, 2, · · · , n;

ˆ̃x
(0)
1

(

tj
)

is the prediction values of GM(r,2), j = n+1, n+2, · · · , n+

p;1α(1)x̂
(1−r)

1

(

tj
)

= µ
(

j
)

| ˆ̃x
(0)
1

(

tj
)

−ˆ̃x
(0)
1

(

tj−1

)

|, i = 2, 3, · · · , n+p,

is total difference for every interval; µ
(

tj
)

=
tj−(j−1)1t

1t
, j =

2, 3, · · · , n+p, is coefficient between | ˆ̃x
(0)
1

(

tj
)

− ˆ̃x
(0)
1

(

tj−1

)

| and1t;

1t = 1
n−1

n
∑

i=2
1ti =

tn−t2
n−1 , i = 2, 3, · · · , n, is average interval; p is

the number of prediction values.

3. Direct yaw-moment robust control

3.1. Vehicle lateral dynamic modeling

A 2 degree-of-freedom (DOF) vehicle model in longitudinal

and lateral planes is shown in Figure 4. The yaw angle around the

vertical axis is taken as positive in the anti-clockwise direction.

Vehicle longitudinal direction is represented with x, and vehicle

lateral direction is represented with y. Assuming that ϕfl = ϕfr =

ϕf , ϕrl = ϕrr = ϕr , Cfl

(

ϕf

)

= Cfr

(

ϕf

)

= Cf

(

ϕf

)

, and

Crl (ϕr) = Crr (ϕr) = Cr (ϕr). Figure 3 can be simplified as a two-

node input and two-node output LSTM network. Furthermore, the

linear motion equations of two-input and one-output are given by

Lian et al. (2018),

{

ẋ = Ax+ Bu

y = Cx
(7)

where, x = [β , γ ]T ; u =
[

δf ,Mz

]T
; y = γ ;

A =





−
2(Cf

(

ϕf
)

+Cr(ϕr))

mvx

2(Cr(ϕr)lr−Cf

(

ϕf
)

lf )

mv2x
− 1

2(Cr(ϕr)lr−Cf

(

ϕf
)

lf )

Iz
−

2(Cf

(

ϕf
)

l2
f
+Cr(ϕr)l

2
r )

vxIz



; B =





2Cf

(

ϕf
)

mvx
0

2Cf

(

ϕf
)

lf
Iz

1
Iz



; C = [0, 1]; Mz = d
2

(

Fxrr − Fx
rl

)

+ d
2

(

Fx
fr
− Fx

fl

)

is

yaw moment; d is track width, the front and rear track widths are

assumed to be equal in this study; β is vehicle sideslip angle; γ is

yaw rate; δf is front steering angle; Cf

(

ϕf

)

is front-tire cornering

stiffness; Cr (ϕr) is rear-tire cornering stiffness;m is vehicle mass; lf
is front-axle distance; lr is rear-axle distance; Iz is yaw moment of

inertia; Fx
fl
is front-left tire longitudinal force; Fx

fr
is front-right tire

longitudinal force; and Fx
rl
is rear-left tire longitudinal force; Fxrr is

rear-right tire longitudinal force.

3.2. Sumi-uncertainty dynamic modeling

The stability region of vehicle motion can be simplified as

follows (Lian et al., 2018):

|c1β + c2β̇| < 1 (8)

where c1 and c2 are constant coefficients. Referring to the equation

(8), β ≡ 0 can satisfy (8) (Tjonnaas and Johansen, 2006). Therefore,

substituting β̇ = β = 0 and γ̇ = 0 into (7), the stability condition

between yaw moment and front steering angle can be obtained as

follows:

Mz (s) =
2Cf

(

ϕf

)

lfmv2x − 4Cf

(

ϕf

)

Cr (ϕr) lr
(

lf + lr
)

2
(

Cr (ϕr) lr − Cf

(

ϕf

)

lf
)

−mv2x
δf (s) (9)

Substituting (9) into (7), two-input and one-output model

can be transformed in to a single-input and single-output (SISO)

model, which is a stable simplified model, as follows:

{

ẋ = Ax+ Bu

y = Cx
(10)

where, x = [β , γ ]T ; u = δf ; y = γ ; A =




−
2(Cf

(

ϕf
)

+Cr(ϕr))

mvx

2(Cr(ϕr)lr−Cf

(

ϕf
)

lf )

mv2x
− 1

2(Cr(ϕr)lr−Cf

(

ϕf
)

lf )

Iz
−

2(Cf

(

ϕf
)

l2
f
+Cr(ϕr)l

2
r )

vxIz



;

B =







2Cf

(

ϕf
)

mvx
4Cf

(

ϕf
)

(

Cf

(

ϕf
)

l2
f
+Cr(ϕr)l

2
r

)

(

2Cf

(

ϕf
)

lf−2Cr(ϕr)lr+mv2x
)

Iz






; C = [0, 1].

Referring to (10), m and Iz are not known exactly in fact,

and Cf

(

ϕf

)

and Cr (ϕr) are regarded as constants in this study,

namely, Cf

(

ϕf

)

= Cf , Cr (ϕr) = Cr . Assuming that their values

are represented within certain, known intervals, and vx is constant

in steering process. m and Iz can be described as upper linear

fractional transformations (ULFT; Lian et al., 2018; Nie et al., 2023),

respectively.















m = m
(

1+ pmδm
)

= Fu (Mm1, δm1)

1
m = 1

m −
pm
m δm

(

1+ pmδm
)−1

= Fu (Mm2, δm2)

1
Iz
= 1

Iz
−

pIz
Iz

δIz
(

1+ pIzδIz
)−1

= Fu

(

M 1
Iz
, δIz

)

(11)

where, m and Iz are the nominal values of m, Iz ; pm, pIz , δm,

and δIz represent the relative perturbations on these parameters,

0 ≤ δm1 ≤ 1, 0 ≤ δm2 ≤ 1, 0 ≤ δIz ≤ 1; Mm1 =

[

0 m

pm m

]

;

Mm2 =

[

−pm
1
m

−pm
1
m

]

;M 1
Iz
=

[

−pIz
1
Iz

−pIz
1
Iz

]

.

Combining with (11), a semi-uncertainty dynamic model

(SUDM) shown in Figure 5 can be obtained. The model in the
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FIGURE 4

Planar vehicle models: Four-wheel model and two-wheel model.

blue box on the left satisfies the condition of handling stability (8),

and the uncertainty of parameters is not considered in this part of

the model. The uncertainty of the vehicle parameters in the model

can be represented by the model in the gray box on the right.

The whole vehicle model is defined as sumi-uncertainty dynamic

model (SUDM) in this study. Referring to Figure 5, the state space

representation of input/output SUDM can be deduced as follows:

ySUDM = GSUDM · uSUDM =







Ã B̃1 B̃2

C̃1 D̃11 D̃12

C̃2 D̃21 D̃22






· uSUDM (12)

where, ySUDM =
[

ym1, ym2, yI , y
]T
; uSUDM = [um1, um2, uI , u]

T ;

Ã =
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2
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)
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−

2
(

Cf lf−Cr lr
)
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−
2
(
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)
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−

2
(

Cf l
2
f
+Cr l

2
r

)

Izvx






; B̃1 =

[

1 − 1
m 0

0 0 1

]

;

B̃2 =







2Cf

mvx
4Cf

(

Cf l
2
f
+Cr l

2
r

)

Iz
(

mv2x+2Cf lf−2Cr lr
)






;

C̃1 =











2pm
(

Cf+Cr
)

mvx

2pm
(

Cf lf−Cr lr
)

mv2x
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0 pmm

2pI
(
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(
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2
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2
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vxIz











; C̃2 = [0, 1];

D̃11 =







−pm
pm
m 0

0 0 0

0 0 −pI






;

D̃12 =







−
2pmCf

mvx

−
4pICf

(

Cf l
2
f
+Cr l

2
r

)

Iz

(

mv2x+2Cf l
2
f
−Cr l2r

)






; D̃21 = [0, 0, 0]; D̃22 = [0];

Unknown transfer function matrix △△△ =







δm1 0 0

0 δm2 0

0 0 δI






, which

can represent vehicle dynamic perturbations and ‖△△△ ‖∞ ≤ 1.

3.3. Direct yaw-moment controller design

For the robust stability, the closed-loop system, for all G =

Fu (GSUDM ,△△△), must satisfy the performance criterion, namely,

S/KS mixed sensitivity problem,

∥

∥

∥

∥

∥

[

WpS

WuKS

]
∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

[

Wp (I + GK)−1

WuK (I + GK)−1

]
∥

∥

∥

∥

∥

∞

< 1 (13)

where Wp is used to represent the frequency characteristics of

external disturbance; Wu is used to constrain control output to

prevent the longitudinal force difference between the left and right

tires from exceeding their limits determined by in-wheel-motor; S is

defined as sensitivity function;K is robust controller.For the closed-

loop structure of vehicle DYC robust controller shown in Figure 6,

the relationship between input and output is given as follows:







ep
eu
y






=

[

P11 P12

P21 P22

][

d

u

]

(14)
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FIGURE 5

Vehicle semi-uncertainty dynamic model.

FIGURE 6

The closed-loop structure of vehicle DYC robust control system.

where, P11 =

[

Wp

0

]

; P12 =

[

−WpG

Wu

]

; P21 = I; P22 = −G.

The transfer functions from d to e = [ep, eu]
T can be obtained

as follows:

Fl (P,K) = P11+P12K (I − P22K)−1 P21 =

[

Wp (I + GK)−1

WuK (I + GK)−1

]

(15)

Therefore, the S/KS mixed sensitivity problem (13) based on

SUDM can be transformed into H∞ standard problem (16) based

on SUDM, namely,

‖Fl (P,K)‖∞ < 1 (16)

4. Simulation and analysis

4.1. DYC control system simulation
platform

Structural drawing of DYC control system of electric vehicles

is shown in Figure 7, which is the control system structure of the
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FIGURE 7

Structure diagram of the DYC control system. d0 is longitudinal minimum distance. vrel is relative velocity, vrel = vx with leading vehicle velocity is 0.

ye is lane width. D is vehicle-to-vehicle distance. Disturbance is white noise.

FIGURE 8

Tire cornering sti�ness of the front tire, (A) is original sequence and FOMVGM sequence, (B) is the error between original sequence and FOMVGM

sequence.

following vehicle. The leading vehicle is regarded as stopping in

front of the following vehicle. The following vehicle completes the

lane change to avoid collision. Based on authors’ previous studies

(Lian et al., 2018), safety distance calculation, vehicle safety state

judgement, hierarchical controllers, and yaw-moment distribution

are used again in this study.

4.2. Adhesion coe�cient and cornering
sti�ness normalization

4.2.1. Data acquisition and FOMVGM modeling
To obtain the feasible and effective data to build the FOMVGM

between road adhesion coefficient and tire cornering stiffness, the

data on tire lateral force and tire sideslip angle are extracted from

CarSim under different road friction coefficient peak values (Li

et al., 2016). Tire cornering stiffnesses of front and rear tires

can be fitted with the Magic Formula tire model as the original

sequences. Original sequences of tire cornering stiffnesses are

all sequences of nine elements corresponding to nine different

adhesion coefficients. As shown in Figures 8A, 9A, tire cornering

stiffnesses of the front and rear tires can be fitted by the FOMVGM

with fractional order r = 0.015, respectively, and the tire cornering

stiffness errors of the front and rear tires are also presented

in Figures 8B, 9B. By FOMVGM calculation, the mean relative

percentage error (MRPE) of the front tire cornering stiffness is

17.7 < 20%, and the MRPE of the rear tire cornering stiffness is

33.79 < 50%. It can demonstrate that the FOMVGM has good data

fitting accuracy and is suitable for fitting tire cornering stiffness.

Therefore, FOMVGM could generate training data and testing data

for the LSTM network.

4.2.2. Normalization based on LSTM network
As shown in Figure 3, the regression model of the LSTM

network, which is constructed with two LSTM layers, a full

connected layer, and a regression layer, is a two-node input
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FIGURE 9

Tire cornering sti�ness of the rear tire, (A) is original sequence and FOMVGM sequence, (B) is the error between original sequence and FOMVGM

sequence.

FIGURE 10

Training data generation, (A) is random data between 0.1 and 0.9, (B) is tire cornering sti�ness data of the front and tires obtained by the FOMVGM.

and two-node out network. To train the LSTM network, the

FOMVGM built in Section 2 is used to calculate training data

and test data. As shown in Figure 10A, random data between

0.1 and 0.9, which can represent the different road adhesion

coefficients, are used as the input of the FOMVGM. As shown in

Figure 10B, the tire cornering stiffness can be calculated by the

FOMVGM. Input data (road adhesion coefficient) are extracted

by 200 points, and output data (front-tire cornering stiffness and

rear-tire cornering stiffness) are also extracted by 200 points,

respectively. The data provide the training data for the supervised

learning of LSTM network. In the LSTM network, the input layer

has one node and output layer has two nodes. Each layer of

the LSTM has 20 neurons. The LSTM network iteration is set

to 300, the initial learning rate is 0.005, and the final learning

rate is 0.00004. Mini-batch RMSE is 0.00934. Elapsed time is

23 s. Training effect of LSTM network is good. Random data

between 0.0 and 1.0 are employed to test the LSTM network.

As shown in Figures 11A, 12A, the normalization data of the

front-tire and rear-tire cornering stiffness can be shown with

different road adhesion coefficients. As shown in Figures 11B,

12B, tire cornering stiffness of the front and rear tires can

be well-obtained with LSTM network computation, which can

participate in vehicle dynamics system modeling and DYC robust

controller design.

4.3. DYC robust control simulation

Simulation experiments with CarSim are conducted with tire

cornering stiffness calculated by the LSTMnetwork. Electric vehicle

and robust controller parameters used in this study are presented

in Table 1. In simulation experiments, road adhesion coefficient

can be set with different values to verify the feasibility and

the effectiveness of the DYC control system in different driving

cycles, namely, single driving cycle and mixed driving cycle. In

addition to that, a virtual leading vehicle is presented to imitate

lane changing condition of the following vehicle. The virtual

leading vehicle can be described with vehicle-to-vehicle distance

D0, and the longitudinal velocity of the virtual leading vehicle

is 0 m/s. In this study, D0 is set to 120 m, and vx is set to 90

kph.
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FIGURE 11

Training data generation, (A) is the normalization data of Cf , (B) is tire cornering sti�ness calculating data of Cf obtained by the LSTM network.

FIGURE 12

Training data generation, (A) is the normalization data of Cr , (B) is tire cornering sti�ness calculating data of Cr obtained by the LSTM network.

TABLE 1 Vehicle dynamics and robust controller parameters.

Parameter Value Parameter Value Parameter Value Parameter Value

m 1,159 kg vx 90 kph lf 1.04 m lr 1.56 m

d0 10 · 2
ϕ+0.3

r 0.313 m Wp
0.095s2+15.01s+9.5

s2+0.5s+0.005
Wu 10−2

pm 0.2 pI 0.3 Iz 617 kg·m2 D0
a 120 m

aD0 is initial vehicle-to-vehicle distance.

4.3.1. Single driving cycle simulation
In single driving cycle simulation, vehicle-to-vehicle edge

turning trajectory, which can be expressed by the formula in

Figure 7, can be calculated and shown in Figure 13A. ϕ is set

to 0.2, which is shown in Figure 13B. Furthermore, d0 = 40m.

Lateral wind velocity vwind and white noise can be used as driving

environment disturbance. Figures 13C, E show yaw rate closed-

loop robust control effect under vwind = 0 and vwind = 20m/s,

respectively. Actual yaw rate could track desired yaw rate, though

there are some errors in the tracking process. The errors are mainly

caused by the vehicle inertia Iz change and large longitudinal

velocity vx. Due to vehicle inertia, actual yaw rate can not follow

the desired yaw rate immediately, when desired yaw rate fluctuates.

Figures 13D, F show the absolute error curves under vwind = 0

and vwind = 20m/s, respectively. The error ranges of yaw rate

are all between –5.00 and 3.81 deg/s. With the robust controller,

the yaw rate error is reduced quickly. It can demonstrate that the

designed robust controller based on SUDM can overcome lateral

wind disturbance from vwind = 0 to vwind = 20m/s besides vehicle

parameters perturbation. The feasibility and effectiveness of DYC

control system can be verified in single driving cycle.

4.3.2. Mixed driving cycle simulation
To further validate the robustness performance of DYC control

system for different driving cycles, mixed driving cycle simulation
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FIGURE 13

Single driving cycle, (A) is lateral distance, (B) is road adhesion coe�cient of the single driving cycle, (C) is yaw rate close-loop control curve of DYC

robust control under vwind = 0m/s, (D) is yaw rate error under vwind = 0m/s, (E) is yaw rate close-loop control curve of DYC robust control under

vwind = 20m/s, (F) is yaw rate error under vwind = 20m/s.

experiments can be carried out. In mixed driving cycle simulation,

vehicle-to-vehicle edge turning trajectory, which can be expressed

by the formula in Figure 7, can be calculated and shown in

Figure 14A. As shown in Figure 14B, ϕ is a piecewise function,

which contains the values 0.7, 0.2, and 0.5. The piecewise function

can represent complex pavement in this study. Lateral wind velocity

vwind and white noise can be still used as driving environment

disturbance. Figures 14C, E show yaw rate closed-loop robust

control effect under vwind = 0 and vwind = 20m/s, respectively.

The desired yaw rate fluctuates at ∼1.8 and 3.7 s, and the

actual yaw rate also fluctuates at ∼1.8 and 3.7 s in the tracking

process under vwind = 0 and vwind = 20m/s. The fluctuation

phenomenon is mainly caused by the change in the different

adhesion coefficients. Figures 14D, F show the absolute error curves

under vwind = 0 and vwind = 20m/s, respectively. The error

ranges of yaw rate are all between –4.76 and 2.26 deg/s. With the

robust controller, the yaw rate error can be also reduced quickly.

It can demonstrate that the designed robust controller based on

SUDM can overcome lateral wind disturbance from vwind = 0

to vwind = 20m/s besides vehicle parameters perturbation. The
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FIGURE 14

Mixed driving cycle, (A) is lateral distance, (B) is road adhesion coe�cient of the mixed driving cycle, (C) is yaw rate close-loop control curve of DYC

robust control under vwind = 0m/s, (D) is yaw rate error under vwind = 0m/s, (E) is yaw rate close-loop control curve of DYC robust control under

vwind = 20m/s, (F) is yaw rate error under vwind = 20m/s.

feasibility and effectiveness of DYC control system can be verified

in mixed driving cycle.

5. Conclusion

This study proposes a normalization method-based LSTM

network of road adhesion coefficient and tire cornering stiffness, to

provide the significant information for vehicle DYC control system.

A FOMVGM is built to generate numerous data for training and

testing the LSTM network. Tire cornering stiffness can be estimated

well by the LSTM network with road adhesion coefficient. In

addition to that, a DYC control system-based SUDM is presented.

The feasibility and effectiveness of the DYC control system are

verified by single driving cycle and mixed driving cycle. An

SUDM can not only ensure the stable steering of vehicles but also

achieve good control effect with single variable, yaw rate, instead

of double variables, yaw rate, and sideslip angle. The constrained

problem between the direct measurement cost of sideslip angle

and the joint control of yaw rate and sideslip angle can be

solved well.
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