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Abstract 
Purpose. This paper offers an alternative representation of the Indian Ocean Dipole. Instead of 
the zonal gradient of equatorial sea surface temperature, the new index uses tropical sub-surface 
temperatures (T100). 
Methods and Results. The space-time character of the new index is defined by empirical orthogonal 
function analysis in the domain 20°S–5°N, 35°–120°E. The spatial pattern reflects an inherent zonal 
dipole with a temporal score that correlates with atmospheric empirical orthogonal function modes 
that describe the Walker circulation and basin-scale convection. Statistical regressions are conducted 
in the period 1979–2019 to evaluate the traditional Dipole Mode Index and the new T100 index, and 
the association with East Africa climate and Pacific Nino3.4 SST. These demonstrate improved 
performance of the T100 index with ~ 30% higher r2 explained variance. 
Conclusions. Whereas the old index tracks feedback between equatorial sea surface temperature / 
zonal wind / surface fluxes, the new index tracks coupling between south Indian Ocean Rossby waves 
/ anticyclonic curl / thermocline oscillations. 
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Introduction 
Zonal oscillations of the Indian Ocean Dipole (IOD) are coupled with 

the regional atmospheric circulation and global El Niño Southern Oscillation 
(ENSO) [1– 13]. As El Niño commences, easterly winds spread into the equatorial 
east Indian Ocean. The anticyclonic wind stress curl induces downwelling ocean 
Rossby waves that propagate westward across the south Indian Ocean. These have 
a resonant period of ±4 years and amplify along the thermocline ridge (Seychelles 
dome 5°–15°S) [14–19]. Sinking motions and warmer sea surface temperatures 
(SST) in the west Indian Ocean trigger atmospheric convection and diabatic 
heating [20–24], a feature evident in multi-model ensembles [8, 25, 26]. 
The mature phase of IOD in boreal autumn is preceded by Rossby-Kelvin wave 
transformation and reflection from the basin edges [27].  
This paper offers an alternative index for the IOD and evaluates how it represents 
interannual climate variability around the basin by statistical analysis. Our focus is 
on index formulation and performance of equatorial surface feedback versus off-
equatorial sub-surface coupling [28–31]. This work is motivated by widespread use 
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of the SST-based Dipole Mode Index (DMI) [4] to track the IOD: 
<psl.noaa.gov/gcos_wgsp/Timeseries/DMI/>, <www.bom.gov.au/climate/iod/>, 
<stateoftheocean.osmc.noaa.gov/sur/ind/>, <climexp.knmi.nl/selectindex.cgi?> 
…monthly climate indices, 
<iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version4/.IOD/>, 
<climate.copernicus.eu/charts/c3s_seasonal/ …then SST plumes: area=iod> (where 
… refers to the need for browser search). The main scientific question is whether
an off-equatorial sub-surface index better reflects the Indian Ocean Dipole? 

Data and methods 
We represent the IOD via monthly 1–100 m depth-averaged sea temperatures 

(T100) assimilated by the National Ocean Data Center (NODC) [32]; and by sea 
surface height (SSH) derived from ocean reanalyses such as the Global Ocean Data 
Assimilation System (GODAS) [33]; Simple Ocean Data Assimilation (SODA3) 
[34]; European Community satellite Altimeter (EC-ALT) [35]. The SSH is 
synonymous with dynamic topography, while depth averaged sea temperatures 
characterize ocean heat content. These reanalysis products (T100, SSH) have 
a minimum horizontal resolution of 50 km, which reflects the east-west dipole. 
Monthly atmospheric reanalysis ‘surface’ (10 m) and upper-level zonal winds and 
vertical motion from the European Community (ERA5) [36] and NOAA satellite net 
Outgoing Long-wave Radiation data (OLR) [37] quantify the wind circulation and 
atmospheric convection over the Indian Ocean. Climate responses over East Africa 
(eafr) 8°S–9°N, 28°–46°E emerge from Climate Hazards InfraRed Precipitation with 
Stations (CHIRPS2) [38] and satellite vegetation color (NDVI) [39].  

All monthly time series (1979–2019) including the DMI, are standardized, 
detrended, and polynomial filtered [40] to retain periods above 1.5 years [19]. 
The filters eliminate intra-seasonal noise and long-term warming trends. Empirical 
orthogonal functions (EOF) are calculated on fields of T100, SSH, OLR, and zonal 
winds over the domain 20°S–5°N, 35°–120°E. This domain captures the off-
equatorial ocean Rossby wave that undulates on the thermocline ridge ~ 8°S [16, 
24, 41, 42]. Many readers will be familiar with the EOF calculation which 
generates a spatial loading pattern and associated temporal score for each distinct 
mode. For most parameters the first mode accounts for about one-third of total 
variance (range 26–40%). The T100, SSH, OLR EOF1 loadings form two opposing 
centers of action reflecting zonal dipoles in +IOD phase, while surface and 200 hPa 
zonal wind EOF1 cluster over the central basin. Previous work [43] applied EOF 
analysis to depth-of-20C-isotherm in the tropical Indian Ocean, consistent with our 
study. EOF analyses were repeated using a variety of ocean reanalyses and 
confirmed that the T100 spatial pattern and temporal score presented here is both 
stable and inter-changeable. 

Filtered temporal scores are analyzed for wavelet spectra [44], and for correlation 
with the traditional DMI formulated as SST west 10°S–10°N, 50°–70°E minus SST 
east 10°S–0°N, 90°–110°E, the Pacific Nino3.4 SST (5°S–5°N, 170°–120°W), and 
East Africa (eafr) rainfall and vegetation (8°S–9°N, 28°–46°E). Pearson-product 
correlations are computed for lags – 6 to + 6 months. The degrees-of-freedom is 
estimated as the record length divided by filter = 468/18 months [45], hence 
statistical significance above 99% confidence requires |r| > 0.48 or r2 variance > 0.23.  
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a 

b 
F i g. 1. EOF1 temporal scores and SST indices, all 1.5-year filtered and detrended, similar to Fig. 3, d. 
The 2019 event (arrows) is captured by T100 and SSH indices, while the DMI turns downward with 
Nino3.4 (a); wavelet spectral analysis of filtered Nino3.4 SST, for comparison with Fig. 3, e (b)  

The evolving nature of IOD teleconnections is studied by five-year running 
regressions which cover the spectral energy in wavelet analysis. The sample 
‘window’ requires a standardized value > |0.72| for 90% confidence (note: 
outcomes were similar for 3–7-year windows). Large amplitude +IOD events 
(based on T100) are analyzed as composites: October – December 1982, 1994, 
1997, 2006, 2015 in zonal sections of atmosphere and ocean anomalies, and as 
hovmoller plots of SSH anomalies from 1 year before to 1 year after the event. 
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Atmospheric composites are equatorial averaged (5ºN–5ºS) while the oceanic 
composites cover the thermocline ridge (5º–15ºS), thus accounting for anticyclonic 
curl that generates the off-equatorial Rossby wave. The mean annual cycle of 
+IOD events is calculated to demonstrate seasonal amplification in boreal autumn. 
Naturally, these tend to be preceded and followed by –IOD events (Fig. 1). 

We compare statistical outcomes for the surface DMI and sub-surface T100 
(Table 1), not to debate the physical processes nor to relegate the DMI, but to 
identify benefits of the new index. 

T a b l e 1 
Cross-correlation of temporal series 

DMI 
sst Nino3.4 T100 SSH −Usfc U200 OLR 

eafr 
rain 

Nino3.4 0.40 

T100 0.59 0.73 

SSH 0.45 0.63 0.80 

−Usfc 0.67 0.75 0.88 0.75 

U200 0.39 0.78 0.65 0.55 0.70 

OLR 0.65 0.63 0.83 0.61 0.92 0.56 
eafr 
rain 0.27 0.33 0.45 0.40 0.44 0.35 0.46 
eafr 
NDVI 0.05 0.45 0.51 0.51 0.40 0.33 0.42 0.19 

N o t e: Cross-correlation of temporal series: DMI & Nino3.4 indices; T100, SSH, OLR are 
EOF1 dipole scores (cf. Fig. 3, d) with warm / west +IOD (cf. Fig. 3, a – c); EOF1 zonal winds in 
central basin are –surface (reversed) & + aloft (200 hPa) as indicated by arrows in Fig. 3, b, c. East 
Africa (eafr) rain and NDVI time series are +wet (cf. Fig. 7, c). Degrees of freedom equal 468 / 18 in 
the period 1980–2018, with r > 0.48 significant at 99% confidence (bold). 

EOF analysis ensures a steady representation of the IOD across improving 
technology (altimetry, profiling floats) and provides a sensible and objective way 
to cluster dipole features that tend to magnify in October – December season at two 
centers of action. The new index encompasses sub-surface / off-equatorial / low-
frequency signals that modulate the IOD and dictate what data / domain / filter 
should be used. Online resources such as the KNMI Climate Explorer, are available 
to obtain the new index for universal application. Global ocean data assimilation 
blends satellite and in situ measurements (Fig. 2) for real-time input to coupled 
model projections of ocean heat content (T100, SSH), which characterize the IOD. 
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F i g. 2. Example of operational technology which characterizes ocean heat content (T100, SSH): 
satellite altimeter tracks over a 5-day period in 2019 (top); dots of profiling floats and buoys reporting 
temperature (bottom) 

Results 
We first consider the location of DMI ‘nodes’ relative to the spatial loading 

patterns of EOF1 T100, SSH and OLR (Fig. 3, a – c). The eastern DMI node is 
well positioned however the western DMI node is symmetrical about the equator 
and less focused on the southern thermocline ridge. Evaluating the temporal score, 
we note that interannual filtering removes only 16–18% of raw T100 or SSH r2 

explained variance compared with the noisy DMI at 51%. The SSH EOF1 scores 
are better correlated with filtered T100 (r = 0.80) than the DMI (r = 0.45; Table 1). 
Summing the pair-wise correlations in Table 1 yields the DMI = 3.47 compared 
with T100 = 5.44. Wavelet spectral analysis of the filtered T100 temporal score 
(Fig. 3, d, e) reflects 3–5-year cycling; whereas Nino3.4 (cf. Fig. 1, b) has more 
spectral energy at 5–6-year consistent with slower resonance in the Pacific [46]. 

Composite analysis of five large amplitude +IOD events (Fig. 4, a – c) 
illustrates the zonal overturning (equatorial Walker) atmospheric circulation: deep 
easterly flow over the central Indian Ocean, moist rising motions in the west and 
dry sinking motions in the east, and upper-level westerly flow above 7 km. 
Similarly, the oceanic section at +IOD reflects a thermal dipole in the 40–120 m 
layer connected by westward surface currents and rising / sinking motions at 95°E / 
55°E. The hovmoller plot of composite SSH illustrates the diagonal crest 
associated with a transient ocean Rossby wave moving westward along ~ 8°S at 
0.14 m/s consistent with [16]. Its coupling with the overlying atmospheric 
circulation and convection is responsible for the coherent rhythm in EOF1 
temporal scores (cf. Fig. 3, d). Mean annual cycle amplitude increases in October – 
December season, as indicated by EOF1 upper quintiles in Fig. 4, d. Thus, our new 
index retains seasonal phase-locking. 
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Standardized departures  

Spectral power  

F i g. 3.  EOF1 standardized spatial loading patterns for: a – T100 (dashed boxes refer to DMI); b – 
SSH with schematic arrows representing upper wind EOF1 ‘+U200’; c – OLR with schematic arrows 
representing surface wind EOF1 ‘−Usfc’; vectors below 1 σ omitted; d – EOF1 filtered temporal 
scores; e – T100 wavelet spectral energy shaded above 98% confidence with cone of validity. Dashed 
line in b refers to the Seychelles dome; plus symbols in d are composite IOD events in Fig. 4. Note 
that the western DMI node extends beyond our EOF1 domain in a 
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F i g. 4. Composite +IOD events October – December 1982, 1994, 1997, 2006, 2015: a – atmospheric 
section averaged 5°N–5°S of zonal winds & vertical motion (vectors) and relative humidity anomalies 
(shaded); b – ocean section averaged 5°–15°S of zonal currents & vertical motion (vectors) and 
temperature anomalies (shaded); c – composite hovmoller plot of SSH anomalies averaged 5°–15°S 
from –12 to +12 months for the same +IOD events, with centers of action +/–; and insignificant 
results shaded neutral; d – annual cycle x2 of EOF1 scores for the upper quintile of +IOD events; e.g. 
duplicated to reflect austral summer. Note that in (a – c) neutral shading is insignificant, in (a, b) 
vertical motion is converted to join the zonal flow and exaggerated 
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F i g. 5.  On the left – scatterplots of filtered T100 EOF1 and DMI time series compared (at 0 lag) 
with: a – EOF1 −Usfc wind; b – EOF1 OLR; and c – Nino3.4 SST with regression fit listed. On 
the right – lag correlations of filtered T100 EOF1 and DMI time series versus: d – EOF1 −Usfc wind; 
e – EOF1 OLR; and f – Nino3.4 SST. Correlations with other variables are listed in Table 1. Positive 
values refer to +IOD phase (warm & moist / west) 

Side-by-side comparisons of the filtered DMI and T100 with the Indian Ocean 
surface wind (−Usfc, eg. easterly positive) and OLR dipole EOF1 temporal scores, 
and the Pacific Nino3.4 SST are presented as scatterplots (Fig. 5, a – c) and lag-
correlations (Fig. 5, d – f). The scatterplot regressions indicate that T100 achieves 
~ 30% higher r2 explained variance than the DMI. We infer the upper ocean is well 
coupled to local wind and convection, but negative events (lower left of 
scatterplots) tend to drift away from the regression line. Temporal lag correlations 
demonstrate the DMI begins (− 6 months before) with similar influence but 
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gradually falls behind T100 by + 2 months after. Hence the T100 better couples 
with Walker Cell modulated convection (−Usfc, OLR dipole), consistent with the 
simulations of [47]. The DMI is less sensitive to Pacific modulation (represented 
by filtered Nino3.4); its r value remains < 0.4 across all lags.  

The evolution of IOD teleconnections is illustrated in Fig. 6, a, b via five-year 
running regressions. The T100 reflects steady coupling: standardized values are ~ 1 
with respect to Indian OLR and −Usfc wind, and dip in 1987–1990 and 2004–2009 
with respect to Nino3.4. On the other hand, five-year running regressions with 
DMI are unstable. Standardized values are ~ 1 in 1980–1996 and 2003–2006 with 
the Indian variables but decline in the 2000 and 2011 events. The DMI decouples 
from Nino3.4 much of the time and only nears unity from 1992–1997. The research 
[48] shows that the IOD is both internally and externally triggered, so indices 
should account for either pathway – as the T100 does.  

 a 

 b 
F i g. 6. Five-year running regressions between the filtered standardized temporal scores of −Usfc 
wind, OLR, and Nino3.4 SST: a – T100 EOF1; b – DMI. The end of record is truncated by the 5-year 
window; standardized values are plotted in log-scale, with 90% confidence > 0.72 

One of the regions affected by the IOD is East Africa [49, 50], where rainfall 
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and vegetation drive agricultural consequences. Lag correlations with rainfall 
demonstrate that T100 offers good performance at 2–4 month lead time than DMI 
and Nino3.4 indices (Fig. 7, a). There is more distinction for NDVI, wherein the 
T100 covers 31% of r2 explained variance compared with the DMI at only 1% r2 
(Fig. 7, b). Previous research has revealed IOD modulation of East Africa rainfall 
in September – December season [49] but results here suggest a wider temporal 
influence by the T100 dipole. A more reliable index for the Indian Ocean Dipole 
could pay dividends. 

         a            b 

 c    d 

F i g. 7.  Lag correlation of East Africa rainfall with T100 EOF1, DMI and Nino3.4 time series from 
−6 to +6 months (a); scatterplot of T100 EOF1 and DMI time series compared with filtered East 
African NDVI lagged+1 month (b); loading patterns for rainfall (c) and vegetation that determine the 
East African cluster (dashed box) used to formulate eafr rain and NDVI time series (d) 

Summary 
Many in the scientific community understand the IOD as an equatorial surface 

phenomenon involving Bjerknes feedback. This concept may apply elsewhere, but 
the off-equatorial coupling that drives the Indian Ocean Dipole requires a new 
perspective. Our research demonstrates that a subsurface off-equatorial index better 
represents IOD modulation by atmospheric-coupled ocean Rossby waves. Such an 
index has been derived from the leading EOF mode of standard 1–100 m depth-
averaged sea temperatures filtered to retain periods > 1.5 years. The statistical 
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analysis compared sub-surface and surface Indian Ocean indices (T100, SSH, 
DMI) with ENSO SST and winds (Nino3.4, −Usfc) and atmospheric convective 
responses (OLR, eafr). While the DMI [43] uses zonal gradients of SST, the sub-
surface temperature dipole in the domain 20°S–5°N, 35°–120°E fully captures the 
IOD signal and amplified SSH variance on the Seychelles dome ~ 8°S. Zonal 
oscillations of ocean heat content, quantified by the T100 index, have a steady 
signal-to-noise ratio (cf. Table 1, Fig. 6, a) that typifies resonant fluctuations of 
the thermocline, less influenced by surface fluxes (cf. Fig. 4, b).  

F i g. 8. GODAS September – December 2019 sea temperature anomaly depth sections: longitudinal 
5–10ºS (top); latitudinal 67–72ºE (bottom). Note the +IOD signal south of the equator in the layer 40–
140 m 

Several domains, parameters and filters were tested to represent the IOD and 
its regional ocean-atmosphere coupling. Although the DMI serves to highlight 
a unique mode of interannual ocean-atmosphere variability, it exhibits unsteady 
temporal coupling with regional atmospheric dipole modes and Pacific ENSO (cf. 
Fig. 6, b), regardless of method employed. A sub-surface index – based on standard 
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available datasets – offers a more stable representation of the south Indian Ocean 
Rossby wave [16, 51] that induces climate responses around the basin. A simple 
EOF analysis of interannual filtered ocean heat content (T100 or SSH), extracts 
the required signal from fixed centers of action. Consistent with [28], an analysis of 
the September – December 2019 +IOD (Fig. 8) illustrates a +6 ºC anomaly at 7ºS, 
70ºE, 90 m depth which declines to zero in the surface layer from 5ºS–10ºN. We 
have demonstrated, in side-by-side comparisons of DMI and T100, some benefits 
of the new index and its linkages [52]. In real-time forecast applications, data-
assimilation and coupled model projections offer updated EOF scores for 
operational use. We view this as a natural progression to better track the amplitude 
and phase of the Indian Ocean Dipole. 

Data availability 
A spreadsheet to guide reformulating the IOD index is available from 

the author on request. 
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