
Code-routing: a new attack on position verification
Joy Cree and Alex May

Stanford University

The cryptographic task of position verification attempts to verify one party’s
location in spacetime by exploiting constraints on quantum information and
relativistic causality. A popular verification scheme known as f -routing in-
volves requiring the prover to redirect a quantum system based on the value
of a Boolean function f . Cheating strategies for the f -routing scheme require
the prover use pre-shared entanglement, and security of the scheme rests on
assumptions about how much entanglement a prover can manipulate. Here,
we give a new cheating strategy in which the quantum system is encoded into
a secret-sharing scheme, and the authorization structure of the secret-sharing
scheme is exploited to direct the system appropriately. This strategy completes
the f -routing task using O(SPp(f)) EPR pairs, where SPp(f) is the minimal
size of a span program over the field Zp computing f . This shows we can effi-
ciently attack f -routing schemes whenever f is in the complexity class ModpL,
after allowing for local pre-processing. The best earlier construction achieved
the class L, which is believed to be strictly inside of ModpL. We also show that
the size of a quantum secret sharing scheme with indicator function fI upper
bounds entanglement cost of f -routing on the function fI .

Joy Cree: scree@stanford.edu
Alex May: alexmay2@stanford.edu

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

20
2.

07
81

2v
5

 [
qu

an
t-

ph
]

 2
8

Ju
l 2

02
3

https://quantum-journal.org/?s=Code-routing:%20a%20new%20attack%20on%20position%20verification&reason=title-click
https://orcid.org/0000-0003-2283-3903
https://orcid.org/0000-0002-4030-5410
mailto:scree@stanford.edu
mailto:alexmay2@stanford.edu

Contents
1 Introduction 2

1.1 Background . 2
1.2 Summary of results . 5

2 f -routing and code-routing protocols 7
2.1 Definition of the f -routing task . 7
2.2 Code-routing protocols . 8

3 Entanglement and complexity in code-routing 14
3.1 Lower bounds on efficiently achievable complexity 14
3.2 Upper bounds on efficiently achievable complexity 18

4 Discussion 28

A Span programs 28

B Proof of lemma 5 29

1 Introduction
1.1 Background
In the cryptographic task of position verification [1, 2], a prover (Alice) and verifier (Bob)
interact to establish the spatial location of the prover. To do this, Bob issues Alice a
challenge, which Bob believes can only be accomplished if Alice applies quantum or classical
operations within the spacetime region of interest. The challenge is a relativistic quantum
task [3], with quantum and classical systems input at one set of spacetime locations and
another set of input and output systems returned at a second, later set of spacetime points.

We illustrate the typical position verification set-up in fig. 1a. At spacetime locations
c0 and c1, which are spatially separated but occur at the same time, inputs A0 and A1 are
transmitted by Bob and sent towards the grey shaded region. Then, Alice should process
those inputs in some way and return the output systems B0 and B1 to spacetime locations
r0 and r1. To complete this, Alice can either act honestly or dishonestly.1 If behaving
honestly, Alice enters the shaded spacetime region, receives both the inputs and locally
acts on them, as shown in fig. 1b. If behaving dishonestly, Alice sends agents to either side
of the grey region, intercepts both transmissions, and then acts in the non-local form shown
in fig. 1c. This involves local actions on each side of the region, possibly making use of pre-
shared randomness or entanglement, and a single, simultaneous round of communication
- a computation performed in this form we call a non-local (quantum) computation. For a
given choice of input state and transformation expected to be performed by Alice, acting
in this non-local form may be sufficiently challenging so as to rule out this possibility. If
so, then Bob has successfully verified that Alice acts within the specified region.

Suppose that the input and output systems are all classical. For concreteness, label
the input string at c0 by x, and the input string at c1 by y. Then the outputs at r0 and
r1 are some functions f0(x, y) and f1(x, y) of the input strings. It is straightforward to see

1Note that it is more standard to label Bob’s role as “the attacker”, honest Alice’s role as “the prover”,
and dishonest Alice’s role as “the cheater”. Our Alice and Bob language is closer to the ‘quantum tasks’
language of [2], a more general framework within which position-verification can be understood.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 2

t

x
A0 A1

c0 c1

B1B0

r1r0

(a)

c0 c1

r1r0

A0 A1

B0 B1

(b)

c0 c1

r1r0

ΨLR

A0 A1

B0 B1

(c)

Figure 1: (a) A relativistic quantum task. Time proceeds upwards in the diagram, and the horizontal
direction is a spatial dimension. Light rays follow lines with slope ±1. Input systems A0 and A1 are
received at spacetime locations c0 and c1, respectively, and B0 and B1 should be returned at r0 and r1,
respectively. The inputs and outputs should be related by some designated channel NA0A1→B0B1 . Bob,
who issues the challenge, wishes to choose the channel such that Alice is forced to do computations
within the gray spacetime region. (b) Completing the task in a local form. The yellow circle represents a
channel acting on input systems A0 and A1, and producing output systems B0 and B1. Alice acts within
the gray region, corresponding to an honest strategy. (b) A computation happening in the non-local
form. A0 is interacted with the L system, and A1 with the R system, where ΨLR is entangled. Then,
a round of communication is exchanged, and a second round of operations on each side are performed.
All operations happen outside of the spacetime region, corresponding to a cheating strategy.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 3

[1] that in this fully classical case it is always possible for Alice to cheat by completing the
relativistic task in the form shown in fig. 1c. To do so, the strategy is to copy the inputs
x, y, then send one copy and keep the other so that x and y are both held at both output
locations. Then, f0(x, y) is computed at r0 and f1(x, y) at r1, completing the task.

Unlike classical information, quantum information cannot be copied [4]. Inspired by
this, [5, 6] suggested using position verification schemes with quantum input and output
systems. It was realized however that even in the quantum case all relativistic quantum
tasks can be completed in the non-local, cheating form shown in fig. 1c, see [2, 7, 8]. This
establishes that position verification cannot be made unconditionally secure, at least within
the context of quantum mechanics in a fixed spacetime background and without placing
assumptions on the entanglement available to an attacker.

In the absence of unconditional security, we can look for assumptions under which the
scheme may be considered secure. For some relativistic quantum tasks, it can be shown
that all cheating strategies require large amounts of entanglement. Given this, one can
introduce a security model that assumes a bounded amount of entanglement is shared,
and then prove security of a position verification scheme by establishing that entanglement
in excess of this bound is required to complete a given quantum task.

Ideally, the relativistic quantum task used in the context of position verification is easy
to complete in the honest strategy, and as hard as possible to complete in the dishonest
form. One well studied proposal is f -routing, which takes the following form. At c0, a
quantum system Q of dimension d is given, along with a classical string x of length n. At
c1, a classical string y of length n is given. As an output, Alice is required to return system
Q at rf(x,y), where f is some fixed function mapping strings of length 2n to bits. Notice
that to complete the f -routing task honestly Alice can bring Q, x and y into the spacetime
region, compute f , then redirect Q based on the outputs. Thus the quantum part of the
strategy is almost trivial.

Recently Bluhm, Christandl, and Speelman, [9] proved the following statement. Pick a
random function f . Then with high probability, any cheating strategy to complete the cor-
responding f -routing task requires a shared resource system with a dimension that grows
with n. Thus by increasing n, the honest strategy involves a larger classical computation,
but the dishonest strategy involves manipulating larger quantum systems. Assuming clas-
sical computations are “easier” in some appropriate sense than storing quantum systems,
we can establish security of the scheme.

Entanglement cost in the f -routing task exhibits an interesting relationship to classical
complexity theory. One interesting attack on f -routing is the “garden-hose” protocol [10,
11, 12]. In that protocol, the number of EPR pairs needed to perform f -routing non-locally,
call it GH(f), is related to the memory cost of computing f on a Turing machine.

2SPACE(2)(f) ≤ GH(f) ≤ 2O(SPACE(2)(f)) (1)

where

SPACE(2)(f) = min
M,α,β:

f(x,y)=M(α(x),β(y))

SPACE(M).

We note here that α and β are arbitrary functions; they appear because Alice may locally
manipulate her input strings before beginning a protocol. We refer to application of these
functions as pre-processing.

This connection between the garden-hose model and complexity theory is also con-
structive: an algorithm for computing f can be turned into a non-local computation using
2O(SPACE(2)(f)) entanglement, and a non-local computation in the garden-hose model can

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 4

be turned into an algorithm for computing f , with memory cost given by log GH(f). This
connection also suggests proving strong lower bounds on entanglement in f -routing should
be challenging, as we would obtain lower bounds on space complexity as a consequence.

The class of functions that can be implemented efficiently using the garden hose protocol
is related to L, those functions that can be computed in log-space. However, the appearance
of pre-processing means the efficiently computable functions are instead given by the class
L(2), defined as follows,

L(2) ≡ {f(x, y) : f(x, y) = M(α(x), β(y)), M ∈ L}. (2)

Note that here L denotes the class of functions computable in space logarithmic in n,
the length of the strings x and y (not the length of α(x) and β(y)). This is the class
of functions for which we can complete the f -routing task non-locally using polynomial
entanglement within the garden-hose protocol. We can analogously define the class P(2),
polynomial time when allowing pre-processing,

P(2) ≡ {f(x, y) : f(x, y) = M(α(x), β(y)), M ∈ P}, (3)

where the P inside the definition refers to functions with runtime polynomial in n, the
length of x and y. One consequence of the garden-hose protocol’s connection to complexity
theory is that certain explicit entanglement lower bounds are expected to be hard to
prove. For example, given a function f ∈ P(2), if one showed f requires super-polynomial
entanglement, then we would learn that L(2) ⊊ P(2). Since from the definitions above
L = P implies L(2) = P(2), we have that L(2) ⊊ P(2) implies L ⊊ P . Proving that L ⊊ P
however is a longstanding and difficult problem in computer science.

Recently, a relationship between position-based cryptography and quantum gravity has
been highlighted [13, 14]. As we discuss further in [15], in that context there is a tentative
expectation coming from the quantum gravity side that entanglement cost in non-local
computation should be related to the complexity of the corresponding local computation.
From this perspective, the complexity-entanglement relationship exhibited in the garden-
hose protocol is especially interesting, and we were motivated to further study f -routing
and its relationship to complexity due to that connection.

The possible relationship between complexity and entanglement in non-local computa-
tion is also of practical interest in the context of position verification. For instance, consider
the security setting in which we assume an attacker has bounded entanglement, but do
not otherwise restrict their resources. In this setting we are interested in functions which
require large entanglement to implement non-locally. At the same time, the geometry of
a position-verification scenario requires the computation be implementable quickly when
performed locally.2 If the function f has exponential complexity, the honest party may
not be able to compute it within the needed amount of time. Because it uses a randomly
chosen (and hence high complexity) function the Bluhm, Christandl, and Speelman result
[9] faces this obstruction to realizing a practical and secure position verification setting.
For this reason, it is important to understand the entanglement cost for implementing
low-complexity functions.

1.2 Summary of results
In this paper we give a new strategy for completing the f -routing task non-locally, which
we call “code-routing”. The basic strategy of the protocol is to encode the input system

2This comment is more precise after reading ahead to equation 6: the honest, local computation must
be implementable within the region J01→01. The time extent of this region is comparable to the spatial
size of the region we are trying to localize an honest party to.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 5

Q into a quantum secret sharing scheme whose access structure is related to the function
f . The shares of the scheme are then routed on simple functions of single input bits.
Compared to the existing garden-hose protocol, code-routing uses no more entanglement,
and probably less. To understand why we make use of a connection between the code-
routing strategy and complexity theory. We also use the code-routing strategy to establish
a new relationship between entanglement cost in f -routing and the size of quantum secret
sharing schemes. Throughout the work, we work with p-dimensional quantum systems,
which we call ‘qupits’, with p any prime.3

Calling the minimal entanglement required to f -route E(f), we show

E(f) ≤ O(SPp,(2)(f)) (4)

where

SPp,(2)(f) = min
M,α,β:

f(x,y)=M(α(x),β(y))

SPp(M), (5)

and SPp(M) is the minimal size of a span-program over the field Zp that computes M . The
complexity class of functions that can be computed with polynomial-sized span programs
is ModpL (see section 3.1 for a definition), so that here the functions for which we can
perform f -routing using polynomial entanglement is ModpL(2), where again the added
subscript accounts for performing local pre-processing of the inputs.

To understand the relationship between entanglement cost in the garden-hose protocol
and code-routing, we note first that4 L ⊆ ModpL, and consequently L(2) ⊆ ModpL(2).
Thus, we can perform f -routing efficiently for at least those functions that can be efficiently
performed in the garden-hose protocol. Further, it is believed that L ⊊ ModpL. We recall
the evidence for this in section 3.1. Consequently in considering the classes L(2) and
ModpL(2), a strictly larger class of functions can be used to compute the non-local part of
f . We believe that as a consequence L(2) ⊊ ModpL(2). We explain our intuition for this
but cannot show it.

A further consequence of our protocol is a relationship between the size of quantum
secret sharing schemes and entanglement requirements in f -routing. In particular, a quan-
tum secret sharing scheme records a secret, Q, into a set of shares {v1, ..., vn} such that
some subsets recover Q and others reveal nothing about it. The size of a secret sharing
scheme is the sum of the log dimension of all the shares. The structure of the scheme is
captured by the indicator function, which is defined as a map from subsets of shares to
bits, and is 0 when the subset reveals nothing about the secret and 1 when the subset
reveals the secret. Ideally, one constructs a secret sharing scheme with as small of a size
as possible for a given indicator function.

When considering f -routing tasks where f can be realized as an indicator function,
we build a code-routing scheme that shows the entanglement requirement E(f) is upper
bounded by the size of any secret sharing scheme with f as its indicator function. This
can also be understood as a constraint on the size of secret sharing schemes.

It is also interesting to ask if ModpL(2) is the largest class of functions that can be
completed using code-routing protocols with polynomial entanglement. Our protocol that
achieves this is a special case of the most general possible code-routing construction, in
particular it restricts to a class of secret sharing schemes constructed by Smith [16]. As-
suming only those codes are used, and under further constraints on the protocol, we give

3We can for example choose p based on the function family we wish to perform the f -routing task for.
4This and other inclusions stated in this paragraph are explained in section 3.1.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 6

t

x
A0 A1

c0 c1

B1B0

r1r0

Figure 2: Illustration of the scattering region J01→01. The dashed lines extending forward from ci

represent the region J+(ci), while the dashed lines extending backwards from the ri represent the J−(ri)
regions. Intersecting the four regions J+(c1), J+(c2), J−(r1), J−(r2) defines the small diamond sitting
within the grey region, which is J01→01.

some partial converse results. For code-routing protocols where Smith codes are used,
we can show their complexity is within P(2). When restricting to protocols that concate-
nate Smith codes to only O(1) depth, we show their complexity is within ModpL(2). For
code-routing protocols using arbitrary codes with O(1) shares, we show their complexity
is within L(2). Throughout, we have to assume that a certain measure of the size of the
protocol is related polynomially to the entanglement used. These results eliminate some
directions in which one can try to use a code-routing protocol to perform f -routing on
functions of larger complexity, and highlight the remaining possibilities.

2 f -routing and code-routing protocols
2.1 Definition of the f -routing task
To describe the f -routing task, it will be helpful to consider Alice, who carries out the
protocol to be an agency with several agents. Alice’s agents co-operate with one another
to complete the task. Similarly, Bob is an agency with several agents, who may move
through spacetime along different trajectories. For convenience, we will say for example
that Bob gives Alice system A at spacetime location c0. Somewhat more precisely, this
means that an agent of Bob’s, who is located at c0, gives an agent of Alice’s the system A.

The routing task is defined as follows.

Definition 1 An f -routing task is defined by a Boolean function f : {0, 1}2n → {0, 1}. The
task is carried out by two agencies, Alice and Bob. At spacetime location c0 Bob gives Alice
a quantum system Q and a classical string x of length n. At spacetime location c1 Bob
gives Alice a string y. Strings x and y are drawn from the uniform distribution, while Q is
in a maximally entangled state

∣∣Ψ+〉
QQ̄ with reference system Q̄ held by Bob. Alice returns

a quantum system B0 at location r0 and B1 at R1. Bob measures Q̄Bf(x,y) to test if it is
in the state

∣∣Ψ+〉
, and Alice completes the task successfully if the test succeeds.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 7

Q

x = 1

y = 0

(a)

x = 1

Q

x = 0

y = 0

(b)

Figure 3: Some simple garden-hose protocols. Blue lines indicate Bell basis measurements. Black lines
indicate shared EPR pairs, with the left side of the pairs held by Alice0 and right side held by Alice1. a)
Garden-hose protocol for computing AND(x, y). Alice0 measures Q and the first EPR pair in the Bell
basis iff x = 1. Alice1 measures the two EPR pairs iff y = 0. b) Garden-hose protocol for OR(x, y),
which uses similar conditional measurements.

When convenient, we will refer to Alice’s agent at c0 as Alice0, and Alice’s agent at c1 as
Alice1. As well, it is sometimes convenient to refer to c0 and r0 together collectively as
‘the left’ and c1 and r1 together as the ‘the right’.

To complete a routing task, the simplest strategy is to bring x, y and Q together,
compute the function f , and then direct Q based on the result of the computation. To
use an f -routing task to verify if Alice performs non-trivial operations within a spacetime
region R, the points c0, c1, r0, r1 should be arranged such that performing this local strategy
requires entering R. In particular, we define the region

J01→01 = J+(c0) ∩ J+(c1) ∩ J−(r0) ∩ J−(r1). (6)

Here J+(p) is the future light cone of p, meaning the set of all points q such that information
can travel from p to q without moving faster than light, and J−(p) is the past light cone
of p, meaning the set of all points q such that one can travel from q to p without travelling
faster than the speed of light. This is the region in which the input to the local computation
of f are available, and the outputs from the computation can still reach the output points.
Consequently, we choose c0, c1, r0, r1 such that J01→01 ⊆ R when we wish to verify Alice
can perform computations within R.

To perform the routing task non-locally, the best known strategy is the garden-hose
protocol [10]. It involves sharing EPR pairs between c0 and c1, then doing a set of Bell
measurements on pairs of entangled particles. Which measurements are performed depends
on the values of the strings x and y. The measurement outcomes are then communicated
to both of the output locations. If the mappings from strings x, y to a set of measurements
on both sides is chosen correctly, it will be possible to recover the system Q at rf(x,y). We
give simple examples of computing a NOT and AND function in fig. 3. As discussed in the
introduction, the entanglement cost of completing the f -routing task using the garden-hose
protocol is controlled by the space complexity of f .

Another possible attack is given in [8]. This attack also works for arbitrary quantum
tasks. Applied to f -routing, it has exponential in n entanglement cost for any choice of
function f .

2.2 Code-routing protocols
Error-correcting codes are a standard tool appearing throughout quantum information
theory — here we consider their use in performing the f -routing task. Because only two
parties (an agent on the left and on the right) are involved in a non-local computation, it

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 8

is unclear why error-correcting codes should be related to non-local computation. How-
ever, we are motivated to do this because of a recent connection [13] between non-local
quantum computation and the AdS/CFT correspondence [17, 18]. Error-correction plays
an important role in the AdS/CFT correspondence, suggesting a connection between non-
local computation and error-correction. We study a family of f -routing protocols that
exploit error correction, which we call code-routing protocols. After giving the general
form of any such protocol, we discuss a particular class of codes that expands the set of
computations performable using polynomial entanglement to ModpL(2), a complexity class
which is known to be at least as large as L(2), and is probably larger.

The basic structure of a code-routing protocol involves recording Q into an error-
correcting code, then sending the shares of that code to the left or right based on the input
variables. We can also carry out garden-hose type strategies on individual shares, or record
those shares into subsequent codes, including choosing which encoding to use based on the
input variables.

The simplest example of a code-routing protocol, which we will use as a subroutine in
subsequent constructions, is ‘unit-routing’. The functionality of the unit-routing protocol
is to send a share vi to the side labelled by a bit zj . We explain how to perform the
unit-routing protocol in fig. 4.

We describe the most general form of a code-routing protocol below.5

Definition 2 Code-routing protocol: A code-routing protocol is defined by two maps C0[x]
and C1[y], each mapping from input strings of length n to a tuple,

C0[x] : {0, 1}n → (a(x), S0, ..., Sℓ),
C1[y] : {0, 1}n → (b(y), Sℓ+1, ..., Sℓ+ℓ′).

The combined outputs

I = (a(x), S0, ...Sℓ, b(y), Sℓ+1, ...Sℓ+ℓ′) (7)

we refer to as the protocol tape. Each Si corresponds to one encoding, teleportation, or
‘unit-routing’ of a local share. We denote it as a tuple Si = (vi, {wj

i }, Ti), with vi a label
for an input share, {wj

i } a set of output shares, and Ti a description of an encoding,
teleportation, or ‘unit-routing’. Define ni = |{wj

i }| to be the number of output shares
associated with Si. Then:

• When ni = 0, Ti describes a unit-routing or keep/send instruction. For a unit-routing
Ti, will be the label of a single bit of a(x) or b(y), or its negation. For a keep/send
instruction, Ti will be a 0 or 1 indicating that the share should be brought to r0 or r1.

• When ni = 1, Ti will be empty, and the tuple (vi, w0
i , ∅) describes a teleportation from

the vi system onto the w0
i system.6

• When ni > 1, Ti describes an encoding into an error-correcting code, with the wj
i

systems the output systems of the encoding procedure.

5The reader may wish to skip this detailed definition and return to it after understanding some of the
simple examples below.

6Note that here, the Pauli correction which is required in the teleportation protocol is implemented in
the final stage of the non-local computation. Subsequent encodings, teleportations, or unit-routings of the
share w0

i will take place before this correction is performed.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 9

x

if x = 1,
send

v

v

(a)

y

if y = 0,
send

v v

(b)

Figure 4: Illustration of the unit-routing protocol. The effect of the protocol is to bring the share v to
the side labelled by the input bit. a) For an input bit z = xi held by Alice0, who holds share v, the
share is sent to c1 during the communication round iff z = 1. b) With v at c0 but input bit z = yj

held at c1, the share is first measured in the Bell basis with one end of an EPR pair that has been
shared between c0 and c1. After the measurement, the systems at c1 holds the information on v up
to a Pauli correction. Call this system v′. During the communication round, Alice1 sends v′ to c0 if
z = 0, and keeps it if z = 1. Simultaneously, Alice0 maintains a copy of her measurement outcome
and sends a copy to the right. On whichever side v′ has been brought to, the local agent can undo the
Pauli correction and recover v. Notice that the bit z could also be the NOT of one of the input bits
received by Alice0 or Alice1. Similar protocols are used when v is held by Alice1.

Alice0 and Alice1 carry out the code-routing protocol by computing C0[x] and C1[y], then
encoding, teleporting, or unit-routing each share according to the pattern described by the
protocol tape.

Code-routing includes the garden-hose protocol as a special case: if no systems are put into
codes, the remaining protocol amounts to a set of choices about which pairs of entangled
systems should be measured in the Bell basis, as in the garden-hose protocol. This shows
code-routing uses at most as much entanglement as the garden-hose. More generally,
including non-trivial encodings allows a larger class of strategies.

To understand code-routing, it will be helpful to begin with simple examples and build
up to more elaborate constructions. Some basic examples of code-routing protocols are
shown in fig. 5. There, we f -route on the AND and OR functions using an erasure code
on 3 shares that corrects one erasure error. The protocols for AND and OR given here can
be compared to the garden-hose strategies for computing the same functions in fig. 3.

One convenient property of the code-routing strategy is that composition of functions
is implemented in a simple way. To see this, consider a simple example, which is easy to
generalize. Consider the function f(x, y) = AND(NOT (x), OR(x, y)). To execute this in
a code-routing protocol, one can use the code shown in fig. 5c. Notice that we concatenate
codes according to the pattern given by the Boolean formula for function f(x, y). This
generalizes to any Boolean formula, although we must use DeMorgans’ laws to move the
NOT gates to the input layer. This shows that the entanglement cost for code-routing on
a function f is bounded above by the formula size of f , where by formula size we mean
the number of inputs to the formula, counted with repetition.7

Building on the AND and OR examples, we can replace the simple threshold code with
other, more structured examples. An interesting class of examples is constructed from
quantum secret sharing schemes, which we review briefly before describing the protocol.

A quantum secret sharing scheme is a quantum error-correcting code with the additional
feature that collections of subsystems are either authorized, meaning they can be used to
recover the encoded state, or unauthorized, meaning they reveal no information about the
state. The set of authorized sets for a given secret sharing scheme is known as its access
structure. Call the shares produced by the secret sharing scheme {vi}i. Then the scheme’s

7E.g. f(x, y) = AND(NOT (x), OR(x, y)) has size 3.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 10

E

keep

Q

yx

(a)

E

Q

send
yx

(b)

E

Q

keep
¬x

E

send
yx

(c)

Figure 5: Some simple code-routing protocols. The map E takes in the Q system and records it into a 3
share secret sharing scheme where any 2 shares recover the secret. In the protocol, Alice0, who initially
holds Q, performs the encoding map E . The lower boxes indicate the unit-routing protocol should
be implemented on the attached shares. a) Code-routing protocol for computing AND(x, y). The
protocol tape describing this protocol consists of the tuples S1 = (Q, {A, B, C}, E), S2 = (A, {}, 0),
S3 = (B, {}, x), S4 = (C, {}, y). b) Code-routing protocol for OR(x, y). c) Code-routing protocol for
computing f(x, y) = AND(NOT (x), OR(x, y)). This method of concatenating codes to generalizes
to arbitrary Boolean formulas. The entanglement cost is bounded above by the formula size.

access structure defines a corresponding indicator function fI according to

fI(z) =
{

0,
⋃

zi:zi=1 vi is unauthorized
1,

⋃
zi:zi=1 vi is authorized

(8)

All valid indicator functions satisfy two constraints. First, the no-cloning theorem implies
no two disjoint subsets can recover the state. At the level of the indicator function, this
is expressed as f(z) = 1 =⇒ f(z̄) = 0. Second, adding additional shares to a set never
prevents recovery, which implies f(z) is monotone.8 In [19], it was shown that whenever the
indicator function is no-cloning and monotone, it is possible to construct a corresponding
quantum secret sharing scheme. Finally, define the size of a quantum secret sharing scheme
to be the sum of the log dimension of all the shares. For shares built from qubits, this is
the total number of qubits the secret is encoded into.

Using a code-routing protocol based on a single encoding of Q into a quantum secret
sharing scheme, we can prove the following theorem.

Theorem 3 Consider an f -routing task where f is a valid indicator function. Then the
entanglement cost of completing the routing task for f is upper bounded by the size of any
quantum secret sharing scheme that has f as its indicator function.

Proof. Construct an f -routing protocol as follows. On the left, record Q into a quantum
secret sharing scheme with shares {v1, ..., v2n} and indicator function f(x, y). In particular,

8A Boolean function f(z) is said to be monotone if x ⪯ y =⇒ f(x) ≤ f(y), where x ⪯ y means that
xi ≤ yi for all i.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 11

use the isometric extension of the encoding map, and have Alice0 hold the purifying system
R. Then, for 1 ≤ i ≤ n carry out the unit-routing protocol on each share vi with xi as
input. For n + 1 ≤ i ≤ 2n unit-route share vi on yi. We will show this procedure correctly
completes the f -routing task, and has entanglement cost upper bounded by the size of any
secret sharing scheme with indicator f .

For correctness, notice that by construction Alice1 obtains the set of shares K(x, y) ≡⋃
zi:zi=1 vi, and Alice0 holds the purification of K(x, y) (consisting of the remaining shares

plus R). If f(x, y) = 1, by construction we have that K(x, y) is authorized, so Alice1
recovers Q, which is correct. If f(x, y) = 0 Alice1 receives an unauthorized set of shares.
This ensures all systems held by Alice1 reveal nothing about Q. Since Alice0 holds the
purifying system, by decoupling [20, 21] we have that Alice0 can recover Q. Again this is
correct.

To understand the entanglement cost of this protocol, notice that the unit-routing of
share vi for i > n requires log2 dvi EPR pairs. Unit-routing on shares vi for i ≤ n has no
entanglement cost, since the needed bits xi are held locally. The total entanglement cost
is just the entanglement cost of all the unit-routings, giving

E(f) ≤
∑

n<i≤2n

log2 dvi ≤
∑

1≤i≤2n

log2 dvi . (9)

The right hand side is just the size of the secret sharing scheme used, so we are done.
For a given indicator function, the most efficient quantum secret sharing scheme is the

one due to Smith [16]. In particular, Smith’s scheme has size O(mSPp(f)), where mSPp(f)
is the size of a monotone span program over Zp that computes f . We define span programs
in appendix A. This shows that for indicator functions the entanglement cost of f -routing
is upper bounded by monotone span program size.

Next, we continue to progress towards more elaborate code-routing protocols, which
will allow us to do code-routing for arbitrary functions, not just indicator functions. In
particular, we will introduce unit-routings that direct a share based on the negation of
one of the input bits, rather than an input bit directly, which will allow us to route
on non-monotone functions. As well, we will route on functions which violate the no-
cloning property by realizing them as restrictions of functions which do have the no-cloning
property. Combining these tools we prove the following theorem.

Theorem 4 Using a code-routing protocol, the routing task can be completed for any func-
tion f using a resource state consisting of O(SPp,(2)(f)) maximally entangled qupits, where

SPp,(2)(f) = min
h,α,β

{SPp(h) : f(x, y) = h(α(x), β(y))},

and SPp(h) is the size the smallest span program over the field Zp computing h.

In the next section we show that span program size is no larger than the entanglement cost
in the garden-hose protocol, and given some complexity theoretic assumptions is smaller.

Towards proving this theorem, we build a routing protocol in the following way. We
show that f can be expressed as f(z) = (fI ◦g)(z, b), with b a single bit, z = (x, y), g maps
(z, b) to (z, ¬z, b), and fI an indicator function. We state this in the next lemma.

Lemma 5 Given a function f : {0, 1}m → {0, 1}, there exist functions

f ′ : {0, 1}m+1 → {0, 1},

fI : {0, 1}2m+1 → {0, 1},

g : {0, 1}m+1 → {0, 1}2m+1,

such that

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 12

• f ′(z, 1) = f(z)
• f ′(z, b) = fI ◦ g(z, b)
• fI is a valid indicator function
• g acts on the first m bits of its input by copying each bit zi and negating one copy,

zi → (zi, ¬zi). It leaves the final bit b unchanged.
• mSPp(fI) ≤ SPp(f) + 1, where SPp(h) denotes the minimal size of a span program

over Zp computing h, and mSPp(h) the size of a monotone span program computing
h.

We prove this lemma in appendix B.
Using this lemma, we are ready to prove theorem 4.

Proof. (Of theorem 4) Let the function we will perform the routing task on be f(x, y).
We can first allow Alice0 and Alice1 to apply local functions to their strings x and y,
producing new strings α(x) and β(y). These are chosen, along with a function h, such that
f(x, y) = h(α(x), β(y)). Let m = |α| + |β|.

Lemma 5 gives that we can realize h as a restriction of h′(z, b) = hI ◦ g(z, b), with hI

a valid indicator function, and g(z) mapping m + 1 bits to 2m + 1 bits. For the indicator
function hI , use the construction in Ref. [16] to find an encoding map EQ→V which prepares
a secret sharing scheme with access structure corresponding to hI .

The protocol is as follows. After receiving Q, Alice0 applies the isometric extension of
the encoding channel, call it V E

Q→V E . This produces output systems vi, 1 ≤ i ≤ 2m + 1,
and E. The environment system E is retained by Alice0. Then, Alice0 and Alice1 carry
out the unit-routing protocol (see fig. 4) to bring share vi to Aliceg(z)i

, where by g(z)i we
mean the ith bit of g(z).9 Note that we always take z2m+1 = b = 1 and g to always act
trivially on this bit, so that share v2m+1 is always sent to Alice1.

Next we verify that this protocol works correctly, in that Q will be recovered on
Alicef(z)’s side. Consider that Alice1 holds all those shares vi such that g(zi)i = 1. If
this is an authorized set, she will be able to recover Q. By design, this occurs exactly
when h′(z, 1) = hI(g(z, 1)) = 1, and by construction h′(z, 1) = h(z), so this is correct.
Alternatively if the set of shares vi such that g(zi) = 1 is unauthorized, then Alice1’s
systems reveal nothing about the encoded state. Because Alice0 performed the encoding
procedure isometrically and retained the environment, decoupling ensures that Alice0 can
now recover the state. This occurs exactly when h′(z, 1) = hI(g(z, 1)) = 0, so h(z) = 0,
and again this is correct.

Finally we determine the entanglement cost of performing this protocol. All the en-
tanglement use occurs in teleporting shares vi, 2|α| < i ≤ 2m from Alice0 to Alice1, which
occurs as part of the unit-routing protocol. The required entanglement depends on the
size of the shares vi, which in turn depends on the details of the secret-sharing scheme
construction. Specifically, the protocol can be performed using not more than∑

2|α|<i≤2m

logk dvi ≤
∑

1<i≤2m

logk dvi (10)

maximally entangled pairs of qupits. For the construction of Ref. [16], this is at most
(2mSPp(hI) + 1). From lemma 5 we have also that mSPp(hI) ≤ SPp(h) + 1, completing
the proof.

9Recall that the ith bit of g(z) is either a bit of the input z or a negated copy, such that zj = g(z)2j if
i is even or ¬zj = g(z)2j+1 if i is odd.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 13

3 Entanglement and complexity in code-routing
3.1 Lower bounds on efficiently achievable complexity
In the last section we saw that the code-based protocol can carry out a routing task
using at most O(SPp,(2)(f)) maximally entangled pairs of qupits, where SPp,(2)(f) is the
minimal size of a span program over Zp (with p prime) that computes the non-local part
of f . To capture the set of functions that can be performed using reasonable amounts of
entanglement with this strategy, we define the following complexity classes.

Definition 6 For prime p, PSPp is the set of families of functions fn : {0, 1}n → {0, 1}
that can be computed using span programs over the field Zp of size polynomial in n.

Definition 7 PSPp,(2) is the set of families of functions fn : {0, 1}2n → {0, 1} which can be
computed in the form fn(x, y) = hn(α(x), β(y)) with hn ∈ PSPp.

Theorem 4 establishes that the routing task can be completed with polynomial EPR
pairs for a function family {fn} at least when it is in the class PSPp,(2), for any prime p.
This gives that the class of functions efficiently implementable in the code-routing strategy
is at least ∪prime pPSPp,(2). We are interested in the relationship between this class and
L(2), which is the class of functions that can be computed non-locally in the garden-hose
model (the most efficient previously known protocol) with polynomial entanglement. In
the next two sections we give evidence that L(2) ⊊ PSPp,(2), so that code-routing improves
on the garden-hose model.10

L and PSPp

We will start by considering the classes without local pre-processing of the inputs, L
and PSPp. It is believed that L ⊊ PSPp. To understand why, we first need to introduce a
few related complexity classes, NL, UL, and ModpL.

To understand these classes, recall the notion of a non-deterministic Turing machine.
Such a machine may, at each step, choose to follow one or more computational paths. For a
"yes" instance, we just require that at least one of these paths be accepted. This contrasts
with a deterministic machine, which follows exactly one path. For example, consider the
directed graph connectivity problem:

DAG

• Input: A directed acyclic graph G, and a designation of two nodes in the graph,
called s and t.

• Output: 1 if there exists at least one path from s to t in G, 0 otherwise.

Starting at node s, a non-deterministic machine can solve DAG by following every outward
edge from s, and every outward edge from each subsequent node, etc. The machine accepts
if any of these computational branches reaches t. We can restrict the computational power
of the machine by requiring each branch, separately, run in a restricted amount of time or
use a restricted amount of memory.

NL is the class of decision problems solvable on a non-deterministic Turing machine
with O(log n) memory, where n is the length of the input. UL is the class of decision

10In the introduction we make the statement that code-routing achieves the class ModpL(2), and that
L ⊆ ModpL. In fact P SPp = ModpL as we discuss in this section, so this is the same statement as is made
here.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 14

problems solvable on a non-deterministic Turing machine with logarithmic memory, but
requiring that exactly one branch accept on “yes” instances, and zero branches accept on
“no” instances. Finally, recall that L is the class of decision problems that can be decided
in O(log n) space on a deterministic Turing machine. It is clear that L ⊆ UL, because a
deterministic machine is a special case of a non-deterministic one, and the deterministic
machine has just one computation path, and so in particular one accepting path.

It’s also immediate that UL ⊆ NL, because machines with one accepting path are
special cases of the general non-deterministic one.

Finally, we consider ModpL, for p prime. This has an unusual definition, but turns
out to capture the complexity of a number of natural problems. ModpL is the class of
decision problems which can be solved by running a non-deterministic Turing machine and
outputting "yes" when the number of accepting paths in that machine is non-zero mod p,
and outputting "no" otherwise. An example of a problem in this class is the following.

DAGp

• Input: A directed acyclic graph G, and a designation of two nodes in the graph,
called s and t.

• Output: 1 if the number of distinct paths from s to t in G is non-zero mod p, and 0
otherwise.

More relevantly, Ref. [22] proved that ModpL includes many natural linear algebra ques-
tions over the field Zp, including inverting and powering matrices, calculating the rank of
a matrix and others. To relate this to our earlier classes, note that a UL machine on "yes"
instances has one accepting path, so in particular 1 mod p accepting paths, so any problem
in UL can be decided in ModpL so that UL ⊆ ModpL. Together with L ⊆ UL, this also
implies that L ⊆ ModpL as mentioned in the introduction.

In Ref. [23], it was pointed out that running a span program of polynomial size is in
ModpL, and in fact every problem in ModpL can be reduced in an efficient way to running
a span program. Consequently, we have

PSPp = ModpL.

As a consequence of this, it is also true that a span program with d rows can be computed
by running a Turing machine with O(log d) memory, and outputting 0 iff the number of
accepting paths is non-zero mod p.

Using this, we can relate the classes L and PSPp according to

L ⊆ UL ⊆ ModpL = PSPp. (11)

It is also believed that L ⊊ NL, and that UL = NL. Assuming both these statements, we
would have that L ⊊ PSPp. We motivate these beliefs below.

First consider the claim L ⊊ NL. This is widely believed, similar to the belief that
P ⊊ NP. It amounts to the statement that allowing a log space Turing machine to follow
many computational paths at once adds power. One line of evidence for L ⊊ NL is the
theory of NL-completeness. Many problems [24] are known to be NL-complete, meaning
any problem in NL can be mapped to them using a log space mapping. If L is equal to
NL, then all of these problems have a log space solution, but no such solution is known for
any of them. Concretely, the DAG problem described above is NL-complete. This means
the claim that L ⊊ NL amounts to the statement that we cannot solve this problem in log
space without non-determinism.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 15

The second claim is that UL = NL. As mentioned above, it is immediate that UL ⊆ NL,
so it remains to understand the evidence for NL ⊆ UL. This was discussed in Ref. [25, 26],
where they pose the question in terms of the DAG problem. We summarize their argument
briefly. First notice that since DAG is NL-complete, if we can show it is in UL we are
done. The problem then is to, given a directed graph G, define a non-deterministic Turing
machine M that has exactly one accepting computational path when there are any number
P ≥ 1 of paths in G from s to t, and no accepting computational paths otherwise. It is
not known how to solve this problem in this form. However, consider rather than a UL
machine, a UL machine which additionally has access to an advice string, which here will
be a list of randomized weightings assigned to the edges of G. Then, one uses that after
assigning random weightings to the edges with high probability there will be a unique
minimal weight path in G from s to t. We build the machine M to only accept on this
minimal weight path, which gives it a single accepting computational path.

We can modify this construction to ensure it works with probability one. In particular,
there exists a log-space computable function which maps from the advice string and the
graph G to a set of n2 graphs Gi, each of which is a weighted version of G, such that for
any graph G at least one of the Gi has a unique minimal weight path. By exploiting the
uniqueness of this path, one can solve DAG in UL. The reader should refer to Ref. [25] for
more details.

It remains to remove the need for the UL machine to access the advice string. In
Ref. [26], it was shown that this can be done if suitable pseudo-random functions exist. A
pseudo-random function is one whose outputs are hard, in a suitable sense, to distinguish
from completely random outputs. In particular it is thought that there are pseudo-random
functions that are much easier to compute than they are to distinguish from randomness.
In the construction above, we used an advice string assigning random weights to the edges
in G. We consider replacing this with an assignment by a pseudo-random function p(x)
which is computable in log space. This assignment can be made by our UL machine.
Then either there is a p(x) which will create a graph Gi with a unique minimal weight
path, or distinguishing p(x) from a truly random one is no harder than checking that all
the Gi have non-unique minimal weighted paths. Given what is believed about pseudo-
random functions, checking if the Gi have unique minimal weight paths would too easily
distinguish p(x) from random, so we expect there is a log-space computable function that
assigns suitable weightings. From this we conclude that NL = UL.

L(2) and PSPp,(2)

In the last section we gave evidence, based on the existence of suitable pseudorandom
functions, that L ⊊ PSPp. Unfortunately, we cannot offer similar evidence separating L(2)
and PSPp,(2), although we believe this is the case. More generally, for any classes A, B
such that A ⊊ B it is unclear when A(2) ⊊ B(2). We offer only some comments on this
problem.

To understand this separation problem better, first of all consider some cases where
A and B do collapse under local pre-processing. Trivial examples occur whenever one of
two conditions are met. If there is a promise that the inputs are of the form (x, x), so
that both local pre-processors see the full input, then the pre-processed classes A(2) and
B(2) both become equal to the set of all functions, since we can have α or β carry out the
entire computation. Another collapse occurs when the class B is defined by taking A and
allowing for an advice string. In that case having α(x) = (x, a) for a the advice string

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 16

and β(y) = y collapses the classes. For example11, L ⊊ L/poly but this reasoning shows
L(2) = L/poly(2). Our example of A = L and B = ModpL does not have either of these
features, so at the very least it cannot be obviously collapsed in either of these ways.

Another observation is that, when allowing arbitrary pre-processing, all functions
are contained in PSPACE(2). To see why, take α(x) = (x, f(x, y1), ..., f(x, y2n)) and
β(y) = y. Then, the local processor need only look up the yth element of the string
f(x, y1), ..., f(x, y2n) and output the corresponding bit, and this can be done in PSPACE.
This means for example that PSPACE ⊆ EXP which is believed strict, but PSPACE(2) =
EXP(2). Because our classes ModpL and L are so much weaker than PSPACE, we do
not believe a collapse by any similar mechanism is plausible in our case.

To argue that a maintained separation under pre-processing is at least possible for some
classes A and B, we prove such a separation in other cases. Such separations are easy to
prove for some low-lying complexity classes using tools from communication complexity. To
define communication complexity, consider the following scenario. Alice is given a string
x, and Bob a string y. Alice and Bob will communicate by sending classical bits to one
another with the goal of determining the output of some Boolean function f(x, y). Unlike
in a non-local computation scenario, they can communicate over many rounds. Alice sends
Bob a message, then, conditioned on the message he receives, Bob sends Alice a message,
etc. The communication complexity is then the total amount of information transferred
from Bob to Alice plus the information sent from Alice to Bob. See Ref. [27] for an
introduction to communication complexity.

To understand why communication complexity can be used to separate classes with
pre-processing, we first need to define the notion of a decision tree. A decision tree defines
a simple type of program for computing a Boolean function on n bits. It consists of a
directed tree12 such that except for the leaves and one other vertex specified as the root,
every vertex has one edge in and two edges out; a set of queries Q consisting of functions
of O(1) input bits; a query qv ∈ Q for each non-leaf vertex v in the graph; and a label for
each leaf as either 0 or 1. Starting at the root, for each node v in the tree, the program
checks the corresponding qv of the inputs. Based on if that condition is true or false, it
moves to the left or right branch from the current node. Eventually the program reaches
a leaf of the graph, and outputs the label of that leaf.

Decision tree size is related to communication complexity via the bound [28]

depthQ(f(x, y)) ≥ D(f(x, y))/cQ (12)

where D(f(x, y)) is the communication complexity of the function f(x, y), and depthQ(f(x, y))
is the minimal depth of a decision tree computing f using the set of queries Q. The con-
stant cQ is defined by cQ = maxq∈Q D(q), the communication complexity of an individual
query in the worst case. Briefly, this bound holds because a decision tree can be converted
into a communication protocol: starting at the root, Alice and Bob communicate to eval-
uate the first query. This has communication cost at most cQ. Given the output from this
query, they follow the decision tree to the next node, and carry out another communica-
tion protocol to evaluate the next query. The communication cost is at most cQ times the
depth of the tree depthQ(f(x, y)), and this bounds the cost of the best possible protocol
D(f(x, y)) from above.

11Recall that L/poly is the class of functions computable in log-space with access to a polynomial size
advice string.

12Recall that in graph theory, a directed tree is a directed acyclic graph whose underlying undirected
graph is a tree, while a tree is an acyclic connected undirected graph.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 17

Define the complexity class DTQ(F (n)), consisting of problems solvable using decision
trees with depth O(F (n)), and using queries q drawn from some set Q. We claim that
DTQ(

√
n) ⊊ DTQ(n), and that DTQ

(2)(
√

n) ⊊ DTQ
(2)(n). We take the set of queries to

be any relation on O(1) inputs, in which case cQ = O(1). To show the first separation,
consider the disjointness function

fdisj(x, y) =
{

1 ∀i, xi ∧ yi = 0
0 otherwise

. (13)

This has an obvious decision tree of size n: each node ni checks xi ∧ yi, with the output
from that node labelled 0 going to a leaf labelled 0, and the output from ni labelled 1
mapping to node ni+1. This shows fdisj(x, y) ∈ DTQ(n). As well, it is easy to show using
lower bounds on communication complexity that D(fdisj(x, y)) ≥ n, so from the bound 12
we get that fdisj(x, y) ̸∈ DTQ(

√
n), separating the two classes.

Finally, we show the separation between the corresponding locally pre-processed classes.
First, note that fdisj(x, y) ∈ DTQ

(2)(n), since it is in the smaller class DTQ(n). Next,

suppose by way of contradiction that fdisj(x, y) ∈ DTQ
(2)(

√
n). Then there exists a function

F ∈ DTQ(
√

n) such that fdisj(x, y) = F (α(x), β(y)). But then

n ≤ D(fdisj) ≤ D(F) (14)

where the first inequality we mentioned above and is easy to prove in communication com-
plexity, and the second inequality is immediate, because the definition of communication
complexity allows for local pre-processing with arbitrary functions. Using eq. (12) and
fdisj(x, y) ∈ DTQ

(2)(
√

n), we have

D(F) ≤ cQ depthQ(F) ≤ O(
√

n) (15)

which is a contradiction, so there is no such function F . This shows fdisj ̸∈ DTQ
(2)(

√
n), so

DTQ
(2)(

√
n) ⊊ DTQ

(2)(n).
While the strategy used above is natural to apply to our notion of local pre-processing,

it cannot be applied to the classes L and ModpL. This is because L includes problems
which require super-linear decision trees, and D(f) ≤ 2n always.13 This means we cannot
hope to separate L from a larger class using the bound 12. The technique does generalize
to separate DTQ classes of size less than n however, by finding a function with suitable
communication complexity, which can always be found.14 At least for these classes then,
adding more computation power to the local computation makes the pre-processed classes
larger. Our code-routing protocol improves on the garden-hose strategy if this remains true
for the larger classes L and ModpL. Understanding this for these or other classes however
appears challenging, and we have not encountered any techniques for doing so which apply
to L and ModpL.

3.2 Upper bounds on efficiently achievable complexity
Theorem 4 lower bounds the complexity of functions that can be completed using code-
routing protocols, showing it completes the routing task non-locally at least for functions

13Using 2n bits of communication, Alice and Bob can send each other their full input strings.
14For example, the disjointness function on some portion of the inputs of size f(n) has communication

complexity f(n).

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 18

in ModpL(2), when restricted to polynomial entanglement. The protocol used to establish
this is a restricted one however, and it is natural to ask if the more general procedure
can complete functions of higher complexity. To increase the power of the code-routing
strategy, we could:

• Use other codes. The codes we used that arise from Smith’s construction [16] (“Smith
codes”), are CSS codes,15 so it is clear they are a restrictive set.

• Unit-route on predominantly locally-held bits. If most unit-routing is done on bits held
by the other player, then the entanglement cost from the necessary teleportations is
closely related to the total share size of the codes used. But by unit-routing many
shares on locally-held bits, the total share size may not capture the entanglement
cost.

• Use adaptive encoding. To prove theorem 4, we used a single, fixed encoding on
Alice0’s side. More generally, which encoding is performed can depend on the classical
inputs. As well, shares teleported to Alice1’s side could be themselves encoded, shares
from those teleported back and encoded, etc.

We are not able to fully characterize the complexity of functions that can be achieved with
polynomial entanglement using a general combination of the above strategies. We are able
however to give a few partial results. To phrase our results, it is helpful to have a notion
of size for a protocol. The protocol tape I for a given set of inputs (x, y) (see definition 2),
defines a pattern of encoding that we refer to as the protocol tree. Each Si defines a vertex
in a directed tree with inputs vi and outputs {wj

i }. We define the size of a protocol tree as
the number of leaves, plus the number of internal wires that correspond to teleportations.
To count this, it is helpful to define nk ≡ |{wj

k}|. Then we define the size of a protocol
tree as

H(x,y) ≡

1 +
∑

k:nk>1
(nk − 1) +

∑
k:nk=1

1

 (16)

The protocol size counts the number of shares which are either unit-routed or teleported.
This lower bounds another quantity of interest, which is the total log dimension of all
the shares either unit-routed or teleported during the protocol, which we call the weighted
protocol tree size and denote H̃(x,y). To count this, it is helpful to define ñk =

∑
i log dim wi

k.
Then we have

H̃(x,y) ≡

log dim Q +
∑

k:nk>1
(ñk − log dim vk) +

∑
k:nk=1

ñk

 . (17)

If a share is unit-routed on a bit that is on the same side as the share, there is zero
entanglement cost, while if the share is on the opposite side, there is an entanglement
cost given by the log dimension of the share. Each share which is teleported gives an
entanglement cost equal to the log dimension of that share. Our assumption in the converse
results below will be that a polynomial in the entanglement cost upper bounds the weighted
protocol tree size H̃(x,y) ≤ poly(E). This is our precise statement of not too many unit-
routings being performed on locally held bits.

15We have not found this statement in the literature but it is easy to verify. In fact, every CSS code is
also a Smith code, as we discuss in an upcoming work.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 19

We begin with the following theorem, which shows code-routing using Smith codes is
in P(2), under our assumption relating protocol tree size and entanglement cost. We can
also strengthen this to ModpL(2) if the protocol tree is O(1) depth, or L(2) if each encoding
has O(1) size. Theorems 8 and 9 also have alternative proofs in terms of composed span
programs, which we haven’t included here.

Theorem 8 Consider a code-routing protocol which uses only Smith codes, uses E = poly(n)
copies of the maximally entangled state of two qupits, and has protocol trees with size related
polynomially to their entanglement cost. Then we can determine the outcome of the protocol
in P(2), polynomial time with local pre-processing.

Proof. We will give an explicit poly(E) time algorithm. Recall that the protocol tape
consists of a list

I = (a(x), S1, ..., Sℓ, b(y), Sℓ+1, ..., Sℓ+ℓ′) (18)

and each Si = (vi, {wj
i }, Ti) describes a unit-routing, teleportation, or encoding. By as-

sumption, the encoding here corresponds to a Smith code. It will be convenient in this
proof to take Ti to be a description of the span program defining that Smith code. To
denote this, when the third entry describes an encoding, we will use the labelling SPi

rather than Ti, i.e. Si = (vi, {wj
i }, SPi). Recall also that the size of the span program is

equal to the number of rows in its matrix.
Given this representation of the protocol, we define the following recursive function

which takes a tuple Sk as input and returns 0 if Alice0 is able to reconstruct the input
share vk, or returns 1 if Alice1 is able to reconstruct the share vk. In the pseudo-code
below, we denote a span program by SPk, where each span program is defined by a tu-
ple SPk = (Mk, ϕk, tk), where function ϕk maps from a row index i to a pair (j, ϵi), as
explained in appendix A. We use the notation ϕk(i)[1] = j. Note that Smith codes are
defined by monotone span programs, meaning that ϵi = 1 always.

Define GetOwner(Sk, I):
If nk = 0,

Return Tk

If nk = 1,
Search for Si ∈ I with w0

i as its input, call it Sj

Return GetOwner(Sj , I)
M1

k = {}
For i from 1 to size(SPp),

Set v = ϕk(ri)[1]
Search for Si ∈ I with wv

i as its input, call it Sv

If GetOwner(Sv, I) = 1,
Append ri to M1

k

If tk ∈ span M1
k ,

Return 1
Else,

Return 0.

Then, our program is as follows:

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 20

Find the tuple Si with Q as its input, call it Sk

Return GetOwner(Sk, I)

It is straightforward to see that this algorithm is correct using an inductive proof,
where we induct on layers in the protocol tree. Here, we say that the layer of a node is the
maximal length of a path from that node to a leaf. The 0th layer – the leaves of the tree
– all correspond to unit-routings, where the algorithm is manifestly correct: unit-routings
have nk = 0, and Tk is a bit labelling the side that the input share is brought to in the
protocol. The algorithm just returns this bit directly, which is correct. Now assume by way
of induction that the algorithm behaves correctly on tuples Sk′ at layer m of the protocol
tree, and consider its behaviour on a tuple Sk at the m + 1th layer. We have that nk ̸= 0,
so we need only consider the cases where nk = 1 or nk > 1.

For nk = 1 the protocol has teleported vk into system w0
i , which is in the mth layer,

so the algorithm returns the side where w0
i is brought, which is correct.

For nk > 1, the share vk has been recorded into a secret sharing scheme. The scheme
is defined by a span program, and records vk into a set of shares {wi

k}. The scheme’s
indicator function is computed by a monotone span program (Mk, ϕk, tk). The share vk

will be recoverable on the side labelled by the output of the span program. The inputs
to the span program zi are determined by where the protocol brings the shares wi

k, with
zi = 0 meaning share wi

k is on the left and zi = 1 meaning share wi
k is on the right. Share

vk is then available on the side labelled by the indicator function evaluated on the string
z. The algorithm works by evaluating the span program, and calling the GetOwner(·, I)
function recursively to determine on which side the shares wi

k are recoverable. In particular
the matrix M1

k includes tk in its span exactly when the span program evaluates to 1, so the
algorithm correctly returns 1 when vk is on the right. When the set of shares on the right
does not reveal vk it must, because we used a secret sharing scheme, reveal nothing about
vk. Because we always maintain the purifying system on the left, vk is then available on
the left. Accordingly, the algorithm correctly returns 0 in this case.

Next we analyze how the run time relates to the entanglement cost. Begin by con-
sidering the run time for each call to GetOwner(Sk, I). The run time is dominated by
the step where we determine whether an e-dimensional vector tk lies in the span of an-
other set of |M1

k | vectors. This can be done in O(e|M1
k |) steps. The length of the rows

is always less than or equal to the total number of them, since the columns are linearly
independent16, so e ≤ size(SPk). The number of rows in M1

k is less than or equal to
the total number of rows in the span program, so |M1

k | ≤ size(SPk). Together these give
O(e|Mk|) < O(size(SPk)2). In a Smith code, the total share size is given by the size of
the span program, so ñk = size(SPk). Finally, note that on a given input pair (x, y) only
certain span programs from the full collection {Sk} are reached in the algorithm. Call this
collection S(x,y). Thus we can bound the total run time for a given x and y by

T(x,y) ≤
∑

k∈S(x,y)

ñ2
k ≤ N2

(x,y) (19)

where N(x,y) =
∑

k ñk is the total size of all shares used across all encodings involved in
the protocol, on inputs (x, y). We would like to relate this run time to the protocol tree
size, as defined in eq. (17). For fixed N(x,y), the weighted protocol tree size is minimized

16This follows because any column expressible as a linear combination of other columns amounts to a
redundant condition on the requirement for a set of rows to have the target vector in its span; thus it
can be safely deleted from the span program matrix without changing the function that the span program
computes.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 21

for the case where nk = 2 for all encodings (this maximizes the subtractions appearing in
eq. (17)), so that

H̃(x,y) ≥ N(x,y)/2 (20)

where we’ve also used that ñk
2 ≥ log dim vk, i.e. that each share in the code is at least

as large as the input system. Since by assumption the entanglement cost is polynomially
related to the weighted size, combining this with eq. (19) we have a polynomial upper
bound on the run time in terms of entanglement cost. Note that this polynomial time
computation is performed by taking the protocol tape as input, which itself is computed
via local pre-processing, so the entire protocol is in P(2).

For certain classes of code-routing protocols, we can determine their output in smaller
classes than P(2). This is possible in two cases: protocols which never concatenate codes to
depth more than O(1), and protocols which are built by concatenating codes of O(1) size.
We can understand the first of these as a small relaxation of the single-encoding protocol
given in theorem 4, and the second as a small relaxation of the garden-hose protocol. In
both cases deforming these protocols slightly doesn’t add computational power. We discuss
these two cases in the following subsections.

Protocols using O(1) depth encodings

We first discuss the following theorem, which modifies the protocol used in theorem 4 to
allow O(1) depth of encodings and shows the resulting protocols still compute functions
inside the class ModpL.

Theorem 9 Consider a code-routing protocol which uses only Smith codes, takes n bits as
input, uses E = poly(n) copies of the maximally entangled state of two qupits, has protocol
trees with size related polynomially to their entanglement cost and which have O(1) depth.
Then the outcome of the protocol can be computed in ModpL(2).

Our proof will use the following characterization of ModpL in terms of non-deterministic
Turing machines. For any non-deterministic Turing machine T we define the function F(T)
as follows. For a given input x, call the number of accepting paths F (x). We then define
F(T)(x) = 1 when F (x) is non-zero mod p, and return F(T)(x) = 0 otherwise. Then the
class ModpL is the set of functions of the form f = F(T) where T has O(log(n)) memory
for n the length of x. Note that because Smith codes of polynomial size are evaluated by
polynomial sized span programs, and hence in PSPp, and recalling that ModpL = PSPp

[23], we have that they can also be evaluated by non-deterministic Turing machines with
O(log(n)) memory that count paths mod p.

To prove theorem 9, we first need the following lemma, which will allow us to compose
ModpL machines in a simple way.

Lemma 10 Suppose we have a function f = F(T) for a non-deterministic Turing machine
T running on memory m = Ω(log n) where n is the length of x. Then there is another
non-deterministic Turing machine T ′ that uses memory O(m), has f(x) mod p accepting
paths (and therefore still satisfies f = F(T ′)), and has 1 − f(x) (mod p) rejecting paths.

Proof. We will start with any Turing machine M0 such that f = F(M0), and from it
construct a new machine M2 whose number of accepting and rejecting paths will satisfy
the statement of the lemma. As an intermediary, we need another Turing machine M1.
We will use Fi(x) to denote the number of accepting paths in Turing machine Mi run on

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 22

input x, and F̄i(x) the number of rejecting paths.

The machine M1 uses p − 1 copies of M0, which we label M
(i)
0 with i ∈ {1, ..., p − 1}.

It is defined as follows.

Define M1:
For i ∈ {1, ..., p − 1}

Run M
(i)
0

If M
(i)
0 is in reject state,

Reject
Accept

M1 runs p − 1 copies of M0, and accepts only if all p − 1 copies enter accept states.
Consequently, the number of accepting paths is

F1(x) = (F0(x))p−1

= f(x) (mod p) (21)

where in the second line we’ve used Fermat’s little theorem. Next, we build the machine
M2.

Define M2:
Goto both the next two lines
Reject
Run M1
If M1 is in accept state,

Non-deterministically pick j ∈ {0, ..., p − 1}
If j > 0,

Reject
Accept

If M1 is in reject state,
Non-deterministically pick j ∈ {0, ..., p − 1}
Reject

M2 has the same number of accepting paths as M1, which is f(x) mod p. For the
rejecting paths, we have p−1 paths introduced for each accept path of M1, plus p additional
paths from each reject state, plus one additional path from the first line. So the number
of rejecting paths of M2 is given by

F̄2(x) = 1 + (p − 1)F1(x) + pF̄1(x)
= 1 − f(x) (mod p) (22)

as needed.
Notice that M2 involves running M0 an O(1) number of times sequentially, storing j,

and keeping track of the i counter. All this can be done in O(m) memory.
Now we are ready to prove the main theorem of this section.

Proof. (Of theorem 9) We use the description of the protocol in terms of a protocol tape.
Recall that when Si has no output shares, the tuple Si = (vi, ∅, Ti) describes a unit-

routing of the share vi to the side labelled by zTi , which is a bit of z = (a(x), b(y)).

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 23

When Si has one output share, Si = (vi, w0
i , ∅) describes a teleportation.

Finally when Si has more than one output share, the tuple describes an encoding. The
encoding is into a Smith code, so the indicator function fi can be computed with a span
program of size ñi. To find a Turing machine such that fi = F(T), we need only memory
O(log ñi). From lemma 10 then, we can construct a non-deterministic Turing machine Ti,
also with memory O(log ñi), such that Ti has fi(x) mod p accepting paths and 1 − fi(x)
mod p rejecting paths.

We consider a function L(s, I), which takes a share v and determines if that share is
on the left (corresponding to output 0) or the right (corresponding to output of 1) at the
end of the protocol defined by input tape I. We define L(s, I) recursively, as follows.

Define L(s, I):
Search through I and find Si with s = vi

If ni = 0,
Return zTi

If ni = 1,
Return L(w0

i , I)
Else,

Return fi(L(w0
i , I), ..., L(wni

i , I)))

Note that this machine does not compute each of the L(wj
i , I) and store them — that

would already be ni bits of memory. Instead it computes L(wj
i , I) each time it needs that

bit value, and can re-use the same memory bits each time it does this. The output of
the entire protocol is determined by running L(Q, I), where Q is the input system to be
routed.

L(Q, I) determines the output for the protocol, but we need to show this function
can be evaluated by a ModpL machine. To do so, we modify L(s, I) to a new function
LT (s, I) by making the replacement fi → Ti, where Ti is a Turing machine constructed
using lemma 10. LT (Q, I) can be run on a non-deterministic machine, and we can consider
counting the number of accepting paths. Our claim is that 1) this correctly determines
the output of the protocol in that F(LT (s, I)) = L(s, I) and 2) LT (Q, I) runs in non-
deterministic log-space, so that we’ve computed the output of the protocol in ModpL.

First consider correctness. We work inductively in the layers of the protocol tree, where
the layer of a node is defined as before to be the maximal length of a path from the node
to a leaf. We will show for each layer that, for any node in that layer, the number of
accepting paths is equal, mod p, to the output of the corresponding function and further
that the number of rejecting paths is equal, mod p, to 1 minus the value of that function.

First consider the 0th layer, i.e. the leaves of the tree, which will always consist of
unit-routings. These are deterministic computations, consisting of returning zTi (which in
this case is a single bit). They return zTi if and only if there is zTi accepting paths, and
have 1 − zTi rejecting paths, so this is correct.

Next consider the m+1th layer of the protocol tree, and assume the inductive hypothesis
for the mth layer. For an encoding, to evaluate the function fi on a log-space machine we
need non-determinism. Consider the function fi, its corresponding Turing machine Ti, and
focus on one input to fi, say z∗. By construction, for a definite input (or a single path) with
z∗ = z, we know Ti has fi(z) accepting paths and 1 − fi(z) rejecting paths. Now suppose
we replace the input z∗ with calls to a non-deterministic Turing machine T∗ at the mth
layer. Then including all input paths from T∗ as well as all paths for Ti itself, the number
of accepting paths for Ti is the number of accepting paths for Ti given z∗ = 1, times the

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 24

number of accepting paths for T∗, plus the number of accepting paths for Ti given z∗ = 0,
times the number of rejecting paths for T∗. Using that the number of accepting paths of
Ti is fi(z∗), and rejecting paths is 1 − fi(z∗), and a similar statement for T∗ and associated
function f∗ = F(T∗), we have that the number of accepting paths for Ti is

Fi = fi(1)f∗ + fi(0)(1 − f∗) (mod p). (23)

Notice that for z∗ = f∗ = 1 mod p, we have Fi = fi(1), so the number of accepting paths
is as if z∗ were given deterministically. Similarly if z∗ = f∗ = 0, Fi = fi(0), which again is
the same as if z∗ were given deterministically. In particular, the number of accepting paths
satisfies the requirements of the inductive hypothesis. The number of rejecting paths of Ti

is

F̄i = (1 − fi(1))f∗ + (1 − fi(0))(1 − f∗), (mod p) (24)

using similar reasoning to above. Thus for z∗ = f∗ = 1, we have that the number of
rejecting paths is 1−fi(1), and for z∗ = f∗ = 0, we have that the number of rejecting paths
is 1 − fi(0), so that the number of rejecting paths also satisfies the inductive hypothesis.
This argument also gives correctness in the case of a teleportation, since teleportation is a
special case of the above where Ti is deterministic.

Finally we need to determine the memory usage of this algorithm. The needed memory
is to evaluate the Turing machines at each layer, which each use log ñi memory, where ñi is
the log dimension of the output shares of tuple Si. Calling Turing machines recursively, we
can re-use memory for machines at the same layer of recursion, but must add the memory
requirements for machines at different layers. Adding log |{Si}| bits of memory for the
search through the list of the Si, calling LT (Q, I) uses

M(x,y) = max
paths p

∑
i∈p

log ñi + log |{Si}| (25)

bits of memory. The second term is bounded by log H̃(x,y) for H̃(x,y) the weighted size of
the protocol tree, since each Si adds at least 1 to the size of the protocol tree. Finally,
note that the length of the path is bounded by the depth of the protocol tree. Then using
our assumption that we have at most O(1) depth, and because ñi ≤ H̃(x,y), we have

M(x,y) ≤ O(log H̃(x,y)). (26)

Because H̃(x,y) is related polynomially to the entanglement cost, we’ve proven the theorem.

Protocols using codes of O(1) size

In this section we consider protocols that use only codes with O(1) shares. Recall that the
garden-hose protocol corresponds to the case where encodings are size 1, and the efficiently
computable functions in that case is the class L(2). The following theorem shows that with
small codes the complexity is not increased. Note that this is our only converse theorem
where we do not restrict to Smith codes.

Theorem 11 Consider a code-routing protocol that takes n bits as input, uses E = poly(n)
copies of the maximally entangled state of two qupits as a resource, has protocol trees with
size related polynomially to the entanglement cost, and uses codes with at most O(1) shares.
Then the outcome of the protocol can be computed in L(2).

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 25

Proof. The strategy is to use a depth-first evaluation of the protocol tree, which recall is
defined by the protocol tape I. One apparent obstruction is that for deep trees, keeping
track of a path from root to leaf can require linear memory. To avoid this, we travel
through the tree while only keeping the current, and sometimes proceeding or subsequent,
vertices in memory.

Heuristically, our algorithm works by “pruning” the protocol tree, evaluating sub-trees
and storing the ownership of shares corresponding to edges of the tree. To store the full
protocol tree would require too large of a memory, so instead we describe the pruned tree
using the protocol tape I along with a set R, which contains edges that “over-ride” the
description of the tree given by I. At any given point in the running of the algorithm,
R will only describe the ownership of vertices that neighbour the current vertex v being
evaluated. Because the tree has vertices only with O(1) degree, it is possible to store R in
logarithmic memory. By repeatedly pruning the initial tree, eventually we are left with a
trivial tree that points to the location of the input share.

We give the pseudo-code for our algorithm now, then make a few comments on this
code below.

R = {}

Define IsLeaf[v, I, R]
If R contains an Si with v as input,

Return 1
If I contains an Si with v as input,

If |{wj
i }| = 0

Return 1
Return 0

Define F [vi, I, R]
If IsLeaf[wj

i , I, R] = 1 for all j,
Remove any S′

j with inputs wj
i from R

S′
i = (vi, ∅, fi)

Append S′
i to R

If there is a vk which has vi as a descendant,
Erase vi

F [vk, I, R]
Else,

Return fi

Else,
Find the wj

i of maximal layer, call it w∗
Erase vi

F [w∗, I, R]

Call F [Q, I, R]

In the definition of F [vi, I, R], the line which assigns S′
i the value (vi, ∅, fi) needs some

explanation. According to our conventions, when the output systems are empty, the third
entry in an Si tuple is just a bit. Here, we use the value of fi. The inputs to fi are
determined by the locations of the wj

i shares, but by construction we are in a case where
these are easy to look up, since the wj

i s are all leaves. Further, because the code sizes are

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 26

all O(1) here, this can be done in O(1) memory.
One other line that requires explanation is the one that finds a w∗ of maximal layer.

First, note that the layer of a node can be evaluated in log-space, because it amounts to
determining the depth of the sub-tree defined by that node and all its descendants. Second,
the layer of each of the children of the current node can all be stored simultaneously, because
(i) there are only O(1) children, and (ii) the layer is bounded by the depth of the protocol
tree, which is at most polynomial in n by the assumptions of the theorem, and thus can
be stored in log(n) bits.

To understand the correctness of the algorithm, we will make use of a notion of an
effective protocol tree. This is the tree as described by R taken together with I, where R
is always ‘given priority’. In particular, if vi is an input to S′

i ∈ R and Si ∈ I, we use
S′

i when travelling to subsequent nodes in the tree. We define the effective size to be the
number of vertices in the effective protocol tree.17

We claim that the effective tree constructed during the running of the above algorithm
evaluates to the same value as the original tree at every step. Further, effective size
decreases every time the first If statement is called, and eventually reaches 1.

To see the first claim, consider that at the start of the algorithm R = {}, so the effective
and original protocol trees agree, and so in particular give the same output. Next, suppose
that the effective and original protocol trees give the same output, and then consider how R
is edited during one evaluation of the code inside the first If statement of F . This involves
replacing Si with S′

i which is a unit-routing that has the same output as Si. Manifestly
this doesn’t change the output. Further, we remove the descendants of Si, which are never
visited in the new effective tree, so this also does not change the output.

Now consider the second claim, that the effective tree becomes smaller and eventually
reaches size one. Notice that we must reach the first If statement eventually, specifically
after at most a number of calls to F equal to the depth of the effective tree. In particular
each time the second Else statement is called, F is called on a lower vertex in the effective
tree. Once the call is to a vertex with only leaves as descendants, it goes to the first If
statement. Next, notice that Si is replaced with S′

i only when Si has descendants, and
that by construction S′

i is a leaf. Thus every such move decreases the effective size. Notice
further that the algorithm can only end when reaching the single return statement. This
happens when there is no node preceding the current one in the effective tree, so that
the tree has size one. The algorithm then returns fi from the effective tree, which by the
correctness property above is the output of the protocol tree.

Consider the memory usage of this algorithm. We evaluate indicator functions fi for
O(1) size codes, which can be done with O(1) memory. Additionally, we need to keep track
of the current node vi, which can be done with log |{Si}| memory. Notice that we have
been careful to erase the record of the path followed to reach the current vertex, by erasing
the stored vi value before calling F on a new one, since storing this path would require
super-logarithmic memory. Finally, we track the entries in R, which defines the effective
tree. We claim R only ever contains Si which are all descendants of a single node, so storing
R only requires O(1) memory. To see why this is the case, notice that because we travel
to the node of maximal layer when traversing the tree, we visit nodes depth-first. This
guarantees that once a vertex is added to R, we completely finish evaluating the ownership
of its parent before proceeding to the next vertex, as we are already at the deepest part of
the tree.

Considering all contributions listed in the last paragraph, memory cost is O(log |{Si}|).

17Note that, unfortunately, this is not the same as the size of the effective protocol tree, using our earlier
definition of size.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 27

This is upper bounded by O(log H(x,y)), since each Si adds at least 1 to the protocol tree
size. Then since H(x,y) ≤ H̃(x,y) and H̃(x,y) is upper bounded by a polynomial in n, we are
done.

4 Discussion
The f -routing task is of practical relevance in the context of position verification, but also
exhibits interesting relationships to complexity theory and secret sharing. In particular,
the garden-hose protocol uses entanglement controlled by the space complexity of f , and
the code-routing strategy we introduce here has an entanglement cost upper bounded by
span program size. With regards to secret sharing, we showed the size of a secret sharing
scheme with indicator function f is lower bounded by the entanglement cost of performing
the corresponding f -routing task.

These connections to complexity and secret sharing emphasize the importance, and
difficulty, of finding lower bounds on entanglement cost in f -routing. In particular, such
lower bounds would strengthen the security of position verification schemes based on f -
routing, and amount to lower bounds on span program size and the size of secret sharing
schemes. In general, proving lower bounds on complexity is a challenging goal, and in the
case of span programs there has been only limited success [23].18 Given this, we might
not expect to prove strong lower bounds on entanglement cost. Alternatively, we could
hope for conditional lower bounds based on complexity-theoretic assumptions, or for lower
bounds stated in terms of some measure of the complexity of f . We leave exploring this
further to future work.

Finally, note that this work introduces the use of error-correction in non-local quan-
tum computation. By combining error-correction with the teleportation techniques of
[10], we increase the complexity of functions that can be computed non-locally (at least
given our complexity-theoretic assumptions). It would be interesting to understand if
error-correcting codes provide enhancements to other non-local computation protocols, for
instance the one based on the Clifford+T gate set described in [30].

Acknowledgements

We thank Adam Bouland, Kfir Dolev, Anirudh Krishna and Patrick Hayden for helpful
discussions. AM is supported by the Simons Foundation It from Qubit collaboration, a
PDF fellowship provided by Canada’s National Science and Engineering Research council,
and by Q-FARM. SC is supported by a graduate fellowship award from Knight-Hennessy
Scholars at Stanford University.

A Span programs
To express an arbitrary function f as described in lemma 5, we first give the following
definition.

Definition 12 A span program over a field Zp consists of a triple S = (M, ϕ, t), where M
is a d×e matrix with entries in Zp, ϕ is a map from rows of M , labelled ri, to pairs (k, εi),
with k ∈ {1, ..., n} and εi ∈ {0, 1}, and t is a non-zero vector of length e with entries in
Zp.

18More success is possible when restricting to monotone span programs, see e.g. [29] for recent work,
but monotone span programs are not the relevant computing model here.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 28

Definition 13 The size of a span program is defined to be d, the number of rows in M .

Given a span program (M, ϕ, t), the function it computes is given according to the following
rule. Given an input string z of n bits, if the vector t is in span({ri : ∃j, ϕ(ri) = (j, zj)}),
then output 1. Otherwise, output 0. To unpack this, we understand ϕ(ri) = (j, εi) as
saying that row ri maps to some index, j, which labels a bit in the input string z. If that
bit zj is equal to εi, we include that row. Repeating this for all rows, we check if the target
vector t is in the span.

Every function can be computed by a sufficiently large span program [23]. As a simple
example, the AND function is computed by a span program over Z2 with matrix M =
((1, 0), (0, 1)), map ϕ such that ϕ(r1) = (1, 1) and ϕ(r2) = (2, 1), and target vector t =
(1, 1). Another simple example is an OR function, computed by M = ((1), (1)), the map
ϕ(r1) = (1, 1) and ϕ(r2) = (2, 1), and target vector t = (1).

A span program is said to be monotone if it has εi = 1 always. This ensures that chang-
ing bit values in z from 0 to 1 always adds to the set of rows whose span we are checking,
so that monotone span programs always compute monotone functions. Conversely, every
monotone function can be computed by a monotone span program [23], as is easy to verify.

It will be helpful to introduce some notation dealing with span programs. For a given
input z, the map ϕ picks out some of the rows of M , whose span will then be checked to
see if it includes the target vector. The subset of rows picked out we will denote by ϕ−1(z),
and refer to as the activated rows. The matrix formed from the activated rows we denote
Mϕ−1(z). The minimal size of a span program over Zp computing a function f is denoted
SPp(f).

B Proof of lemma 5
We are now ready to prove lemma 5, which we repeat below for convenience.
Lemma 5 Given a function f : {0, 1}m → {0, 1}, there exist functions

f ′ : {0, 1}m+1 → {0, 1},

fI : {0, 1}2m+1 → {0, 1},

g : {0, 1}m+1 → {0, 1}2m+1,

such that

• f ′(z, 1) = f(z)
• f ′(z, b) = fI ◦ g(z, b)
• fI is a valid indicator function
• g acts on the first m bits of its input by copying each bit zi and negating one copy,

zi → (zi, ¬zi). It leaves the final bit b unchanged.
• mSPp(fI) ≤ SPp(f) + 1, where SPp(h) denotes the minimal size of a span program

over Zp computing h, and mSPp(h) the size of a monotone span program computing
h.

Proof. Given f , find the minimal sized span program over Zp that computes f , and
label it (Mf , ϕf , tf). Label the rows of Mf by ri. Then, add one row and one column
to Mf to define a new matrix Mf ′ with dimensions (d + 1) × (e + 1). Label the rows
of M ′

f as r′
i. Set (Mf ′)d+1,e+1 = 1 and otherwise the added row and column entries are

set to be 0. Extend ϕf to a new function ϕf ′ such that ϕf (ri) = ϕf ′(r′
i) for all i ≤ d,

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 29

and ϕf ′(r′
d+1) = (m + 1, 1). Finally, let tf ′ = (tf , 1). Then (Mf ′ , ϕf ′ , tf ′) defines a new

function f ′, given by f ′(z, b) = f(z) ∧ b, so in particular f ′(z, 1) = f(z).
Next, we decompose f ′ into fI and g. Define gk(zk) : {0, 1}1 → {0, 1}2 according to

gk(zk) = (zk, ¬zk) (27)

Then define g by having gk act on each of the first m bits of the input, producing a
string of length 2m + 1. The function fI is now defined by modifying the span program
(Mf ′ , ϕf ′ , tf ′) to take the output of g as input. First, the new span program has the same
matrix and target vector as before: MI = Mf ′ and tI = tf ′ . Second, define ϕI by having
it map r′

i to the same input bit as ϕf ′ when ϵf ′,i = 1, and to the negated copy of that
input bit when ϵf ′,i = 0. Set ϵI,i = 1 always. This ensures that fI and the span program
computing it are monotone, but f ′ = fI ◦ g. Additionally, every (z, b) value which has
fI(z, b) = 1 must have b = 1, so fI is also no-cloning. Since secret sharing schemes can
be built for any function that is no-cloning and monotone [19, 16], fI is a valid indicator
function. Finally, notice that the monotone span program computing fI is the same size
as the (non-monotone) span program computing f ′, which in turn has one extra row as
compared to the program for f .

We conclude with an example. Consider the function f(x, y) = x⊕y. A (non-monotone)
span program for this function has matrix

1 0
0 1
1 0
0 1

 . (28)

The map ϕ is defined by ϕ(r1) = (1, 1), ϕ(r2) = (1, 0), ϕ(r3) = (2, 1), ϕ(r4) = (2, 0), and
the target vector is (1, 1). It is easy to check cases to confirm this computes x ⊕ y.

We decompose this in the manner described in lemma 5. First, add one column and
one row to the matrix according to

1 0 0
0 1 0
1 0 0
0 1 0
0 0 1

 . (29)

We add one bit to the inputs, extend the map ϕ according to ϕ(r5) = (3, 1), and append
a 1 to the target vector. This span program defines the function f ′(x, y, b) = (x ⊕ y) ∧ b.
Finally the map g is defined according to

g(x, y, b) = (x, ¬x, y, ¬y, b) (30)

and fI is defined by a span program with the above matrix and map ϕI defined by ϕI(r1) =
(1, 1), ϕI(r2) = (2, 1), ϕI(r3) = (3, 1), ϕI(r4) = (4, 1), ϕI(r5) = (5, 1).

References
[1] Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky. Position

based cryptography. In Annual International Cryptology Conference, pages 391–407.
Springer, 2009. DOI: https://doi.org/10.1007/978-3-642-03356-8_23.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 30

https://doi.org/https://doi.org/10.1007/978-3-642-03356-8_23

[2] Adrian Kent, William J Munro, and Timothy P Spiller. Quantum tagging: Authenti-
cating location via quantum information and relativistic signaling constraints. Physical
Review A, 84(1):012326, 2011. DOI: https://doi.org/10.1103/PhysRevA.84.012326.

[3] Adrian Kent. Quantum tasks in Minkowski space. Classical and Quantum Gravity,
29(22):224013, 2012. DOI: 10.1088/0264-9381/29/22/224013.

[4] William K Wootters and Wojciech H Zurek. A single quantum cannot be cloned.
Nature, 299(5886):802–803, 1982. DOI: https://doi.org/10.1038/299802a0.

[5] Adrian P Kent, William J Munro, Timothy P Spiller, and Raymond G Beausoleil.
Tagging systems, July 11 2006. US Patent 7,075,438.

[6] Robert A Malaney. Location-dependent communications using quan-
tum entanglement. Physical Review A, 81(4):042319, 2010. DOI:
https://doi.org/10.1103/PhysRevA.81.042319.

[7] Harry Buhrman, Nishanth Chandran, Serge Fehr, Ran Gelles, Vipul Goyal, Rafail
Ostrovsky, and Christian Schaffner. Position-based quantum cryptography: Impos-
sibility and constructions. SIAM Journal on Computing, 43(1):150–178, 2014. DOI:
https://doi.org/10.1137/130913687.

[8] Salman Beigi and Robert König. Simplified instantaneous non-local quantum compu-
tation with applications to position-based cryptography. New Journal of Physics, 13
(9):093036, 2011. DOI: 10.1088/1367-2630/13/9/093036.

[9] Andreas Bluhm, Matthias Christandl, and Florian Speelman. A single-qubit position
verification protocol that is secure against multi-qubit attacks. Nature Physics, pages
1–4, 2022. DOI: https://doi.org/10.1038/s41567-022-01577-0.

[10] Harry Buhrman, Serge Fehr, Christian Schaffner, and Florian Speelman. The garden-
hose model. In Proceedings of the 4th conference on Innovations in Theoretical Com-
puter Science, pages 145–158, 2013. DOI: https://doi.org/10.1145/2422436.2422455.

[11] Hartmut Klauck and Supartha Podder. New bounds for the garden-hose model. In
Foundations of Software Technology and Theoretical Computer Science, 2014. DOI:
10.4230/LIPIcs.FSTTCS.2014.481.

[12] Srinivasan Arunachalam and Supartha Podder. Communication memento: Memory-
less communication complexity. In 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[13] Alex May. Quantum tasks in holography. Journal of High Energy Physics, 2019(10):
1–39, 2019. DOI: https://doi.org/10.1007/JHEP10(2019)233.

[14] Alex May, Geoff Penington, and Jonathan Sorce. Holographic scattering requires a
connected entanglement wedge. Journal of High Energy Physics, 2020(8):1–34, 2020.
DOI: https://doi.org/10.1007/JHEP08(2020)132.

[15] Alex May. Complexity and entanglement in non-local computation and holography.
Quantum, 6:864, November 2022. ISSN 2521-327X. DOI: 10.22331/q-2022-11-28-864.
URL https://doi.org/10.22331/q-2022-11-28-864.

[16] Adam D Smith. Quantum secret sharing for general access structures. arXiv preprint
quant-ph/0001087, 2000. DOI: https://doi.org/10.48550/arXiv.quant-ph/0001087.

[17] Juan Maldacena. The large-N limit of superconformal field theories and super-
gravity. International journal of theoretical physics, 38(4):1113–1133, 1999. DOI:
https://doi.org/10.1023/A:1026654312961.

[18] Edward Witten. Anti-de sitter space and holography. Advances in Theoretical and
Mathematical Physics, 2:253–291, 1998. DOI: 10.4310/ATMP.1998.v2.n2.a2.

[19] Daniel Gottesman. Theory of quantum secret sharing. Physical Review A, 61(4):
042311, 2000. DOI: https://doi.org/10.1103/PhysRevA.61.042311.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 31

https://doi.org/https://doi.org/10.1103/PhysRevA.84.012326
https://doi.org/10.1088/0264-9381/29/22/224013
https://doi.org/https://doi.org/10.1038/299802a0
https://doi.org/https://doi.org/10.1103/PhysRevA.81.042319
https://doi.org/https://doi.org/10.1103/PhysRevA.81.042319
https://doi.org/https://doi.org/10.1137/130913687
https://doi.org/https://doi.org/10.1137/130913687
https://doi.org/10.1088/1367-2630/13/9/093036
https://doi.org/https://doi.org/10.1038/s41567-022-01577-0
https://doi.org/https://doi.org/10.1145/2422436.2422455
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.481
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.481
https://doi.org/https://doi.org/10.1007/JHEP10(2019)233
https://doi.org/https://doi.org/10.1007/JHEP08(2020)132
https://doi.org/10.22331/q-2022-11-28-864
https://doi.org/10.22331/q-2022-11-28-864
https://doi.org/https://doi.org/10.48550/arXiv.quant-ph/0001087
https://doi.org/https://doi.org/10.1023/A:1026654312961
https://doi.org/https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/https://doi.org/10.1103/PhysRevA.61.042311

[20] Benjamin Schumacher and Michael A Nielsen. Quantum data process-
ing and error correction. Physical Review A, 54(4):2629, 1996. DOI:
https://doi.org/10.1103/PhysRevA.54.2629.

[21] Benjamin Schumacher and Michael D Westmoreland. Approximate quantum
error correction. Quantum Information Processing, 1(1):5–12, 2002. DOI:
https://doi.org/10.1023/A:1019653202562.

[22] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel. Struc-
ture and importance of logspace-mod class. Mathematical systems theory, 25(3):223–
237, 1992. DOI: https://doi.org/10.1007/BF01374526.

[23] Mauricio Karchmer and Avi Wigderson. On span programs. In [1993] Proceedings of
the Eigth Annual Structure in Complexity Theory Conference, pages 102–111. IEEE,
1993. DOI: 10.1109/SCT.1993.336536.

[24] Neil D Jones, Y Edmund Lien, and William T Laaser. New problems complete for
nondeterministic log space. Mathematical systems theory, 10(1):1–17, 1976. DOI:
https://doi.org/10.1007/BF01683259.

[25] Klaus Reinhardt and Eric Allender. Making nondeterminism unam-
biguous. SIAM Journal on Computing, 29(4):1118–1131, 2000. DOI:
https://doi.org/10.1137/S0097539798339041.

[26] Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting
uniform and nonuniform upper bounds. Journal of Computer and System Sciences,
59(2):164–181, 1999. DOI: https://doi.org/10.1006/jcss.1999.1646.

[27] Eyal Kushilevitz. Communication complexity. In Advances in Computers, volume 44,
pages 331–360. Elsevier, 1997.

[28] Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul
Erdos is Eighty, 1:301–315, 1993.

[29] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A Cook. Exponen-
tial lower bounds for monotone span programs. In 2016 IEEE 57th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 406–415. IEEE, 2016. DOI:
10.1109/FOCS.2016.51.

[30] Florian Speelman. Instantaneous Non-Local Computation of Low T-Depth Quan-
tum Circuits. In 11th Conference on the Theory of Quantum Computation, Com-
munication and Cryptography (TQC 2016), volume 61 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 9:1–9:24, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-019-4. DOI:
10.4230/LIPIcs.TQC.2016.9.

Accepted in Quantum 2023-07-23, click title to verify. Published under CC-BY 4.0. 32

https://doi.org/https://doi.org/10.1103/PhysRevA.54.2629
https://doi.org/https://doi.org/10.1103/PhysRevA.54.2629
https://doi.org/https://doi.org/10.1023/A:1019653202562
https://doi.org/https://doi.org/10.1023/A:1019653202562
https://doi.org/https://doi.org/10.1007/BF01374526
https://doi.org/10.1109/SCT.1993.336536
https://doi.org/https://doi.org/10.1007/BF01683259
https://doi.org/https://doi.org/10.1007/BF01683259
https://doi.org/https://doi.org/10.1137/S0097539798339041
https://doi.org/https://doi.org/10.1137/S0097539798339041
https://doi.org/https://doi.org/10.1006/jcss.1999.1646
https://doi.org/10.1109/FOCS.2016.51
https://doi.org/10.1109/FOCS.2016.51
https://doi.org/10.4230/LIPIcs.TQC.2016.9
https://doi.org/10.4230/LIPIcs.TQC.2016.9

	Introduction
	Background
	Summary of results

	TEXT-routing and code-routing protocols
	Definition of the TEXT-routing task
	Code-routing protocols

	Entanglement and complexity in code-routing
	Lower bounds on efficiently achievable complexity
	Upper bounds on efficiently achievable complexity

	Discussion
	Span programs
	Proof of lemma:decomposition

