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Abstract: Optical Processing Units (OPUs) are computing devices that perform random projections of input data 
by exploiting the physical phenomenon of scattering a light source through a diffusive medium. Random 
projections calculated by OPUs have been used successfully for approximating kernel ridge regression for large 
datasets with low power consumption and at high speed. However, OPUs require the input data to be binary. In 
this paper, we propose to use shallow and deep neural networks (NN) as binary encoders to perform input data 
binarization. The difficulty in developing a binarization strategy which is learned in an end-to-end fashion along 
with kernel ridge regression parameters, is due to the non-differentiability of the operation performed by the OPU. 
We overcome this difficulty by considering OPUs as a black-box and by employing the REINFORCE gradient 
estimator, which allows us to calculate the gradient of the loss function with respect to the weights of the 
binarization encoder and to optimize these together with the parameters of kernel ridge regression with gradient-
based optimization.   

Through our experimental campaign on a variety of tasks and datasets, we show that our method outperforms 
alternative unsupervised and supervised binarization techniques.  
 
Keywords: Optimization, Random features, Linear regression, Optical processing unit. 
 
 
 
1. Introduction 
 

Statistical models based on kernel methods offer 
powerful and theoretically well-understood tools for 
complex data modeling problems. The limitation of 
employing these kernel-based models in practice is 
that a naive implementation scales poorly with the size 
of the data set, and there has been a tremendous 
amount of work in the direction of mitigating this issue 
by introducing approximations.  

In this context, Nyström approximations [1] and 
random features [2] are very popular techniques to 
scale kernel methods virtually to any number of data, 
thanks to mini-batch formulations [3, 4]. 

The focus of this work is on random feature 
approximations, where by kernel-based models are 
"linearized" by an equivalent linear model with a set 
of suitably constructed random basis functions. The 
motivation behind this work is to considerably 
accelerate the construction of random features, while 
reducing power consumption, by resorting to a 
dedicated hardware, which we refer to Optical 
Processing Units (OPUs). 

OPUs are computing devices which perform 
random projections of input vectors by exploiting the 
physical phenomenon of scattering a light source 
through a diffusive medium [5]. The random 
projection is then followed by a nonlinear operation, 
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making the whole pipeline of computation exactly 
what is needed to construct random features to 
approximate kernel-based models. Crucially, OPUs 
offer the possibility to operate with a number of 
random features at the speed of light and with low-
power consumption, representing a unique solution to 
further improve scalability of kernel machines. As an 
example, OPU-based random feature approximations 
have successfully been proposed to carry out 
approximate kernel ridge regression in [6, 7]. 

One limitation associated with working with OPUs 
is that, because of the hardware setup, input vectors 
need to be binarized. In addition, the random 
projection matrix characterizing the device is 
unknown, and can only be retrieved through an 
expensive calibration procedure. 

In this paper, we propose a novel binarization 
strategy for OPUs which is learned along with the 
regression/classification task in an end-to-end manner, 
meaning that the parameters of the binarization part 
are learned along with the kernel-based model 
parameters. In order to achieve this, we overcome the 
limitation that OPU projection matrices are unknown 
by employing the so-called REINFORCE gradient 
estimator, which allows us to treat the OPU as a black-
box. Through experiments on several UCI 
classification/regression problems, we show that our 
proposal outperforms alternative unsupervised and 
supervised binarization techniques. This paper is an 
extended version of [8]; compared to the shorter 
version, we expand on the methods by analyzing the 
bounds on the objective functions of the proposed 
approaches, and we expand on the experiment by 
considering a larger class of kernels and image-based 
classification problems. 

 
 

2. Related Work 
 

In neural networks, binarization is generally 
targeting intermediate layer activations, and it may 
also stem from binarization of model parameters; in 
these cases, binarization is mostly introduced to 
reduce computational cost and memory consumption 
[9]. Neural networks with binary hidden layers find 
applications in binary autoencoders for hashing [10], 
data compression [11], and hard attention mechanism 
[12]. The binarization of layer activations is obtained 
by a suitable choice of activation functions; for 
instance, the sign or Heaviside functions for the 
deterministic case, or the sigmoid or ݊ܽݐℎ functions 
combined with the Bernoulli distribution for the 
stochastic case [13, 14]. The most popular technique 
to propagate gradients through such activation 
functions is the so called straight-through estimator 
(STE) [15]. More recently, there have been proposals 
to replace the STE with another estimator through a 
relaxation technique, also known as the Gumbel 
Softmax-trick [16]. Also, different kinds of target 
propagation are used to learn suitable targets for each 
binary layer and then train the associated parameters 

with relaxation techniques or combinatorial 
optimization [17-19]. 

Focusing on OPUs, currently the standard 
approach to binarize data makes use of a binary 
autoencoder [11]. Such a binary autoencoder is trained 
independently from the OPU device, and it gives the 
possibility to perform the binarization operation by 
means of its encoder part. The autoencoder consists of 
a fully-connected encoder and decoder. The hidden 
layer has a Heaviside activation function, so its output 
is binary. The training procedure updates the weights 
of the decoder with backpropagation and weights of 
the encoder are forced to be equal to the weights of the 
decoder in order to be able to reproduce the input. 

In this work, we aim to develop a supervised 
binarization model which is learned together with the 
supervised learning task. That is, we aim to provide a 
training procedure for the heterogeneous model 
consisting of the kernel ridge regression model 
approximated with random features and the 
binarization encoder before the OPU. In this context, 
a general-purpose framework called Method of 
Auxiliary Coordinates (MAC) was proposed in [19] 
with examples of application in [10] and [20]. The 
authors propose to introduce auxiliary variables into a 
deep neural network. These auxiliary variables are 
assigned the role of pre-activations for each layer, and 
they get replaced during the forward pass. The first 
step of the optimization targets the auxiliary variables, 
and, after this step, the parameters of each layer are 
optimized to regress on these variables, which take the 
role of layer-specific labels. This is very beneficial 
when some layers are discrete and vanilla 
backpropagation is not applicable. In [20], this 
approach is used to train a fully connected network 
with binary activation functions, using a STE to 
propagate a learning signal through the non-
differentiable parts. Reference [10] is especially 
interesting because authors illustrate, how discrete 
binary layers can be optimized within larger, non-
binary model. 

While splitting the optimization of the binarization 
and the model is a viable option, we still need a way 
to training each part individually. There is a wide 
variety of ways to obtain a solution for kernel ridge 
regression with the random feature approximation, so 
the most difficult point is how to optimize the part 
consisting of the binary encoder and the OPU, because 
it combines a non-differentiable function with an 
implicit random projection. These make the STE from 
[20] inapplicable. Also, we found that the 
combinatorial approach used in [10] and [17] is 
inapplicable for our case for two reasons. First, it is 
suitable only when the binary dimension is relatively 
small, which might be a limitation for a general 
solution. Second, the combinatorial approach 
combined with MAC converges in one iteration to 
poor local optima, and this happens because of the 
model setup which is different from the ones in [10] 
and [17]. 

From a different point of view, it is possible to 
view our problem through the lenses of reinforcement 
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learning, where it is necessary to propagate binary 
codes through the OPU instead of discrete actions 
through the black-box environment. Instead of 
maximizing the reward from the environment, we are 
trying to minimize the loss function. The classical 
algorithm to solve this problem is REINFORCE [1]. 
This allows one to calculate gradients of the reward 
with respect to parameters of the policy that generates 
actions. The applicability of this method to other 
settings with black-box elements was shown in [21]. 
There are various versions of this algorithm intended 
to reduce variance of the gradient of the parameters. 
Very frequently they are based on relaxations of the 
non-differentiable sampling procedure [22], or 
approximation of the black-box part of the model [23]. 
It also worth noting that there exist competitive 
alternatives to REINFORCE, such as the one in [24], 
later extended with variance reduction [25] or 
relaxation [26]. 

 
 

3. Background 
 
3.1. Kernel Ridge Regression 
 

In this paper, we focus on kernel ridge regression 
for supervised learning tasks. Let ܆ = …,ଵܠ ,  ௡ be aܠ
set of input vectors ܠ	 ∈ ℝௗ and let ܡ =  ௡  be aݕ…,ଵݕ
set of labels associated with the input vectors.  

The labels ݕ௜ can be continuous or binary 
depending on whether the task is regression or 
classification. Kernel ridge regression is a statistical 
model which constructs a functional relationship 
between the inputs and the labels which belongs to the 
so-called Reproducing Kernel Hilbert Space (RKHS).  
The properties of such functions, such as smoothness, 
are characterized by the choice of a so-called kernel 
function ݇(∙,∙): ℝௗ × ℝௗ → ℝ	 [27], which is a 
positive semi-definite function of pairs of input points 
returning a scalar. The reproducing property of kernel 
functions is 〈݇(ܠ,∙), 〈(∙,ܡ)݇ = ,ܠ)݇  Positive .(ܡ
definiteness of kernel functions implies that we can 
express ݇൫࢏ܠ, ࢐൯ܠ =  ࢐൯ for some set ofܠ൫்߮(࢏ܠ)߮
(possibly infinite) basis functions  ߮(∙). 

In order to derive the conventional formulation of 
kernel ridge regression, it is useful to start from linear 
regression, where a set of model parameters ܟ is 
introduced to express a linear relationship between 
input and labels. Then, one introduces the following 
optimization problem: 

ෝܟ  = argmin௪ 12෍(ݕ	 − ଶ(	ܠୃܟ − 2ߣ ଶଶ௡||ܟ||
௜ୀଵ  (1) 

 
The objective function contains two terms; the first 

is a model fitting term, while the second is a 
regularization term, which prevents the weights to 
become too large. The solution to this optimization 
problem is available in closed form, given that the 
objective is quadratic with respect to the parameters, 
yielding: 

ෝܟ = ܆ୃ܆) +  (2) ܡଵି(۷ߣ
 
Using standard algebraic manipulations involving 

the Woodbury identity, we can re-express the solution 
as: 

ෝܟ  = ܆)்܆ ୃ܆ +  (3) ܡଵି(۷ߣ
 
While this is costly than the previous expression in 

the common case where ݀	 < 	݊ (inversion of a ݊ × ݊ 
matrix rather than a d	× ݀ matrix), this formulation is 
useful to derive kernel ridge regression. 

Imagining to introduce basis functions ߶(⋅) =൫߶ଵ(⋅), … , ߶஽(⋅)൯ୃ, we can solve this new 
optimization problem 

ෝܟ  = argminௐ 12෍൫ݕ௜ − ൯ଶ௡(௜ܠ)߶ୃܟ
௜ୀଵ + λ2  ଶ (4)||ܟ||

 
with solution 
ෝܟ  = Φୃ(Φ Φୃ +  (5) ܡଵି(۷ߣ
 
Evaluating the model at a given input ܠ∗ yields: 
ෝܟୃ(∗ܠ)߶  = ઴ୃ(઴઴ୃୃ(∗ܠ)߶ + λ۷)ିଵ(6) ܡ 

 
In this expression, we recognize the scalar product 

of vectors of basis functions. What we can do then, is 
to express these scalar products as a kernel function 
and obtain: 

ෝܟୃ(ܠ)߶  = ۹)∗ܓ + λ۷)ିଵ(7) ܡ 
 

where ܓ∗ = ൫݇(ܠଵ, ,(∗ܠ … , ,௡ܠ)݇ ௜௝ܭ ൯ୃ and(∗ܠ =݇൫ܠ௜,  ௝൯. In practice, one first chooses a kernelܠ
function, and this induces a set of basis function; the 
beauty of this formulation is that one never explicitly 
works with the set of basis functions and all we need 
to use this model in practice is the evaluation of kernel 
functions among inputs. 
 
 
3.2. Random Feature Approximation 
 

One of main limitations of kernel methods is 
scalability to large datasets. The problem arises from 
the need to evaluate and perform algebraic operations 
with the so-called Gram matrix ۹. Because ۹ is an  ݊ × ݊ matrix, evaluating and storing ۹ requires ࣩ(݊ଶ) 
computations and storage, while any algebraic 
operations, such as factorizations to handle the inverse 
of ۹ + λ۷, requires ࣩ(݊ଷ) operations. These prevent 
the applicability of kernel methods in their exact form 
to datasets of size beyond a few thousand. It is worth 
noting that some approaches have been proposed to 
solve algebraic operations in an iterative fashion and 
without the need to store ۹ [28, 29, 30], but they still 
require ࣩ(݊ଶ) computations for each iteration of their 
solvers. Furthermore, while the number of iterations of 
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the solvers is much lower than ݊ in practice, in the 
worst case it can be ࣩ(݊), leading to a worst-case 
complexity of ࣩ(݊ଷ). 

The literature offers a number of solutions to scale 
kernel methods to large data linearly in the number of 
data, such as Nyström approximations [31] and 
random features [2]. In this work we focus in 
particular on random feature approximations, given 
that these have a practical implementation in hardware 
in the optical processing units that we consider in  
this work. 

The random feature approximations form a class of 
approximations which attempt to construct a finite set 
of basis functions ߶(⋅)  ∈ ℝ஽ such that 

 ݇൫ܠ௜, ௝൯ܠ ≈  ௝൯ (8)ܠ൫߶ୃ(௜ܠ)߶
 

There are different ways to construct such sets of 
basis functions, depending on the kernel. For example, 
so-called random Fourier features are commonly 
employed to approximate the Gaussian kernel: 

 ݇൫ܠ௜, ௝൯ܠ = exp ቀ−ฮܠ௜ −  ௝ฮଶቁ (9)ܠ
 

Appealing to Bochner's theorem [2], this kernel, 
which is shift-invariant due to dependence on  ૌ = ௜ܠ −  :௝, admits an alternative expression asܠ

 ݇(ૌ) = න݌(૑) exp(i2π૑ૌ) ࣓݀ (10) 

 

where ݌(૑) is a proper density function and i = √−1.   
Interpreting this as an expectation under ݌(૑), it is 
possible to approximate the integral as an expectation 
using Monte Carlo. 
 ݇(ૌ) = ૑(௥)ૌ൯௥ߨ෍exp൫i2ܦ1  (11) 

 

with ૑(௥) ∼  Furthermore, it is possible to use .(૑)݌
simple trigonometric identities to verify that the 
complex exponential can be broken down as a scalar 
product with terms depending on ܠ௜ and ܠ௝ 
respectively 
 ݇൫ܠ௜, ௝൯ܠ =  ௝൯ (12)ܠ൫߶ୃ(௜ܠ)߶ܦ1

 

with 
 ߶௥(ܠ) = ൫sin൫ୃܠ૑(௥)൯ , cos൫ୃܠ૑(௥)൯൯ (13) 

 

We refer the reader to [2, 32, 3, 33] for random 
features derived from alternative integral 
representation to the Fourier transform. 
 
 
3.3. Random Features on Optical Processing 

Units 
 

In this section we discuss Optical Processing Units 
(OPUs) in the context of random features. In the 
previous section we discussed random features as a 

way to approximate models involving kernels; for 
OPUs, instead, the device produces random features 
(fast and with little power consumption) and the 
question that we aim to address here is how to use 
these to implement approximate kernel machines. 

OPU are computing devices which exploit the 
physical process of scattering of light to perform a 
random projection operation of a given vector. In 
particular, given a binary vector ܠ୧ ∈ ℝௗ, OPUs 
perform a multiplication by a random matrix ܀ and 
apply the nonlinear activation function 	|| ⋅ ||ଶ.	 In 
other words, 

(ܠ)߶  = ܦ√1  ଶ (14)‖ܠ܀‖

 
The matrix ܀ ∈ ࣝ஽×ௗ is a complex Gaussian matrix 
with elements ܴ௜௝ ∼ ࣝࣨ(0,1). Previous works have 
established that in the limit of an infinite number of 
random features, the equivalent kernel is the following 
[6]: 
,ܠ)݇  (ܡ ≈ (ܡ)߶(ܠ)߶ =஽→ஶ ଶ||ܡ||ଶ||ܠ|| +  ଶ (15)(ܡ்ܠ)

 
Therefore, when using OPUs for kernel ridge 

regression, we are implicitly working with this 
polynomial kernel. 

Recently a new version of OPUs has been 
proposed and developed in [34], which allows one to 
perform linear random feature projections 

(ܠ)߰  =  (16) ܠ܀ܥ
 

where ܥ is the fixed constant.  
This novel type of OPU opens to the possibility to 

approximate a wide variety of kernels by choosing an 
appropriate activation function [2, 33]. For example, it 
is possible to apply trigonometric activation functions 
to the outputs of the OPU: 

(ܠ)′߰  = ൤sin(߰(ܠ))cos(߰(ܠ))൨ (17) 

 
This type of random features is called Random 

Fourier Features (RFF). It was proven in [2] that this 
kind of random features allows to approximate RBF 
kernels. 

஽(ܡ)߰⊤(ܠ)෍߰ܦ1 
௜ୀଵ 	

= 	 ⊤൯቉(ܠ)൯cos൫߰(ܠ)෍൭ቈsin൫߰ܦ1 ቈsin൫߰(ܡ)൯cos൫߰(ܡ)൯቉൱ =஽
௜ୀଵ  = ॱன[ܿݏ݋(ω(x − y))] = 	݇ோ஻ி(x, y) 

(18) 

 
As mentioned before, an important aspect of OPUs 

is that their input should be binary; this paper proposes 
a novel way to carry out a binarization of its input 
along with the kernel ridge regression task in an end-
to-end fashion. 
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4. Methods 
 
4.1. REINFORCE for Kernel Ridge 

Regression with Binarized Inputs 
 

In order to be able to implement kernel ridge 
regression on OPUs we need to binarize the inputs ܠ௜, 
and we propose to do so by employing an encoder, 
implemented as a neural network, parameterized by a 
set of weights ܅enc. The encoder transforms the inputs 
to kernel-based models ܠ௜ and turns them into a set of 
Bernoulli-distributed binary random variables ܢ௜.  

In particular, we denote by ௞݂  the (enc܅,ܠ)	
function implemented by the encoder which 
parameterizes the Bernoulli distribution associated 
with the kth element of the output, that is ݖ௞	. 
Recalling the random feature formulation of linear 
regression of Section 3, we propose the following 
approach to construct an approximate kernel-based 
model with binary inputs: 

෥	ݕ  = ॱܢ	ܟൣregrୃ ൧(	ܢ)߶ + ε	 (19) 
 
where ܢ ∼ Bernoulli൫݂(܅,ܠenc)൯ and ܟregr are 
parameters of the linearized regression model. Note 
how in this formulation the binary vectors ܢ are treated 
stochastically due to the expectation under the 
Bernoulli distribution induced by the encoder. The 
reason for this is that it allows us to employ the so-
called REINFORCE gradient estimator, as we discuss 
next. 

REINFORCE, also known as the log-derivative 
trick or score function estimator, offers a way to 
estimate the gradient of the expectation of a non-
differentiable function ݂(ݖ) under the distribution of 
the input random vector variables z: 

 ∇ఏܧ௣(௭;ఏ)݂(ݖ) = ∇ఏ නݖ)݌; ݖ݀(ݖ)݂(ߠ =	න∇ఏݖ)݌; ݖ݀(ݖ)݂(ߠ =	නݖ)݌; (ߠ ∇ఏݖ)݌; ;ݖ)݌(ߠ (ߠ = 	ݖ݀(ݖ)݂ ॱ௣(௭;ఏ)∇ఏlog	)݌	ݖ; ≈ (ݖ)݂(ߠ ෍∇ఏெܯ1
௜ୀଵ log	ݖ)݌;  (ݖ)݂(ߠ

(20) 

 
where ܯ is the number of samples drown from ݖ)݌,  Applying REINFORCE to our approximate .(ߠ
kernel-based model yields the following optimization 
objective: 
 minܟ౨౛ౝ౨,܅౛౤ౙॱܢ∼୆ୣ୰୬୭୳୪୪୧൫௙(܅,ܠ౛౤ౙ)൯ ቂℒ ቀܡ, 	୰ୣ୥୰	ܟ(܈)߶ ቁቃ+ୣߣ୬ୡ‖ୣ܅୬ୡ‖ଶ +  ୰ୣ୥୰ฮଶܟฮ	୰ୣ୥୰ߣ

(21) 

 
In this expression, we denoted by ℒ(ܡ,  ෤) the lossܡ
function associated with the task at hand and by ܈ the 
matrix that contains binary encoded variables for the 
whole training set ܆. We can optimize this objective 

by means of gradient-based techniques; for this we 
require that we are able to compute the gradient of the 
objective with respect to all parameters. The gradient 
of the first term of the objective with respect to ܅enc, 
which is the most involved part, is: 
(ܢ)௤∽ܢ౛౤ౙॱ܅∇  ቂℒ ൬ܟ,ݕ ୰ୣ୥୰ୃ ൰ቃ(ܢ)߶ ≈≈ ෍ℒெܯ1

௜ୀଵ ൬ܟ,ݕ ୰ୣ୥୰ୃ ܢ)߶ )൰ ౛౤ౙ܅∇ log ݍ  (	ܢ)
(22) 

 
while the derivatives of the other terms are 
straightforward to compute. With this derivation, we 
observe that it is then possible to jointly optimize all 
parameters, leading to what it is commonly referred to 
as an end-to-end approach. In the remainder of this 
paper, we refer to this method as End-to-End SE, 
where SE stands for Supervised Encoder. 
 
 
4.2. Variance Reduction 
 

REINFORCE is known to suffer from large 
variance of the gradients. In order to reduce the 
variance of this estimator, we employ control variates 
[25]. In this approach, we add a set of random 
variables to the estimator, such that these variables 
have zero mean, so they do not alter the expectation 
of the gradient. The aim is to construct such variables 
so as to reduce the overall variance of the estimator: 
(ܢ)௤∽ܢ౛౤ౙॱ܅∇  ቂℒ ൬ܟ,ݕ ୰ୣ୥୰ୃ ൰ቃ(ܢ)߶ ౛౤ౙ܅∇෍ܯ1 ≈ log ݍ (	ܢ) ቀℒ ൬ܟ,ݕ	୰ୣ୥୰ୃ ൰(	ܢ)߶ − ቁெ	ܞ

௜ୀଵ  

where ܞ = ܯ1 − 1෍ℒ௜ஷ௝ ൬ܟ,ݕ	୰ୣ୥୰ୃ  ൰(	ܢ)߶

(23) 

 
 
4.3. Lowering the Cost of REINFORCE 
 

The estimation of the gradient of the End-to-End 
SE with respect to ܅enc can be expensive when the 
number of random features is large. This is due to the 
fact that this requires multiple samples to be passed 
from the encoder through the random projection and 
the approximate kernel ridge regression model. In this 
section we propose a strategy to reduce the complexity 
of REINFORCE applied to our model, whereby we 
average set of basis functions under the resampling of 
the binary variables as follows: 

෤ݕ  = regrୃܟ ॱܢ [(	ܢ)߶] +  (24) 	ߝ
 
where ܢ ∼ Bernoulli൫݂(܅,ܠenc)൯ 

With this new modeling assumption, the training is 
based on a modified optimization problem as follows: 

 minܟregr܅encℒ ቀܡ, ॱܢ∼୆ୣ୰୬୭୳୪୪୧൫௙(܅,ܠenc)൯[߶(܈)]ܟregr	 ቁ	 (25) 
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୬ୡ‖ଶୣ܅‖୬ୡୣߣ+ +  ୰ୣ୥୰ฮଶܟฮ	୰ୣ୥୰ߣ

 
Again, we can perform gradient-based 

optimization. Focusing on the first term, which is the 
nontrivial one to differentiate in the objective, we 
obtain 

౛౤ౙℒ܅∇  = ݀ℒ݀൫ॱ߶(ܢ)൯  ൯ (26)(ܢ)߶౛౤ౙॱ൫܅∇

 
where ∇܅encॱ൫߶(ܢ)൯ is calculated with the 
REINFORCE estimator. In the remainder of the paper, 
we will refer to this method as Isolated Supervised 
Encoder (SE). 

Regarding the comparison of the End-to-End SE 
and Isolated SE, we can note the following 
relationship between these models in the case of 
regression problems. In the data term of the 
optimization objective (25) we can put an expectation 
over the whole matrix product of the random features 
map and the regression weights instead of an 
expectation over the random features only. Then we 
can move the expectation in such a way that it is taken 
over the whole term within the squared norm. We can 
do this because within one gradient step iteration, 
neither ܡ nor ܅enc are considered as random variables.  
In this case the data term looks as follows: 

 ฮܡ − ॱ[߶(܈)]ܟregrฮଶ = ฮܡ − ॱൣ߶(܈)ܟregr൧ฮଶ= ฮॱൣܡ −  regr൧ฮଶܟ(܈)߶
(27) 

 
In turn, End-to-End SE has a following data term as 
part of its optimization objective (21): 
 ॱ ቂฮܡ −  regrฮଶቃ (28)ܟ(܈)߶
 
We can note that the squared loss is convex function. 
Thus, we can apply Jensen's inequality to obtain the 
following expression: 
 ॱ ቂฮܡ − regrฮଶቃܟ(܈)߶ ൒ ฮॱൣܡ − =regr൧ฮଶܟ(܈)߶ ฮܡ − ॱൣ߶(܈)ܟregr൧ฮଶ 

(29) 

 
As a result, End-to-End SE optimizes upper bound of 
the Isolated SE objective. 
 
 
5. Results 
 
5.1. Experiments on the UCI Datasets 
 

We compared the performance of the proposed 
approaches for a non-linear OPU (End-to-End SE and 
Isolated SE) and a linear OPU that uses trigonometric 
activations (End-to-End SE with RFF) against a 
model based on unsupervised autoencoder proposed 
in [11], an encoder trained with direct feedback 
alignment (DFA) [35] and a Kernel Ridge Regression 
(KRR) based on a Radial Based Function kernel 

(RBF). Results are reported in Fig. 1 for several UCI 
regression and classification problems [36]. We want 
to emphasize that the main competitors of the 
proposed methods are the ones based on unsupervised 
autoencoder and encoder trained by DFA, because 
kernel ridge regression is unable to work with large 
datasets, and OPU-based regression just approximates 
this method and is intended to replace it on large 
datasets. 
 
 

 
 

 
 

Fig. 1. Mean squared error (MSE) for regression (top)  
and negative error on classification (bottom)  

datasets comparison. 
 
 

For KRR experiments we used Mean Squared 
Error (MSE) as a loss function. To apply KRR to the 
classification problems we replaced 0 and 1 in class 
labels with -1, 1 and solved a classification problem as 
a regression one using MSE loss as an optimization 
objective. For all other models we used MSE loss for 
the regression problems and Cross Entropy (CE) loss 
for the classification problems. We used a logistic 
activation function on the last layer for the 
classification tasks. 

For Isolated SE and End-to-End SE as an encoding 
function ݂(܅,ܠenc) providing parameters for the 
Bernoulli distribution, we chose a single linear layer 
with a sigmoid activation. 

(୬ୡୣ܅,ܠ)݂  = σ൫ୣ܅୬ୡୃ  ൯ (30)ܠ	
 
All hyperparameters for the DFA encoder, End-to-

End SE and Isolated SE models (size of binary 
embedding, learning rate, l2 regularization for the 
encoder and the regression layer) were chosen with a 
random search during cross-validation. Kernel 
parameters of KRR were tuned by random search with 
cross-validation. This poses computational challenges 
for the large datasets (MiniBoo, MoCap), so we resort 
to random Fourier feature approximations for these 
cases. 

For the models involving random features (both 
Fourier and OPU-generated ones) we have tuned the 
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variance of the distribution that generates these 
random features. Concretely, assuming that the 
elements of the ܀ matrix generating the random 
projections are distributed through the standard 
Normal distribution, we can obtain a new random 
matrix ܀ᇱ by multiplying ܀ by any variance, for 
instance: 

 ߶ᇱ(ܠ) = ଶ|ܠᇱ܀|ܿ = ܿ| ߙ܀ ଶ|ܠ = ܿ ଶߙ1  ଶ (31)|ܠ܀|

 
It is enough to multiply the output of the OPU by 

an additional parameter ߛ, such that ߛଶ = ଵఈమ, and 

optimize them with standard gradient descent. The 
parameter ߛ is not equivalent to the lengthscale 
parameter of the RBF kernel. In practice, it has an 
effect of outputscale parameter of RBF kernel, as it 
has simply a scaling effect on the kernel. 

On the regression problems, both proposed 
methods outperformed their main competitors. On the 
classification problems, the DFA-based approach was 
better only on one dataset, and on all other datasets the 
proposed methods performed better or equally well. 
Regarding the type of a kernel approximated by the 
OPU, the experiments show that the linear OPU with 
trigonometric activations performs as good as OPU 
kernel for most of the datasets. It gives performance 
gains only for some classification problems. 
Considering the comparison between the proposed 
methods, we see that End-to-End SE is more stable 
and requires a significantly fewer number of samples 
from the encoder, although Isolated SE showed 
slightly better results on classification problems. 

We considered including results obtained by 
running these models on the real OPU (Fig. 2). 
Unfortunately, the regression problems required such 
a large number of epochs that we could not perform 
the experiments in a reasonable amount of time. 

 
 

 
 
Fig. 2. Error comparison on classification (bottom) datasets 

for experiments on a real hardware. 
 
 

We also tested the performance of our approach 
with respect to the number of samples required to 
employ REINFORCE. We found that End-to-End SE 
can achieve good results with a small amount of 
samples from the encoder, and the increase of amount 
of samples does not seem to improve performance. 

Finally, we evaluated the effect of variance 
reduction on convergence speed and performance for 

End-to-End SE model. In Fig. 3 we report results for 
one classification and one regression problem. The 
convergence curves indicate that the convergence 
speed is benefits from the gradient variance reduction. 

 
 

 
 

Fig. 3. Convergence of the training procedure on 
classification problem: mocap dataset (bottom) and 

regression problem: boston dataset (top). 

 
 
5.2. Experiments on Image Data 
 

In this section we evaluate an optical random 
feature regression approach for image classification 
tasks with several different binarization techniques 
including the proposed methods. 

The kernel generated by the OPU (15) is an 
example of a polynomial kernel. Polynomial kernels, 
unlike more popular RBF kernels, take into account 
interaction between different feature dimensions. This 
property is especially important for image data 
because a relative alignment of pixels is crucial for 
image classification. Of course, when we are working 
with OPUs, kernel takes into account an alignment of 
different dimensions of the binary embedding of an 
image instead of the pixels. The relative alignment of 
different dimensions of the binary embedding most 
probably does not contain exactly the same 
information as the mutual alignment of pixels. But 
until the binary encoder does not have 
disentanglement properties, the mutual interaction of 
dimensions of the binary embedding have to contain 
an additional information about the image. That is why 
it is still important to use a kernel that is capable to 
take into account these relationships. 

For the experiments on image data, we used two 
convolutional architectures of the binary encoder. 
First architecture was inspired by the LeNet model 
(Table 1). 
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Table 1. LeNet-based binary encoder architecture. 

 
Layer Dimensions 

Conv2D 5×5, 6 filters 

MaxPooling 2×2 

Conv2D 5×5, 16 filters 

MaxPooling 2×2 

Linear 576×512 

Linear 512×݀binary 

Binarization layer ݀binary 

 
 
We performed experiments on three classical 

image classification datasets (Table 2). We compared 
End-to-End SE with a model that used autoencoder to 
train the encoder (AE) and a model that used direct 
feedback alignment (DFA) for the same purpose. The 
results are shown in Table 3. 

 
 

Tab. 2. Image datasets used in the experiments. 

 

Dataset 
Train/test 

size 
Classes Dimension 

MNIST 60000/10000 10 1×28×28 
F-MNIST 60000/10000 10 1×28×28 

CIFAR10 50000/10000 10 3×32×32 
 
 
Tab. 3. Classification error obtained by the model  

with the LeNet encoder. 

 

Dataset AE DFA 
End-to-
End SE 

MNIST 0.06±0.02 0.31±0.03 0.01±0.00 
F-MNIST 0.20±0.01 0.47±0.01 0.09±0.00 
CIFAR10 0.55±0.01 0.81±0.02 0.32±0.01 

 
 
We used the same encoder architecture with the 

same hyperparameters for each binarization method. 
The size of the binary embedding was set to 400, 
except of the unsupervised AE method. The reason 
why we trained the unsupervised AE differently for 
these experiments is because we were using complex 
convolutional models and it was hard to adapt the 
method proposed in [11]. This binarization approach 
requires to use exactly the same values of weights 
both for the encoder and for the decoder models. It 
means that this method requires to build a decoder 
model that is symmetrical to the encoder model. 
Achieving this property for convolutional neural 
networks is difficult because for the decoder it is 
difficult to pick equivalent symmetric operations for 
convolutional and pooling layers in the encoder. 
Transposed convolutions and interpolation operations 
that are used in decoders for image data, are suitable 
for training of the autoencoder by end-to-end 
backpropagation. They learn operations that are not 
symmetric to convolutions and pooling layers of the 

encoder. The method proposed in [11] assumes that 
only the decoder is trained and the encoder copies 
weights from it, that is impossible to do for 
asymmetric operations in decoder and encoder. That 
is why we trained the autoencoder model in a different 
way. The encoder of the AE model used a ݊ܽݐℎ 
activation function at the output. We used a parameter ߚ that controls steepness of the ݊ܽݐℎ function. We 
slowly increased the value of this parameter from ߚ =1 to ߚ = 	100 in the process of training. At the end of 
the training, the function ݊ܽݐℎ with a high value of the 
parameter ߚ  is almost equivalent to a shifted and 
scaled Heaviside function. 

 2ℎ(ݔ) − 1 ≈ ,(ݔߚ)ℎ݊ܽݐ ߚ	 → ∞ (32) 
 
The results of the DFA approach signify that this 

type of gradient updates is not suitable for 
convolutional models. This observation is supported 
by other researchers [37, 38]. 

Unsupervised AE was able to provide acceptable 
accuracy for the MNIST dataset, but on CIFAR-10 its 
performance dropped significantly. A possible 
explanation is that simple convolutional AE is unable 
to extract reasonable binary representation of complex 
images. The AE model used in the experiments was 
able to reconstruct simple images from MNIST 
dataset. But the reconstruction quality of the same 
model was much worse for the CIFAR-10 dataset. 
When the dimensionality of the binary embedding 
was equal to 400, the AE model was unable to 
generate any sensible images. Thus, we had to 
increase the size of the binary embedding to 1024.  
But the reconstructed images were very blurry even 
with this modification. 

Because of the poor performance of the 
unsupervised AE baseline, we decided to add another 
baseline to the comparison. For this experiment we 
used a RESNET-based convolutional network as the 
encoder.  LBAE approach proposed in [39] 
implements an autoencoder with a binary latent space. 
The training procedure of this method is based on 
straight-through gradient estimator. The architecture 
of the binary encoder is represented in Table 4 and 
Table 5. This encoder used leaky ReLU as an 
activation function. Batch-normalization was used 
before each activation function. 

 
 

Tab. 4. Architecture of the RESNET-based binary encoder. 

 
Layer Dimensions 

Conv2D 3×3, 64 filters 
Conv2D 4×4,  64 filters 
Residual Block 3×3, 64 filters 
Conv2D 4×4, 64 filters 
Residual Block 3×3, 64 filters 
Conv2D 4×4, 128 filters 
Linear 4096×݀binary 
Binarization layer ݀binary 
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Tab. 5. Residual block structure. The number of filters  
is specified in Tab. 4. 

 
Layer Dimensions

Conv2d 3×3 
Conv2d 3×3 

 
 

Table 6 contains the results of the comparison 
between the LBAE-based and End-to-End SE-based 
encoders in terms of classification error. 
 
 

Tab. 6. Classification error for models  
with the RESNET encoder. 

 

Dataset LBAE 
End-to-End 

SE 
MNIST 0.15±0.01 0.01 ±0.00 
F-MNIST 0.24±0.02 0.06±0.01 
CIFAR-10 0.63±0.02 0.17±0.01 

 
 

Both binarization approaches used the same 
RESNET-based architecture of the encoder network. 
We dropped the DFA approach from the comparison 
because of its poor performance. 

The results of this experiment showed interesting 
property of the unsupervised approach for training of 
the binary encoder. The LBAE-based encoder with a 
deeper network performed worse than the simpler 
autoencoder with ݊ܽݐℎ annealing in terms of 
classification error, while the LBAE approach was 
better in image reconstruction task. It seems, that the 
binary latent projection of image data, that is suitable 
for image reconstruction, is unsuitable for image 
classification. 

As with the UCI data we evaluated the effect of 
variance reduction. 

As we can see, variance reduction plays a crucial 
role for image classification (Fig. 4). Without this 
technique the proposed method is unable to train the 
model for CIFAR-10. We assume, that it happens 
because in deeper models variance has a 
multiplicative effect when the number of layers 
increases. 
 
 
6. Conclusion 
 

Recent advances in alternatives to transistor-based 
hardware are bringing a new wave of sustainable 
computing solutions for machine learning [40]. This 
paper focuses on optical-based computing through 
OPUs [5], which perform randomized projections of 
binary input vectors at the speed of light with low 
energy consumption. In this paper, we considered 
these randomized computations to implement kernel-
based models for regression and classification tasks 
through random feature approximations. In particular, 
we proposed a novel strategy to binarize the inputs of 
the given task so as to be able to employ OPUs 

inspired by reinforcement learning. The proposed 
strategy uses an encoder to map the inputs to a set of 
binary variables and employs the REINFORCE 
gradient estimator to estimate its parameters jointly 
with the parameters of the kernel-based model. We 
also explored ways to reduce the variance of the 
gradient estimator and accelerate convergence, which 
is key in a number of challenging modeling tasks such 
as image classification. Through a series of 
experiments, we showed that our proposal 
outperforms competitors based on unsupervised 
binarization and those that do not employ gradient 
information. 

 
 

 
 

Fig. 4. Training loss with and without variance reduction. 
 
 

We are currently investigating our approach in the 
context of other kernel-based models, such as 
Gaussian processes [41], and their extension to deep 
models, such as Deep Kernel Learning [42] and Deep 
Gaussian processes [3]. 
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