
Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 1

Sensors & Transducers
Published by IFSA Publishing, S. L., 2022

http://www.sensorsportal.com

Learning Binary Data Representation
for Optical Processing Units

1, * Bogdan Kozyrskiy, 1 Maurizio Filippone, 2 Iacopo Poli, 2, 3 Ruben Ohana,
2 Laurent Daudet and 2 Igor Carron

1 Department of Data Science, EURECOM, 450 Route des Chappes, 06410 Biot, France
2 LightOn, 2 rue de la Bourse, F-75002 Paris, France

3 Laboratoire de Physique, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
1 Tel.: +33 4 93 00 81 00

* E-mail: Bogdan.Kozyrskiy@eurecom.fr

Received: 1 February 2022 /Accepted: 4 March 2022 /Published: 31 March 2022

Abstract: Optical Processing Units (OPUs) are computing devices that perform random projections of input data
by exploiting the physical phenomenon of scattering a light source through a diffusive medium. Random
projections calculated by OPUs have been used successfully for approximating kernel ridge regression for large
datasets with low power consumption and at high speed. However, OPUs require the input data to be binary. In
this paper, we propose to use shallow and deep neural networks (NN) as binary encoders to perform input data
binarization. The difficulty in developing a binarization strategy which is learned in an end-to-end fashion along
with kernel ridge regression parameters, is due to the non-differentiability of the operation performed by the OPU.
We overcome this difficulty by considering OPUs as a black-box and by employing the REINFORCE gradient
estimator, which allows us to calculate the gradient of the loss function with respect to the weights of the
binarization encoder and to optimize these together with the parameters of kernel ridge regression with gradient-
based optimization.

Through our experimental campaign on a variety of tasks and datasets, we show that our method outperforms
alternative unsupervised and supervised binarization techniques.

Keywords: Optimization, Random features, Linear regression, Optical processing unit.

1. Introduction

Statistical models based on kernel methods offer
powerful and theoretically well-understood tools for
complex data modeling problems. The limitation of
employing these kernel-based models in practice is
that a naive implementation scales poorly with the size
of the data set, and there has been a tremendous
amount of work in the direction of mitigating this issue
by introducing approximations.

In this context, Nyström approximations [1] and
random features [2] are very popular techniques to
scale kernel methods virtually to any number of data,
thanks to mini-batch formulations [3, 4].

The focus of this work is on random feature
approximations, where by kernel-based models are
"linearized" by an equivalent linear model with a set
of suitably constructed random basis functions. The
motivation behind this work is to considerably
accelerate the construction of random features, while
reducing power consumption, by resorting to a
dedicated hardware, which we refer to Optical
Processing Units (OPUs).

OPUs are computing devices which perform
random projections of input vectors by exploiting the
physical phenomenon of scattering a light source
through a diffusive medium [5]. The random
projection is then followed by a nonlinear operation,

http://www.sensorsportal.com/HTML/DIGEST/P_3258.htm

https://www.sensorsportal.com/

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 2

making the whole pipeline of computation exactly
what is needed to construct random features to
approximate kernel-based models. Crucially, OPUs
offer the possibility to operate with a number of
random features at the speed of light and with low-
power consumption, representing a unique solution to
further improve scalability of kernel machines. As an
example, OPU-based random feature approximations
have successfully been proposed to carry out
approximate kernel ridge regression in [6, 7].

One limitation associated with working with OPUs
is that, because of the hardware setup, input vectors
need to be binarized. In addition, the random
projection matrix characterizing the device is
unknown, and can only be retrieved through an
expensive calibration procedure.

In this paper, we propose a novel binarization
strategy for OPUs which is learned along with the
regression/classification task in an end-to-end manner,
meaning that the parameters of the binarization part
are learned along with the kernel-based model
parameters. In order to achieve this, we overcome the
limitation that OPU projection matrices are unknown
by employing the so-called REINFORCE gradient
estimator, which allows us to treat the OPU as a black-
box. Through experiments on several UCI
classification/regression problems, we show that our
proposal outperforms alternative unsupervised and
supervised binarization techniques. This paper is an
extended version of [8]; compared to the shorter
version, we expand on the methods by analyzing the
bounds on the objective functions of the proposed
approaches, and we expand on the experiment by
considering a larger class of kernels and image-based
classification problems.

2. Related Work

In neural networks, binarization is generally
targeting intermediate layer activations, and it may
also stem from binarization of model parameters; in
these cases, binarization is mostly introduced to
reduce computational cost and memory consumption
[9]. Neural networks with binary hidden layers find
applications in binary autoencoders for hashing [10],
data compression [11], and hard attention mechanism
[12]. The binarization of layer activations is obtained
by a suitable choice of activation functions; for
instance, the sign or Heaviside functions for the
deterministic case, or the sigmoid or ݊ܽݐℎ functions
combined with the Bernoulli distribution for the
stochastic case [13, 14]. The most popular technique
to propagate gradients through such activation
functions is the so called straight-through estimator
(STE) [15]. More recently, there have been proposals
to replace the STE with another estimator through a
relaxation technique, also known as the Gumbel
Softmax-trick [16]. Also, different kinds of target
propagation are used to learn suitable targets for each
binary layer and then train the associated parameters

with relaxation techniques or combinatorial
optimization [17-19].

Focusing on OPUs, currently the standard
approach to binarize data makes use of a binary
autoencoder [11]. Such a binary autoencoder is trained
independently from the OPU device, and it gives the
possibility to perform the binarization operation by
means of its encoder part. The autoencoder consists of
a fully-connected encoder and decoder. The hidden
layer has a Heaviside activation function, so its output
is binary. The training procedure updates the weights
of the decoder with backpropagation and weights of
the encoder are forced to be equal to the weights of the
decoder in order to be able to reproduce the input.

In this work, we aim to develop a supervised
binarization model which is learned together with the
supervised learning task. That is, we aim to provide a
training procedure for the heterogeneous model
consisting of the kernel ridge regression model
approximated with random features and the
binarization encoder before the OPU. In this context,
a general-purpose framework called Method of
Auxiliary Coordinates (MAC) was proposed in [19]
with examples of application in [10] and [20]. The
authors propose to introduce auxiliary variables into a
deep neural network. These auxiliary variables are
assigned the role of pre-activations for each layer, and
they get replaced during the forward pass. The first
step of the optimization targets the auxiliary variables,
and, after this step, the parameters of each layer are
optimized to regress on these variables, which take the
role of layer-specific labels. This is very beneficial
when some layers are discrete and vanilla
backpropagation is not applicable. In [20], this
approach is used to train a fully connected network
with binary activation functions, using a STE to
propagate a learning signal through the non-
differentiable parts. Reference [10] is especially
interesting because authors illustrate, how discrete
binary layers can be optimized within larger, non-
binary model.

While splitting the optimization of the binarization
and the model is a viable option, we still need a way
to training each part individually. There is a wide
variety of ways to obtain a solution for kernel ridge
regression with the random feature approximation, so
the most difficult point is how to optimize the part
consisting of the binary encoder and the OPU, because
it combines a non-differentiable function with an
implicit random projection. These make the STE from
[20] inapplicable. Also, we found that the
combinatorial approach used in [10] and [17] is
inapplicable for our case for two reasons. First, it is
suitable only when the binary dimension is relatively
small, which might be a limitation for a general
solution. Second, the combinatorial approach
combined with MAC converges in one iteration to
poor local optima, and this happens because of the
model setup which is different from the ones in [10]
and [17].

From a different point of view, it is possible to
view our problem through the lenses of reinforcement

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 3

learning, where it is necessary to propagate binary
codes through the OPU instead of discrete actions
through the black-box environment. Instead of
maximizing the reward from the environment, we are
trying to minimize the loss function. The classical
algorithm to solve this problem is REINFORCE [1].
This allows one to calculate gradients of the reward
with respect to parameters of the policy that generates
actions. The applicability of this method to other
settings with black-box elements was shown in [21].
There are various versions of this algorithm intended
to reduce variance of the gradient of the parameters.
Very frequently they are based on relaxations of the
non-differentiable sampling procedure [22], or
approximation of the black-box part of the model [23].
It also worth noting that there exist competitive
alternatives to REINFORCE, such as the one in [24],
later extended with variance reduction [25] or
relaxation [26].

3. Background

3.1. Kernel Ridge Regression

In this paper, we focus on kernel ridge regression
for supervised learning tasks. Let ܆ = …,ଵܠ , ௡ be aܠ
set of input vectors ܠ	 ∈ ℝௗ and let ܡ = ௡ be aݕ…,ଵݕ
set of labels associated with the input vectors.

The labels ݕ௜ can be continuous or binary
depending on whether the task is regression or
classification. Kernel ridge regression is a statistical
model which constructs a functional relationship
between the inputs and the labels which belongs to the
so-called Reproducing Kernel Hilbert Space (RKHS).
The properties of such functions, such as smoothness,
are characterized by the choice of a so-called kernel
function ݇(∙,∙): ℝௗ × ℝௗ → ℝ	 [27], which is a
positive semi-definite function of pairs of input points
returning a scalar. The reproducing property of kernel
functions is 〈݇(ܠ,∙), 〈(∙,ܡ)݇ = ,ܠ)݇ Positive .(ܡ
definiteness of kernel functions implies that we can
express ݇൫࢏ܠ, ࢐൯ܠ = ࢐൯ for some set ofܠ൫்߮(࢏ܠ)߮
(possibly infinite) basis functions ߮(∙).

In order to derive the conventional formulation of
kernel ridge regression, it is useful to start from linear
regression, where a set of model parameters ܟ is
introduced to express a linear relationship between
input and labels. Then, one introduces the following
optimization problem:

ෝܟ = argmin௪ 12෍(ݕ	 − ଶ(ܠୃܟ − 2ߣ ଶଶ௡||ܟ||
௜ୀଵ (1)

The objective function contains two terms; the first

is a model fitting term, while the second is a
regularization term, which prevents the weights to
become too large. The solution to this optimization
problem is available in closed form, given that the
objective is quadratic with respect to the parameters,
yielding:

ෝܟ = ܆ୃ܆) + (2) ܡଵି(۷ߣ

Using standard algebraic manipulations involving

the Woodbury identity, we can re-express the solution
as:

ෝܟ = ܆)்܆ ୃ܆ + (3) ܡଵି(۷ߣ

While this is costly than the previous expression in

the common case where ݀	 < 	݊ (inversion of a ݊ × ݊
matrix rather than a d	× ݀ matrix), this formulation is
useful to derive kernel ridge regression.

Imagining to introduce basis functions ߶(⋅) =൫߶ଵ(⋅), … , ߶஽(⋅)൯ୃ, we can solve this new
optimization problem

ෝܟ = argminௐ 12෍൫ݕ௜ − ൯ଶ௡(௜ܠ)߶ୃܟ
௜ୀଵ + λ2 ଶ (4)||ܟ||

with solution
ෝܟ = Φୃ(Φ Φୃ + (5) ܡଵି(۷ߣ

Evaluating the model at a given input ܠ∗ yields:
ෝܟୃ(∗ܠ)߶ = ઴ୃ(઴઴ୃୃ(∗ܠ)߶ + λ۷)ିଵ(6) ܡ

In this expression, we recognize the scalar product

of vectors of basis functions. What we can do then, is
to express these scalar products as a kernel function
and obtain:

ෝܟୃ(ܠ)߶ = ۹)∗ܓ + λ۷)ିଵ(7) ܡ

where ܓ∗ = ൫݇(ܠଵ, ,(∗ܠ … , ,௡ܠ)݇ ௜௝ܭ ൯ୃ and(∗ܠ =݇൫ܠ௜, ௝൯. In practice, one first chooses a kernelܠ
function, and this induces a set of basis function; the
beauty of this formulation is that one never explicitly
works with the set of basis functions and all we need
to use this model in practice is the evaluation of kernel
functions among inputs.

3.2. Random Feature Approximation

One of main limitations of kernel methods is
scalability to large datasets. The problem arises from
the need to evaluate and perform algebraic operations
with the so-called Gram matrix ۹. Because ۹ is an ݊ × ݊ matrix, evaluating and storing ۹ requires ࣩ(݊ଶ)
computations and storage, while any algebraic
operations, such as factorizations to handle the inverse
of ۹ + λ۷, requires ࣩ(݊ଷ) operations. These prevent
the applicability of kernel methods in their exact form
to datasets of size beyond a few thousand. It is worth
noting that some approaches have been proposed to
solve algebraic operations in an iterative fashion and
without the need to store ۹ [28, 29, 30], but they still
require ࣩ(݊ଶ) computations for each iteration of their
solvers. Furthermore, while the number of iterations of

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 4

the solvers is much lower than ݊ in practice, in the
worst case it can be ࣩ(݊), leading to a worst-case
complexity of ࣩ(݊ଷ).

The literature offers a number of solutions to scale
kernel methods to large data linearly in the number of
data, such as Nyström approximations [31] and
random features [2]. In this work we focus in
particular on random feature approximations, given
that these have a practical implementation in hardware
in the optical processing units that we consider in
this work.

The random feature approximations form a class of
approximations which attempt to construct a finite set
of basis functions ߶(⋅)  ∈ ℝ஽ such that

 ݇൫ܠ௜, ௝൯ܠ ≈ ௝൯ (8)ܠ൫߶ୃ(௜ܠ)߶

There are different ways to construct such sets of
basis functions, depending on the kernel. For example,
so-called random Fourier features are commonly
employed to approximate the Gaussian kernel:

 ݇൫ܠ௜, ௝൯ܠ = exp ቀ−ฮܠ௜ − ௝ฮଶቁ (9)ܠ

Appealing to Bochner's theorem [2], this kernel,
which is shift-invariant due to dependence on ૌ = ௜ܠ − :௝, admits an alternative expression asܠ

 ݇(ૌ) = න݌(૑) exp(i2π૑ૌ) ࣓݀ (10)

where ݌(૑) is a proper density function and i = √−1.
Interpreting this as an expectation under ݌(૑), it is
possible to approximate the integral as an expectation
using Monte Carlo.
 ݇(ૌ) = ૑(௥)ૌ൯௥ߨ෍exp൫i2ܦ1 (11)

with ૑(௥) ∼ Furthermore, it is possible to use .(૑)݌
simple trigonometric identities to verify that the
complex exponential can be broken down as a scalar
product with terms depending on ܠ௜ and ܠ௝
respectively
 ݇൫ܠ௜, ௝൯ܠ = ௝൯ (12)ܠ൫߶ୃ(௜ܠ)߶ܦ1

with
 ߶௥(ܠ) = ൫sin൫ୃܠ૑(௥)൯ , cos൫ୃܠ૑(௥)൯൯ (13)

We refer the reader to [2, 32, 3, 33] for random
features derived from alternative integral
representation to the Fourier transform.

3.3. Random Features on Optical Processing

Units

In this section we discuss Optical Processing Units
(OPUs) in the context of random features. In the
previous section we discussed random features as a

way to approximate models involving kernels; for
OPUs, instead, the device produces random features
(fast and with little power consumption) and the
question that we aim to address here is how to use
these to implement approximate kernel machines.

OPU are computing devices which exploit the
physical process of scattering of light to perform a
random projection operation of a given vector. In
particular, given a binary vector ܠ୧ ∈ ℝௗ, OPUs
perform a multiplication by a random matrix ܀ and
apply the nonlinear activation function 	|| ⋅ ||ଶ.	 In
other words,

(ܠ)߶ = ܦ√1 ଶ (14)‖ܠ܀‖

The matrix ܀ ∈ ࣝ஽×ௗ is a complex Gaussian matrix
with elements ܴ௜௝ ∼ ࣝࣨ(0,1). Previous works have
established that in the limit of an infinite number of
random features, the equivalent kernel is the following
[6]:
,ܠ)݇ (ܡ ≈ (ܡ)߶(ܠ)߶ =஽→ஶ ଶ||ܡ||ଶ||ܠ|| + ଶ (15)(ܡ்ܠ)

Therefore, when using OPUs for kernel ridge

regression, we are implicitly working with this
polynomial kernel.

Recently a new version of OPUs has been
proposed and developed in [34], which allows one to
perform linear random feature projections

(ܠ)߰ = (16) ܠ܀ܥ

where ܥ is the fixed constant.
This novel type of OPU opens to the possibility to

approximate a wide variety of kernels by choosing an
appropriate activation function [2, 33]. For example, it
is possible to apply trigonometric activation functions
to the outputs of the OPU:

(ܠ)′߰ = ൤sin(߰(ܠ))cos(߰(ܠ))൨ (17)

This type of random features is called Random

Fourier Features (RFF). It was proven in [2] that this
kind of random features allows to approximate RBF
kernels.

஽(ܡ)߰⊤(ܠ)෍߰ܦ1
௜ୀଵ 	

= 	 ⊤൯቉(ܠ)൯cos൫߰(ܠ)෍൭ቈsin൫߰ܦ1 ቈsin൫߰(ܡ)൯cos൫߰(ܡ)൯቉൱ =஽
௜ୀଵ = ॱன[ܿݏ݋(ω(x − y))] = 	݇ோ஻ி(x, y)

(18)

As mentioned before, an important aspect of OPUs

is that their input should be binary; this paper proposes
a novel way to carry out a binarization of its input
along with the kernel ridge regression task in an end-
to-end fashion.

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 5

4. Methods

4.1. REINFORCE for Kernel Ridge

Regression with Binarized Inputs

In order to be able to implement kernel ridge
regression on OPUs we need to binarize the inputs ܠ௜,
and we propose to do so by employing an encoder,
implemented as a neural network, parameterized by a
set of weights ܅enc. The encoder transforms the inputs
to kernel-based models ܠ௜ and turns them into a set of
Bernoulli-distributed binary random variables ܢ௜.

In particular, we denote by ௞݂ the (enc܅,ܠ)	
function implemented by the encoder which
parameterizes the Bernoulli distribution associated
with the kth element of the output, that is ݖ௞	.
Recalling the random feature formulation of linear
regression of Section 3, we propose the following
approach to construct an approximate kernel-based
model with binary inputs:

෥	ݕ = ॱܢ	ܟൣregrୃ ൧(ܢ)߶ + ε	 (19)

where ܢ ∼ Bernoulli൫݂(܅,ܠenc)൯ and ܟregr are
parameters of the linearized regression model. Note
how in this formulation the binary vectors ܢ are treated
stochastically due to the expectation under the
Bernoulli distribution induced by the encoder. The
reason for this is that it allows us to employ the so-
called REINFORCE gradient estimator, as we discuss
next.

REINFORCE, also known as the log-derivative
trick or score function estimator, offers a way to
estimate the gradient of the expectation of a non-
differentiable function ݂(ݖ) under the distribution of
the input random vector variables z:

 ∇ఏܧ௣(௭;ఏ)݂(ݖ) = ∇ఏ නݖ)݌; ݖ݀(ݖ)݂(ߠ =	න∇ఏݖ)݌; ݖ݀(ݖ)݂(ߠ =	නݖ)݌; (ߠ ∇ఏݖ)݌; ;ݖ)݌(ߠ (ߠ = 	ݖ݀(ݖ)݂ ॱ௣(௭;ఏ)∇ఏlog)݌	ݖ; ≈ (ݖ)݂(ߠ ෍∇ఏெܯ1
௜ୀଵ log	ݖ)݌; (ݖ)݂(ߠ

(20)

where ܯ is the number of samples drown from ݖ)݌, Applying REINFORCE to our approximate .(ߠ
kernel-based model yields the following optimization
objective:
 minܟ౨౛ౝ౨,܅౛౤ౙॱܢ∼୆ୣ୰୬୭୳୪୪୧൫௙(܅,ܠ౛౤ౙ)൯ ቂℒ ቀܡ, 	୰ୣ୥୰	ܟ(܈)߶ ቁቃ+ୣߣ୬ୡ‖ୣ܅୬ୡ‖ଶ + ୰ୣ୥୰ฮଶܟฮ	୰ୣ୥୰ߣ

(21)

In this expression, we denoted by ℒ(ܡ, ෤) the lossܡ
function associated with the task at hand and by ܈ the
matrix that contains binary encoded variables for the
whole training set ܆. We can optimize this objective

by means of gradient-based techniques; for this we
require that we are able to compute the gradient of the
objective with respect to all parameters. The gradient
of the first term of the objective with respect to ܅enc,
which is the most involved part, is:
(ܢ)௤∽ܢ౛౤ౙॱ܅∇ ቂℒ ൬ܟ,ݕ ୰ୣ୥୰ୃ ൰ቃ(ܢ)߶ ≈≈ ෍ℒெܯ1

௜ୀଵ ൬ܟ,ݕ ୰ୣ୥୰ୃ ܢ)߶)൰ ౛౤ౙ܅∇ log ݍ (ܢ)
(22)

while the derivatives of the other terms are
straightforward to compute. With this derivation, we
observe that it is then possible to jointly optimize all
parameters, leading to what it is commonly referred to
as an end-to-end approach. In the remainder of this
paper, we refer to this method as End-to-End SE,
where SE stands for Supervised Encoder.

4.2. Variance Reduction

REINFORCE is known to suffer from large
variance of the gradients. In order to reduce the
variance of this estimator, we employ control variates
[25]. In this approach, we add a set of random
variables to the estimator, such that these variables
have zero mean, so they do not alter the expectation
of the gradient. The aim is to construct such variables
so as to reduce the overall variance of the estimator:
(ܢ)௤∽ܢ౛౤ౙॱ܅∇ ቂℒ ൬ܟ,ݕ ୰ୣ୥୰ୃ ൰ቃ(ܢ)߶ ౛౤ౙ܅∇෍ܯ1 ≈ log ݍ (ܢ) ቀℒ ൬ܟ,ݕ	୰ୣ୥୰ୃ ൰(ܢ)߶ − ቁெ	ܞ

௜ୀଵ

where ܞ = ܯ1 − 1෍ℒ௜ஷ௝ ൬ܟ,ݕ	୰ୣ୥୰ୃ ൰(ܢ)߶

(23)

4.3. Lowering the Cost of REINFORCE

The estimation of the gradient of the End-to-End
SE with respect to ܅enc can be expensive when the
number of random features is large. This is due to the
fact that this requires multiple samples to be passed
from the encoder through the random projection and
the approximate kernel ridge regression model. In this
section we propose a strategy to reduce the complexity
of REINFORCE applied to our model, whereby we
average set of basis functions under the resampling of
the binary variables as follows:

෤ݕ = regrୃܟ ॱܢ [(ܢ)߶] + (24) 	ߝ

where ܢ ∼ Bernoulli൫݂(܅,ܠenc)൯

With this new modeling assumption, the training is
based on a modified optimization problem as follows:

 minܟregr܅encℒ ቀܡ, ॱܢ∼୆ୣ୰୬୭୳୪୪୧൫௙(܅,ܠenc)൯[߶(܈)]ܟregr	 ቁ	 (25)

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 6

୬ୡ‖ଶୣ܅‖୬ୡୣߣ+ + ୰ୣ୥୰ฮଶܟฮ	୰ୣ୥୰ߣ

Again, we can perform gradient-based

optimization. Focusing on the first term, which is the
nontrivial one to differentiate in the objective, we
obtain

౛౤ౙℒ܅∇ = ݀ℒ݀൫ॱ߶(ܢ)൯ ൯ (26)(ܢ)߶౛౤ౙॱ൫܅∇

where ∇܅encॱ൫߶(ܢ)൯ is calculated with the
REINFORCE estimator. In the remainder of the paper,
we will refer to this method as Isolated Supervised
Encoder (SE).

Regarding the comparison of the End-to-End SE
and Isolated SE, we can note the following
relationship between these models in the case of
regression problems. In the data term of the
optimization objective (25) we can put an expectation
over the whole matrix product of the random features
map and the regression weights instead of an
expectation over the random features only. Then we
can move the expectation in such a way that it is taken
over the whole term within the squared norm. We can
do this because within one gradient step iteration,
neither ܡ nor ܅enc are considered as random variables.
In this case the data term looks as follows:

 ฮܡ − ॱ[߶(܈)]ܟregrฮଶ = ฮܡ − ॱൣ߶(܈)ܟregr൧ฮଶ= ฮॱൣܡ − regr൧ฮଶܟ(܈)߶
(27)

In turn, End-to-End SE has a following data term as
part of its optimization objective (21):
 ॱ ቂฮܡ − regrฮଶቃ (28)ܟ(܈)߶

We can note that the squared loss is convex function.
Thus, we can apply Jensen's inequality to obtain the
following expression:
 ॱ ቂฮܡ − regrฮଶቃܟ(܈)߶ ൒ ฮॱൣܡ − =regr൧ฮଶܟ(܈)߶ ฮܡ − ॱൣ߶(܈)ܟregr൧ฮଶ

(29)

As a result, End-to-End SE optimizes upper bound of
the Isolated SE objective.

5. Results

5.1. Experiments on the UCI Datasets

We compared the performance of the proposed
approaches for a non-linear OPU (End-to-End SE and
Isolated SE) and a linear OPU that uses trigonometric
activations (End-to-End SE with RFF) against a
model based on unsupervised autoencoder proposed
in [11], an encoder trained with direct feedback
alignment (DFA) [35] and a Kernel Ridge Regression
(KRR) based on a Radial Based Function kernel

(RBF). Results are reported in Fig. 1 for several UCI
regression and classification problems [36]. We want
to emphasize that the main competitors of the
proposed methods are the ones based on unsupervised
autoencoder and encoder trained by DFA, because
kernel ridge regression is unable to work with large
datasets, and OPU-based regression just approximates
this method and is intended to replace it on large
datasets.

Fig. 1. Mean squared error (MSE) for regression (top)
and negative error on classification (bottom)

datasets comparison.

For KRR experiments we used Mean Squared
Error (MSE) as a loss function. To apply KRR to the
classification problems we replaced 0 and 1 in class
labels with -1, 1 and solved a classification problem as
a regression one using MSE loss as an optimization
objective. For all other models we used MSE loss for
the regression problems and Cross Entropy (CE) loss
for the classification problems. We used a logistic
activation function on the last layer for the
classification tasks.

For Isolated SE and End-to-End SE as an encoding
function ݂(܅,ܠenc) providing parameters for the
Bernoulli distribution, we chose a single linear layer
with a sigmoid activation.

(୬ୡୣ܅,ܠ)݂ = σ൫ୣ܅୬ୡୃ ൯ (30)ܠ	

All hyperparameters for the DFA encoder, End-to-

End SE and Isolated SE models (size of binary
embedding, learning rate, l2 regularization for the
encoder and the regression layer) were chosen with a
random search during cross-validation. Kernel
parameters of KRR were tuned by random search with
cross-validation. This poses computational challenges
for the large datasets (MiniBoo, MoCap), so we resort
to random Fourier feature approximations for these
cases.

For the models involving random features (both
Fourier and OPU-generated ones) we have tuned the

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 7

variance of the distribution that generates these
random features. Concretely, assuming that the
elements of the ܀ matrix generating the random
projections are distributed through the standard
Normal distribution, we can obtain a new random
matrix ܀ᇱ by multiplying ܀ by any variance, for
instance:

 ߶ᇱ(ܠ) = ଶ|ܠᇱ܀|ܿ = ܿ| ߙ܀ ଶ|ܠ = ܿ ଶߙ1 ଶ (31)|ܠ܀|

It is enough to multiply the output of the OPU by

an additional parameter ߛ, such that ߛଶ = ଵఈమ, and

optimize them with standard gradient descent. The
parameter ߛ is not equivalent to the lengthscale
parameter of the RBF kernel. In practice, it has an
effect of outputscale parameter of RBF kernel, as it
has simply a scaling effect on the kernel.

On the regression problems, both proposed
methods outperformed their main competitors. On the
classification problems, the DFA-based approach was
better only on one dataset, and on all other datasets the
proposed methods performed better or equally well.
Regarding the type of a kernel approximated by the
OPU, the experiments show that the linear OPU with
trigonometric activations performs as good as OPU
kernel for most of the datasets. It gives performance
gains only for some classification problems.
Considering the comparison between the proposed
methods, we see that End-to-End SE is more stable
and requires a significantly fewer number of samples
from the encoder, although Isolated SE showed
slightly better results on classification problems.

We considered including results obtained by
running these models on the real OPU (Fig. 2).
Unfortunately, the regression problems required such
a large number of epochs that we could not perform
the experiments in a reasonable amount of time.

Fig. 2. Error comparison on classification (bottom) datasets

for experiments on a real hardware.

We also tested the performance of our approach
with respect to the number of samples required to
employ REINFORCE. We found that End-to-End SE
can achieve good results with a small amount of
samples from the encoder, and the increase of amount
of samples does not seem to improve performance.

Finally, we evaluated the effect of variance
reduction on convergence speed and performance for

End-to-End SE model. In Fig. 3 we report results for
one classification and one regression problem. The
convergence curves indicate that the convergence
speed is benefits from the gradient variance reduction.

Fig. 3. Convergence of the training procedure on
classification problem: mocap dataset (bottom) and

regression problem: boston dataset (top).

5.2. Experiments on Image Data

In this section we evaluate an optical random
feature regression approach for image classification
tasks with several different binarization techniques
including the proposed methods.

The kernel generated by the OPU (15) is an
example of a polynomial kernel. Polynomial kernels,
unlike more popular RBF kernels, take into account
interaction between different feature dimensions. This
property is especially important for image data
because a relative alignment of pixels is crucial for
image classification. Of course, when we are working
with OPUs, kernel takes into account an alignment of
different dimensions of the binary embedding of an
image instead of the pixels. The relative alignment of
different dimensions of the binary embedding most
probably does not contain exactly the same
information as the mutual alignment of pixels. But
until the binary encoder does not have
disentanglement properties, the mutual interaction of
dimensions of the binary embedding have to contain
an additional information about the image. That is why
it is still important to use a kernel that is capable to
take into account these relationships.

For the experiments on image data, we used two
convolutional architectures of the binary encoder.
First architecture was inspired by the LeNet model
(Table 1).

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 8

Table 1. LeNet-based binary encoder architecture.

Layer Dimensions

Conv2D 5×5, 6 filters

MaxPooling 2×2

Conv2D 5×5, 16 filters

MaxPooling 2×2

Linear 576×512

Linear 512×݀binary

Binarization layer ݀binary

We performed experiments on three classical

image classification datasets (Table 2). We compared
End-to-End SE with a model that used autoencoder to
train the encoder (AE) and a model that used direct
feedback alignment (DFA) for the same purpose. The
results are shown in Table 3.

Tab. 2. Image datasets used in the experiments.

Dataset
Train/test

size
Classes Dimension

MNIST 60000/10000 10 1×28×28
F-MNIST 60000/10000 10 1×28×28

CIFAR10 50000/10000 10 3×32×32

Tab. 3. Classification error obtained by the model

with the LeNet encoder.

Dataset AE DFA
End-to-
End SE

MNIST 0.06±0.02 0.31±0.03 0.01±0.00
F-MNIST 0.20±0.01 0.47±0.01 0.09±0.00
CIFAR10 0.55±0.01 0.81±0.02 0.32±0.01

We used the same encoder architecture with the

same hyperparameters for each binarization method.
The size of the binary embedding was set to 400,
except of the unsupervised AE method. The reason
why we trained the unsupervised AE differently for
these experiments is because we were using complex
convolutional models and it was hard to adapt the
method proposed in [11]. This binarization approach
requires to use exactly the same values of weights
both for the encoder and for the decoder models. It
means that this method requires to build a decoder
model that is symmetrical to the encoder model.
Achieving this property for convolutional neural
networks is difficult because for the decoder it is
difficult to pick equivalent symmetric operations for
convolutional and pooling layers in the encoder.
Transposed convolutions and interpolation operations
that are used in decoders for image data, are suitable
for training of the autoencoder by end-to-end
backpropagation. They learn operations that are not
symmetric to convolutions and pooling layers of the

encoder. The method proposed in [11] assumes that
only the decoder is trained and the encoder copies
weights from it, that is impossible to do for
asymmetric operations in decoder and encoder. That
is why we trained the autoencoder model in a different
way. The encoder of the AE model used a ݊ܽݐℎ
activation function at the output. We used a parameter ߚ that controls steepness of the ݊ܽݐℎ function. We
slowly increased the value of this parameter from ߚ =1 to ߚ = 	100 in the process of training. At the end of
the training, the function ݊ܽݐℎ with a high value of the
parameter ߚ is almost equivalent to a shifted and
scaled Heaviside function.

 2ℎ(ݔ) − 1 ≈ ,(ݔߚ)ℎ݊ܽݐ ߚ	 → ∞ (32)

The results of the DFA approach signify that this

type of gradient updates is not suitable for
convolutional models. This observation is supported
by other researchers [37, 38].

Unsupervised AE was able to provide acceptable
accuracy for the MNIST dataset, but on CIFAR-10 its
performance dropped significantly. A possible
explanation is that simple convolutional AE is unable
to extract reasonable binary representation of complex
images. The AE model used in the experiments was
able to reconstruct simple images from MNIST
dataset. But the reconstruction quality of the same
model was much worse for the CIFAR-10 dataset.
When the dimensionality of the binary embedding
was equal to 400, the AE model was unable to
generate any sensible images. Thus, we had to
increase the size of the binary embedding to 1024.
But the reconstructed images were very blurry even
with this modification.

Because of the poor performance of the
unsupervised AE baseline, we decided to add another
baseline to the comparison. For this experiment we
used a RESNET-based convolutional network as the
encoder. LBAE approach proposed in [39]
implements an autoencoder with a binary latent space.
The training procedure of this method is based on
straight-through gradient estimator. The architecture
of the binary encoder is represented in Table 4 and
Table 5. This encoder used leaky ReLU as an
activation function. Batch-normalization was used
before each activation function.

Tab. 4. Architecture of the RESNET-based binary encoder.

Layer Dimensions

Conv2D 3×3, 64 filters
Conv2D 4×4, 64 filters
Residual Block 3×3, 64 filters
Conv2D 4×4, 64 filters
Residual Block 3×3, 64 filters
Conv2D 4×4, 128 filters
Linear 4096×݀binary
Binarization layer ݀binary

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 9

Tab. 5. Residual block structure. The number of filters
is specified in Tab. 4.

Layer Dimensions

Conv2d 3×3
Conv2d 3×3

Table 6 contains the results of the comparison
between the LBAE-based and End-to-End SE-based
encoders in terms of classification error.

Tab. 6. Classification error for models
with the RESNET encoder.

Dataset LBAE
End-to-End

SE
MNIST 0.15±0.01 0.01 ±0.00
F-MNIST 0.24±0.02 0.06±0.01
CIFAR-10 0.63±0.02 0.17±0.01

Both binarization approaches used the same
RESNET-based architecture of the encoder network.
We dropped the DFA approach from the comparison
because of its poor performance.

The results of this experiment showed interesting
property of the unsupervised approach for training of
the binary encoder. The LBAE-based encoder with a
deeper network performed worse than the simpler
autoencoder with ݊ܽݐℎ annealing in terms of
classification error, while the LBAE approach was
better in image reconstruction task. It seems, that the
binary latent projection of image data, that is suitable
for image reconstruction, is unsuitable for image
classification.

As with the UCI data we evaluated the effect of
variance reduction.

As we can see, variance reduction plays a crucial
role for image classification (Fig. 4). Without this
technique the proposed method is unable to train the
model for CIFAR-10. We assume, that it happens
because in deeper models variance has a
multiplicative effect when the number of layers
increases.

6. Conclusion

Recent advances in alternatives to transistor-based
hardware are bringing a new wave of sustainable
computing solutions for machine learning [40]. This
paper focuses on optical-based computing through
OPUs [5], which perform randomized projections of
binary input vectors at the speed of light with low
energy consumption. In this paper, we considered
these randomized computations to implement kernel-
based models for regression and classification tasks
through random feature approximations. In particular,
we proposed a novel strategy to binarize the inputs of
the given task so as to be able to employ OPUs

inspired by reinforcement learning. The proposed
strategy uses an encoder to map the inputs to a set of
binary variables and employs the REINFORCE
gradient estimator to estimate its parameters jointly
with the parameters of the kernel-based model. We
also explored ways to reduce the variance of the
gradient estimator and accelerate convergence, which
is key in a number of challenging modeling tasks such
as image classification. Through a series of
experiments, we showed that our proposal
outperforms competitors based on unsupervised
binarization and those that do not employ gradient
information.

Fig. 4. Training loss with and without variance reduction.

We are currently investigating our approach in the
context of other kernel-based models, such as
Gaussian processes [41], and their extension to deep
models, such as Deep Kernel Learning [42] and Deep
Gaussian processes [3].

References

[1]. R. J. Williams, Simple statistical gradient-following

algorithms for connectionist reinforcement learning,
Machine Learning, Vol. 8, 1992, p. 229–256.

[2]. A. Rahimi and B. Recht, Weighted Sums of Random
Kitchen Sinks: Replacing minimization with
randomization in learning, in Proceedings of the
Advances in Neural Information Processing Systems
21 (NIPS 2008), 2009.

[3]. K. Cutajar, E. V. Bonilla, P. Michiardi and
M. Filippone, Random feature expansions for deep
Gaussian processes, in Proceedings of the
International Conference on Machine Learning,
Vol. 70, August 2017, pp. 884–893.

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 10

[4]. J. Hensman, N. Fusi and N. D. Lawrence, Gaussian
Processes for Big Data, in Proceedings of the 29th
Conference on Uncertainty in Artificial Intelligence,
Arlington, 2013, pp. 282–290.

[5]. A. Saade, F. Caltagirone, I. Carron, L. Daudet,
A. Drémeau, S. Gigan and F. Krzakala, Random
projections through multiple optical scattering:
Approximating kernels at the speed of light, in
Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2016, pp. 6215–6219.

[6]. R. Ohana, J. Wacker, J. Dong, S. Marmin, F. Krzakala,
M. Filippone and L. Daudet, Kernel computations
from large-scale random features obtained by optical
processing units, in Proceedings of the IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP’ 2020), 2020,
pp. 9294-9298.

[7]. A. Cappelli, R. Ohana, J. Launay, L. Meunier, I. Poli
and F. Krzakala, Adversarial Robustness by Design
through Analog Computing and Synthetic Gradients,
arXiv preprint arXiv:2101.02115, 2021.

[8]. B. Kozyrskiy, I. Poli, R. Ohana, L. Daudet, I. Carron
and M. Filippone, Binarization for Optical Processing
Units via REINFORCE, in Proceedings of the 3rd
International Conference on Advances in Signal
Processing and Artificial Intelligence (ASPAI’ 2021),
Porto, Portugal, 17-19 November 2021, pp. 23-27.

[9]. H. Qin, R. Gong, X. Liu, X. Bai, J. Song and N. Sebe,
Binary neural networks: A survey, Pattern
Recognition, Vol. 105, 2020, p. 107281.

[10]. M. A. Carreira-Perpinán and R. Raziperchikolaei,
Hashing with binary autoencoders, in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 557-566.

[11]. J. Tissier, C. Gravier and A. Habrard, Near-lossless
binarization of word embeddings, in Proceedings of
the AAAI Conference on Artificial Intelligence, 2019,
pp. 7104–7111.

[12]. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhudinov, R. Zemel and Y. Bengio, Show,
attend and tell: Neural image caption generation with
visual attention, in Proceedings of the International
Conference on Machine Learning, 2015,
pp. 2048-2057.

[13]. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv
and Y. Bengio, Binarized neural networks: Training
deep neural networks with weights and activations
constrained to +1 or -1, arXiv preprint
arXiv:1602.02830, 2016.

[14]. J. W. T. Peters and M. Welling, Probabilistic binary
neural networks, arXiv preprint arXiv:1809.03368,
2018.

[15]. Y. Bengio, N. Léonard and A. Courville, Estimating
or propagating gradients through stochastic neurons
for conditional computation, arXiv preprint
arXiv:1308.3432, 2013.

[16]. E. Jang, S. Gu and B. Poole, Categorical
reparameterization with gumbel-softmax, arXiv
preprint arXiv:1611.01144, 2016.

[17]. A. L. Friesen and P. Domingos, Deep learning as a
mixed convex-combinatorial optimization problem,
arXiv preprint arXiv:1710.11573, 2017.

[18]. D.-H. Lee, S. Zhang, A. Fischer and Y. Bengio,
Difference target propagation, in ECML PKDD 2015:
Machine Learning and Knowledge Discovery in
Databases, Lecture Notes in Computer Science,
Vol. 2015, pp. 498–515.

[19]. M. Carreira-Perpinan and W. Wang, Distributed
optimization of deeply nested systems, in Proceedings
of the 17th International Conference on Artificial
Intelligence and Statistics, Reykjavik, 2014,
pp. 10-19.

[20]. A. Choromanska, B. Cowen, S. Kumaravel, R. Luss,
M. Rigotti, I. Rish, P. Diachille, V. Gurev,
B. Kingsbury, R. Tejwani and others, Beyond
backprop: Online alternating minimization with
auxiliary variables, in Proceedings of the International
Conference on Machine Learning, 2019.

[21]. R. Ranganath, S. Gerrish and D. Blei, Black box
variational inference, in Proceedings of the 17th
International Conference on Artificial Intelligence
and Statistics (AISTATS), Reykjavik, Iceland, 2014,
pp. 814-822.

[22]. G. Tucker, A. Mnih, C. J. Maddison, D. Lawson and
J. Sohl-Dickstein, Rebar: Low-variance, unbiased
gradient estimates for discrete latent variable models,
arXiv preprint arXiv:1703.07370, 2017.

[23]. W. Grathwohl, D. Choi, Y. Wu, G. Roeder and D.
Duvenaud, Backpropagation through the void:
Optimizing control variates for black-box gradient
estimation, arXiv preprint arXiv:1711.00123, 2017.

[24]. M. Yin and M. Zhou, ARM: Augment-REINFORCE-
merge gradient for stochastic binary networks, arXiv
preprint arXiv:1807.11143, 2018.

[25]. W. Kool, H. van Hoof and M. Welling, Buy 4
REINFORCE Samples, Get a Baseline for Free!, Deep
Reinforcement Learning Meets Structured Prediction
Workshop at the International Conference on
Learning Representations, 2019.

[26]. Z. Dong, A. Mnih and G. Tucker, DisARM: An
antithetic gradient estimator for binary latent
variables, arXiv preprint arXiv:2006.10680, 2020.

[27]. K. P. Murphy, Machine learning: a probabilistic
perspective, MIT Press, 2012.

[28]. M. Filippone and R. Engler, Enabling scalable
stochastic gradient-based inference for Gaussian
processes by employing the Unbiased LInear System
SolvEr (ULISSE), in Proceedings of the 32nd
International Conference on Machine Learning, Lille,
2015, pp. 1015-1024.

[29]. K. Cutajar, M. A. Osborne, J. P. Cunningham and M.
Filippone, Preconditioning Kernel Matrices, in
Proceedings of the 33rd International Conference on
International Conference on Machine Learning -
Volume 48, New York, NY, USA, 2016,
arXiv:1602.06693.

[30]. K. Wang, G. Pleiss, J. Gardner, S. Tyree,
K. Q. Weinberger and A. G. Wilson, Exact Gaussian
Processes on a Million Data Points, in Proceedings of
the 33rd Conference on Neural Information Processing
Systems (NeurIPS’ 2019), 2019.

[31]. C. Fowlkes, S. Belongie and J. Malik, Efficient
spatiotemporal grouping using the nystrom method, in
Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition (CVPR’ 2001), 2001.

[32]. Y. Cho and L. Saul, Kernel methods for deep learning,
Advances in Neural Information Processing Systems,
vol. 22, 2009.

[33]. J. Wacker, M. Kanagawa and M. Filippone, Improved
Random Features for Dot Product Kernels, arXiv
preprint arXiv:2201.08712, 2022.

[34]. I. Poli, J. Launay, K. Müller, G. Pariente, I. Carron, L.
Daudet, R. Ohana and D. Hesslow, Method and system
for machine learning using optical data. USA Patent
US 2021/0287079 A1, 16 September 2021.

Sensors & Transducers, Vol. 256, Issue 2, March 2022, pp. 1-11

 11

[35]. A. Nøkland, Direct feedback alignment provides
learning in deep neural networks, arXiv preprint
arXiv:1609.01596, 2016.

[36]. D. Dua and C. Graff, UCI Machine Learning
Repository, 2017.

[37]. S. Bartunov, A. Santoro, B. Richards, L. Marris,
G. E. Hinton and T. Lillicrap, Assessing the scalability
of biologically-motivated deep learning algorithms
and architectures, in Proceedings of the 32nd
International Conference on Neural Information
Processing Systems (NIPS'18), 2018, pp. 9390–9400.

[38]. J. Launay, I. Poli and F. Krzakala, Principled training
of neural networks with direct feedback alignment,
arXiv preprint arXiv:1906.04554, 2019.

[39]. J. Fajtl, V. Argyriou, D. Monekosso and
P. Remagnino, Latent Bernoulli Autoencoder, in

Proceedings of the 37th International Conference on
Machine Learning (PMLR’20), 2020, pp. 2964-2974..

[40]. K. Berggren, Q. Xia and K. Likharev, Roadmap on
emerging hardware and technology for machine
learning, Nanotechnology, Vol. 31, No. 1, 2020,
p. 012002.

[41]. C. E. Rasmussen, Gaussian processes in machine
learning, Summer School on Machine Learning, 2003.

[42]. A. G. Wilson, Z. Hu, R. R. Salakhutdinov and
E. P. Xing, Stochastic variational deep kernel learning,
in Proceedings of the 30th International Conference on
Neural Information Processing Systems (NIPS'16),
2016, pp. 2594–2602.

Published by International Frequency Sensor Association (IFSA) Publishing, S. L., 2022
(http://www.sensorsportal.com).

https://www.sensorsportal.com/HTML/IFSA_Publishing.htm

