
TYPE Brief Research Report

PUBLISHED 08 August 2023

DOI 10.3389/fdata.2023.1198097

OPEN ACCESS

EDITED BY

Feng Chen,

Dallas County, United States

REVIEWED BY

Patrick Wagnon,

UMR5001 Institut des Géosciences de

l’Environnement (IGE), France

Xujiang Zhao,

NEC Laboratories America Inc, United States

*CORRESPONDENCE

Hamish Steptoe

hamish.steptoe@meto�ce.gov.uk

RECEIVED 31 March 2023

ACCEPTED 21 July 2023

PUBLISHED 08 August 2023

CITATION

Steptoe H and Economou T (2023) Proliferation

of atmospheric datasets can hinder policy

making: a data blending technique o�ers a

solution. Front. Big Data 6:1198097.

doi: 10.3389/fdata.2023.1198097

COPYRIGHT

Crown Copyright © 2023 Met O�ce. Authors:

Steptoe and Economou. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Proliferation of atmospheric
datasets can hinder policy
making: a data blending
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The proliferation of atmospheric datasets is a key outcome from the continued

development and advancement of our collective scientific understanding. Yet

often datasets describing ostensibly identical processes or atmospheric variables

provide widely varying results. As an example, we analyze several datasets

representing rainfall over Nepal. We show that estimates of extreme rainfall are

highly variable depending on which dataset you choose to look at. This leads to

confusion and inaction from policy-focused decision makers. Scientifically, we

should use datasets that sample a range of creation methodologies and prioritize

the use of data science techniques that have the flexibility to incorporate these

multiple sources of data. We demonstrate the use of a statistically interpretable

data blending technique to help discern and communicate a consensus result,

rather than imposing a priori judgment on the choice of dataset, for the benefit of

policy decision making.
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1. Introduction

Data underpins all scientific analysis. But bridging the gap from science to policy

making typically requires a consistent scientific message; uncertainty or a lack of consensus

is frequently used to justify inaction (Mccright and Dunlap, 2000; Orlove et al., 2020).

In atmospheric science, the availability of data on which to conduct scientific analysis is

considerable and reflects the wide variety of data collection and processing techniques. To

demonstrate the variation of results that could be obtained from common, open access

datasets, we examine summer rainfall extremes in Nepal.

In Nepal, the South Asian summer monsoon season (June to September, JJAS),

contributes 70–80% of annual rainfall totals (DHM, 2022). Extreme precipitation events that

occur in the monsoon season have wide-ranging impacts including flooding and landslides,

which can be damaging and costly to a variety of infrastructure. Within the context of

hydropower, damage to infrastructure as a result of climate induced hazards, is most often

associated with extreme rainfall accumulation occurring in the monsoon season (Basnyat

and Watkiss, 2017). Therefore, planning new infrastructure projects, such as hydropower

plants or urban development, should incorporate an understanding of the likelihood of

extreme rainfall events.
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2. Methods

The key requirements for our data blending framework is

the ability to: (i) be spatially and temporally consistent, (ii)

account for data hierarchy, (iii) integrate unobserved uncertainty

that accounts for the variability between datasets and (iv)

flexibly characterize the variability in the data via a range of

possible probability distributions. We construct our data blending

framework based on Generalized Additive Models (GAMs) (Hastie

and Tibshirani, 1990; Wood, 2017). For this case study, we

demonstrate extreme value analysis of RX1day JJAS block-maxima

of extreme precipitation, modeled using the Generalized Extreme

Value (GEV) distribution:

Ys,t,m ∼ GEV
(

µs,t,m, σs,t,m, ξm
)

µs,t,m = β0 + F
(

yeart
)

+ G
(

lons, lats
)

+ H(lons, lats, u
(µ)
m )+ ǫi

log(σs,t,m) = γ0 + F(year(t))+ G(lons, lats)

+ H(lons, lats, u
(σ )
m )+ ǫi

logit (ξm) = δ0 + u(ξ )m + ǫi

where Ys,t,m represents RX1day precipitation maximum for grid

s, year t and dataset m. Following extreme value theory, Ys,t,m

is modeled using the GEV distribution with µs,t,m (location),

σs,t,m (scale) and ξm (shape) parameters, that vary in space, time

and dataset. The model is a HGAM (Pedersen et al., 2019) with

intercepts (β0, γ0, δ0) and selected covariates accounting for long-

term variability in timeF
(

year(t)
)

, variability in spaceG
(

lons, lats
)

and dataset-specific deviations,H
(

lons, lats, um
)

, that describe how

each individual dataset m deviates from the overall spatial field

G (·). Functions F(·), G(·) and H(·) are smooth functions of their

respective covariates (year, longitude, latitude and dataset-specific

random effects) that are estimated in the GAM fitting process.

Within the GAM framework, these functions are a sum of smooth

basis functions, so that for the µs,t,m parameter for example:

F
(

yeart
)

=

K
∑

k=1

βk bk(yeart)

G
(

lons, lats
)

=

M
∑

m=1

N
∑

n=1

βm,n cn(lats)dm(lons)

H
(

lons, lats, um
)

=

P
∑

p=1

Q
∑

q=1

R
∑

r=1

βp,q,r er (um)

yq
(

lats
)

xp
(

lons
)

where K, M and N are the number of knots that define the

complexity (or wiggliness) of the basis functions b (·) , c (·) , d (·),

x (·) and y (·) with corresponding model coefficients β that

are specific to each GEV parameter (but not denoted to avoid

notational clutter). Equivalent functions for model coefficients γ

and δ are also constructed. Note that e (·) is a special case whereby

the dataset specific random effect is treated as a smooth function

(see Wood, 2006, 2008; and Wood et al., 2013 for further details)

where e (·) is a ridge spline basis that emulates an independent

and identically distributed Gaussian random effect. This adds as a

constraint across data sets m for H(·). The R code used to fit this

model is available in the Supplementary material.

Data blending is achieved via the “global” terms [the intercepts

β0, γ0 and δ0, and functions F(·) and G(·)] which are assumed

common across m. Dataset-specific parameters u
(·)
m capture

variability in the data (other than that explained by the global

terms) due to discrepancies in each dataset. These parameters are

assumed to be random effects and are modeled via:

u(µ)
m ∼ Normal

(

µµ, σ
2
µ

)

,

u(σ )
m ∼ Normal

(

µσ , σ
2
σ

)

,

u(ξ )m ∼ Normal (0, σ 2
ξ ).

Where the parameters for these distributions are estimated

from the model fitted parameters from e (·). Assuming these to

be random quantities, explicitly captures variability from using

multiple data sources, thus allowing predictions for datasets other

than the ones used for estimation (e.g., radar measurements).

These terms are designed to simulate within the model, additional

unsampled dataset variability, as if we had incorporated more

than m datasets. In fact, this formulation allows the uncertainty

associated with different observed datasets to be integrated out for

each GEV parameter e.g.,

µs,t =

∫

u
(µ)
s,m

µs,t,m du(µ)m

σs,t =

∫

u
(σ )
s,m

σs,t,m du(σ )m

ξ =

∫

u
(ξ )
m

ξm du(ξ )m

which are the blended estimates of the GEV parameters. Finally,

predictions of the variable of interest are based on:

Ys,t ∼ GEV
(

µs,t , σs,t , ξ
)

.

Although we illustrate the method using a GEV distribution

fitted to rainfall extremes, the choice of predictive distribution,

or mixture of distributions (e.g. Economou et al., 2023), should

be tailored to the variable of interest. In some cases, suitable

distributions may still produce unrealistic values. In this example,

the GEV distribution may produce negative values for some GEV

parameters, which would be unrealistic for rainfall. Identifying

the most suitable predictive distribution may also be the primary

limitation of this method. In some cases, it may be intractable to

identify the mixture of distributions responsible for producing the

data given conditional differences of the observing system.

3. Results

There are many sources of precipitation data over Nepal

(e.g., Ceglar et al., 2017). For the purposes of demonstration,

we examine five open-access datasets and one seasonal forecast

system (summarized in Table 1), but in principle the method is

agnostic to the number of datasets used. The differences in their

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2023.1198097
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Steptoe and Economou 10.3389/fdata.2023.1198097

TABLE 1 Summary of observational datasets used in this study.

Name Data source URL access References

Asian Precipitation—Highly-Resolved

Observational Data Integration Toward

Evaluation (APHRODITE-2) v1901

Rain gauges http://aphrodite.st.hirosaki-u.ac.jp/index.html Yatagai et al., 2012

Multi-Source Weighted-Ensemble

Precipitation (MSWEP) v2.8

Merged rain gauge estimates

with ERA5 and satellite data

http://www.gloh2o.org/mswep/ Beck et al., 2019

High Asia Refined analysis (HAR) v2 Dynamically downscaled

reanalysis based on ERA5

https://www.klima.tu-berlin.de/index.php?show=daten_har2 Wang et al., 2021

Indian Monsoon Data Assimilation and

Analysis (IMDAA) v0.3

Reanalysis https://rds.ncmrwf.gov.in/ Rani et al., 2021

ERA5 Reanalysis https://doi.org/10.24381/cds.adbb2d47 Hersbach et al.,

2020

GloSea5 Ensemble seasonal prediction

system

Not openly accessible MacLachlan et al.,

2015

FIGURE 1

Comparison of 6 rainfall datasets over Nepal. Each dataset has been regridded to a 0.25◦x0.25◦ grid to facilitate a fair comparison of their grid cell

estimates of the 2000–2015 mean daily maximum accumulation (RX1day) during June–September (JJAS). The location of the Arun river basin (within

Nepal) is marked by the orange rectangle (after ICIMOD, 2010).

estimates of the mean monsoon-total precipitation and monsoon

maximum daily-total are presented in Figure 1. Each dataset has

been conservatively regridded from their original resolution to

a common 0.25◦x0.25◦ grid, and timebound to the commonly

shared period of 2000–2015. Even visually, the differences in

spatial variability and magnitude of rainfall accumulation are

apparent. From a policy makers’ perspective: should a new

hydropower plant in the Arun river basin (Koshi Pradesh, eastern

Nepal, see Figure 1) plan to accommodate a maximum 1-day

rainfall accumulation of <50–110mm (APHRODITE-2) or >350

mm (GloSea5)?

The selected source datasets are representative of different

methodological approaches to collecting and constructing gridded

data. We choose ERA5, a global reanalysis dataset from
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FIGURE 2

Extreme value estimates of 1-in-2 and 1-in-100 year JJAS RX1day events over Nepal. (A, B) Extreme value estimates based on blended data estimate

incorporating MSWEP, HAR, IMDAA and GloSea5 data, (C, D) ERA5 only and (E, F) APHDRODITE-2 only.

Hersbach et al. (2020), and APHRODITE-2, a gridded dataset

based on in-situ rain gauge data from Yatagai et al. (2012), as

baseline datasets against which we will compare our blending

method. We apply our data blending framework to: MSWEP, a

global combined dataset merging rain gauge estimates with ERA5

and satellite data from Beck et al. (2019); HAR v2 from Wang

et al. (2021), a regional data set focusing on high mountain Asia,

generated by dynamically downscaling ERA5 using the Weather

Research and Forecasting model; IMDAA v0.3, a reanalysis dataset

from Rani et al. (2021); and GloSea5 from MacLachlan et al.

(2015), a seasonal prediction systems based on the HadGEM3

model. These four datasets produce a blended RX1day extreme

value estimate. Figure 2 compares the blended result to the baseline

datasets for estimates of 1-in-2 and 1-in-100 year RX1day events.

RX1day estimates from a single dataset have the potential to

significantly misrepresent rainfall accumulation, compared to an

estimate derived from a greater number of data sources. This effect

is more pronounced for extreme return periods.

We also illustrate the interpretability of this method by

comparing the predictive distribution from the blended dataset,

with the four input datasets (Figure 3). This comparison provides

some insight into the data blending, whilst illustrating the

consensus (or lack of) in the input datasets. For the blended dataset,

the predictive distribution at each location illustrated in Figure 3

is the product of each of the four input data at that location

(A–D), but is also influenced by the surrounding values as well.

For locations (A) and (C), there is significant variation between

the four input datasets, such that the predictive distribution

mediates the disparity, supporting the middle-ground. For (B), 3

of 4 datasets support a heavier tailed distribution than MSWEP,

but the bulk of the predictive distribution is not as extreme as

IMDAA. For (C), HAR is a clear outlier, but with strong agreement

between MSWEP and IMDAA which has large influence on the

predictive distribution.

4. Discussion

Often, ostensibly similar atmospheric datasets show marked

differences in their estimate of reality. This is because their

reliability is defined by the spatial coverage of surface stations,

satellite algorithms, and the data assimilation models that

contribute to their creation. Rain gauges provide relatively accurate

and trusted measurements of precipitation at point locations,

but are unavailable over many sparsely populated and oceanic

areas. Satellite observations provide data with a greater degree of

homogeneous spatial coverage, but contain non-negligible random

errors and biases owing to the indirect nature of the relationship

between the measurement from satellite-mounted instrumentation

and precipitation at the Earth’s surface, inadequate temporal

sampling given the satellite’s motion in space, and deficiencies

in the data processing algorithms needed to amalgamate their
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FIGURE 3

Comparison of the blended model predictive distribution (black, shaded) with input datasets (colored lines) at four grid boxes (A–D). Each panel

compares the kernel density estimate (KDE) of the individual datasets, with the blended output. KDE curves are truncated at their data limits.

Although (A–D) illustrate a single grid box, the predictive distribution is also influenced by surrounding grid boxes.

observations. Further datasets can be created by incorporating

observations into numerical models that use mathematically

defined physical processes to generate a synthesized estimate of

precipitation across a uniform grid, with spatial homogeneity and

temporal continuity.

Where a heuristic measure to identify a single best data source

is impossible, and differences in data sources are large, it is difficult

to a priori justify the use of a single data source in the decision

making process. Approaches such as Bayesian melding (Poole

and Raftery, 2000) have been proposed to this end, but with

relatively little uptake, possibly due to the underlying complexity

of the Bayesian framework, the lack of extension to non-Gaussian

variables (such as precipitation) and the challenges associated with

scaling this approach to large spatio-temporal datasets. Instead, we

propose an approach based on Hierarchical Generalized Additive

Models (HGAMs) (Hastie and Tibshirani, 1990; Wood, 2017;

Pedersen et al., 2019). This flexible data modeling framework

retains the ability to incorporate multiple sources of information

and aggregate them into a single summary that is more informative

than its constituent parts, but with easier model creation, good

computational scalability and an ability to apply the method to

non-Gaussian fields. The results of applying a HGAM to the data

in Figure 1 are shown in Figure 2.

It is important that a data blending method retains an ability

to discern how each separate dataset influences the blended output,

such as in Figure 3 (i.e. it is interpretable), otherwise its utility for

transparent decision making is no better than an arbitrary a priori

judgment of an individual dataset. Uncertainty estimation is also a

key part of interpretability: to understand where there is agreement

between data sources and appreciate the overall uncertainty of

the resulting blended outcome. Crucially, the framework provided

by GAMs allows the posterior predictive distribution to include

all associated uncertainty (Wood, 2017). Probabilistic approaches

have added value for decision making because they can be used

in conjunction with decision theory to make rigorously repeatable

decisions and quantifying the value (or utility) of the blended data.

Decision making requires quantification of risk and an

appreciation of uncertainty. Whilst data only represents part of

the decision-making landscape, data science for decision-making

should focus onmethods that provide interpretable and transparent

frameworks for reproducible data blending. The proliferation of

atmospheric datasets shouldn’t be part of the decision makers’

problem but, via data science, provide an approachable foundation

on which to make informed decisions.
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