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SOME NEW INTEGRAL INEQUALITIES FOR
NEGATIVE SUMMATION PARAMETERS

Abdelkader Senouci, Bouharket Benaissa and Mohammed Sofrani

Abstract. In this paper, we prove some Hardy type and Hardy-Steklov type integral inequalities

for two negative summation parameters and we deduce some well-known results with sharp constants.

1 Introduction

G.H. Hardy stated in 1920 (see [5]) and proved in 1925 (see [6]) the following

inequality ) p
[T (F2) @< (G25) [T L)

xr
where p > 1, f is a non-negative Lebesgue measurable function and F'(x) = / f(t)dt.

0
In 1928, Hardy presented a generalized form of inequality (1.1) as follows
D p o]
( 1> / 2P fP(x)dx for r>1
% FP(g) r—= 0
dr < (1.2)
0

x” n P P oo
< > / P fP(z)dr for r <1,
0

1—r

where p > 1, f is a non-negative Lebesgue measurable function and

/xf(t)dt if >,
Fa)={
/ f@dt if r<1,

for all z > 0.
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By putting » = p — « in (1.2), one can get the following inequalities

/Ooo <i/0xf(t)dt>px7dx§< i > / ()2 e, (1.3)

ifty<p—1and

/OOO <31: /;O f(t)dt)p;ﬂdac < <,Y_iﬂ>p/ooo JP(x)a"de, (1.4)

ity>p—1.

The period of more than ten years of research until Hardy finally discovered his
inequalities (1.1) and (1.2) was described in [9]. The Hardy inequalities also play an
important role in various fields of mathematics, especially in functional and spectral
analysis, where one investigates properties of the Hardy operator, like boundedness
and compactness (see for example [4]) and also behavior in more general function
spaces.

Some weighted integral inequalities for 1 < p < ¢ < oo were established in [1].
Namely, the following statements ( Theorems 1, 4, 2 ) were proved there.

Theorem 1. Let 0 < a <b< 400, 1 <p < qg< oo, f be a non-negative Lebesque
measurable function on (a,b) and v be a positive Lebesgue measurable function on

(a,b) such that v,vf € Li(a,b):

1. If A > then

p+s 17

: :

/ab ‘;)s(g)Hfg(z)daz < (S)\_pl>p (/abv(sn)dx> ~a </ab Vvsgﬂi)x) fq(;g)dw> :

(1.5)

where s > 1, V(z) = [ v(t)dt, Hy1(x) V%x) [ () f(t)de.
2. If y<p—1, then

[ e < (2 ) ([ o) ([

where Hv,Q(l') = [F %(ft)(t)dt . (1.6)

3.
it (2 () ([ gt )|
(1.7)
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where s < 1 and ﬁvyl(m) = % ffv(t)f(t)dt .

Next we note several Hardy-type integral inequalities for the case of one negative
parameter (see [3], [10]). The following theorem was established in [10].

Theorem 2. Let f : [a,b] — R* and p is positive. Then the following is true

/ab <xia/axf<t)dt>_pdx < (pzl)p/abf‘p(t)dt- (1.8)

P
Moreover the constant (%) is the best possible.

Bicheng Yang proved the following Hardy type integral inequalities for one
negative parameter (see [3] for more details).

Theorem 3. Let p <0, r € R, r #1, f(t) >0 and [;°~¢7"(tf(t))Pdt < co.

1. Ifr <1, Fy(x) = fox f(t)dt, then the inequality

/Ooo:c—rFlp(a:)dx < ( P >p/°°t_r(tf(t))pdt (1.9)

r—1 0

holds, where the constant (L>p 1s the best possible.

r—1

2. Ifr>1, Fy(x) = [° f(t)dt, then the inequality

/oooxTFg(x)dgc < <1pr>p/oootr(tf(t))pdt (1.10)

P
holds, where the constant (%) is the best possible.

For both p,q < 0, some weighted integral inequalities were established in [2] for
weight functions satisfying Muckenhoupt-type conditions.
In this paper, we give a version of inequalities (1.5), (1.6) and (1.7) to the case of
both negative parameters p and q. We also prove some weighted integral inequalities
for the Hardy-Steklov operator with both negative parameters p and q. Moreover,
Theorem 2 and Theorem 3 are generalized.

2 Preliminaries

In this paper, all functions are supposed to be non-negative and measurable and
if some negative power of the function appears, then we assume that the function is
strictly positive a.e.

The following lemma is well known (for details one can consult [7]).
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Lemma 4. If p <0, % + }% 1, feLy,(Q), g€ Ly(), where Q@ C R™ is Lebesgue

measurable set, f(t), g(t) > 0, then

fromon = (Lroa) (Lroa)f . e

where the equality holds if and only if there exists constants ¢ and d, such they are
not all zero, that

=

cf?(t) = dg¥ (¢),

almost everywhere in €).

Lemma 5. Let 0 C R™ be a Lebesque measurable set ¢ < p < 0 and f, v be
non-negative Lebesgue measurable functions on § such that [, v(z)(f(x))?dz < oo,
v(x) #0 and [,v(z)de < oo. Then

p

[y < ([ (f(af))qv(w)daf)§ (f v(w)dm)l "

Proof. By Holder’s inequality with exponent > 1 and its conjugate ( ) = T We
get

/Q (f@)Po(@)dr = /Q (@) (0(x))
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Lemma 6. Let —oco < q <p < 0 and f, g, v be non-negative measurable functions
n (a,b) such that V(z) = [§ v(t)dt. If s € R, s # 1, then

/ab ‘;)Ez)gp(f(a:))dx < (/abv(w)dx> ‘ (/ab Véﬁl)g%f(m))dw) % . (2.2)

Proof. By applying Lemma 5, we obtain inequality (2.2). O

1—

3 Main results

All the integrals introduced in this work are assumed to be convergent and v is
a positive weight function. Let 0 < a < b < 400, V(x fo t)dt and we assume
that 0 x co = 0.

kst sk ok sk ok sk s ok sk sk ok s ok sk sk ok s sk sk ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk sk s sk sk sk ok sk ok sk sk ok sk sk sk s ok sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 18 (2023), 123 — 133
https://www.utgjiu.ro/math/sma


https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma

Some new integral inequalities for negative summation parameters 127

Theorem 7. Let —co < ¢ <p<0,0<a<b<+o00, f be a non-negative Lebesque
measurable function on (a,b) and v be a positive Lebesgue measurable function on

(a,b). If0 < s <1, then
[ i (i) (o) ([ )
(3.1)

1 X
e / u(t)f(t)dt.

Proof. Note that for almost all z € (a,b)

1—

where Hy 1(x) =

(Hyp)'(x) =

Since the functions V1~%(z) and HY | (x) are absolutely continuous on [a, b], then by
applying the integration by parts in the left hand side of (3.1), we obtain

b (z) B @ 1" s e
/a Vs(x> Hg’l(x)dx N [(1 — S)VS_I(IB)]& N s — 1/@ Vs(x)H'f,l(x)dx
b v\T X
o [ @,

As s <1 and Hy1(b) > 0, we get

p+s—1 bv(az) » P bv(a;)f(:z) —
tes /avS(m)HM(x)dac > 5—1/a A HE @)

Consequently by using Holder’s inequality (2.1) for p < 0, we have

[ st ) ([ ) ([ o)

Thus 1 )
([ 2 mymin)’ = (o) ([ o)
/ab Jﬁfgz)Hg,l(x)dx < <p+i_1>p/ab de.

By applying inequality (2.2) to the right hand side of last inequality, we obtain
(3.1). O

then
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Remark 8. By putting s = p — v in (2.2), we get
1-2

[P s < [oas) ([ D) oo

Theorem 9. Let —o0 < ¢ < p < 0 and f,v be non-negative Lebesgue measurable
functions on (0, 00).
If v > p—1, then

[ e < () ([ )

where Hyo(x) = [ v(\t/)({tgt) dt.

P
q

([ s ) o
a VI (2)

1—

Proof. We note that

ooy @) f(x)
(HU,Q) (J") - V(QJ)
We integrate by parts in the left hand side of (3.3), thus
bu(@)HY 5(x) ", " @)@ (@)
/a Ve T [(1 —p+)VPIY )] IR / v
HEy (1) LG
A=—p+yVP=i(b) p-v-1 VP (z)

Assumptions imply that pfzil > 0 and H,2(b) > 0, then

dz.

/b v(w)Hf,z(x)d LD /b v(@)f(x)Hyy' (2)

T CZ i) T v
By applying Holder’s inequality (2.1), we have

L

therefore , »
v(x)H:
[ ), ),
a Vp—’y(x) p—= 7_1 a Vp ’Y

Finally by using inequality (3.2), we obtain (3.3). O

Let ¢ =p, v(x) =1, a=01n (3.1), then we get the following corollary.
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Corollary 10. Let p < 0, f non-negative Lebesque measurable function on (0,00),

s <1, then
b P b
/a PR (x)de < <p+§—1) (/a x_sfp(:n)dx> ) (3.4)

where Fy(z) = [y f(t)dt.

Remark 11. Let s=r—p,a=0and b = 0o in (3.4). Since s < 1, r —p < 1, then
r <p+1<1and we get inequality (1.9) with sharp constant <T%> )

Remark 12. If in inequality (1.9) of Theorem 1.3, we put r = p, then we deduce
that under assumptions a = 0,b = oo, inequality (1.8) is a particular case of (1.9).

Theorem 13. Let —0o < ¢ < p < 0 and f, v be non-negative Lebesque measurable
functions on (0,00).
If s > 1 —p, then

5(8) 17 (y)dy < <1_§_p)p(/abv(y)dy)

where H,(z) = ﬁ fxbv(t)f(t)dt.

Proof. Note that for almost all = € (a,b)

QI3

1—

( / (9) f"(y)dy> (3.5)
a Vr(y)

(10 @) = 557 [P0 @) + () o 2]

By applying the integration by parts in the left hand side of (3.5), we obtain

o) -, B HY ) ()
[ vt - [<1s>vs1<x>

b o) f(x) ~,
+ 168/(1 (Vz{;))Hfll(x)dx

b b
p v(z) 7P
) + s /a Vo) v (z)dx

The rest is similar to the proof of Theorem 13. 0

Let p=gq, v(z) =1, b = 00 in (3.5), then we obtain the following inequality.

/abmsng(w)dx < <1_Z_p>10 (/abxsfp(x)dx>’ (3.6)

where Fy(z) = [ f(t)dt.
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Remark 14. Let s =7 —p, a =0 and b = 0o in (3.6), thus we get inequality (1.10)
with sharp constant (£).

Theorem 15. Let —0o < ¢ < p <0 and f, v be non-negative Lebesque measurable
functions on (0,00). If 0 < s < 1, then

/ " @) pen <
0 Vi(x) a
1-2

(pr]zZl)p (/ob Vvséim) ]K(Q;)‘qu)z (/Ob”(x)d$> y (3.7)

dz
TH@) = 555 | v

where

and
Yv(vz) f(dzx) — Ov(0x) f(Ox)

K(x) = (@) ;9 >0,0>0 and 9> 6.
Proof. We note that
(Tf)Y(z) = —Vv((xa:)) (TF)(@)+ ﬁv(ﬂx)f(ﬁm{)/(;)@v(@m)f(@x)
@) )
- A TNE@ K. (39

(
Integrating by parts in the left-hand side of (3.7), we get

b o(a) @@ 1. e [
[ vy = el v als [ v

0
b v\x X

since s < 1 and (T'f(b) > 0, we obtain

prs—1 [ o) g p [PU@KE)
S [ @e s L | (T @),

then

o) s P PUDKE)
| g @y = 2 [HOE @ s,

By using Lemma 2.1, for K (x), (T'f)(x) > 0, we have

@)K ()
| e s
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) </0b de) % (/ob 558) (T )= (x)d:z) ’

- ([ i) ([ Sy

Consequently

[ sy > 2 ([ W) ([ 2y’

thus

(f ) (Tf)”(x)dw>p <( ) (Tf)”(:v)dw>p_

Therefore
b u(x) » p Pt (@)K (x) P .
/0 Vs(x)(Tf) (2)de < (p—i—s— 1) /0 Vs(x) d.

Finally by applying (2.2) to the right hand side of last inequality, we obtain (3.7). [

Remark 16. If in inequality (3.1) a = 0, we obtain the following integral inequality

$£f£)H5,l($)dx < (p+f;_1>p ( /Obv(as)dx> Z( /Ob V”{f;l) fq(a?)da:>s(3.9)

Now if in inequality (3.7) we put @ = 0, ¥ = 1, we get (3.9), then we can deduce,
that Theorem 15 is a generalization of Theorem 7 with a = 0.

1—

If we set v(z) = 1, @ = 1 and ¥ = 1 in Theorem 15, we obtain the following
corollary.

Corollary 17. Let —oo < ¢ < p <0 and f, v be non-negative Lebesque measurable
functions on (0,00). If s < 1, then

[egmren < (i) </0b V(TL) |K1($)\qu)g

« (/Obu(x)dx>l_5, (3.10)
Kie) = f(@) ~ 5 (52,

(Tof)(x) = * / o(t) ().

T
3%

where
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