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Purpose: Place-based measures of structural racism have been associated with

breast cancer mortality, which may be driven, in part, by epigenetic

perturbations. We examined the association between contemporary redlining,

a measure of structural racism at the neighborhood level, and DNA methylation

in breast tumor tissue.

Methods: We identified 80 Black and White women diagnosed and treated for a

first-primary breast cancer at Emory University Hospitals (2008–2017).

Contemporary redlining was derived for census tracts using the Home Mortgage

Disclosure Act database. Linear regression models were used to calculate the

association between contemporary redlining and methylation in breast tumor

tissue. We also examined epigenetic age acceleration for two different metrics,

regressing b values for each cytosine-phosphate-guanine dinucleotide (CpG) site

on redlining while adjusting for covariates. We employed multivariable Cox-

proportional hazards models and 95% confidence intervals (CI) to estimate the

association between aberrant methylation and mortality.
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Results: Contemporary redlining was associated with 5 CpG sites after

adjustment for multiple comparisons (FDR<0.10). All genes were implicated in

breast carcinogenesis, including genes related to inflammation, immune

function and stress response (ANGPT1, PRG4 and PRG4). Further exploration

of the top 25 CpG sites, identified interaction of 2 sites (MRPS28 and

cg11092048) by ER status and 1 site (GDP1) was associated with all-cause

mortality. Contemporary redlining was associated with epigenetic age

acceleration by the Hannum metric (b=5.35; CI 95%=0.30,10.4) and showed

positive but non-significant correlation with the other clock.

Conclusion: We identified novel associations between neighborhood

contemporary redlining and the breast tumor DNA methylome, suggesting that

racist policies leading to inequitable social and environmental exposures, may

impact the breast tumor epigenome. Additional research on the potential

implications for prognosis is needed.
KEYWORDS

structural racism, breast cancer, health disparities, DNA methylation, epigenome,
epigenetic age acceleration
Introduction

Breast cancer (BC) is one of the leading causes of cancer-related

death among women in the United States (1). Despite having a

similar incidence rate of BC to White women, Black women have

higher rates of early-onset breast cancer (<40 years), greater

incidence of more aggressive BC subtypes, and disproportionately

die from their disease (2). Racial disparities in BC mortality are well

documented, but the factors contributing to this disparity are not

completely understood (3). Possible mechanisms for these

differences have been investigated by examining racial differences

in tumor biology (4). Black women are more likely to be diagnosed

with the triple-negative breast cancer (TNBC) subtype, which,

compared with other subtypes of BC, is usually detected at a later

stage, has an aggressive pathology, and shorter overall patient

survival. In fact, race disparities in BC mortality persist across BC

subtypes (5). New approaches are necessary to further investigate

racial disparities considering factors in addition to tumor biology.

Racial health inequities are often rooted in policies and

structures that disproportionately affect minorities, especially

Black Americans. Structural racism is the varied ways in which

societies institute racial discrimination through systems such as

housing, education, employment, earnings, benefits, credit,

healthcare, and criminal justice (6). One example of a structural

practice is redlining, defined as the systematic denial of mortgage

loans based on location, most often occurs in locations defined by a

particular race or socioeconomic group (7). Redlining has

precipitated the disinvestment of certain geographic areas,

influencing a multitude of determinants of health, including

housing, education, physical work environment, healthcare,

nutrition, greenspace, physical activity, and financial stress (8–

12). Redlining and other discriminatory housing practices
02
resulting in segregation have been operationalized as a measure of

structural racism (13–16). Redlining, as an exposure, may capture a

combination of adverse social and environmental factors (structural

racism) beyond just measuring neighborhood characteristics or

socioeconomic status (SES) alone. It may also serve as a proxy for

exposure to chronic stressors or economic disinvestment. Recent

work has identified both historic and contemporary measures of

redlining and racial bias in mortgage lending as measures of

structural financial inequities linked with poorer BC survival (7, 17).

There is little information concerning how structural

determinants of health impact BC outcomes. Recent studies have

linked neighborhood characteristics such as neighborhood

deprivation (18), job density and college graduation rates (19)

with differential cytosine-phosphate-guanine (CpG) methylation

in breast tumor tissue. Many of these CpGs are within genes that

have been implicated in carcinogenesis and provide potential

insight into the biological impact of neighborhood stressors on

the breast tumor epigenome. Additionally, given that cancer is a

disease characterized by the process of aging, measures of epigenetic

age acceleration may reflect adverse neighborhood exposures and

BC prognosis, in addition to chronologic age. Thus, examining

epigenetic perturbations can help elucidate the relationship between

exposure to structural-socio factors and biological alterations within

the tumor which may contribute to outcome disparities (20).

Elucidating the biological mechanisms underlying the

associations between systemically racist policies and BC prognosis

is necessary to conceive appropriately targeted multi-level

interventions. To date, no study has used a genome-wide

approach to assess redlining-associated methylation signatures

and outcomes in tumor tissue of women diagnosed with BC. The

goal of this pilot investigation was to conduct an epigenome-wide

association study (EWAS) of breast tumor tissue to identify novel
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differentially methylated CpG sites associated with contemporary

redlining. We additionally assessed the association between

contemporary redlining and epigenetic age acceleration using

different epigenetic clocks.
Methods

Study population

Our study received IRB approval from Emory University

(IRB00018512). All specimens were procured from Winship’s

Breast Cancer Satellite Bank, which receives written informed

consent from patients for tissue collection. Study protocol follows

the methodology described in Do et al. (21). Briefly, fresh tumor

specimens and clinical data were collected from patients

undergoing surgery at three metro-Atlanta area hospitals (Emory

University Hospital, Emory University Hospital Midtown, and

Grady Memorial Hospital). We included 17 non-Hispanic White

(NHW) and 63 non-Hispanic Black (NHB) women diagnosed with

BC between 2008 and 2017 in this analysis. Eligibility for inclusion

were: women who were at least 21 years of age; self-reported NHW

or NHB race/ethnicity; diagnosed with a first-primary stage I, II, or

III BC, and underwent surgery at one of the above institutions.

Additionally, women were included if they resided in the metro-

Atlanta area at the time of diagnosis, which includes Cobb, Clayton,

DeKalb, Fulton, and Gwinnett counties, and if their reported

address was within a census tract that could be geocoded.

Women were excluded from this study if they were previously

diagnosed with BC or did not have a fresh tissue specimen available.
Exposure assessment

We define redlining as a systematic denial of mortgage based on

location. Contemporary redlining was calculated based on a

previously published methodologic approach by Beyer et al. (17).

Briefly, data were abstracted from the national database established

as part of the Housing Mortgage Disclosure Act (HMDA) for the

years 2010–2014 (22, 23). The database collects information on

mortgage lending practices, including location for which a

mortgage was being requested (census tract); loan approval/

denial; loan type (purchase/refinance) and amount; owner-

occupancy; and the applicant’s race/ethnicity, sex, and income.

The redlining index was calculated as described in Collin et al.

2020 and Beyer et al. 2021 (24, 25). Briefly, the index was estimated

across a set of estimation points using adaptive spatial filters, as the

odds of denial of a mortgage application for a residence inside the

spatial filter as compared to properties in the rest of the

metropolitan statistical area. The index centers around a value of

one, where >1 means that applicants applying for mortgages for

properties in that neighborhood are more likely to be denied

mortgage applications than applicants applying for mortgages for

properties in other areas and a value <1 means that the applicants

for properties in that neighborhood are less likely to be denied. The

index is averaged at the census tract level. Using the patient’s
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address at diagnosis, we assigned the area level measure for

redlining to the patients residing in those census tracts. The

redlining score was examined by quartiles (Q1 ≤1, Q2 < 2.5, Q3<

4, Q4<7.7) for the genome wide DNA methylation analyses and

dichotomized at <1 for the epigenetic age analyses.
Outcome assessment

Updated vital status (through 2/15/2018) was obtained by

linking all women to the Georgia Cancer Registry, and all-cause

and cause-specific death was abstracted. As described in Do et al.,

we considered all-cause mortality as an outcome of interest (21).

Given the short follow-up period (median = 3 years) we expect any

mortality event would be, in part, driven by the underlying BC (26).

We additionally conducted a sensitivity analysis to examine the

association with breast cancer-specific mortality.
Covariates of interest

Patient characteristics and covariate data were provided from

the clinical records of women who underwent surgery. Covariates

included age at diagnosis, race/ethnicity, body mass index (BMI, kg/

m2), insurance status, educational attainment, family history of BC,

and self-reported smoking status. Tumor characteristics were also

obtained from clinical records including estrogen receptor (ER)

status, tumor stage; receipt of chemo-, radiation, or endocrine

therapy; and comorbidities at diagnosis.
DNA methylation data

We acquired fresh breast tumor specimens from the Glenn

Family Breast Satellite Tissue Bank, Winship Cancer Institute,

Emory University, Atlanta, GA, USA. All specimens were

reviewed visually by a breast pathologist (UK) to enrich for

tumor cells. We then utilized the Emory Integrated Genomics

Core for DNA extraction which extracts genomic DNA from

tissue using the QIAamp DNA Mini Kit (Qiagen; 51306). DNA

methylation was measured in 80 breast tumor tissue samples using

the Illumina Infinium MethylationEPIC 850K Beadchip (Illumina,

San Diego, CA, USA). Methylation assays were performed in

accordance with the Infinium HD Methylation Assay protocol.

The DNA methylation values represent the portion of methylated

sites to the sum of total methylated (M) and unmethylated (U) sites

at given CpG site (27). The generated b-value is calculated as b =

[M/(M+U)]. b-values range from 0 to 1, where 1 represents 100% of

the probes being methylated at a CpG site.

Quality control (QC) was conducted on the data using the

CpGassoc package in R (28). Data points with low signal or

detection p-values >0.001 were set to missing, and CpG sites with

missing values (2,869) in >10% of the samples were removed from

the dataset. As suggested by Zhou et al. stricter probe filtering was

utilized by filtering out CpG sites which include; (1) probes with low

quality or inconsistent mapping, (2) probes with non-unique sub-
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sequences, (3) probes with non-unique hybridization (4) probes

with single nucleotide polymorphisms (SNP) at a minor allele

frequency >1%, and (5) probes with a SNP that causes a color

channel switch (29). After QC, 758,942 CpG sites remained for

evaluation with our redlining metrics.
Calculation of epigenetic age

Epigenetic age was based on two different clocks—Horvath et al.

(30), and Hannum et al. (31), and was calculated using the

methylclock R package (32). Briefly, the package extracts

methylation levels from CpGs used in each clock. The coefficients

from the original papers, which were obtained via prediction

models, were used to calculate DNA methylation age and

epigenetic age acceleration for our study population. For each

clock, we obtained: 1) DNA methylation predicted age (DNAm

age) in years, and 2) age acceleration (ageAcc), the difference

between DNAm and chronological age in years. Positive values

for epigenetic age acceleration indicated that epigenetic age is

higher than chronological age.
Statistical analysis

Patient demographic and clinicopathologic characteristics were

reported overall and by race/ethnicity as means and corresponding

standard deviations.

Linear regression models were used to assess whether individual

mean b-values differed by contemporary redlining, adjusting for

model-specific covariates based on a priori knowledge of the

literature and causal diagrams (33, 34). Using the CpGassoc R

package, we regressed b-values for each CpG site on redlining,

adjusting for age, race/ethnicity, smoking status, and chip position

(28). Models also included a fixed effect for each BeadChip to

account for potential chip-to-chip differences in measurement and

to adjust for potential batch effects. For epigenome-wide analyses,

statistical significance was defined as a false discovery rate (FDR) of

q-value < 0.10. We similarly used linear regression to estimate the

association between redlining and epigenetic age acceleration in

unadjusted models and models adjusted for age and race/ethnicity.

To assess whether the association between redlining and tumor

methylation was modified by ER status, the CpG sites reaching FDR

significance in the primary EWAS were tested for interaction. For

each CpG site, b-values were regressed on redlining with an

interaction between the redlining and ER status. All interaction

analyses were adjusted for age and chip position, with significance

defined as FDR < 0.10.

We used multivariable-adjusted Cox proportional-hazards

models to explore associations between the top redlining-

associated CpG sites and all-cause mortality. We computed

hazard ratios (HRs) and corresponding 95% confidence intervals

(CIs) adjusting for (1) age, (2) age and race/ethnicity, and (3) age,

race/ethnicity, cancer stage, and ER status. Additionally, we

evaluated the association between age acceleration and all-cause
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mortality. We calculated HRs and 95% CIs for crude, age, and race/

ethnicity-adjusted models. All analyses were carried out using R

v4.1.0 and R v4.3.0 (Vienna, Austria).
Results

Demographic data for our study population are provided in

Table 1. NHB women were, on average, older (mean age = 57.6 and

51.3 years, respectively) compared with NHW women and had a

higher BMI (mean BMI = 38.7 vs 30.9 kg/m2, respectively). NHB

women, compared with NHW women, more often resided in

redlined neighborhoods (defined as ≥1, 88.9% vs. 29.4%,

respectively) and lived neighborhoods with a greater redline index

(mean index= 2.59 and 0.65, respectively) (Supplemental Figure 1).

No difference between NHB and NHW women were observed by

ER status, family history of BC, and all-cause mortality.

For the epigenome wide analysis assessing the association of

DNA methylation with contemporary redlining, we found 5 CpG

sites that passed our threshold of FDR significance after adjustment

for multiple comparisons (FDR<0.10), with two of the CpG sites

having an FDR<0.05 (Table 2). All 5 CpGs were hypermethylated

(Figure 1). Contemporary redlining was also positively correlated

with increased age acceleration using both clocks, though only the

Hannummeasure reached conventional significance levels (P<0.05)

(Table 3). Of the first-generation clocks, the increase in age

acceleration associated with redlining was higher with Hannum

(b = 5.35; 95% CI=0.30,10.4) compared to Horvath (b = 4.04; 95%

CI=-1.72,9.82) in age-adjusted models. After adjusting for race, we

saw a more pronounced association with Hannum (b = 6.61; 95%

CI=0.5,12.7) while the association for Horvath was attenuated upon

adjustment for race (b = 2.81; 95% CI= -4.15,9.78).

Due to the exploratory nature of the analysis, we performed

interaction analyses to examine the differences in redlining and DNA

methylation in the top 25associated CpG sites by ER status (Table 2).

There were two CpG sites, cg06649682 (MRPS28) and cg11092048

(non-coding RNA), where the relationship between redlining and

DNA methylation differed by ER status after adjustment for multiple

comparisons (FDR <0.1). While we observed a positive association

between redlining and methylation across both CpG sites, women

with ER-negative BC had significantly higher methylation than ER-

positive BC (Supplemental Figures 2A, B).

Of the top 25CpG sites associated with redlining, we found 1

CpG, cg11683511(GPD1), associated with mortality in a

multivariable model accounting for age, race, clinical stage, and

ER status with a 17% increase risk observed with every 1% increase

in methylation (HR= 1.17 95%CI 1.02,1.35), although these results

did not pass the threshold for FDR significance. (Supplemental

Table 1). We additionally explored whether epigenetic age

contributed to all-cause mortality and found the Horvath clock

was associated with a slight reduction in hazard of death in

multivariable models (Table 4). In a sensitivity analysis including

breast cancer-specific mortality we observed that the Horvath clock

was similarly associated with a slight reduction in a hazard of death

in multivariable models (Supplemental Table 2).
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TABLE 1 Patient demographic and clinicopathologic characteristics among 80 NHB and NHW women diagnosed with stage I to III breast cancer in
metropolitan Atlanta between 2010–2014.

Total NHB (n=63) NHW (n=17)

Age at diagnosis Mean (SD) 55.1 13.5 57.6 13.2 51.3 11.5

Age

≤49 23 28.7 15 23.8 8 47.1

50-59 29 36.2 23 36.5 6 35.3

≥60 28 35.0 25 39.7 3 17.6

Redlining

0 19 23.7 7 11.1 12 70.6

1 61 76.2 56 88.9 5 29.4

Redlining Index Mean (SD) 2.17 1.98 2.59 1.96 0.65 0.47

Stage

I 26 32.5 20 31.8 6 29.4

II 42 52.5 34 54.0 8 47.06

III 8 10.0 7 11.0 1 5.9

Unknown 4 5.0 2 3.2 2 11.8

ER Status

Positive 62 77.5 50 79.4 12 70.6

Negative 18 22.6 13 20.6 5 29.4

BMI Mean (SD) 37.1 30.2 38.7 33.7 30.9 6.32

Insurance

Private 7 8.8 3 4.8 4 23.5

Medicaid 32 40.0 27 42.9 5 29.4

Medicare 29 36.3 27 42.9 2 11.8

Uninsured 9 2.5 3 4.8 6 35.3

Unknown 3 3.8 3 4.8 2 11.8

Education

Some high school 6 7.5 4 6.3 2 11.8

Highschool diploma/GED 38 47.5 34 54.0 4 23.5

Some college 15 18.8 12 19.0 3 17.6

Bachelors or higher 14 17.5 7 11.1 7 41.2

Unknown 7 8.8 6 9.5 1 5.9

Family history

Yes 17 21.3 14 22.2 3 17.6

No 63 78.7 49 77.8 14 82.4

Tobacco history

Yes 32 40 29 46 3 17.6

No 47 58.8 33 52.4 14 82.4

Unknown 1 1.2 1 1.6 0 –

Chemotherapy

(Continued)
F
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Discussion

Despite accumulating evidence supporting the hypothesis that

SES may be associated with increased cancer risk and poor cancer

outcomes through epigenetic mechanisms, limited studies have

reported the association between adverse sociodemographic

characteristics, breast tumor methylation, and mortality (35). This

pilot study is the first untargeted analysis to examine redlining-

associated methylation in breast tumor tissue. We identified 5 CpG

sites associated with contemporary redlining. We also report that

contemporary redlining was associated with epigenetic age-

acceleration using two different epigenetic clocks. Given that

Black women, compared to their White counterparts, were

disproportionately exposed to contemporary redlining (88.9% vs.

29.4%, respectively), structural racism may differentially impact

Black women with BC in the metropolitan-Atlanta area.

Most of the 5 CpG sites associated with redlining were in the

transcription start site or body of genes that have been characterized

as tumor suppressors and implicated in carcinogenesis. Similar to

other studies that have seen racial discrimination manifest

biologically through activation of stress pathways (36), we found

the differentially methylated CpGs within genes involved in

inflammation, immune function, and response to stress through

gene ontology analysis including ANGPT1, PRG4, and RBMS3.

Angiopoietin-1 (ANGPT1) is an important regulator of

inflammation and angiogenesis, and stimulates monocytes

through ERK 1/2 phosphorylation (37). Research has shown that

inhibition of ANGPT1 and its receptor, Tie2, results in human

breast cancer cells becoming more sensitive to antigen-specific

cytotoxic lymphocytes (38). Proteoglycan 4 (PRG4), is involved in

diverse biological processes including anti-inflammation,

cytoprotection, and anti-adhesion, amongst others (39). PRG4 is

also involved in the regulation of transforming growth factor beta

(TGF-b) (40). PRG4 suppresses TGFb-induced invasiveness of
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breast cancer cells by inhibiting the cell surface cluster of

differentiation 44 (CD44) signaling (40). RNA Binding Motif

Single Stranded Interacting Protein 3 (RBMS3) is a known tumor

suppressor in breast cancer and is significantly associated with the

epithelial to mesenchymal (EMT) transition, especially in TNBC

(41, 42). RBMS3, through inactivation of the Wnt/b-catenin
signaling pathway, also inhibits proliferation and tumorigenesis of

breast cancer cells (43). In addition, RBMS3 is a crucial regulator of

programmed death ligand-1 (PD-L1) in TNBC and through post-

transcriptional regulation of PD-L1, RMBS3 can contribute to

immune escape in TNBC (44). In addition, ANGPT1, PRG4, and

RBMS3 were found to be mutated within a portion of the TCGA

breast cancer samples. Given the posited role of these genes, our

collective data support a potential biological mechanism linking

neighborhood-level structural racism and the regulation of

inflammatory and immune pathways.

We also found redlining was positively correlated with

epigenetic age acceleration using two clocks, though only the

Hannum clock surpassed conventional significance levels. The

Horvath and Hannum clocks are commonly used first-generation

clocks related to chronological age alone (30, 31, 45). While the

Hannum clock was trained in whole blood a recent study showed

that the CpGs comprising the clock are able to strongly and

consistently predict age correlations across several tissue,

including breast tumor tissue, and cell types (46). Our findings

support recent research showing that neighborhood deprivation

accelerates epigenetic age for NHW women, which was

characterized using multiple epigenetic clocks, including Hannum

(18). In addition, our data align with previous studies among Black

women that showed higher neighborhood deprivation associated

with higher epigenetic age acceleration when measured by the

Hannum clock (47). The early age onset of aggressive BC in

Black women parallels a growing body of scientific evidence that

demonstrates the earlier age onset of chronic health conditions in
TABLE 1 Continued

Total NHB (n=63) NHW (n=17)

Yes 44 55 34 54 10 59

No 36 45 29 46 7 41

Endocrine Therapy

Yes 55 69 42 67 13 76

No 22 28 18 29 4 24

Unknown 3 3 3 4

Radiation Therapy

Yes 40 50 32 51 8 47

No 33 41 26 41 7 41

Unknown 7 9 5 8 2 12

All-Cause Mortality

Yes 21 26.3 17 27.0 4 23.5

No 53 73.8 46 73.0 13 76.5
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Black compared with White persons (48). This emphasizes the need

to investigate how racial differences in social-environmental

exposures impact disparities in disease risk, morbidity, and

mortality. The sustained and cumulative exposure to adverse

social, physical, psychological, and chemical stressors within their

residential, educational, employment, and other environments, may

result in biological weathering among disadvantaged populations

(49). Biological weathering, secondary to experiences of structural

racism, could be related to the observed epigenetic age acceleration

and may explain the earlier onset and poorer prognosis of Black

persons with chronic illnesses, including BC.

Of the top 25 CpG sites identified as being differentially methylated

by exposure to redlining, modification by ER status was found in two

sites, cg06649682 (MRPS28) and cg11092048 (non-coding RNA).

Mitochondrial Ribosomal Protein S28 (MRPS28) is a member of a

family of proteins which are involved with mitochondrial energy

metabolism which have been implicated in breast cancer prognosis
Frontiers in Oncology 07
and members of the MRP family have been shown to differentially

expressed based on breast cancer subtype (50). For both CpG sites, ER-

negative tumors had greater redlining-associated methylation than ER-

positive tumors, suggesting there are potential implications of racist

housing polices on tumor aggressiveness.

One site, cg11683511(GPD1), was associated with contemporary

redlining and all-cause mortality. Glycerol-3-phosphate dehydrogenase

1 (GPD1) is a tumor suppressor within breast cancer and reduced

expression of GDP1 is associated with poor overall survival (51). We

found that this site was hypermethylated within the transcription start

site, which is indicative of decreased expression. Given the suppressive

function of GDP1, our results further support the role of GDP1 in

breast cancer prognosis. We observed only slight associations between

epigenetic age acceleration and all-cause mortality, with the Horvath

clock being associated with a slight reduction in hazard of mortality.

While these results were unanticipated, our overall epigenetic age

acceleration findings could indicate that the role of epigenetic age in
TABLE 2 The top 25 FDR-significant CpG sites associated with a neighborhood-level redlining in breast tumor tissue in EWAS.

CpG Label T-statistic p-value FDR Effect Size Std Error Gene Name Gene Region Chr

cg06081220 6.241 6.55E-08 0.035 0.065 0.010 PCDH9 Body 13

cg23248351 6.151 9.15E-08 0.035 0.084 0.014 ANGPT1 TSS1500 8

cg20275129 5.908 2.26E-07 0.057 0.073 0.012 13

cg13274183 5.769 3.79E-07 0.072 0.055 0.010 PRG4 TSS1500 1

cg27569887 5.651 5.85E-07 0.089 0.080 0.014 RBMS3 3’UTR 3

cg00059737 5.343 1.88E-06 0.110 0.033 0.006 VPS13D Body 1

cg01020413 5.500 1.02E-06 0.110 0.106 0.019 2

cg01495275 5.274 2.41E-06 0.110 0.061 0.012 CUL3 Body 2

cg02267536 5.240 2.62E-06 0.110 0.110 0.021 BANP Body 16

cg04922153 5.509 9.86E-07 0.110 0.071 0.013 20

cg06649682 5.422 1.35E-06 0.110 0.072 0.013 MRPS28 Body 8

cg11053632 5.309 2.04E-06 0.110 0.098 0.018 BANP Body 16

cg11092048 5.237 2.65E-06 0.110 0.087 0.017 15

cg11675630 5.325 1.92E-06 0.110 0.081 0.015 FAM179A Body 2

cg14402950 5.308 2.13E-06 0.110 0.074 0.014 LOC101927967 Body 2

cg15073453 5.227 2.75E-06 0.110 0.080 0.015 KIRREL3 Body 11

cg15239796 5.250 2.52E-06 0.110 0.028 0.005 EXOG Body 3

cg16747973 5.282 2.25E-06 0.110 0.073 0.014 FGG 5’UTR 4

cg27611830 5.343 1.80E-06 0.110 0.081 0.015 PKNOX2 Body 11

cg00257769 5.152 3.60E-06 0.112 0.055 0.011 PARP4 Body 13

cg08808042 5.128 3.92E-06 0.112 0.101 0.020 BANP Body 16

cg09589360 5.132 3.86E-06 0.112 0.062 0.012 OVCH1 TSS1500 12

cg11683511 5.137 3.79E-06 0.112 0.054 0.010 GPD1 TSS1500 12

cg12869679 5.144 3.70E-06 0.112 0.087 0.017 8

cg13161621 5.136 3.81E-06 0.112 0.065 0.013 IQSEC2 Body X
frontiers
T-statistics, p-value and false discovery rate q-value, effect size, and standard error have been provided. EWAS was adjusted for age, race, smoking status, and batch effects. Reference gene name,
gene region, and chromosome number obtained from the Illumina annotation file. Blank spaces represent intergenic regions.
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the etiology of breast cancer differs from its role in mortality. Future

studies will require a larger sample size and more complete follow-up

to further evaluate the effect of redlining-associated DNA methylation

on prognosis.

Our study has several limitations. First, we only included 80 NHB

and NHWwomen from a single hospital system in this study, however

we were still able to identify redlining-associated differential

methylation at5 CpG sites even after adjusting for multiple

comparisons. The timeframe for our study population (2008-2017)

and redlining metric (2010-2014) do not completely overlap which

could lead to potential exposure misclassification. In addition, we only

have patients address at exposure so we are unable to assess residential

history or patient mobility and therefore the duration of their exposure

to living in a redlined area. There are limited data on neighborhood

mobility among NHB people, but emerging evidence suggests that they
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often move to areas that have similar characteristics to their previous

residence (52–54). While we do not have residential history, it is likely

that our residents lived in redlined areas for a sustained period of time.

We did not have sufficient sample size to examine associations of DNA

methylation on all-cause mortality by ER status. We also used tumor

tissue to measure associations between epigenetic age and outcome.

Epigenetic age in normal and tumor tissue might manifest differently,

using either tissue might not be representative of the other and our

epigenetic age results focus exclusively on the impact of tumor tissue

pathology outcome. More robust studies will be needed to substantiate

and expand our findings. Particularly, it will be important for future

studies to explore the functional significance of the observed

perturbations. Finally, we exclusively focus on the DNA methylome,

which negates other layers of the epigenome and downstream impacts

on gene expression that may also play a role in BC outcomes.
FIGURE 1

Volcano plot of CpG sites associated with neighborhood-level redlining. The top 25 CpG sites are those shown in green.
TABLE 3 Association between neighborhood-level redlining and epigenetic acceleration (1) age, and (2) age and race.

Clock Horvath Hannum

Age Acceleration HR (95% CI) p-value HR (95% CI) p-value

Age-adjusted 4.04 (−1.72,9.82) 0.167 5.35(0.30,10.4) 0.038

Age and Race-adjusted 2.81(−4.15,9.78) 0.424 6.61(0.5,12.7) 0.034
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This study employed both discovery-based and CpG site-

specific approaches to examine potential epigenetic mechanisms

underlying the association between contemporary redlining and BC

prognosis in a diverse population of women residing in metro-

Atlanta. Our preliminary results suggest that neighborhood-level

exposure to structural racism has biological consequences and is

associated with unfavorable perturbations of the breast tumor DNA

methylome. Understanding the structural factors that influence

health outcomes at the biological level is necessary to identify

appropriate interventions. Future studies should be conducted

with a larger, equally diverse patient population to validate our

preliminary findings and further interrogate the epigenetic

perturbations identified in this study.
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