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Background: People usually spend most of their time indoors, so indoor fine 
particulate matter (PM2.5) concentrations are crucial for refining individual PM2.5 
exposure evaluation. The development of indoor PM2.5 concentration prediction 
models is essential for the health risk assessment of PM2.5 in epidemiological 
studies involving large populations.

Methods: In this study, based on the monitoring data of multiple types of places, 
the classical multiple linear regression (MLR) method and random forest regression 
(RFR) algorithm of machine learning were used to develop hourly average indoor 
PM2.5 concentration prediction models. Indoor PM2.5 concentration data, which 
included 11,712 records from five types of places, were obtained by on-site 
monitoring. Moreover, the potential predictor variable data were derived from 
outdoor monitoring stations and meteorological databases. A ten-fold cross-
validation was conducted to examine the performance of all proposed models.

Results: The final predictor variables incorporated in the MLR model were 
outdoor PM2.5 concentration, type of place, season, wind direction, surface wind 
speed, hour, precipitation, air pressure, and relative humidity. The ten-fold cross-
validation results indicated that both models constructed had good predictive 
performance, with the determination coefficients (R2) of RFR and MLR were 
72.20 and 60.35%, respectively. Generally, the RFR model had better predictive 
performance than the MLR model (RFR model developed using the same predictor 
variables as the MLR model, R2  =  71.86%). In terms of predictors, the importance 
results of predictor variables for both types of models suggested that outdoor 
PM2.5 concentration, type of place, season, hour, wind direction, and surface wind 
speed were the most important predictor variables.

Conclusion: In this research, hourly average indoor PM2.5 concentration prediction 
models based on multiple types of places were developed for the first time. 
Both the MLR and RFR models based on easily accessible indicators displayed 
promising predictive performance, in which the machine learning domain RFR 
model outperformed the classical MLR model, and this result suggests the 
potential application of RFR algorithms for indoor air pollutant concentration 
prediction.
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1. Introduction

PM2.5 refers to particulate matter with an aerodynamic diameter 
of 2.5 μm or less, which is one of the environmental pollutants with 
the greatest impact on public health (1–3). Numerous epidemiological 
studies have shown that both long-term and short-term exposure to 
PM2.5 increases the risk of death from respiratory and cardiovascular 
diseases in the population (4–6). Studies have shown that for every 
10 g/m3 increase in the average concentration of PM2.5 in ambient air, 
there is a 3.1% increase in hospital admissions and a 2.5% increase in 
mortality from chronic obstructive pulmonary disease (7). 
Furthermore, there is a 3% increase in emergency department visits 
for bronchial asthma (8), a 16% increase in the risk of death from 
ischemic heart disease, and a 14% increase in mortality from 
stroke (4, 9).

Currently, most relevant studies use ambient PM2.5 concentrations 
as a surrogate for human PM2.5 exposure without taking into account 
the difference between indoor and outdoor PM2.5 concentrations as 
well as the contribution of indoor PM2.5 exposure to actual human 
exposure, which limits the interpretation of their results. As most 
people spend at least 80% of their day indoors, and for some specific 
populations such as the older adults and children, this percentage is 
even higher (10–12). Therefore, indoor PM2.5 concentration is crucial 
for accurate PM2.5 exposure assessment and health risk assessment. 
Direct measurement of indoor PM2.5 concentration can provide the 
most accurate data; however, such practice is not easy to achieve, as it 
requires a lot of manpower and material resources as well as the 
compliance of the research participants, especially for large-scale 
population and/or long-term studies. When direct measurement is 
difficult to achieve, it is important to construct appropriate 
predictive models.

At present, many studies have been conducted to establish 
prediction models for indoor PM2.5 concentration (12–18), mainly 
involving multiple linear regression (MLR) models and random forest 
regression (RFR) models, which have their own advantages and 
disadvantages. For indoor PM2.5 concentration, there is still 
controversy about which model has a better predictive effect. In 
addition, the models in these studies have mostly predicted the 
average indoor PM2.5 concentration on one or more days, and do not 
adequately account for the fluctuation of indoor PM2.5 concentration 
during the day (or longer) and the variability of individual behaviors 
over time (19–21). Obviously, the establishment of indoor PM2.5 
concentration prediction models with higher temporal resolution is 
of more practical significance to improve individual PM2.5 exposure 
assessment. The existing models were constructed using indoor PM2.5 
concentration monitoring data from a single type of place, which is 
not universal enough and inevitably limits the practical application to 
different types of places. No study has yet established prediction 
models for hourly average indoor PM2.5 concentration based on data 
from multiple types of places.

In this study, monitored data on indoor PM2.5 concentrations from 
five types of typical sites (offices, primary and secondary schools, 
kindergartens, shopping malls, and restaurants) in Shanghai were 
collected during different seasons. The data were used to develop and 
evaluate predictive MLR and RFR models for indoor PM2.5 temporal 
average concentrations based on multiple types of places. The aim of 
the study was to provide a feasible way to improve individual PM2.5 
exposure assessment.

2. Materials and methods

2.1. Data collection

Five types of typical locations – offices, middle and primary 
schools, kindergartens, shopping malls, and restaurants – were 
selected for indoor PM2.5 concentration field monitoring in 16 districts 
of Shanghai. A TSI DustTrak 8,530 benchtop aerosol monitor (TSI 
Incorporated, Shoreview, MN, United  States) was used for the 
monitoring. One floor was selected as the monitoring site for the high, 
middle, and low areas of office buildings, shopping malls, and 
restaurants. Two, four, and six monitoring points were set for indoor 
areas of 200–1,000 m2, 1,001–5,000 m2, and over 5,000 m2, respectively. 
Two classrooms from each floor were used as monitoring sites in high, 
middle, and low areas of kindergartens, middle, and primary schools. 
One, three, and five monitoring points were set for indoor areas of less 
than 50 m2, 50–100 m2, and more than 100 m2, respectively. All of the 
above points were distributed evenly on the diagonal of the room or 
in a plum style, and the height of each point was set at the level of a 
human respiratory belt (0.8–1.2 m). The actual measurement time was 
in January, April, July, and October of 2018 (the 4 months represented 
the four seasons of the year: January for winter, April for spring, July 
for summer, and October for autumn). Indoor PM2.5 concentrations 
in each location were monitored for 1 week during these 4 months, 
with each instrument monitoring the concentrations every 15 min, 
which covered all times of the day (00,00–23,00 h) to ensure full 
coverage of people’s activities in various places as much as possible.

For the construction of prediction models, we used the findings 
of relevant publications (17, 21–24) to identify 11 easily accessible 
indicators that may have significant effects on indoor PM2.5 
concentrations. The relevant information of the indicators could 
be found in Supplementary Table S1. The outdoor PM2.5 and PM10 
concentration data were obtained from the monitoring stations of 16 
municipal control points in Shanghai. By calculating the distance 
between all government-controlled monitoring stations and the 
indoor places we monitored, the data from the closest station was 
selected as outdoor PM2.5 and PM10 concentration data for indoor 
places. Meteorological data for the same period were obtained from 
the European Center for Medium and Long-Range Weather Forecasts, 
which included outdoor temperature, relative humidity, air pressure, 
precipitation, surface wind speed, and wind direction.

2.2. Data analysis

The data analysis in this study was based on the arithmetic mean 
of time, that is, the indoor and outdoor PM2.5 concentrations, outdoor 
PM10 concentration, as well as related meteorological parameters 
were processed as hourly mean values for use. For example, the 
indoor PM2.5 concentration at 09:00 h was actually the mean value of 
08:00 h to 09:00 h. Following a series of data washing, the final 
database consisted of 11,712 records, 11 potential predictor variables, 
and natural log-transformed indoor PM2.5 concentrations 
(approximately normally distributed) as response variables for MLR 
and RFR model construction. Data analysis and model construction 
in this study were performed with R software (version 4.1.0), and 
statistical significance levels were set at p values of <0.01 and < 0.05 
(both sides).
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2.3. MLR model construction steps

A sensitivity analysis was conducted for the effects of different 
variable screening methods on the predictive efficacy of MLR models. 
The three adopted types of variable screening were as follows: 1) 
manually supervised forward linear regression commonly used in 
reference to classical land-use regression modeling (25, 26), 2) 
stepwise regression (backward, variables with regression coefficient 
p < 0.05 were retained), and 3) least absolute shrinkage and selection 
operator (Lasso). The manually supervised forward linear regression 
method was used to build a basal multiple regression model in three 
steps: 1) After testing the premise assumptions of the regression 
model, all potential predictor variables expected to be included in the 
model were first univariately regressed against the response variable 
(natural log-transformed hourly average PM2.5 concentration), and 
predictor variables with significant (p < 0.05) regression coefficients 
were retained for the next step, 2) Correlations between prediction 
variables were tested. Among the prediction variables that were highly 
correlated with other prediction variables (Spearman r > 0.50, p < 0.05), 
only the prediction variable with the highest coefficient of 
determination (R2) was retained for further analysis, 3) The predictor 
variables that remained after the previous two steps were sorted 
according to R2 (from highest to lowest), and then each predictor was 
entered into the regression model in order. Finally, only those 
predictor variables with significant partial regression coefficients 
(p < 0.05), which boosted the R2 of the model by more than 1% and 
whose coefficients were consistent with the priori hypothesis (such as 
a positive coefficient of outdoor PM2.5), were retained.

In the process of MLR model diagnosis, variance inflation factors of 
the predictive variables were tested to evaluate multicollinearity. 
Additionally, considering that season may modify the effects of other 
potential predictor variables on indoor PM2.5 concentration, we stratified 
the data by winter–spring (January, April) and summer-autumn (July, 
October) seasons and developed season-specific prediction models.

2.4. RFR model construction steps

Random forest model is a machine learning model that realizes the 
classification and/or prediction for unknown samples through the 
integrated learning with a large number of decision trees, which is now 
widely used in the processing of big data due to its fast computing speed, 
high prediction accuracy, and strong anti-interference (27–29). This 
model possesses two significant characteristics, namely sample 
randomization and variable randomization. Bagging algorithm is the 
basis of the random forest model, which is also known as bootstrap 
sampling algorithm, in short, there is put back to the random collection 
of samples to form a different set of data to train the base learner, so as 
to realize the mutual independence of individual learners. The Random 
Forest algorithm extends and expands the Bagging algorithm. In 
addition to random sampling of samples, the Random Forest algorithm 
also incorporates random selection of variables at each attribute node 
of the classification tree, which further enhances the diversity of each 
decision tree, reduces the risk of model overfitting, and can effectively 
improve the generalization performance of the final ensemble model 
(27, 29). The prediction accuracy and generalization of a Random Forest 
model are closely related to two important hyperparameters, which are 
ntree (the number of trees used) and mtry (the number of variables used 

for binary trees in the specified nodes). The randomForest package of R 
software (version 4.1.0) was used to construct the RFR model. In our 
analysis, different values were set for these two parameters as sensitivity 
analysis in order to obtain maximum model prediction effectiveness. 
The increase in mean squared error (%IncMSE) of the predicted value 
was taken as an indicator to measure the importance of a variable, in 
other words, a random value was assigned to each prediction variable. 
If the prediction variable is important, the prediction error of the model 
will increase after its value is randomly replaced, so the larger the value, 
the more important the variable is.

In order to evaluate and compare the prediction efficiency of the 
MLR model and the RFR model for indoor hourly average PM2.5 
concentration in various types of places, we  developed two RFR 
models. The first RFR model was called the Full variables-RFR model 
(Full-RFR). Since the RFR model does not need to consider 
preconditions such as the independence of predictive variables that 
are faced by general MLR models, all 11 potential predictive variables 
were included in the model. The second RFR model was called the 
Conjoint-RFR model (Conjoint-RFR). In order to compare the MLR 
and RFR models, this Conjoint-RFR model was established using the 
same predictor variables as the MLR model with the best prediction 
performance identified in the previous steps.

2.5. Evaluation of models

The R2 and root mean squared error (RMSE) calculated based on 
the predicted and measured values of the model were used as the 
model performance evaluation indexes. In addition, the generalization 
performance of the model was evaluated by a ten-fold cross-validation 
(CV) method. In short, the entire dataset was randomly and equally 
divided into ten subsets, nine of which were selected as the training 
set and the remaining one was used as the test set to test the prediction 
performance of the model. This process was repeated 10 times until 
each subset was used for one verification (30).

3. Results

3.1. Indoor PM2.5 pollution in various places

The summary of hourly average indoor PM2.5 concentration 
statistics for each site was shown in Table 1. In general, the median 
hourly average indoor PM2.5 concentration was 34.9 μg/m3 and the 
interquartile range was 24.5 μg/m3, with a few readings on the high side 
and a maximum value of 288 μg/m3. The result of Welch analysis of 
variance (Welch ANOVA) (31) showed significant differences (p < 0.01) 
in the hourly average indoor PM2.5 concentrations in different types of 
places. The highest hourly average indoor PM2.5 concentrations were 
found in restaurants (44.4 μg/m3), probably because of frequent 
cooking in restaurants that produces a large amount of grease smoke 
and causes indoor PM2.5 concentrations to increase (32). The Ambient 
Air Quality Standards (GB 3095–2012) of China and the 
Environmental Protection Agency of the United States have set the 
daily average ambient PM2.5 concentration limit at 35 μg/m3. No clearly 
established indoor PM2.5 concentration standard exists in China; 
therefore, the daily average ambient PM2.5 concentration standard and 
the classification method of the China Environmental Monitoring 
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Station were used here to characterize the indoor PM2.5 pollution in 
each location (Figure 1). In terms of 35 μg/m3 as the standard, indoor 
PM2.5 exceeded the standard in different degrees in all places and 
restaurants were the worst offender, followed by kindergartens. The 
monitoring results suggest that the indoor environmental quality of 
these two types of places needs to be improved.

The changes of hourly average indoor PM2.5 concentration at 
different times are shown in Figure 2. Overall, there were significant 
differences (p < 0.01) in indoor PM2.5 at different times of the day, and 
we also observed significant intraday fluctuations in the monitoring 
data for each type of place (p < 0.05). The variability of PM2.5 
concentration at different times of the day in multiple types of places 
is closely related to the nature of the place. For example, the fluctuation 
of PM2.5 concentration in the restaurant was as expected (p < 0.01), 

with two peaks occurring after 11:00 and after 17:00, which are 
roughly the beginning of lunch and dinner. At these times, intensive 
cooking leads to higher indoor PM2.5 concentrations, and similar 
patterns were observed in other places (Figure  2). These results 
demonstrate the intraday variability of indoor PM2.5 concentration as 
well as the spatial variability across places.

3.2. MLR model results

Univariate regression model results for hourly average indoor 
PM2.5 concentration were summarized in Supplementary Table S2. All 
11 prediction variables were significantly associated with hourly 
average indoor PM2.5 (p < 0.05). The R2 of the 11 prediction variables 

TABLE 1 Hourly average indoor PM2.5 concentrations in each place (μg/m3).

Type of place n Arithmetic 
mean

SD Percentiles

Min P25 P50 P75 Max

Office 3,438 23.8 15.6 0.667 12.0 18.8 32.5 128

Middle and primary school 1,812 33.5 20.2 0.20 20.2 30.9 43.1 127

Kindergarten 1,441 37.6 19.8 5.19 24.2 34.3 45.9 154

Shopping mall 2,443 31.2 15.8 4.0 20.0 28.8 39.5 133

Restaurant 2,578 52.6 34.2 4.86 28.3 44.4 67.2 288

Overall 11,712 34.9 24.5 0.2 17.7 30.1 44.1 288

n, the number of samples; SD, standard deviation; Min, the minimum value; P25, P50, and P75: the 25th, 50th, and 75th percentiles, respectively; Max, the maximum value; PM2.5 refers to 
particulate matter with an aerodynamic diameter of 2.5 μm or less.

FIGURE 1

Daily average indoor PM2.5 concentrations (μg/m3) in each place. In reference to the classification method of the China Environmental Monitoring 
Station: 0–35  μg/m3 is excellent; 35–75  μg/m3 is good; 75–115  μg/m3 is light pollution; and 115–150  μg/m3 is moderate pollution. PM2.5 refers to 
particulate matter with an aerodynamic diameter of 2.5  μm or less.
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ranged from 0.1 to 30.54%, among which nine variables exceeded 2%, 
with the largest R2 for outdoor PM2.5 concentration (30.54%), followed 
by outdoor PM10 concentration (R2 = 28.76%), season (R2 = 24.05%), 
type of place (R2 = 17.11%), and wind direction (R2 = 8.64%). The final 
MLR model for log-transformed hourly average indoor PM2.5 
concentrations were shown in Table 2. The model which was developed 
based on the stepwise regression method had the best prediction 
performance (CV R2 = 60.48%) and the lowest prediction error (CV 
RMSE = 0.44) among the three MLR models (Table 3). In this paper, the 
relative importance of the predictor variables within MLR model was 
determined using the “Lindeman, Merenda and Gold (LMG).” LMG 
was evaluated as the most successful indicator of the relative importance 
of independent variables, which was implemented by using the 
“relaimpo” package of R software (33, 34) (Figure 3). Outdoor PM2.5 
concentration was the most important predictor variable, with an R2 
share of 33.91%, followed by type of place (27.62%), season (26.22%), 
wind direction (4.88%), and surface wind speed (2.80%). The two 
models developed after stratification by winter–spring and summer-
autumn incorporated similar predictor variables, of which the R2 and 
RMSE after cross-validation were also remarkably close (winter–spring 
model: R2 = 58.23%, RMSE = 0.38; summer-autumn model: R2 = 58.79%, 
RMSE = 0.49; Supplementary Tables S3–S5).

3.3. RFR model results

We compared and analyzed all RFR models with ntree of 200, 500, 
1,000 and mtry of 1 ~ 11 (Supplementary Figure S1), and finally 
determined that ntree = 200 and mtry = 2 were the most suitable RFR 
parameters for this study after fully considering the model’s prediction 

effectiveness, prediction error, and model efficiency. Results from the 
Conjoint-RFR model, which used the same predictor variables as the 
MLR model, showed that the RFR model explained a greater 
proportion of the variance of indoor PM2.5 time-averaged 
concentrations with an R2 (RMSE) of 89.65% (0.23), which decreased 
in predictive efficacy (CV R2 = 71.86%) and increased in prediction 
error (CV RMSE = 0.37) after ten-fold cross-validation. Nevertheless, 
the overall performance of the model was still better than that of the 
corresponding MLR model (CV R2 = 60.48; CV RMSE = 0.44). The 
performance of the Full-RFR model incorporating all predictor 
variables was better than that of the Conjoint-RFR model, with a CV 
R2 (RMSE) of 72.20% (0.36). The importance results of the predictor 
variables from the random forest algorithm (Figures 4A,B) indicated 
that the top five variables in the Conjoint-RFR model (Figure 4B) in 
order of importance were type of place, outdoor PM2.5 concentration, 
season, hour, and surface wind speed. Comparison of the importance 
ranking results of the variables in the Conjoint-RFR model and the 
corresponding MLR model shows that the top three variables in both 
models are the same, namely, outdoor PM2.5 concentration, type of 
place, and season, but with a different order. By contrast, the variable 
“hour” appears in the top five variables in the Conjoint-RFR model 
but wind direction is in the top five in the MLR model.

4. Discussion

Significant differences in indoor PM2.5 concentrations between 
various types of places and at different times of day were found in our 
study. The variable of “type of place” ranked first and second in the 
importance assessment of the predictor variables of the RFR model and 

FIGURE 2

Variation of intraday hourly average indoor PM2.5 concentration in each place (μg/m3). PM2.5 refers to particulate matter with an aerodynamic diameter 
of 2.5  μm or less.
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the MLR model in this study, respectively. This result emphasized the 
importance of place type in predicting indoor PM2.5 concentration and 
suggested that it might be difficult to extrapolate the prediction model 
based on a single type of place for use in other types of places. In fact, it 
is not difficult to understand the conclusion that the different functional 
attributes of each place naturally create a unique indoor 
microenvironment, which consequently affects the occurrence, 
diffusion, deposition and other behaviors of PM2.5 (35–38). For example, 
in an office, there is a high concentration of people, frequent use of office 
equipment (e.g., printers, photocopiers and computers), and 
air-conditioning equipment (air-conditioners, humidifiers, air filters), 
with low ventilation and a single source of indoor pollution, whereas in 
a shopping mall there is a higher flow of people, more frequent 
ventilation, and a more complex internal environment. In contrast, the 
frequent cooking activities in restaurants generate smoke and high 
temperatures, creating a different microenvironment than the places 
mentioned above (35, 39). However, the currently available prediction 
models for indoor PM2.5 concentrations are all constructed based on 
monitoring data from a single type of place, such as residential buildings 
(16, 18, 40, 41), schools (19, 20), and offices (42), without considering 
the differences between various types of sites. This situation inevitably 
leads to limitations in the actual application for the assessment of indoor 
PM2.5 exposure. At present, no study has attempted to construct an 
indoor PM2.5 concentration prediction model based on monitoring data 
from multiple types of places, and our study has attempted to fill this 
gap. In addition, most existing studies have predicted indoor PM2.5 
concentration over a day or longer period (such as a week); however, 
many published studies have shown that indoor PM2.5 concentrations 
have a large daily variability (19–21). According to a report by Che et al. 
(43), after conducting continuous monitoring of indoor air quality in 32 
primary and secondary schools across Hong Kong, it was found that 
there were significant variations in PM2.5 concentrations in classrooms 
at different times of the day. The PM2.5 concentrations in classrooms 
during school hours were approximately 40% higher than non-school 
hours. Zhao et al. (44) reported that indoor PM2.5 concentrations were 
1.5 times higher at night than during the daytime in Beijing during 
winter. According to Xu et  al. (13), indoor PM2.5 concentrations at 
different moments of the day varied significantly, with the ratio of the 
highest to the lowest values even exceeding 15-fold. This temporal 
variability of indoor PM2.5 may originate from outdoor sources, for 
example, factors such as changes in outdoor PM2.5 concentrations, 
variations in wind direction, temperature, and atmospheric pressure 
throughout the day and night may contribute to the differences in 
indoor PM2.5 concentrations (17, 44), or from indoor human activities, 
such as cooking, smoking, use of air purifiers, etc. (45, 46). No matter 
what causes this variability, establishing a higher temporal resolution in 
an indoor PM2.5 concentration prediction model is more practical for 
refining individual PM2.5 exposure assessment and health risk evaluation.

MLR models are widely used for indoor air quality prediction 
because of the advantages of simple methodology, easy application, 
and strong interpretation of results (13, 17, 47). However, prerequisites 
exist for MLR application. First, a linear relationship must exist 
between the prediction variable and the response variable. Second, the 
response variable must obey a normal distribution when each 
predictor variable takes a certain definite value. Third, the response 
variable must satisfy the homogeneity of variance when each predictor 
variable takes different values. Fourth, the predictor variables are 
independent of each other and do not have a very close statistical 

TABLE 2 Multiple linear regression (MLR) model for log-transformed 
hourly average indoor PM2.5.

Predictive 
variables

Coefficients Standard 
error

p-
value

Partial 
R2 (%)

Intercept 17.60 1.73 <0.01

Outdoor PM2.5 0.014 0.013 <0.01 33.91

Type of place — — — 27.62

  Office (reference) — — —

  Middle and 

primary school
0.035 0.014 <0.01

  Kindergarten 0.23 0.015 <0.01

  Shopping mall 0.16 0.012 <0.01

  Restaurant 0.76 0.011 <0.01

Season — — — 26.22

  Winter (reference) — — —

  Spring 0.015 0.027 0.58

  Summer −0.73 0.037 <0.01

  Autumn −0.03 0.022 0.14

Wind direction 0.00024 0.000062 <0.01 4.88

Surface wind speed −0.008 0.0024 <0.01 2.80

Hour — — — 2.62

  0 (reference) — — —

  1 −0.024 0.028 0.39

  2 −0.06 0.028 <0.05

  3 −0.10 0.028 <0.01

  4 −0.12 0.029 <0.01

  5 −0.13 0.029 <0.01

  6 −0.12 0.029 <0.01

  7 −0.06 0.029 <0.05

  8 −0.018 0.029 0.51

  9 0.043 0.028 0.13

  10 0.069 0.028 <0.05

  11 0.10 0.028 <0.01

  12 0.16 0.028 <0.01

  13 0.17 0.028 <0.01

  14 0.16 0.028 <0.01

  15 0.095 0.028 <0.01

  16 0.092 0.028 <0.01

  17 0.10 0.028 <0.01

  18 0.16 0.028 <0.01

  19 0.21 0.028 <0.01

  20 0.16 0.028 <0.01

  21 0.10 0.028 <0.01

  22 0.076 0.028 <0.01

  23 0.016 0.028 0.09

Precipitation −0.19 0.012 <0.01 1.22

Air pressure −0.015 0.0012 <0.01 0.91

Relative humidity 0.26 0.042 <0.01 0.83

Significant p-values are in bold. PM2.5 refers to particulate matter with an aerodynamic 
diameter of 2.5 μm or less; R2, coefficient of determination.
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correlation. These prerequisites for MLR in practical applications are 
sometimes not easily satisfied.

With improvements in computing power and the advent of the era 
of big data, machine learning algorithms have been constantly 
enhanced and widely focused. The random forest algorithm is an 
integrated decision tree-based algorithm proposed by Breiman and 
Cutler in 2001, which can simultaneously construct a large number of 
decision trees in parallel and achieve significantly higher 
computational efficiency than other machine learning methods by 
integrating the learning of multiple decision trees (27, 29). Due to the 
inherent inclusion of interactions between variables in the random 
forest algorithm, there is no need to consider the issue of 
multicollinearity among variables in general models, and the 
algorithm performs robustly with mixed data types, missing data, 
non-equilibrium data, and extreme data, leading to a high prediction 
accuracy of the model (28). In addition, owing to the inclusion of 
sample perturbation and attribute perturbation in the algorithm, the 
random forest model can effectively limit overfitting and is regarded 

as one of the best algorithms today (48–50). Of course, random forest 
models also have certain drawbacks, such as poor interpretability of 
the model, which is usually considered as a black box model. 
Furthermore, categorical variables with more levels will have a greater 
impact on the model results than those with fewer levels, which may 
lead to a deviation in the prediction results (48, 51).

In our study, MLR and RFR prediction models were developed for 
hourly average indoor PM2.5 concentrations based on monitoring data 
from multiple types of places. As a conventional and classical 
prediction model, the MLR model is widely used to predict indoor 
PM2.5 concentration. Our MLR model (CV R2 = 60.48%) had a 
relatively high predictive performance compared with published MLR 
prediction models of indoor PM2.5 concentration based on 1 day or 
longer (such as 1 week) whose R2 values ranged from 33 to 87% (13, 
16, 18, 19, 52–54). To the best of our knowledge, only one study by Xu 
et al. (13) has developed an MLR prediction model for hourly average 
indoor PM2.5 concentration. In this study, two MLR models were 
developed for two regions with CV R2 values of 71 and 75%.

TABLE 3 Summary of model performance evaluation results.

Models Model-based indicators Ten-fold cross-validation indicators

Coefficient of 
determination (R2, %)

Root mean square 
error (RMSE)

Coefficient of 
determination (R2, %)

Root mean square 
error (RMSE)

Basal MLR model 59.51 0.44 59.38 0.45

MLR with lasso selection 60.54 0.43 60.35 0.45

MLR with stepwise selection 60.67 0.43 60.48 0.44

Conjoint-RFR model 89.65 0.23 71.86 0.37

Full-RFR model 91.20 0.21 72.20 0.36

The multiple linear regression (MLR) models were developed by three different variable selection methods. Two random forest regression (RFR) models were developed using 200 trees.

FIGURE 3

Relative importance of the multiple linear regression (MLR) model predictor variables. R2, coefficient of determination; PM2.5 refers to particulate matter 
with an aerodynamic diameter of 2.5  μm or less.
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The two CV R2 values in the study by Xu et al. (13) indicated better 
model predictive performance than for our MLR model. This 
difference might be because the model development in our paper was 
based entirely on easily accessible temporal indicators and outdoor 
indicators. By contrast, the model construction in the study by Xu 
et al. (13) incorporated not only outdoor indicators (such as outdoor 
PM2.5 concentration and outdoor relative humidity) but also indoor 
indicators (such as indoor smoking and cooking), with a wide range 
of indicator coverage. However, the model in that study also suffered 

from difficulties in the definition of relevant indicators, such as 
“whether or not to cook.” In fact, cooking ingredients, cooking 
methods, cooking time, and the type of oil used have significant effects 
on indoor PM2.5 concentration (55, 56). Moreover, these types of 
prediction indicators were not easy to obtain and the process was 
costly. Only several studies have developed RFR prediction models for 
indoor PM2.5 concentration, and the CV R2 values have ranged from 
48.9 to 82% in these studies (13, 16, 18). The predictive efficacy of the 
Full-RFR model in this study (CV R2 = 72.20%) was also at a high level.

FIGURE 4

The importance of the predictor variables in random forest regression (RFR) models based on “%IncMSE.” Full-RFR model (A), Conjoint-RFR model (B). 
PM2.5 and PM10 refer to particulate matter with an aerodynamic diameter of 2.5  μm or less and of 10  μm.
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MLR and RFR models, as common indoor PM2.5 concentration 
prediction models, are still controversial in terms of which approach 
can better predict indoor PM2.5 concentrations. Previous studies have 
shown (16, 44) that using the same dataset, an RFR model usually 
outperforms an MLR model in terms of predictive efficacy owing to 
the strength of the algorithm itself, such as robustness to missing data 
and good characterization of interactions between different predictor 
variables. However, some studies have reached the opposite conclusion, 
as in the study by Yuchi et al. (18). In their study, two models had the 
same variables for the same dataset, and the MLR model (CV 
R2 = 50.2%) outperformed the RFR model (CV R2 = 48.9%) in terms of 
generalization performance. This issue was also explored in the current 
study, as the results of our sensitivity analysis for the modeling 
algorithm showed that the Full-RFR model, which used all predictor 
variables, and the Conjoint-RFR model, which used the same predictor 
variables as MLR, both performed better than the MLR model.

Compared with other studies, the current study had several 
strengths. First, the indoor PM2.5 concentration monitoring data based 
on multiple types of places were used for modeling, which was more 
generalizable for predicting indoor PM2.5 concentration than the 
models developed using data from a single type of place. Second, 
we developed modeling with high temporal resolution indoor PM2.5 
concentration data (hourly average data), which fully took into 
account the temporal variability of indoor PM2.5. Third, the sample 
size used for modeling was sufficiently large (n = 11,712) to greatly 
exceed the number of predictor variables (11), so that the model was 
less prone to overfitting. Fourth, the model prediction cost was low, 
and the predictor variables in the model were all easy to obtain. For 
example, outdoor PM2.5 concentration, wind direction, and surface 
wind can be  found through the websites of relevant government 
departments. The model is suitable for epidemiological studies with 
large populations and/or long time periods.

Of course, there were some limitations in the study. First, the 
outdoor PM2.5 concentration data of indoor places in the study were 
obtained from the nearest government-controlled monitoring sites. 
Although this approach has been used in many previous studies, it 
could introduce some errors in the model due to the spatial variability 
of outdoor PM2.5 concentrations. Second, the absence of human 
indoor activity variables, such as smoking and cooking, might cause 
an increase in the prediction error of the model at certain time periods 
and contexts, for instance, during cooking and when air purifiers were 
used. Third, the model was developed and evaluated based on data 
from Shanghai, and there was a lack of equivalent data from other 
regions for further validation of model performance.

5. Conclusion

We found significant differences in indoor PM2.5 concentration 
between types of places and time periods. This finding reflects the 
possible limitations of models based on indoor PM2.5 concentration 
data from a single type of place as well as the necessity for a prediction 
model with a high temporal resolution in order to perfect individual 
PM2.5 exposure assessment. Here, we aimed to develop MLR and RFR 
models for hourly average indoor PM2.5 concentration over multiple 
types of places. Both statistical models were based on easy-to-access 
indicators and showed good predictive efficacy. They could, therefore, 
be  used for quantitative estimation of indoor PM2.5 exposure in 

large-scale population studies. In addition, the performance of the 
classical MLR model and machine learning RFR model were evaluated 
comparatively in predicting indoor PM2.5 concentration, and the 
model performance metrics showed that the RFR model using the 
same dataset outperformed the MLR model. This finding suggests the 
potential of RFR models in predicting indoor air pollutant levels, and 
other machine learning algorithms may also be worthy of exploration.
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