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The aim of the study was to evaluate the effects of Active or Sedentary lifestyle on 
saliva microbiota composition in Italian schoolchildren.

Methods: Male (114) and female children (8–10  years) belonging to five primary 
schools in the neighborhoods of Turin were classified as active (A) or sedentary 
(S) based on PAQ-C-It questionnaire. PCR amplification of salivary DNA targeted 
the hypervariable V3–V4 regions of the 16S rRNA bacterial genes. DADA2 
workflow was used to infer the Amplicon Sequence Variants and the taxonomic 
assignments; the beta-diversity was obtained by PCoA with the UniFrac method; 
LEfSe algorithm, threshold at 5%, and Log LDA cutoff at ±0.5 were used to 
identify differently abundant species in A compared to S saliva sample. Daily food 
intake was assessed by 3-Days food record. The metabolic potential of microbial 
communities was assessed by PICRUSt.

Results: No significant differences were found in individual’s gender distribution 
(p  =  0.411), anthropometry, BMI (p  >  0.05), and all diet composition between A and 
S groups (p  >  0.05). Eight species were differently abundant: Prevotella nigrescens 
(LDA score  =  −3.76; FDR  =  1.5×10–03), Collinsella aerofaciens (LDA score  =  −3.17; 
FDR  =  7.45×10–03), Simonsiella muelleri (LDA score  =  −2.96; FDR  =  2.76×10–05), 
Parabacteroides merdae (LDA score  =  −2.43; FDR  =  1.3×10–02) are enriched in 
the A group; Gemella parahaemolysans, Prevotella aurantiaca (LDA score  =  −3.9; 
FDR  =  5.27×10–04), Prevotella pallens (LDA score  =  4.23; FDR  =  1.93×10–02), 
Neisseria mucosa (LDA score  =  4.43; FDR  =  1.31×10–02; LDA score  =  2.94; 
FDR  =  7.45×10–03) are enriched in the S group. A prevalence of superpathway 
of fatty acid biosynthesis initiation (E. coli) and catechol degradation II (meta-
cleavage pathway) was found in saliva from A compared to S children.

Conclusion: Our results showed that active children had an enrichment of species 
and genera mainly associated with a healthier profile. By contrast, the genera and 
the species enriched in the sedentary group could be linked to human diseases.
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1. Introduction

The human gut microbiota is intimately associated with different 
aspects of human health and disease. Its characterization could help 
diagnosis, prognosis, and therapy settings by giving over 150 times 
more genetic information than the human genome alone (1). The 
microbiota composition depends on spatial distribution and age; in 
general, the microbiota diversity increases over the time and decreases 
in elderly (2, 3). In children of about 3 years, gut microbiota becomes 
similar to that of adults, with five predominant bacterial phyla: 
Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and 
Verrucomicrobia (4). Recent findings established the role of 
environmental factors on microbiota composition suggesting a close 
cross-talk between the lifestyle and the diversity of microorganisms 
populating the intestine (5). To date, the effects of exercise on human 
health have been thoroughly studied. In the last decade, many 
evidences supported a dynamic relationship between the composition 
of gut microbiota (GM) and physical activity levels in animal models 
(6–10) and in human (11–14). In particular, the theory that exercise is 
able to enrich the diversity of the human gut microbiota depending on 
the volume of training resulting in improved health status of the host, 
has been supported (12, 15). In particular, GM diversity has been 
associated to cardiorespiratory fitness (11, 16, 17) and to VO2max in 
adults (18). Moreover, Barton et  al. (18) highlighted in GM, by a 
metagenomic and metabolomic approach, relative increases in fecal 
pathways and metabolites, e.g., short-chain fatty acids (SCFAs) 
produced by microbes, associated with higher muscle turnover and 
overall health in professional athletes compared with sedentary controls.

While in adults there are some evidences of the influence of physical 
activity on GM composition, in children or pre-adolescents, very poor 
results have been provided. Recent reports indicated that the GM profile 
is associated with the body mass index and could be modulated by 
exercise training and lifestyle habits in obese children (19–22). 
Furthermore, several evidences show that the salivary microbiota 
mirrors the gut microbiota and that some oral bacteria colonize the gut 
and have been associated both to oral and systemic health. (23–26).

Despite these recent advances, the complete landscape of the 
association between the saliva profile and lifestyle habits in children 
is still to be clarified. Further, no data on saliva microbiota composition 
have been provided in Italian schoolchildren associated to Active 
compared to Sedentary status, to date. Thus, the principal aim of this 
study was to analyse the possible association between saliva microbiota 
compositions and lifestyle in Active compared to Sedentary cohort of 
8–10-year-old Italian school-aged children living in the neighborhoods 
of Turin (northwest Italy).

We conducted this study by hypothesizing that active lifestyle 
could be associated with saliva microbiota profiles contributing to 
host health promotion. Indeed, the main aim of our work was to 
identify the differences in the saliva of Active compared to Sedentary 
schoolchildren. In order to study the microbiota composition, 
we sequenced the bacterial 16S rRNA of saliva biospecimens and 
assessed their differential abundance.

2. Materials and methods

2.1. Participants

One hundred and thirty children (8–10 years) belonging to five 
primary schools in the neighborhoods of Turin (northwest Italy) were 

enrolled. All information on the aim of the study has been provided 
to children’s parents/guardians and teachers as previously 
described (27).

Children meeting any of the following criteria were excluded from 
the study: (i) recent infections (1 month prior to sample collection), 
(ii) having disorders affecting diet or physical activity, and (iii) recent 
usage of either antibiotic, prebiotics and probiotics supplements 
(1 month prior to data and sample collection). The enrolled children 
were classified in two groups: active (A) and sedentary (S) on the basis 
of Physical Activity Questionnaire for Older Children (PAQ-C-It 
cut-off score of 2.75), the related procedures are detailed in Lupo et al. 
(27). Parents/guardians and teachers provided written informed 
consent for participation to the study, according to the ethical 
standards provided in the 1964 Declaration of Helsinki. Ethics 
committee on human research of the University of Turin (9 March 
2020: Protocol #134691) and Naples (17 January 2020: Protocol 
#376/19) approved the study. The procedures used to take 
anthropometric measures were described in Lupo et al. (27); briefly, 
stature was measured by a portable stadiometer (Model 214; Seca, 
Hamburg, Germany), body mass was measured by an electronic scale 
(Model 876; Seca, Hamburg, Germany), participants’ waist 
circumference was measured in the standing position, midway 
between the lowest rib and the iliac crest by Ana elastic meter. The 
Body Mass Index (BMI) was calculated as body mass divided by 
height squared (kg/m2).

To estimate the daily food intake, all participants filled the 
questionnaire (3-Days food records). Records were processed using 
Winfood software (Medimatica S.u.r.l., Colonnella, TE, Italy). 
Statistical analysis was performed through a one-way ANOVA 
(Statview software).

2.2. Saliva sample collection and genomic 
DNA extraction

The donor was asked not to eat and not to use oral hygiene 
products 1 h before saliva collection. At least 2 mL of unstimulated 
saliva was collected, put on ice and stored at − 80°C until the analysis. 
DNA was extracted from saliva samples using the MagPurix Bacterial 
DNA Extraction Kit (ZP02006; Zinexts Life Science Corp.) according 
to the manufacturer’s instructions. DNA was quantified using the 
Qubit dsDNA BR and HS assay kit (Life Technologies, CA, 
United States).

2.3. Preparation of the 16S metagenomic 
sequencing library

PCR amplification was conducted to target the hypervariable V3–
V4 regions of the 16S rRNA bacterial genes. Specific primers with 
barcodes and high-efficiency enzymes were used to perform PCR. The 
PCR primers were: forward 341F: CCTAYGGGRBGCASCAG; reverse 
806R: GGACTACNNGGGTATCTAAT. The PCR products of 
450–500 bp were collected with 2% agarose gel electrophoresis. To 
build library, same amount of PCR products from each sample is 
pooled, end-repaired, A-tailed and further ligated with Illumina 
adapters. The library QC was performed with Qubit and real-time 
PCR for quantification and with bioanalyzer to check the insert size 
distribution. Libraries were sequenced on a paired-end Illumina 
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platform to generate 250 bp paired-end raw reads. The raw sequencing 
data are available in Zenodo (https://doi.org/10.5281/zenodo.7920752; 
Publication date: May 10, 2023).

2.4. Bioinformatic analysis and statistics

We used the R platform for statistical analysis and for the data 
processing. We  applied the DADA2 workflow (28) to infer the 
Amplicon Sequence Variants (ASVs) and for the taxonomic  
assignments.

In brief, we first filtered and trimmed raw sequencing reads in 
order to remove low quality bases and adapter contamination. Then, 
we  removed identical reads. Moreover, the reads were denoised, 
merged filtered to remove artifacts (PCR, and PhiX related chimeras). 
We  obtained the ASVs quantifications and assigned taxonomy 
annotations (including the Species level) using the SILVA database of 
non-redundant sequences (version: v138, nr99) (29). The data were 
structured in objects including the ASVs quantifications, the 
taxonomy annotations, the sample group data and the phylogenetic 
tree using the phyloseq and the APE packages (30, 31). Finally, based 
on the initial DNA concentration, we removed possible contaminant 
ASVs by using the “prevalence” method of the decontam package (32).

Downstream analyses were performed using the 
MicrobiomeAnalystR package (33, 34) and included data normalization, 
measures of diversity and differential abundance estimation.

Briefly, we normalized the ASV counts based on their abundance 
(low count filter: for any ASV to be retained, at least 20% of its values 
should contain at least 4 counts) and variance (low variance filter: 
based on Inter-quantile range ± 10%). This, because ASVs with small 
counts (in few samples) could represent sequencing errors. Moreover, 
ASVs that are closely constant in all samples could be excluded from 
the comparative analyses. Finally, we used the total sum scaling in 
order to bring all the samples to the same scale.

We evaluated the alpha-diversity by calculating the Abundance-
based coverage estimator (ACE) and a nonparametric estimator of 
species richness (Chao1) indices and by the Fisher metrics (to 
consider both richness and eveness). The degree to which the species 
composition changes between the two groups (the beta-diversity) was 
obtained by PCoA (Principal Coordinates Analysis) of the distances 
calculated with the un-weighted UniFrac method and the statistical 
significance assessed by the PERMANOVA test.

We also used the rarefaction curves to evaluate whether the 
samples were sufficiently sampled and sequenced to represent their 
species richness. We assessed the statistical significance of comparisons 
between the two groups of samples under study by using the Mann–
Whitney test.

The differential abundance was assessed by the LEfSe (Linear 
Discriminant Analysis Effect Size) algorithm (35) for biomarker 
discovery and interpretation of metagenomics data. It involves the 
Kruskal-Wallis rank sum test to identify features (e.g., Species or 
Genera) with significant differential abundance in the two groups, 
followed by linear discriminant analysis (LDA) to evaluate the 
relevance (the effect size) of the selected features. Different abundant 
features were considered if the FDR adjusted value of p was less than 
or equal to 0.05 and if the Log LDA was greater than or less than 0.5. 
We  used Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt) to assess the 

metabolic potential of microbial communities (KEGG pathways). In 
this analysis, we started from the ASVs belonging to the significant 
genera obtained by LefSE algorithm.

3. Results

3.1. Cohort characteristics

Anthropometric characteristics and eating habits of the children 
enrolled in this study are shown in Table 1. No significant differences 
in individuals’ gender (Chi-square 0.6748; p = 0.411399). 
anthropometric characteristics such as height, weight, BMI and the 
waist/height ratio were observed (p > 0.05). Similarly, no significant 
differences in all diet components analyzed in A and S groups were 
found (Table 1).

3.2. Sequencing reads processing and 
taxonomic assignments

The Illumina sequencing of the hypervariable V3–V4 regions of 
the 16S rRNA bacterial genes generated 2 × 250 bp paired-end reads. 
On average, we  obtained 169.124 reads per-sample 
(Supplementary Figure S1A). Overall, the percentage of bases with 
quality scores above 20 and 30 (Q20 and Q30, respectively) was of 
96.45 and 91.22, respectively (Supplementary Figures S1B,C). The 
percentage of GC nucleotides was of 52.03 
(Supplementary Figure S1D). The set of reads was used to run the 
DADA2 workflow including the filtering and trimming 
(median = 169.02), denoising of forward (median = 165.00) and 
reverse (median = 164.80) reads; merging (median = 149.27) and 
chimeric reads removal (median = 114.43; Supplementary Figure S1E). 
After merging, the median length of reads was of 424 bp. Overall, 
starting from filtered reads, we obtained a merging rate of 88.38% and 
a final rate of read processing (non-chimera over merged reads) of 
67.62% (Supplementary Figure S1F). Details on read processing are 
reported in Supplementary Table S1.

For taxonomic assignments we  used the SILVA database of 
non-redundant sequences (version: v138, nr99). Overall, we could 
identify a total of 14.197 taxa (ASVs) that were annotated to the seven 
taxonomic ranks as follows. All the ASVs were taxonomically assigned 
to the kingdom of bacteria. The 98.06% of the ASVs was annotated at 
the phylum level (43 phyla), the 96.97% at the class level (94 classes), 
the 94.93% at the order level (195 orders), the 88.43% at the family 
level (231 families), the 81.04% at the genus level (404 genera) and the 
4.86% was annotated up to the species level (257 species; 
Supplementary Figure S2A). From the initial set of annotated ASVs, 
we discarded a total of 68 taxa as possible contaminants. Moreover, as 
described in Methods we removed low abundant and low variable 
ASVs to obtain the final set of 472 ASVs that was normalized and used 
for downstream analyses.

3.3. Diversity estimates

At the genus level, alpha-diversity estimates were significantly 
different between the two groups, A and S. Indeed, ACE (Figure 1A), 
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Chao1 (Figure 1B) and Fisher (Figure 1C) indices showed p < 0.01 
(Mann–Whitney test). The beta-diversity analysis, as measured by 
unweighted UniFrac distances, showed a significantly different 
microbial composition between the two groups (r2 = 0.026, p = 0.001; 
Figure 1D), the diversity was also confirmed by using the weighted 
UniFrac distance metric (r2 = 0.018, p = 0.001; Figure  1E). As 
previously reported (36), unweighted and weighted UniFrac distance 
measures can be  considered as quality-based and quantity-based 
indexes, respectively. Indeed, we  can assess that the observed 
variation between the two groups was due to the different taxa 
abundances and to the types of taxa in their microbiome. Moreover, 
the rarefaction analysis clearly evidenced the capacity to capture the 
species richness from the results of sampling and sequencing in both 

groups without any statistically significant difference (p = 0.084; 
Supplementary Figure S2B).

3.4. Abundance estimates

We evaluated and compared the taxa abundance in the final set of 
472 filtered and normalized ASVs. Overall, we identified 8 phyla, 12 
classes, 30 orders, 46 families, 84 genera and 96 species.

At the phylum level, on average, the most abundant bacteria were 
Firmicutes, Bacteroides and Proteobacteria accounting for the 32.08, 
26.97% and the 25.58% of the taxa, respectively 
(Supplementary Figure S3A). The most represented classes were 
Bacteroides (26.97%), Gammaproteobacteria (25.58%) and Bacilli 
(21.36%; Supplementary Figure S3B). The most prevalent orders were 
Bacteroides (26.63%), Lactobacillales (19.58%), Pasteurellales 
(12.88%) and Burkholderiales (12.12%; Supplementary Figure S3C). 
Among the most abundant families, we  found Prevotellaceae 
(23.07%), Streptococcaceae (17.66%), Pasteurellaceae (12.88%) and 
Neisseriaceae (11.77%; Supplementary Figure S3D). At the genus 
level, we  found the Prevotella (19.74%), Streptococcus (17.66%), 
Haemophilus (11.87%), Neisseria (11.57%) and Veillonella (6.06%; 
Figure 2A). Finally, the top abundant species that we were able to 
classify were Prevotella melaninogenica (10.86%), Fusobacterium 
periodonticum (4.44%), Haemophilus parainfluenzae (2.27%), Rothia 
mucilaginosa (2.10%) and Veillonella dispar (1.55%; Figure 2B).

3.5. Differential abundance estimates

As described in Methods, we used the LEfSe algorithm to perform 
the differential abundance analysis and to identify the taxa that could 
explain the differences between the two groups A and S. We set the 
threshold at 5% and the Log LDA cutoff at ± 0.5. Interestingly, using 
these very stringent criteria, we found Coriobacteriaceae family as 
more abundant in the A compared to the S group (LDA score = −3.17; 
FDR = 0.021).

Further, at the genus level, we  found that ten genera were 
responsible for the differences between the two groups. In particular, 
Agathobacter (LDA score = −3.40; FDR = 0.015), Escherichia–Shigella 
(LDA score = −3.37; FDR = 7.68×10-04), Collinsella (LDA 
score = −3.17; FDR = 0.012), Simonsiella (LDA score = −2.95; 
FDR = 0.044), Eubacterium-yurii group (LDA score = −2.79; 
FDR = 0.041) and Parabacteroides (LDA score = −2.43; FDR = 0.015) 
were more abundant in the A group. On the contrary, Mogibacterium 
(LDA score = 2.71; FDR = 9.21×10–04), Stomatobaculum (LDA 
score = 3.24; FDR = 0.44), TM7× (also known as Nanosynbacter lyticus, 
LDA score = 3.90; FDR = 0.045) and Granulicatella (LDA score = 4.14; 
FDR = 0.045) were more abundant genera in the S group (Figures 3A,B; 
Supplementary Table S2). Eight species showed significant differences 
in the LEfSe analysis. Indeed, Prevotella nigrescens (LDA score = −3.76; 
FDR = 1.5 × 10–03), Collinsella aerofaciens (LDA score = −3.17; 
FDR = 7.45 × 10–03), Simonsiella muelleri (LDA score = −2.96; 
FDR = 2.76 × 10–05), Parabacteroides merdae (LDA score = −2.43; 
FDR = 1.3 × 10–02), were the most represented species in the A group. 
Conversely, Gemella parahaemolysans, Prevotella aurantiaca (LDA 
score = −3.9; FDR = 5.27 × 10–04), Prevotella pallens (LDA score = 4.23; 
FDR = 1.93 × 10–02), Neisseria mucosa (LDA score = 4.43; 

TABLE 1 Anthropometric characteristics and eating habits of Active (A) 
and Sedentary (S) children.

Total Active (A) Sedentary (S)

Gender M/F 69/45 33/18 36/27

Age (years) 8–10 8–10 8–10

Anthropometric data

Height (cm) 142.8 ± 7.5 143.5 ± 8.0 142.2 ± 7.0

Weight (kg) 38.7 ± 9.8 38.2 ± 9.3 39.2 ± 10.2

BMI (kg/m2) 18.9 ± 3.8 18.5 ± 3.7 19.2 ± 3.9

Waist/Height (cm) 0.5 ± 0.06 0.45 ± 0.05 0.5 ± 0.06

Eating habits 
(Average daily 
intake)

Active Sedentary

Calories (kcal) 1464.7 ± 284.2 1491.1 ± 281.1

Carbohydrates (%) 48.1 ± 5.8 48.9 ± 6.2

Carbohydrates (g) 188.2 ± 43.8 194.0 ± 43.6

Starch (g) 75.8 ± 27.3 70.8 ± 27.0

Oligosaccharides (g) 50.7 ± 19.6 55.9 ± 18.6

Oligosaccharides/

Carbohydrates (%)

26.7 ± 7.1 29.1 ± 8.7

Lipids (%) 36.1 ± 5.8 36.1 ± 5.5

Lipids (g) 58.5 ± 13.5 59.7 ± 13.7

Saturated fatty acids (g) 14.2 ± 4.6 15.3 ± 4.7

Monosaturated fatty acids 

(g)

18.7 ± 5.6 18.7 ± 6.0

Polysaturated fatty acids 

(g)

4.8 ± 1.4 5.0 ± 1.9

Saturated/ fatty acids (%) 37.4 ± 6.5 39.5 ± 6.3

Cholesterol (mg) 135.6 ± 64.7 144.9 ± 78.9

Proteins (%) 15.5 ± 2.0 15.0 ± 2.2

Proteins (g) 56.9 ± 13.8 55.9 ± 13.7

Animal proteins/Proteins 

(%)

70.6 ± 9.3 72.6 ± 14.1

Vegetal proteins/Proteins 

(%)

29.4 ± 9.3 27.4 ± 14.2

Total fiber/1,000 (kcal) 7.8 ± 3.2 6.8 ± 2.2

Total fiber (g) 11.7 ± 6.2 10.0 ± 3.3

https://doi.org/10.3389/fnut.2023.1226891
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Mancini et al. 10.3389/fnut.2023.1226891

Frontiers in Nutrition 05 frontiersin.org

FDR = 1.31 × 10–02) were more abundant species in the S group (LDA 
score = 2.94; FDR = 7.45×10-03; Supplementary Table S3; 
Figures 3C,D).

3.6. Metabolic pathways reconstruction

PICRUSt analysis highlighted the predominance of super pathway 
of hexitol degradation, L-glutamate degradation VII (to propionate), 
2-methylcitrate cycle II, tetrapyrrole biosynthesis I, L-histidine 
degradation II, superpathway of beta-D-gluconide and D-gluconate 

degradation, biotin biosynthesis I, and L-arginine biosynthesis 
pathways activation in saliva from S compared to A children. 
Conversely, we  found a prevalence of superpathway of fatty acid 
biosynthesis initiation (E. coli) and catechol degradation II (meta-
cleavage pathway) in saliva from A respect to S children (Figure 4).

4. Discussion

The aim of the study was to evaluate the effects of Active or 
Sedentary lifestyle on saliva microbiota composition in Italian 

FIGURE 1

Diversity and distance measures between active (A) and sedentary (S). (A) Alpha-diversity measured by ACE index (p  =  0.0099). (B) Alpha-diversity 
measured by Chao1 index (p  =  0.0097). (C) Alpha-diversity measured by Fisher index (p  =  0.0039). (D) Principal Coordinates Analysis plot of beta-
diversity index measured by unweighted UniFrac distances (p  =  0.001). (E) Principal Coordinates Analysis plot of beta-diversity index measured by 
weighted UniFrac distances (p  =  0.001). (A), B, C, F: Mann–Whitney test. (D), E: PERMANOVA test.
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schoolchildren living in the outskirts of Turin. The participants were 
classified as Active (A) or Sedentary (S) according to the cut-off score 
of 2.75 for PAQ-C-It (27). We evidenced an enrichment of several 
genera, such as Agathobacter, Collinsella, Simonsiella, and 
Parabacteroides in the children’s saliva from A compared to S group. 

Among these, four species were differentially represented: Prevotella 
nigrescens, Collinsella aerofaciens, Simonsiella muelleri, and 
Parabacteroides merdae. Increased abundance of Agathobacter and 
Prevotella at both genus and species levels, was reported in GM of 
cross-country and marathon athletes; although an inverse correlation 

FIGURE 2

Overall taxonomic distribution. The Figure reports the overall abundance of the identified taxa. (A) Genus level. (B) Species level. Each plot shows the 
top ten abundant taxa.
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FIGURE 3

Differently abundant taxa. (A) Dot plot showing the differently abundant genera. (B) Box plots showing the Normalized abundance levels of genera 
reported in panel A. (C) Dot plot reporting the differentially abundant species. (D) Box plots showing the normalized abundance levels of species 
reported in panel C. In panels A and C, the dot size is proportional to the score of the LDA algorithm. The dot graduation color is proportional to the 
significance level as determined by FDR adjustment of Kruskal-Wallis rank sum test p values. A: Active; S: Sedentary.
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was found for Prevotella and sucrose intake and a positive correlation 
for Agathobacter and dietary fiber content (37), we  did not find 
statistically significant differences in all dietary components, including 
fiber content in A compared to S children. Parabacteroides are 
involved in host health promotion by regulating different pathways 
including inflammation, obesity and cancer prevention (38). 
Moreover, recent data suggest an anti-seizure and anti-cancer 
functions for Parabacteroides merdae (39, 40) and increased 
abundance have been also found in the GM of centenarians living in 
East China (41). As no differences in BMI were found between A or S 
children belonging to our cohort, we speculate that the prevalence of 
Parabacteroides merdae in saliva of group A children could 
be associated to the higher level of daily Physical Activity Amounts 
(PAA) when compared to group S. Furthermore, the increased 
abundance of Parabacteroides in group A resulted in the enrichment 
of the superpathway of fatty acid biosynthesis initiation that we found 
by metabolic pathway reconstruction. Of note, Parabacteroides are 
also involved in regulating different processes as carbohydrates 
metabolism and metabolites secretion, including Short Chain Fatty 
Acids (SCFAs) (42, 43) Among them, acetate, propionate, and butyrate 
are the main metabolites produced by several anaerobic bacteria from 
the fermentation of complex starch and dietary fibers. The available 
mechanistic data strongly suggest that SCFAs exert their powerful 
anti-inflammatory, antitumorigenic and even antimicrobial effects in 
the preventing gastro-intestinal dysfunction, obesity and type 2 
diabetes mellitus (44, 45). In line with these evidences, several studies 
several studies conducting in patients with type 1 and type 2 diabetes, 
liver cirrhosis, inflammatory bowel disorders (IBD) and 
atherosclerosis have shown a reduction in the abundance of SCFA-
producing bacteria gut (46, 47). Gut microbiota of athletes have an 
enriched profile of SCFAs, previously associated to a healthier status 
and a lean phenotype (44, 48). In skeletal muscle, SCFAs can 
be oxidized, incorporated into glucose via gluconeogenesis or increase 

the bioavailability of glucose, glycogen and fatty acids during exercise 
(49). Similarly, increased abundance in GM of taxa as Firmicutes and 
Feacalibacterium prausnitzii together with Akkermansia, producing 
butyrate, have been associated to exercise in athletes and non-athletes’ 
controls with improvement in lipid oxidation, healthier profile and 
reduced risk for obesity and metabolic diseases, independently from 
body composition and diet (50–53). Further, similarly to our results, 
the association of a healthier profile with a reduction in Bacteroides 
species together with an increase in R. hominis, A. Muciniphyla and 
F. prausnitzii species have been described in GM from Active 
compared to Sedentary adults (54–56).

In group S we  found an increased abundance of Gemella 
parahemolysan, Prevotella aurantiaca, Prevotella pallens and Neisseria 
mucosa species and of the TM7x genus as compared to group 
A. Notably, previous studies reported the abundance of Neisseria 
mucosa as sixfold higher in obese adolescents compared to normal-
weight controls (57). Suggesting that although the Sedentary children 
are normal-weigh, they present a predictive marker linked to obesity. 
Moreover, Prevotella species, habitually present in the oral 
microbiome, have constant and direct access to the gastrointestinal 
tract via saliva swallowing. Here, they could act as commensals but 
also as potentially harmful agents (58). Furhermore, the group S 
showed an increased abundance of the genus TM7x (also known as 
Nanosynbacter lyticus) which is an obligate epibiont parasite of the 
bacteria Actinomyces odontolyticus (not significantly enriched in our 
data) (59, 60). TM7x have been previously associated to different 
human inflammatory mucosal diseases such as the periodontitis (61). 
Moreover, TM7x have been considered as biomarker of active disease 
in patients with ulcerative colitis (62).

In group S, the metabolic pathway reconstruction highlighted the 
enrichment of L-glutamate degradation and L-arginine biosynthesis 
pathways. Interestingly, the dysregulation of L-glutamate and 
L-glutamine pathways have been associated with poor survival in 

FIGURE 4

Metabolic pathways reconstruction. We used Phylogenetic Inves-tigation of Communities by Reconstruction of Unobserved States (PICRUSt) to 
predict the activity of metabolic pathways (KEGG) starting from the significant genera obtained by LefSE analysis. In red are the pathways enriched in 
the A group. In blue are the pathways enriched in the S group. A: Active; S: Sedentary.
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colon cancer patients (63, 64). L-glutamate signaling triggers oxidative 
and nitrosative stress pathways which are essential for the production 
of ROS that can induce the activation of oncogenes ensuring the 
survival of colon cancer cells (64).

Conversely, the analysis performed with PICRuST on A children’s 
saliva revealed an abundance of fatty acid biosynthesis and catechol 
degradation pathways, in line with previous reports (65). The 
catecholamines are catabolic intermediates of various aromatic 
compounds, which contribute to Acetyl-CoA production. Acetyl-CoA, 
is also crucial for the cross-talk between multiple biological processes 
including, energy storage, membrane biosynthesis, and generation of 
signaling molecules that are produced in response to physiological cell 
processes (66, 67). Consequently, dysregulation of fatty acid synthesis 
can induce or promote disease development (68, 69).

In conclusion, Our results showed that saliva from active children 
had an enrichment of species and genera mainly associated with a 
healthier profile. On the contrary, the genera and the species enriched 
in the saliva from sedentary group could be linked non-communicable 
diseases. Nevertheless, our indirect observations need to be clarified 
by further (and possibly larger) studies aimed at understanding how 
an active lifestyle can modulate the composition of both oral and gut 
microbiota. Moreover, the minimum volume of physical exercise 
required to determine changes in oral microbiota composition 
remains to be assessed.
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