
Co-occurrence of
Beckwith-Wiedemann syndrome
and pseudohypoparathyroidism
type 1B: coincidence or common
molecular mechanism?

Laura Pignata1, Francesco Cecere1, Fabio Acquaviva2,
Emilia D’Angelo1, Daniela Cioffi3, Valeria Pellino3,
Orazio Palumbo4, Pietro Palumbo4, Massimo Carella4,
Angela Sparago1, Daniele De Brasi2, Flavia Cerrato1* and
Andrea Riccio1,5*
1Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF),
Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy, 2UOSD Genetica Medica,
Dipartimento di Pediatria Generale e d’Urgenza, AORN Santobono-Pausilipon, Naples, Italy, 3UOSD
Auxologia e Endocrinologia Pediatrica, Dipartimento di Pediatria Specialistica, AORN Santobono-
Pausilipon, Naples, Italy, 4Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della
Sofferenza”, San Giovanni Rotondo, Italy, 5Istituto di Genetica e Biofisica “Adriano Buzzati Traverso”
Consiglio Nazionale delle Ricerche, Naples, Italy

Imprinting disorders are congenital diseases caused by dysregulation of genomic
imprinting, affecting growth, neurocognitive development, metabolism and cancer
predisposition. Overlapping clinical features are often observed among this group of
diseases. In rare cases, two fully expressed imprinting disorders may coexist in the
same patient. A dozen cases of this type have been reported so far. Most of them are
represented by individuals affected by Beckwith–Wiedemann spectrum (BWSp) and
Transient Neonatal Diabetes Mellitus (TNDM) or BWSp and Pseudo-
hypoparathyroidism type 1B (PHP1B). All these patients displayed Multilocus
imprinting disturbances (MLID). Here, we report the first case of co-occurrence of
BWS and PHP1B in the same individual in absence of MLID. Genome-wide
methylation and SNP-array analyses demonstrated loss of methylation of the
KCNQ1OT1:TSS-DMR on chromosome 11p15.5 as molecular cause of BWSp, and
upd(20)pat as cause of PHP1B. The absence of MLID and the heterodisomy of
chromosome 20 suggests that BWSp and PHP1B arose through distinct and
independent mechanism in our patient. However, we cannot exclude that the rare
combination of the epigenetic defect on chromosome 11 and the UPD on
chromosome 20 may originate from a common so far undetermined
predisposing molecular lesion. A better comprehension of the molecular
mechanisms underlying the co-occurrence of two imprinting disorders will
improve genetic counselling and estimate of familial recurrence risk of these rare
cases. Furthermore, our study also supports the importance of multilocus molecular
testing for revealing MLID as well as complex cases of imprinting disorders.
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1 Introduction

Imprinted genes are autosomal genes preferentially expressed
from one of the two parental chromosomes. This monoallelic and
parent-of-origin expression is due to the presence of differential
DNA methylation between the two parental alleles of cis-acting
elements known as imprinted differentially methylated regions
(iDMRs) (Monk et al., 2019). Dysregulation of imprinted genes
results in a group of congenital diseases (Imprinting Disorders,
ImpDis) characterized by defective pre- and post-natal growth,
neurocognitive development, metabolism, and increased cancer
predisposition (Carli et al., 2020).

The Beckwith–Wiedemann spectrum (BWSp, OMIM 130650)
and Pseudo-hypoparathyroidism type 1B (PHP1B, OMIM 603233)
are ImpDis affecting two clusters of imprinted genes located on
chromosome 11p15.5 and chromosome 20q13, respectively (Monk
et al., 2019).

The clinical diagnosis of BWSp is based on the manifestation of
cardinal features (e.g., macroglossia, exomphalos, lateralized
overgrowth) and suggestive features (e.g., neonatal macrosomia,
facial naevus flammeus, polyhydramnios, ear creases or pits,
abdominal wall defects) (Brioude et al., 2018). The molecular
diagnosis relies on the detection of one of the following defects
affecting the 11p15.5 imprinted locus: loss of methylation (LoM) of
the KCNQ1OT1:TSS-DMR or Imprinting Centre 2 (IC2), found in
50% of cases, mosaic paternal UPD of 11p15 (20%), gain of
methylation (GoM) of the H19/IGF2:IG-DMR or Imprinting
Centre 1 (IC1) (5%–10%), loss of function mutations of the
growth inhibitor CDKN1C (5%), and chromosomal abnormalities
in 11p15.5 (1%–5%) (Brioude et al., 2018). In about one-third of the

BWSp patients with IC2 LoMmethylation defects also affect iDMRs
on other chromosomes, a molecular condition known as Multilocus
imprinting disturbances (MLID) (Bliek et al., 2009; Brioude et al.,
2018).

Diagnostic criteria for MLID have been recently proposed by
Ochoa et al. (2022), according to which MLID is diagnosed when
methylation abnormalities are detected at an ImpDis-associated
iDMR or 2 non-ImpDis-associated iDMR, in addition to the
primary ImpDis-associated epimutation. Methylation changes at
multiple iDMRs due UPD are not considered MLID because of their
genetic origin.”

PHP1B is characterized by end-organ resistance to several
endocrine hormones, including parathyroid hormone (PTH)
leading to hypocalcaemia and hyperphosphatemia, and thyroid
stimulating hormone (TSH) leading to clinical or subclinical
hypoparathyroidism. Occasionally, features of Albright hereditary
osteodystrophy (AHO) are observed (Garin et al., 2015). At the
molecular level, PHP1B is associated with methylation changes of
one or more DMRs of the GNAS cluster, including at least the GNAS
A/B:TSS-DMR. These methylation defects result in absence of
expression of the α-subunit of the stimulatory G protein (Gs-
alpha) involved in hormonal signalling pathway in renal
proximal tubules. In healthy individuals, the GNAS-A/B:TSS-
DMR, GNAS-XL:Ex1-DMR and GNAS-AS1:TSS-DMR are
methylated on the maternal allele, and the NESP:TSS-DMR is
methylated on the paternal allele. Methylation changes at one or
more GNAS DMRs can be caused by inherited deletions, usually
associated with autosomal dominant pattern of inheritance through
maternal lineage or may occur sporadically without evident
underlying genetic abnormality (Mantovani et al., 2018). Around

FIGURE 1
MS-MLPA results. Copy Number [CNVs, (A)] and DNAmethylation (B) of 10 imprinted loci were analysed in PBL of the proband by the ME034-B1 kit.
The mean values of three control subjects were used for the assessment of relative copy number and methylation percentage. The arrows indicate the
methylation defects identified.
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8%–10% of these sporadic cases are caused by paternal UPD of
chromosome 20 [upd(20)pat] and show a paternal-specific
methylation pattern on both alleles of all four GNAS DMRs
(Mantovani et al., 2018). The upd(20)pat may affect either the
long arm [upd(20q)pat] or the entire chromosome 20 (Colson
et al., 2019). So far, 8 cases have been reported with upd(20)pat
extended to the entire chromosome, 6 of which showing isodisomy
and 2 heterodisomy (Fernández-Rebollo et al., 2010; Bastepe et al.,
2011; Colson et al., 2019; Choufani et al., 2021). In another subset of
PHP1B cases, a MLID profile has been identified (Maupetit-
Méhouas et al., 2013). However, the exact prevalence of MLID in
PHP1B is uncertain because very few cohorts of patients have been
screened for MLID so far. Indeed, an incidence of MLID ranging
from 0% to 38% of cases can be found in the few studies reported
(Izzi et al., 2010).

A clinically relevant characteristic of imprinted disorders is the
heterogeneity of the phenotype that in some cases includes atypical
features. This may be caused by the extension of the molecular defect
to loci other than the one typically associated with the disease.
Examples are represented by cases with MLID or UPD, in particular
when the UPD is extended to the whole chromosome or the whole
genome in mosaicism (Eggermann and Prawitt, 2022; Grosvenor

et al., 2022). In rare cases, the full clinical manifestation of two
ImpDis in the same patient has been reported. The diseases most
frequently co-existing with BWSp are Transient Neonatal Diabetes
(TNDM) (Mackay et al., 2006a; Mackay et al., 2006b; Boonen et al.,
2008) and PHP1B (Bakker et al., 2015; Sano et al., 2016; Choufani
et al., 2021). All these cases, including three cases of co-occurrence of
BWSp and PHP1B, displayed MLID.

Here, we describe a further case of co-occurrence of BWS and
PHP1B, in which the molecular mechanisms underlying the two
ImpDis appear to be independent and different from the previously
reported cases.

2 Materials and methods

2.1 DNA extraction

Genomic DNA of the proband and his parents was extracted
from peripheral blood leukocytes (PBL) by the salting-out
procedure, and a NanoDrop spectrophotometer (NanoDrop™
2000c Spectrophotometer, Thermo Fisher Scientific) was used to
determine its concentration.

FIGURE 2
Imprinted DMRs methylation analysis by methylome-array. Methylation of 39 iDMRs analysed by methylome Illumina Epic array on PBL DNA of the
proband (Case) and four unaffected individuals (Controls). The methylation profile of each iDMR was calculated as the mean of covered CpGs across the
region. Only the regions with at least 4 CpGs were selected. The Beta-values are normalized by the mean of the controls (ΔB-values). In the table, the
values exceeding ±3 standard deviation and ±10% of the mean of controls are considered defective and depicted in blue (−) or red (+).
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FIGURE 3
SNP-array analysis on genomic DNA of the proband and his parents. Each of the three panels represents the SNP-array results of chromosome
20 only, indicating the B allele frequency for each SNP. Each point represents a SNP interrogated by “A” + “B” allele probes. Analysis of the allelic
differentiation reveals the genotype: “AA” = 1, “AB” = 0, “BB” = −1.

TABLE 1 Molecular and clinical features of the cases with co-occurrence of BWS and PHP1B.

Case 1 Case 2 Case 3 Proband

Sex F F M M

Clinical features
of BWS

Macrosomia, large umbilical hernia Macroglossia, umbilical hernia,
right hemihyperplasia, transient
neonatal hypoglycemia, postnatal

overgrowth

Macroglossia, macrosomia, large
umbilical hernia, hypoglycemia, ear

crease

Macroglossia, macrosomia
umbilical hernia, hypoglycemia,
chest asymmetry, heterometry of

lower limb

Clinical score of BWS 2 6 6 7

Clinical features of
PHP1B

Hypocalcemia, hyperphosphatemia,
hyperparathyroidemia, PTH
resistance, fatigue, no AHO

Hypocalcemia,
hyperphosphatemia, PTH

resistance, no AHO

Hypocalcemia,
hyperphosphatemia, PTH

resistance, reduced growth velocity,
mild learning disability

Hypocalcemia,
hyperphosphatemia, PTH

resistance, slow development of
language

Methylation defects
at BWS (11p15.5)
and PHP1B
(20q13.32) loci

BWS: LOM-IC2 BWS: LOM-IC2 BWS: LOM-IC2 BWS: LOM-IC2

PHP1B: LOM-AS, XL, A/B PHP1B: LOM-AS, XL, A/B PHP1B: LOM-AS, XL, A/B PHP1B: LOM-AS, XL, A/B

GOM-NESP GOM-NESP GOM-NESP GOM-NESP

(Methylation analysis of IC2 by
methylation-sensitive restriction
digestion, GNAS locus by MS-

MLPA)

(Methylation analysis of multiple
imprinted loci by bisulfite

pyrosequencing and methylome
array)

(Methylation analysis of multiple
imprinted loci by MS-MLPA,
bisulfite pyrosequencing and

methylome array)

(Methylation analysis of multiple
imprinted loci by MS-MLPA and

methylome array)

Further DMRs
affected by
methylation defects
MLID

Not examined LOM-PEG1/MEST, RB1, DIRAS3,
FAM50B

LOM-DIRAS3, PLAGL1 LOM-MCTS2P, NNAT,
L3MBTL1

Not examined Yes Yes NO

PatUPD20 Not examined No patUPiD20 patUPhD20 SNP-array

SNP array SNP-array

Microsatellite analyses Microsatellite analysis

References Bakker et al. (2015) Sano et al. (2016) Choufani et al. (2021) This study
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2.2 Methylation analysis

Methylation-Specific Multiple Ligation-Dependent Probe
Amplification (MS-MLPA) was performed on 50 ng of PBL DNA
by using the SALSA MS-MLPA Probemix ME030-C3 (MRC-
Holland, Amsterdam, Netherlands) to analyze DNA methylation
and CNVs of the 11p15-BWS/SRS region, and the SALSA MS-
MLPA Probemix ME034-B1 to extend the analysis to multiple
imprinted loci. The amplified products were separated by
capillary electrophoresis, employing an ABI 3500 Genetic
Analyzer (Applied Biosystems, Foster City, CA, United States).
Data were analysed using the Coffalyser software (MRC-Holland,
Amsterdam, Netherlands).

Genome-wide methylation analysis was performed on bisulphite
converted PBL DNA of the proband, using the Illumina Infinium
MethylationEPIC BeadChip850 (array 850k). Array data were
analysed using R version 4.1.0. “idat” files were imported and the
beta-values were extracted using the “champ.load” module of the
“ChAMP” R package v.2.22.0. Then, BMIQ normalization was
applied to normalize Type 1 and Type 2 probes employing
“champ.norm” function. Methylation levels of the proband were
compared with 4 unaffected controls, three males aged 18, 8, and
2 years and one female aged 15 years. The effects related to age and
gender were corrected using the “champ.runCombat” function
specifying the conditions as variable name. Similar methylation
values were obtained before and after the correction indicating
that the probes targeting the iDMRs do not show age- or gender-
dependent variability. Values exceeding ±3 standard deviation and
differing at least 10% from average of controls were considered as
abnormal methylation changes.

Methylation array datasets presented in this study can be found
in GEO repository under accession code GSE237676.

2.3 SNP-array

Single Nucleotide Polymorphism-Array (SNP-array) analysis
was carried out on PBL DNA of the proband and his parents
using CytoScan™ HD Array (Thermo Fisher Scientific, Waltham,
MA, United States) and in accordance with the manufacturer’s
instructions. Data were analysed using the Chromosome Analysis
Suite software (ChAS, Thermo Fisher Scientific, Waltham, MA,
United States) version 4.0.

3 Results

3.1 Clinical report

The proband is a 6-year and 6-month-old boy, enrolled at the
Department of Pediatrics of the Santobono-Pausilipon
Children’s Hospital in Naples (Italy) during routine
assessment for macroglossia and umbilical hernia. He is the
fourth child of healthy unrelated Italian parents with
unremarkable family history.

The proband, conceived naturally, was born late preterm by
caesarean section at 34th week of a pregnancy complicated by
placental abruption. Birth parameters were within the normal

range between 25°–50° centile, Apgar score was 6 at 1’/8 at 5’. He
showed episodic/transient hypoglycemia, hypocalcaemia and
hyaline membrane disease type 1 during the perinatal period.
From 2 months of age, he underwent endocrinologic surveillance
for subclinical hypothyroidism, which was treated with L-thyroxine.

BWS was suspected—and then molecularly confirmed—at
3 months of age due to the clinical history and to the evidence of
macroglossia and umbilical hernia. At 3 years, a mild global
developmental delay was observed. The patient underwent a
program of speech and psychomotor therapy that allowed to
completely resolve this problem. Physical assessments over the
years report normal-to-high centile parameters for weight and
height (both around 90–97°ct), head circumference within the
median values (M), mild chest asymmetry (left side > right side),
and mild heterometric lower limbs in length (0.7 cm left > right) and
thigh circumference (~2 cm left > right). According to Brioude et al.
(2018), the BWS clinical score of the patient was estimated to be 7.

Up to 5 years of age, endocrinological parameters were within
normal ranges. Afterwards, mild hypocalcemia and
hyperphosphatemia with elevated PTH levels suggestive of PTH
resistance were detected. A second evaluation confirmed these data
and suggested further investigation including molecular testing for
Pseudo-hypoparathyroidism type 1B (PHP1B), which confirmed the
clinical suspicion. Supplemental calcium and activated forms of
vitamin D treatment was ensured, with normalization of Ca/P
metabolism (see Supplementary Table S1).

3.2 Molecular analysis

The first molecular diagnosis was obtained in infancy by MS-
MLPA using the Probemix ME030 BWS/SRS, that revealed LoM
of IC2. A second molecular diagnosis was obtained in childhood
by MS-MLPA using the Probemix ME034-B1 Multi-locus. Copy
number was normal, but methylation analysis revealed severe
LoM of GNAS-A/B:TSS-DMR, GNAS-XL:Ex1-DMR, GNAS-AS1:
TSS-DMR, and severe GoM of GNAS-NESP:TSS-DMR, in
addition to the IC2 LoM, consistent with positive diagnoses of
both BWS and PHP1B (Figure 1). To investigate if further
imprinted loci were affected, the methylation status of
39 iDMRs was determined by employing the Illumina
Infinium EPIC methylation array. The methylome results
confirmed the MS-MLPA results and revealed further
methylation defects in all the iDMRs of chromosome 20 but
no methylation changes in the iDMRs located on the other
chromosomes. In particular, complete LoM was detected at
the MCTS2P:TSS-DMR, NNAT:TSS-DMR and L3MBTL1:alt-
TSS-DMR that are all maternally methylated DMRs
(Figure 2). These findings were suggestive of upd(20)pat. To
corroborate this hypothesis, a SNP-array analysis was performed
on genomic DNA of the proband and his parents. The analysis of
the proband DNA showed the presence of a long region of copy-
neutral loss of heterozygosity (or isodisomy) extending for the
entire chromosome 20 except for the telomeric part of the short
arm that showed heterodisomy for about 6 Mb (Figure 3). The
parental DNAs revealed that both copies of the proband’s
chromosome 20 were of paternal origin (Supplementary
Table S2).
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In conclusion, the molecular analysis revealed IC2 LoM at
11p15.5 and paternal heterodisomy of chromosome 20
(patUPhD20) demonstrating the presence of molecular defects
causative of both BWS and PHP1B in our patient. Moreover,
detection of 39 iDMRs did not reveal any methylation change in
iDMRs other than those of chromosome 11p15 and chromosome
20. Thus, although two ImpDis-associated loci were involved, the
criteria for the definition of MLID were not met as the methylation
change of one of two affected loci was secondary to a genetic lesion.

4 Discussion

The co-existence of two ImpDis is a rare but not negligible
phenomenon that is usually associated with MLID. Three cases of
BWS and PHP1B co-occurrence have been described so far, all of
them related to MLID. We report and discuss here the fourth case of
BWS/PHP1B co-occurrence showing pathogenetic mechanisms of
disease different from the previously reported cases.

LoM of the 11p15.5 IC2 andGNAS loci with no evidence of UPD
were found in two of the three previously reported cases (case 1 and
case 2 in Table 1), suggesting that the two ImpDis have arisen as
consequence of MLID (Bakker et al., 2015; Sano et al., 2016). In the
third case (case 3 in Table 1), the methylation defects at 11p15.5 and
20q13.32 appear to arise independently, as consequences of MLID
(together with additional loci such as the ImpDis-associated iDMR
PLAGL1) and paternal isodisomy of the whole chromosome 20
(patUPiD20), respectively (Choufani et al., 2021).

Differently from all the above-mentioned cases, LoM occurs
only at the 11p15.5 IC2, and differently from case 3 the paternal
UPD of the whole chromosome 20 is a heterodisomy rather than
an isodisomy in our patient. Whole-chromosome UPiD and
UPhD result from different mechanisms (Eggermann et al.,
2015). While patUPiD is mainly the product of zygotic
monosomy rescue by endoduplication of the paternal
chromosome, patUPhD results from trisomy rescue by loss of
the maternal chromosome. Therefore, patUPiD rescues an
aneuploidy originated during maternal gametogenesis
(nullisomic oocyte) and patUPhD rescues an aneuploidy
originated during paternal gametogenesis (disomic sperm).
Instead, the mosaic form of IC2 LoM indicates its occurrence
as post-zygotic event in all cases. It is intriguing that such rare
events may occur independently in the same individual. MLID has
been associated with either maternal or zygotic gene variants
(Eggermann et al., 2022; Pignata et al., 2022). Because most of
the chromosome 20 is completely isodisomic in case 3 and mostly
isodisomic in our patient (Figure 3), it is possible that a recessive
mutation unmasked by the isodisomy may interfere with
maintenance of imprinted methylation in both cases 3 and 4.
Thus, although the most probable hypothesis is the independent
etiology of UPD20 and IC2 LoM, it is not possible to exclude that
these two rare events are interconnected. Although, a direct link
between GNAS and IC2 is lacking, a few studies have provided
evidence for common regulatory mechanisms. For instance, the
two zinc-finger proteins ZFP57 and ZFP445 are able to bind both
DMRs and maintain their methylation on the maternal allele, as
Zfp57/Zfp445 zygotic inactivation result in their loss of
methylation in mouse and in human embryonic stem cells

(Quenneville et al., 2011; Takahashi et al., 2019). Also, a meta-
analysis of micro-array data reveals that genes of both the IC2 and
GNAS loci are members of an imprinted gene network controlling
embryonic growth in mice (Varrault et al., 2006).

Despite the different molecular mechanisms underlying the
four cases of co-occurrence of BWS and PHP1B described so far,
their clinical features appear similar and resulting from the sum
of BWS-specific and PHP1B-specific characteristics (Table 1). In
particular, macrosomia and umbilical hernia were present in all
the 4 cases, macrosomia and hypoglycemia in three of them,
lateralized overgrowth in two. Mild intellectual disability affected
only the cases with pat(20)upd suggesting that additional loci of
chr 20 may be involved in the etiology of this clinical feature. As
the previously reported cases, our patient did not experience
hypocalcemic tetany or seizures, but differently from them,
PHP1B was diagnosed at the age of 5 years and not during
adolescence.

In conclusion, this study describes the first case of co-existence
of BWSp and PHP1B not associated with MLID. We found
11p15.5 IC2 LoM as molecular cause of BWSp, and paternal
UPhD20 as cause of PHP1B. As the former is a postzygotic
epigenetic defect and the latter occurs as zygotic trisomy rescue
by loss of maternal chromosome 20, the most obvious interpretation
is that the two ImpDis have distinct and independent etiologies in
our patient. However, further studies will tell if the mechanisms
causing the epigenetic defect and the UPD may possibly be
interconnected, which may explain why they occurred in the
same individual. Moreover, our study adds further evidence to
the importance of multilocus molecular testing in ImpDis to
reveal not only MLID profiles but also complex combinations of
imprinted defects, particularly in the cases with atypical clinical
presentations.
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