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The influence of angiopoietin-
like protein 3 on macrophages
polarization and its effect on
the podocyte EMT in
diabetic nephropathy
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1Department of Pediatrics, Shanghai Fourth People’s Hospital, Tongji University School of Medicine,
Shanghai, China, 2Department of Nephrology, Children’s Hospital of Fudan University,
Shanghai, China, 3Department of Nephrology, Chongqing University Three Gorges Hospital,
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Background: Podocyte injury, which involves the podocyte epithelial-

mesenchymal transition (EMT) process, is a crucial factor contributing to the

progression of diabetic nephropathy (DN) and proteinuria. Our study aimed to

examine the protective properties of Angiopoietin-like protein 3 (Angptl3)

knockout on podocyte damage and macrophage polarization in DN mice and

podocytes treated with HG. Furthermore, we also sought to investigate the

underlying molecular mechanism responsible for these effects.

Methods: DN was induced in B6;129S5 mice through intraperitoneal injection of

40 mg/kg of streptozotocin (STZ). Subsequently, the changes in renal function,

podocyte apoptosis, inflammatory factors (tumor necrosis factor-a [TNF-a],
interleukin-6 [IL-6], and interleukin-1b [IL-1b]), IL-10, TGF-b1, IL-1Ra, IL-10Ra,
and nephrin were evaluated. Moreover, we investigated the mechanism

underlying the role of Angptl3 in macrophages polarization, podocyte injury,

podocyte EMT.

Results: Our findings revealed that Angptl3 knockout significantly attenuated

STZ or HG-induced renal dysfunction and podocyte EMT. In both in vivo and in

vitro studies, Angptl3 knockout led to (1) promote the transformation of M1 type

macrophages into M2 type macrophages; (2) amelioration of the reduced

expression of nephrin, synaptopodin, and podocin; (3) inhibition of NLRP3

inflammasome activation and release of IL-1b; and (4) regulation of a-SMA

expression via the macrophage polarization. (5) After HG treatment, there was

an increase in pro-inflammatory factors and foot cell damage. These changes

were reversed upon Angptle knockdown.

Conclusion: Our study suggests that the knockout of Angptl3 alleviates

podocyte EMT and podocyte injury by regulating macrophage polarization.
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1 Introduction

Diabetic nephropathy (DN) is an increasingly prevalent disease

worldwide, leading to end-stage renal disease and imposing a

significant economic burden on society (1). Although the

pathogenesis of DN is not entirely clear, recent studies suggest the

involvement of immunity and inflammation in its development (2–

4). While DN is not a typical immune complex-mediated renal

disease, under diabetic stress, kidney intrinsic cells produce pro-

inflammatory cytokines and chemokines, promoting immune

response and recruitment of macrophages and mast cells (5). This

leads to the activation of complement, amplification of the innate

immune response, infiltration of inflammatory cells and mast cells in

renal tissue and causing inflammatory injury and fibrosis of the

kidney. This results in the decline of the glomerular filtration rate of

renal function (6). Animal and cell studies indicate that adaptive

immune cells are also involved in the process of kidney injury

induced by diabetes (7). A better understanding of immune

disorders and inflammatory responses is crucial in the development

of new strategies for the diagnosis and treatment of DN.

Macrophages are innate immune cells that have a central role in

modulating the inflammatory response against infections (8). These

cells can differentiate depending on the stimuli they receive and are

classified into two types: classic activated (M1) or alternatively activated

(M2) macrophages (9). The classic activation pathway can be initiated

by bacterial components, such as lipopolysaccharides (LPS), IFN-g, and

granulocyte macrophage colony-stimulating factor (GM-CSF), which

promote a pro-inflammatory phenotype, increasing the secretion of

cytokines (TNF-a, IL-1b, IL-6, IL-12, and IL-18), and antimicrobial

activity by producing reactive oxygen species (ROS), nitric oxide (NO),

and antimicrobial peptides (10, 11). On the other hand, M2 is activated

in response to IL-4 and IL-13, promoting an anti-inflammatory

response by expressing high levels of IL-10 and transforming growth

factor b (TGF-b), initiating tissue repair (12).
Angiopoietin-like protein 3 (Angptl3) is a secreted glycoprotein that

plays a crucial role in the regulation of angiogenesis, stem cell

proliferation, insulin resistance, lipid metabolism, and tumors (13–15).

Its role in renal diseases, however, remains unclear. Our previous studies

demonstrated that Angptl3 knockout effectively delayed the formation of

glomerulosclerosis by reducing podocyte detachment and apoptosis (16–

18). However, the mechanism of Angptl3 in regulating podocyte injury

in STZ-induced DN mice and HG-treated podocytes is still unknown.

Based on the above studies, we hypothesize that Angptl3

knockout may alleviate podocyte EMT by promoting polarization

from M1 to M2, thereby attenuating STZ-induced diabetic renal

injury. This study aims to investigate the protective effects of Angptl3

knockout on renal injury and podocyte damage in DNmice and HG-

treated podocytes while also identifying its molecular mechanism.
Abbreviations: EMT, epithelial–mesenchymal transition; DN, diabetic

nephropathy; Angptl3, angiopoietin-like protein 3; HG, high glucose; NLRP3,

NOD-like receptor family pyrin domain containing 3; IL-1b, Interleukin-1b;

STZ, streptozotocin; a-SMA, alpha smooth muscle actin; TGF-b1, transforming

growth factor b1; TEM, Transmission Electron Microscopy; PAS, Periodic Acid-

Schiff; HE, hematoxylin-eosin; MPC-5, Mouse podocyte clone-5; IHC,

Immunohistochemistry.
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Our findings support the scientific basis for Angptl3 as a new target

for the prevention of DN-related renal injury and podocyte damage.
2 Materials and methods

2.1 Diabetes induction

The Angptl3-/- mice were mated with two Angptl3+/- mice and

their genotypes were identified through PCR analysis, as previously

described. Estrogen, a female hormone, has been reported to have a

protective effect against diabetic renal injury (19), while male mice are

more susceptible to STZ-induced diabetes and associated kidney

damage compared to female counterparts (20). Research on

regulatory effects of inflammatory response has demonstrated

specific impacts of estrogen, rather than androgen (21). For these

reasons, male mice were chosen for the experiment and were divided

into four groups: control, DN, DN+Angptl3-/-, and Angptl3-/-, and

were fed either standard (10% fat calories) or high-fat (60% fat

calories) diets for 8 weeks. Mice in the DN groups (DN+Angptl3-/-

and DN) were induced with daily intraperitoneal injections of STZ

(40 mg/kg in 0.1 M sodium citrate buffer) for five days. Non-DN

groups (control and Angptl3-/-) received equivalent amounts of

citrate buffer. Mice with blood glucose levels greater than 16.7

mmol/L five days following the final STZ injection were considered

successful models and were included in the experiment. Urine

samples were collected at four and eight weeks following STZ

injection, and blood samples and kidneys were gathered at eight

weeks following injection for additional experimentation.
2.2 Histopathological and
morphological analysis

At the end of the 8th week, the kidneys were harvested, fixed in

4% paraformaldehyde, and paraffin-embedded prior to being

sectioned into 4mm slices. These slices were then stained using

Masson and Periodic Acid-Schiff (PAS) staining techniques (22).

Liver and pancreatic specimens also embedded in paraffin were 4 mm
sectioned and stained with hematoxylin-eosin (HE) for examination.

The Schmidt scoring system was used to classify and measure the

histopathological changes in the pancreas, such as inflammation,

edema, vacuolation, hemorrhage, and necrosis (23).
2.3 Bone marrow derived macrophages
and cell culture

The femurs were dissected and the ends of the bone were cut. Bone

marrow-derived macrophages (BMDM) were obtained by washing the

bone marrow with sterile PBS and incubating with R20/30 medium for

seven days. The R20/30 medium was prepared by mixing 50% RPMI-

1640 medium, 20% Fetal Bovine Serum (FBS), and 30% L929 cell

conditioned medium (LCCM). A fresh medium was added on the

fourth day. After seven days, the macrophages were collected using ice-

cold PBS, centrifuged at 1500 rpm for 5 minutes at 4°C, and then
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1228399
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2023.1228399
suspended in RPMI-1640 medium, LCCM, and FBS. The final

composition of the suspension was 85% RPMI-1640 medium, 5%

LCCM and 10% FBS. Cell counts were determined using trypan blue.

The final suspension volume containing 1x106 cells per mL was

distributed into four wells, 2 mL per well, for a total of 2x106 cells

per well, and then incubated at 37°C and 5% CO2 for cell adhesion.

After 12 hours of the incubation period, cells were primed with 100 ng/

mL of LPS (Sigma-Aldrich, Saint Louis, Missouri, EUA) for 4 hours

and 20 µM of Nigericin (Sigma-Aldrich, Saint Louis, Missouri, EUA)

for 30 minutes. Subsequently, cells were cultured in a standard glucose

concentration of 5.5 mM and a high glucose concentration of 25 mM

using RPMI-1640 medium (Gibco® by Life Technologies,

ThermoFisher Scientifific, Waltham, Massachusetts, EUA) and

stimulated with LPS at 100 ng/mL concentration.
2.4 Transmission electron microscopy

Mouse kidney cortex slices were fixed first in 2.5% glutaraldehyde

and 1% osmic acid for 2 hours, followed by overnight incubation at 4°

C. After fixation, the samples were dehydrated, soaked in ethoxy resin

overnight, and finally incubated at 60 °C for 48 hours. Ultrathin

sections of 70 nm or more were obtained using an ultramicrotome

and observed under an H-7500 transmission electron microscope (24).
2.5 Cell culture

The MPC-5 mouse podocyte cell line was obtained from

Shanghai Fuheng Bio-technology Co., Ltd. (Shanghai, China).

MPC-5 cells were cultured in complete RPMI1640 medium

supplemented with 100 U/ml of penicillin/streptomycin, 10%

FBS, and 10 U/ml of mouse interferon-g and amplified at 33°C.

To induce podocyte differentiation, cells were incubated at 37°C for

10-14 days after removal of mouse interferon-g (25).
2.6 Treatment of MPC-5 cells
and co-culture

Based on the given information, it seems that the experiment

involves studying the effects of IL-1b and IL-10 secretion by

different macrophage types (M1 and M2) on EMT (epithelial-

mesenchymal transition) in podocytes. The role of Angptl3 in

regulating macrophage polarization and its involvement in

inducing podocyte EMT is also being investigated.

To conduct the experiment, podocytes are differentiated for 10-

14 days before being exposed to different conditions for 48 hours.

The different conditions include a control group with normal

glucose levels, a mannitol group (as an osmotic control), a high

glucose group, a high glucose group with siRNA-Angptl3 treatment,

and a siRNA group with a scrambled sequence. After 48 hours of

exposure to these conditions, the cells are harvested for further

experiments to ascertain the effects of IL-1b secretion byM1 and IL-

10 secretion by M2 on EMT in podocytes. Additionally, the role of

Angptl3 in inducing podocyte EMT by regulating macrophage
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polarization is studied by pre-processing BMDM and dividing

them into four groups. The four groups are the same as those in

the previous experiment, i.e., a control group with normal glucose

levels, a high glucose group, a high glucose group with siRNA-

Angptl3 treatment, and a siRNA group with a scrambled sequence.

Co-cultivation of MPC-5 and BDMD is done using transwells in

this experiment. It is possible to further elaborate on the specific

methods and techniques used in each experiment, including cell

culture conditions, transfection protocols, and assays employed to

measure EMT, Angptl3 expression, and macrophage polarization.
2.7 Immunofluorescence

Kidney tissue samples, 4 micrometers in thickness, were subject to

deparaffinization and subsequent antigen retrieval processes. Renal

sections were blocked with 10% bovine serum albumin for an hour at

room temperature, as previously published in (26). The sections were

incubated with a series of primary antibodies overnight at 4°C. These

included anti-synaptopodin, anti-a-SMA, anti-NLRP3, anti-podocin,

anti-TNF-a, anti-IL-1b, anti-IL-1Ra, anti-TGF-b1, anti-IL-10Ra, and
anti-IL-10, each used at a dilution of 1:100. The primary antibodies

were purchased from Proteintech, AiFang Biological, and Servicebio.

MPC-5 cells were first washed thrice with PBS and fixed in 4%

paraformaldehyde for 30 minutes. The cells were then washed thrice

with cold PBS and permeabilized for 30 minutes using 0.3% Triton X-

100. Next, 10% BSA was used to block the cells for an hour.

Subsequently, the cells were incubated with primary antibodies,

including anti-nephrin, anti-synaptopodin, anti-a-SMA, anti-

desmin, anti-NLRP3, anti-IL-1b, anti-TGF-b1, and anti-IL-10, each

used at a dilution of 1:100. These primary antibodies were obtained

from Servicebio, proteintech, and AiFang Biological. Following

primary antibody incubation, the cells were treated with secondary

antibodies. Eventually, fluorescent images were captured using a

fluorescence microscope, specifically the FV3000 Olympus model.
2.8 Statistical analysis

For statistical analyses, Graph prism 9.0 was utilized. Normally

distributed data was analyzed using the Student t-test and c2 test,

while non-normally distributed data was analyzed with the Kruskal

Wallis post-hoc analysis. The threshold for statistical significance

was set to a p value of less than 0.05.
3 Results

3.1 Angptl3 knockout attenuated M1
macrophage polarization

The production of Interleukin-1b (IL-1b) and Tumor Necrosis

Factor-alpha (TNF-a) was significantly increased in the glomeruli of

diabetic nephropathy (DN) mice. However, the production of these

cytokines was reduced upon Angiopoietin-like protein 3 (Angptl3)

knockout (refer to Figures 1A–X for more details). The Angptl3
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knockout mice did not exhibit any statistically significant difference

compared to the control group (refer to Figures 1Y, Z for more details).

3.2 Angptl3 knockout induced M2
macrophage polarization

Double-labeled immunofluorescence staining showed a

significant reduction in the expression of Interleukin-10 (IL-10)

and Transforming Growth Factor-beta1 (TGF-b1) in wild-type

mice treated with streptozotocin (STZ) (refer to Figures 2A–Z for
Frontiers in Immunology 04
details). Protein expression levels of IL-10 and TGF-b1 were not

significantly different between the control group and the Angptl3-/-

group. Therefore, Angptl3 may not have a critical role in regulating

the expression of these inflammatory markers.

3.3 There are targets for IL-1b
and IL-10 on podocytes

Double-labeled immunofluorescence staining showed a

significant upregulation in the expression of Interleukin-1
FIGURE 1

Angptl3 knockout attenuated M1 macrophage polarization. The figure illustrates the fluorescence intensity of IL-1b and TNF-a in each treatment
group (A-X), the expression of IL-1b was evaluated using the immunohistochemistry technique (A-L) and the fluorescence quantification results are
shown in (Y, Z). (scale bars: 50 mm for A-X). The sample size was four, and statistical analysis revealed significant differences (**P<0.01, ***P<0.005,
****P<0.001) between the treatment groups.
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receptor antagonist (IL-1Ra) and downregulation in the expression

of Interleukin-10 receptor alpha (IL-10Ra) in wild-type mice treated

with STZ (refer to Figures 3A–Z for details). However, no

statistically significant differences in the protein expression levels

of IL-1Ra and IL-10Ra were observed between the Angptl3-/- group

and the control group. Thus, it appears that Angptl3 does not

significantly modulate the expression of these receptors.
Frontiers in Immunology 05
3.4 The pathological changes in the
glomerulus of STZ-induced DN mice were
improved with Angptl3 knockout

Glomerular capillaries of mice from the control and

Angptl3-/- groups exhibited transparency, as shown in

Figures 4A, D. Importantly, diabetic mice had more significant
FIGURE 2

Angptl3 knockout induced M2 macrophage polarization. The distribution of IL-10 (red channel) and CD206 (green channel) in the kidney tissue was
visualized using immunofluorescence (A–H, respectively), and the merged images of IL-10 and CD206 are presented in I-L. The immunoreactive
figures of TGF-b1 and CD206 were presented in (M–P). The bar graphs (Y, Z) show the quantitative analyses of IL-10 and TGF-b1 protein expression
levels in each group. The sample size for the study was four, and significant differences (*P<0.05, ***P<0.005, ****P<0.001) between treatment
groups were confirmed by statistical analysis. The scale bars for (A–X) were 50 mm.
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morphological damage in their glomeruli than the DN+Angptl3-/-

group, as indicated by increased glomerular-capsule adhesions

and greater capillary collapse (refer to Figures 4B, C).

Additionally, the DN+Angptl3-/- group showed reduced

collagen fiber content after undergoing Masson and PAS

staining compared to the DN group (refer to Figures 4E–N).

Consequently, these results demonstrate the protective effect of

Angptl3 knockout against diabetic kidney injury (DKI).
Frontiers in Immunology 06
3.5 Angptl3 knockout provided
protection against podocyte injury
in STZ-induced DN mice

The investigation aimed to determine the role of Angptl3 in

podocyte damage in DN mice by assessing the expression levels of

three podocyte markers (nephrin, synaptopodin, and podocin) in kidney

tissues of each group. Immunofluorescence and Immunohistochemistry
FIGURE 3

There are targets for IL-1b and IL-10 on podocytes. The distribution of nephrin (red channel) and IL-1Ra (green channel) in the kidney tissue was
visualized using immunofluorescence (A–H, respectively), and the merged images of nephrin and IL-1Ra are presented in I-L. The immunoreactive
figures of nephrin and IL-10Ra were presented in (M–P). The bar graphs (Y, Z) show the quantitative analyses of IL-1Ra and IL-10Ra protein
expression levels in each group. The sample size for the study was four, and significant differences (**P<0.01, ***P<0.005) between treatment
groups were confirmed by statistical analysis. The scale bars for (A–X) were 50 mm.
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(IHC) analyses demonstrated significant decreases in nephrin, podocin

and synaptopodin expression levels in glomeruli of DN mice compared

to controls. Moreover, a subsequent increase in the DN+Angptl3-/- mice

was observed as presented in Figures 5A–O. In contrast, the expression

levels of nephrin, synaptopodin, and podocin did not significantly

decrease in the Angptl3-/- mice as opposed to the control mice, as

illustrated in Figures 5A, E, I, D, H, L. Control mice displayed intact and

non-fused foot processes. On the other hand, DN mice showed intense

fusion and effacement of foot processes, as shown in Figures 5P–S.

Notably, Angptl3 knockout significantly improved the ultrastructure of

podocytes in DN mice in terms of clear and intact foot processes with
Frontiers in Immunology 07
negligible fusion, as illustrated in Figure 5Q. Angptl3-/- mice exhibited

no notable alteration in podocyte ultrastructure as depicted in Figure 5S

when compared to the control group.
3.6 Angptl3 knockout mitigated podocyte
EMT in STZ-induced DN mice

The expression of Nephrin was assessed by Immunohistochemistry.

Results showed decreased Nephrin expression in the DN group, while

the Angptl3 knockout group exhibited improved expression, as
FIGURE 4

Angptl3 knockout protected the renal pathological changes of glomerulus in STZ-induced DN mice. The study includes several assessments to
evaluate the effects of the treatment on glomerulus tissues. Hematoxylin and Eosin (HE) to detect steatosis, edema, ballooning degeneration (A-D).
PAS staining was used to examine the glomerulus under an inverted fluorescence microscope, while Masson staining was implemented to assess the
degree of collagen deposition in each group (E-H). The ratio of glomerular matrix area to glomerular area (M/G%) was calculated to determine the
extent of matrix expansion (M). Collagen area percentage was also computed to quantify the severity of fibrosis (I-L, N). The sample size for this
experiment was four, and the scale bars for (A–L) were 50 mm. *P<0.05, **P<0.01.
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presented in Figures 6A–D.Angptl3 knockout had an inhibitory effect on

podocyte epithelial-mesenchymal transition (EMT) in mice with STZ-

induced DN.DN mice exhibited reduced expression levels of Nephrin

protein and elevated levels of a-SMA protein compared to control mice.

Conversely, Angptl3 knockout was able to counter these changes in

diabeticmice, as depicted in Figures 6E–N.Angptl3-/- mice did not show

notable Nephrin reduction nor significant elevation in a-SMA

expression levels. The results imply that Angptl3 knockout can be

effective in preventing podocyte EMT in diabetic mice.
Frontiers in Immunology 08
3.7 In vitro, siRNA-Angptl3 promoted the
activation of M2-type macrophages

Fluorescence intensities of IL-10 and TGF-b1 in the HG group

were significantly reduced when compared to the control group.

The effect of HG was dampened by the knockdown of Angptl3, as

revealed by Figures 7A–X. The expression levels of IL-10 and TGF-

b1 in the siRNA group were not significantly different from those in

the control group, as portrayed in Figures 7Y, Z.
FIGURE 5

Angptl3 knockout protected podocyte injury in STZ-induced DN mice. The immunofluorescence technique was used to visualize the distribution of
nephrin (red channel, A-D), podocin (green channel, E-H), and synaptopodin (green channel, I-L) in the kidney tissue. The fluorescence
quantification results are shown in (M-O). The ultrastructural changes in podocytes were assessed using electron microscopy, and the obtained
images (10,000×) are presented in (P-S). The sample size was four, and statistical analysis revealed significant differences (**P<0.01, ***P<0.005,
****P<0.001 between the treatment groups. The scale bars for (A–L) and EM were 50 mm and 1 mm, respectively.
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3.8 siRNA-Angptl3 promotes M2
transformation and inhibits podocyte EMT
by inhibiting the NLRP3 pathway

The co-culture of BDMD with MPC5 diminished the impact of

siRNA-Angptl3 on HG-induced podocyte injury, as depicted in

Figures 8A–Z. HG notably upregulated the protein expression

levels of desmin, a-SMA, and NLRP3, whereas their levels in HG-

treated podocytes reduced significantly with siRNA-Angptl3, in

comparison to the control group. We established an

overexpression-Angptl3 group to elucidate the regulation of NLRP3

pathway on the expressions of a-SMA and desmin. The effectiveness

of siRNA-Angptl3 was ameliorated upon the inclusion of NLRP3

inhibitor (MCC950, 10nm), whereas the converse was the case with

overexpression-NLRP3, as presented in Figures 8A–Z. Thus, our

findings imply that the NLRP3 signaling pathway mediates podocyte

injury and podocyte EMT induced by siRNA-Angptl3.
Frontiers in Immunology 09
4 Discussion

Angptl3 is a novel factor with varying expressions and functions in

different diseases; however, its role in kidney diseases has been seldomly

reported. Previous studies have shown that Angptl3 participates in

podocyte loss induced by adriamycin, lipopolysaccharide, and

puromycin aminonucleosides (PAN). Despite this, Angptl3’s role in

the progression of DN has not been completely understood (27). This

study found that Angpt1 genetic ablation improved podocyte injury,

podocyte EMT, and M1 to M2 conversion by regulating the NLRP3

signaling pathway in DN mice. These results provide a new immune

mechanism for diabetic kidney injuries and suggest that Angptl3 may

be a potential preventive target for improving diabetes-related renal

injuries and delaying the progression of chronic kidney diseases.

When the biological process of EMT occurs, epithelial cells

transdifferentiate into mesenchymal cells, promoting pathologic

fibrosis. In this process, the expressions of podocyte-specific
FIGURE 6

Angptl3 knockout rescued nephrin expression and inhibited a-SMA expression in renal tissue in STZ-induced DN mice. The study evaluated the
protein expression levels of nephrin, desmin, and a-SMA in different groups, and the results are presented in (M, N). The expression of nephrin was
evaluated using the immunohistochemistry technique (A-D). The distribution of SMA (red channel) and desmin (green channel) in glomerulus was
visualized using the immunofluorescence technique (E-H and I-L, respectively). Bar graphs (M, N) show the quantitative analyses of a-SMA and
desmin protein levels in each group. Statistical analyses showed significant differences (**P<0.01, ***P<0.005, ****P<0.001) between the treatment
groups. The sample size was four, and the scale bars for (A–L) were 50 mm.
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markers, nephrin and podocin, are inhibited, whereas the

expressions of mesenchymal markers, such as a-SMA and

desmin, are elevated. This leads to the loss of the podocytes’

phenotype and their junction ability, resulting in hyperglycemia-

mediated proteinuria. Podocyte EMT is a contributing factor to DN,

renal fibrosis, and pathologic end-stage renal disease. This study

found that HG-induced podocyte EMT in diabetic kidneys is

characterized by increased expressions of mesenchymal a-SMA
Frontiers in Immunology 10
and desmin and decreased expressions of nephrin and podocin,

contributing to renal fibrosis. Moreover, Angptl3 knockout reversed

the pathologic damage (28, 29). Hence, Angptl3 can be proposed as

a novel preventive target for attenuating podocyte EMT and

pathologic renal injuries in DN.

NLRP3 inflammasome activation is responsible for HG-

induced podocyte injury, according to Qiu et al. Earlier studies

suggested that NLRP3 reduction or deficiency could inhibit renal
FIGURE 7

In vitro, Angptl3 promoted the activation of M2-type macrophages. The fluorescence intensities of IL-10 and TGF-b1 in each treatment group are
presented in (A–L, M–X). The quantitative analyses of IL-10, and TGF-b1 levels in each group are displayed as bar graphs (Y, Z). The sample size was
four, and statistical analysis revealed significant differences (**P<0.01, ***P<0.005, ****P<0.0001) between the treatment groups. The scale bars for
(A-X) were 50 mm.
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inflammation and fibrosis in DN mice (30). When stimulated with

HG, NLRP3 can form a multi-protein complex and interleukin-1

converting enzyme Caspase-1, which results in Caspase-1

activation. The activated Caspase-1 contributes to the secretion

and maturation of IL-1b (31, 32), triggering the inflammatory

cascade responses and renal injury. Therefore, the inhibition of

the NLRP3 inflammasome can ameliorate DN-related podocyte

injury and glomerulosclerosis. This study confirmed that NLRP3

inflammasome activation and increased expression of IL-1b
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participated in podocyte injury induced by HG. Angptl3

knockout inhibited the NLRP3 inflammasome and IL-1b
secretion, as our previous research showed in lipopolysaccharide-

induced podocyte injury. Similarly, in this study, Angptl3 knockout

inhibited NLRP3 inflammasome and IL-1b secretion, thereby

attenuating HG-induced podocyte injury and podocyte EMT.

Hence, Angptl3 knockout’s ability to ameliorate podocyte injury

and glomerulosclerosis in DN may be partially due to its anti-

inflammatory action.
FIGURE 8

siRNA-Angptl3 promotes M2 transformation and inhibits podocyte EMT by inhibiting the NLRP3 pathway. In vivo, the knockout of Angptl3 yielded
favorable outcomes by alleviating glomerulosclerosis and preventing podocyte EMT. This was achieved through the activation of the NLRP3
inflammasome in mice subjected to STZ-induced diabetes. In contrast, in vitro experiments revealed that the downexpression of Angptl3 in high
glucose conditions decreased podocyte EMT which helped to curb the NLRP3 pathway (A-Z). The scale bars for (A–X) were 50 mm. *P<0.05,
**P<0.01, ***P<0.005, ****P<0.001.
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When cultivated in a hyperglycemic medium, BMDM secreted

a significantly increased amount of TNF-a, but the expression of IL-
6 was reduced, according to a study (33). Tessaro et al. reported that

macrophages from various regions in diabetic animals have a

dysregulated response when stimulated by LPS, impairing

inflammation control (34–36). Our research found that M1

macrophages activated and released IL-1b and TNF-a under high

glucose conditions. After adding siRNA-Angptl3, M2 macrophages

increased and expressed IL-10 and TGF-b. We explored whether

IL-10 played a mediating role in the podocytes EMT of injured

podocytes, then blocked the IL-10 receptor and inhibited its

expression. Inhibiting IL-10 significantly inhibited the EMT effect

of HG, indicating that IL-10 was an important mediator inhibiting

EMT of injured podocytes in HG. Increased IL-10 secretion from

M2 cells due to siRNA-Angptl3 inhibited podocyte damage by

inhibiting NLRP3 and promoting M1 to M2 transformation.

Furthermore, our research showed that siRNA-Angptl3 reduces

podocyte damage by inhibiting NLRP3 and promoting M1 to

M2 transformation.
5 Conclusion

In summary, this study confirms that Angptl3 knockout is

important for improving podocyte EMT in DN. It may protect

against HG-induced podocyte EMT by promoting M1 to M2

polarization. These findings deepen understanding of the

immunity mechanism of podocyte damage in DN and suggest

that Angptl3 is a novel preventive target for HG-induced

podocyte injury.
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