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Conventional dimensionality reduction methods like Multidimensional Scaling
(MDS) are sensitive to the presence of orthogonal outliers, leading to
significant defects in the embedding. We introduce a robust MDS method,
called DeCOr-MDS (Detection and Correction of Orthogonal outliers using
MDS), based on the geometry and statistics of simplices formed by data points,
that allows to detect orthogonal outliers and subsequently reduce dimensionality.
We validate our methods using synthetic datasets, and further show how it can be
applied to a variety of large real biological datasets, including cancer image cell
data, human microbiome project data and single cell RNA sequencing data, to
address the task of data cleaning and visualization.
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1 Introduction

Multidimensional scaling (MDS) is a commonly used and fast method of data
exploration and dimension reduction, with the unique capacity to take non-euclidean
dissimilarities as its input. However, sensitivity to outliers is a major drawback (Harmeling
et al., 2005; Blouvshtein and Cohen-Or, 2019). As arbitrary removal of outliers is
undesirable, a possible alternative is to detect outliers and accommodate their influence
on the MDS embedding, thus leveraging the information contained in outlying points.

Outlier detection has been widely used in biological data. Sheih and Yeung proposed a
method using principal component analysis (PCA) and robust estimation of Mahalanobis
distances to detect outlier samples in microarray data (Shieh and Hung, 2009). Chen et al.
reported the use of two PCA methods to uncover outlier samples in multiple simulated and
real RNA-seq data (Oh et al., 2008). Outlier influence can be mitigated depending on the
specific type of outlier. In-plane outliers and bad leverage points can be harnessed using ℓ1-
norm (Spence and Lewandowsky, 1989; Cayton and Dasgupta, 2006; Forero and Giannakis,
2012), correntropy or M-estimators (Mandanas and Kotropoulos, 2017). Outliers which
violate the triangular inequality can be detected and corrected based on their pairwise
distances (Blouvshtein and Cohen-Or, 2019). Orthogonal outliers are another particular
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case, where outliers have an important component, orthogonal to
the hyperspace where most data is located. These outliers often do
not violate the triangular inequality, and thus require an alternative
approach.

Although MDS is known to be sensitive to such orthogonal
outliers (Song et al., 2007; Legrand, 2017), none of the existing
methods addresses this issue, to the best of our knowledge. We
present here a robust MDS method, called DeCOr-MDS, Detection
and Correction of Orthogonal outliers using MDS. DeCOr-MDS
takes advantage of geometrical characteristics of the data to reduce
the influence of orthogonal outliers, and estimate the dimension of
the dataset. Our paper is organized as follows. We first describe the
procedure and its implementation in detail. We then validate our
method on synthetic data to confirm the accuracy and characterize
the importance of different parts of our procedure. We further run
the method on different experimental datasets from single cell
images, microbiome sequencing data, and scRNA-seq data. Our
experiments show that DeCOr-MDS can detect artefacts in cell
shape data, improve the visualization of clusters in microbiome
data, and be used as a step for quality control for scRNA-seq data,
illustrating how it can be broadly applied to interpret and improve
the performance of MDS on biological datasets. Finally, we discuss
the advantages and limitations of our method and future
directions.

2 Materials and methods

2.1 Background: height and volume of
n-simplices

We recall some geometric properties of simplices, which our
method is based on. For a set of n points (x1, . . . , xn), the associated
n-simplex is the polytope of vertices (x1, . . . , xn) (a 3-simplex is a
triangle, a 4-simplex is a tetrahedron and so on). The height h(Vn, x)
of a point x belonging to a n-simplex Vn can be obtained as
(Sommerville, 1929)

h Vn, x( ) � n
Vn

Vn−1
, (1)

where Vn is the volume of the n-simplex, and Vn−1 is the volume of
the (n − 1)-simplex obtained by removing the point x. Vn and Vn−1

can be computed using the pairwise distances only, with the Cayley-
Menger formula (Sommerville, 1929):

Vn �
����������
|det CMn( )|
2n · n!( )2

√
, (2)

where det(CMn) is the determinant of the Cayley-Menger matrix
CMn, that contains the pairwise distances di,j � ‖xi − xj‖, as

CMn �

0 1 1 . . . 1 1
1 0 d2

1,2 . . . d2
1,n d2

1,n+1
1 d2

2,1 0 . . . d2
2,n d2

2,n+1
. . . . . . . . . . . . . . . . . .
1 d2

n,1 d2
n,2 . . . 0 d2

n,n+1
1 d2

n+1,1 d2
n+1,2 . . . d2

n+1,n 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

2.2 Orthogonal outlier detection and
dimensionality estimation

We now consider a datasetX of sizeN × d, whereN is the sample
size and d the dimension of the data. We associate withX a matrixD
of size N × N, which represents all the pairwise distances between
observations of X. We also assume that the data points can be
mapped into a vector space with regular observations that form a
main subspace of unknown dimension d* with some small noise,
and additional orthogonal outliers of relatively large orthogonal
distance to the main subspace (Figure 1A). Our proposed
method aims to infer from D the dimension of the main data
subspace d*, using the geometric properties of simplices with respect
to their number of vertices: Consider a (n + 2)-simplex containing a
data point xi and its associated height, that can be computed using
Eq. 1 in Section 2.1. When n < d* and for S large enough, the
distribution of heights obtained from different simplices containing
xi remains similar, whether xi is an orthogonal outlier or a regular
observation (see Figure 1B). In contrast, when n ≥ d*, the median of
these heights approximately yields the distance of xi to the main
subspace (Figure 1C). This distance should be significantly larger
when xi is an orthogonal outlier, compared with regular points, for
which these distances are tantamount to the noise.

To estimate d* and for a given dimension n tested, we thus
randomly sample, for every xi in X, S(n + 2)-simplices containing xi,
and compute the median of the heights hni associated with these S
simplices. Upon considering, as a function of the dimension n tested,
the distribution of median heights (hn1 , . . . , hnN) (with 1 ≤ i ≤ N), we
then identify d* as the dimension at which this function presents a
sharp transition towards a highly peaked distribution at zero. To do
so, we compute ~hn, as the mean of (hn1 , . . . , hnN), and estimate d* as

�n � argmax
n

~hn−1
~hn

. (4)

Furthermore, we detect orthogonal outliers using the
distribution obtained in �n, as the points for which h�n

i largely
stands out from ~h�n. To do so, we compute σ �n the standard
deviation observed for the distribution (h�n

1 , . . . , h
�n
N), and obtain

the set of orthogonal outliers O as

O � i | h�n
i > ~h�n + c × σ �n{ }, (5)

where c > 0 is a parameter set to achieve a reasonable trade-off
between outlier detection and false detection of noisy observations.
Our implementation uses c = 3 by default (following the three σ rule
Pukelsheim (1994), and which corresponds to ~ 99.9% of a
Gaussian distribution being conserved), value which was also
used in our experiments. In case users possess prior information
or want to control the fraction of detected outliers, the value of cmay
be modified, with increasing c making the detection stricter. Also
note that ourmethod introduces another parameter S, as it samples S
simplices to calculate the median of the corresponding heights.
Therefore, S should be large enough so the resulting sample median
well approximates the global median. Assuming the heights being
sampled from a continuous distribution, this can be guaranteed as
the sample median is asymptotically normal, with mean equal to the
true median and the standard deviation proportional to 1�

S
√ (Rider,

1960).
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2.3 Correcting the dimensionality estimation
for a large outlier fraction

The method presented in the previous section assumes that at
dimension d*, the median height calculated for each point reflects
the distance to the main subspace. This assumption is valid when the
fraction of orthogonal outliers is small enough, so that the sampled
n-simplex likely contains regular observations only, aside from the
evaluated point. However, if the number of outliers gets large
enough so that a significant fraction of n-simplices also contains
outliers, then the calculated heights would yield the distance
between xi and an outlier-containing hyperplane, whose
dimension is larger than a hyperplane containing only regular
observations. The apparent dimensionality of the main subspace
would thus increase and generates a positive bias on the estimate
of d*.

Specifically, if X contains a fraction of p outliers, and if we
consider on,p,N the number of outliers drawn after uniformly
sampling n + 1 points (to test the dimension n), then on,p,N
follows a hypergeometric law, with parameters n + 1, the fraction
of outliers p = No/N, and N. Thus, the expected number of outliers
drawn from a sampled simplex is (n + 1) × p. After estimating �n

(from Section 2.2), and finding a proportion of outliers �p � |O|/N
using Eq. 5, we hence correct �n a posteriori by substracting the
estimated bias δ, as the integer part of the expectation of on,p,N, so the
debiased dimensionality estimate n* is

n* � �n − ⌊ �n + 1( ) × p⌋. (6)

2.4 Outlier distance correction

Upon identifying the main subspace containing regular
points, our procedure finally corrects the pairwise distances
that contain outliers in the matrix D, in order to apply a MDS
that projects the outliers in the main subspace. In the case where
the original coordinates cannot be used (e.g., as a result of some
transformation or if the distance is non Euclidean), we perform
the two following steps: 1) We first apply a MDS onD to place the
points in a euclidean space of dimension d, as a new matrix of
coordinates ~X. 2) We run a PCA on the full coordinates of the
estimated set of regular data points (i.e., ~X\O), and project the
outliers along the first �n* principal components of the PCA, since

FIGURE 1
Example of a dataset with orthogonal outliers and n-simplices. (A) Representation of a dataset with regular data points (blue) belonging to a main
subspace of dimension 2 with some noise, and orthogonal outliers (red triangle symbols) in the third dimension. (B) View of two instances of 3-simplices
(triangles), onewith only regular points (left) and the other one containing one outlier (right). The height drawn from the outlier is close to the height of the
regular triangle. (C) Upon adding other regular points to obtain tetrahedrons (4-simplices), the height drawn from the outlier (right) becomes
significantly larger than the height drawn from the same point (left) as in (B).

FIGURE 2
Application of DeCOr-MDS on a cross dataset. (A) Original cross dataset. The points selected to be orthogonal outliers are highlighted in red. (B)
MDS embedding of the original data with an outlying component added to the selected points. (C) MDS embedding after preprocessing using DeCOr-
MDS. Note that after correction, we recover the original cross structure.
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these components are sufficient to generate the main subspace.
Using the projected outliers, we accordingly update the pairwise
distances in D to obtain the corrected distance matrix D*. Note
that in the case where D derives from a euclidean distance
between the original coordinates, we can skip step 1), and
directly run step 2) on the full coordinates of the estimated set
of regular data points.

2.5 Overall procedure and implementation

The overall procedure, called DeCOr-MDS, is described in
Algorithm 1. The values for the parameters S and c were set by
default and in our experiments to S = 100 and c = 3. We also
provide an implementation in Python 3.8.10 available on this
github repository: https://github.com/wxli0/DeCOr-MDS.

Input D the pairwise distance matrix of the dataset of

size N × d, Edim the set of dimensions (≤d) to be tested, c

and S user-specified constants

Output �n* the relevant dimension of the dataset, O the

list of orthogonal outliers, and D* the matrix of

corrected pairwise distances

for n in Edim do

for i in [1,N] do

for j in [1,S] do

Sample a (n + 2)-simplex Vi,j containing xi
Compute the height (using D and Eq.

1) h(j,n)
i ≔ hj

i(Vi,j,xi)
end for

hn
i ≔ median(h(1,n)

i ,h(2,n)
i , . . . ,h(S,n)

i )
end for
~hn ≔ mean(hn

1 ,h
n
2, . . . ,h

n
N)

σ(n) ≔ std(hn
1,h

n
2 , . . . ,h

n
N)

end for

�n ≔ arg max
n

~hn−1
~hn

O ≔ i | h�n
i > ~h�n + c × σ �n{ }

p≔|O|/N

�n* � �n − �(�n + 1) × p�
(Skip if using original coordinates) Apply a MDS on D to

create an euclidean space of dimension d, resulting ~X

Apply a PCA on ~X\O to get the main subspace of

dimensionality �n

for outlier i in O do

Project xi on the main subspace, and correct the

coordinates of xi in ~X

end for

Recompute the pairwise distance matrix D* from ~X.

return �n*, O and D*

Algorithm 1. DeCOr-MDS.

The complexity of the algorithm can be briefly evaluated as follows.

1. Given one n-simplex, the volume computation has a complexity
ofO(n3). Since we compute the height for S simplices and repeat
the process for all Edim dimensions, the total complexity of this
step amounts to O(SNn3Edim),

2. The complexity of PCA over the regular data points
is O(Nd × min(N, d) + d3),

3. The complexity of MDS over the pairwise distance matrix D
is O(N3),

4. The computation of the corrected distances matrix is O(dN2).

Note that with the tested dimensions being smaller than the data
dimension (n, Edim < d), and the number of simplices being
significantly smaller than the total number of data points (S ≪
N), the burden of evaluating the simplices (step 1) and correcting
outliers (step 4) is in practice less than the cost of the PCA (step 2)
and MDS (step 3).

2.6 Datasets

2.6.1 Synthetic datasets
The “cross” dataset (Spence and Lewandowsky, 1989), which is a

two-dimensional dataset representing a simple cross structure (Figure 2)
was generated withN = 25 points, and d* = 2.We introduced orthogonal
outliers by randomly sampling three points and by adding a third
coordinate of random amplitude to them. Other synthetic datasets
were generated by sampling Gaussian-distributed coordinates in the
main subspace, and adding some small noise in the whole space with
variance between 0.0001 and 0.0003. A fraction p of the points was
considered to define the orthogonal outliers, with coordinates modified
by randomly increasing the coordinate(s) orthogonal to the plane; the
amount increased is drawn from a uniformdistribution between−30 and
30 or -100 to 100. These datasets were generated for a main subspace of
dimension 2, 10 and 40, with p = 0.05 andN = 200 for dimension d* = 2,
p = 0.05 and N = 1000 for dimension d* = 10, and p varying between
0.02 and 0.1 for d* = 40, andN = 1, 000. For all the synthetic datasets, the
pairwise distance matrix was calculated using the Euclidean distance.

2.6.2 Cell shape dataset
The cell shape dataset contains mouse osteosarcoma 2D imaged

cells (Alizadeh et al., 2019), that were processed into a 100 × 2 vector of
coordinates that define the cell shape contour, used as a test dataset in
the Python package Geomstats (Miolane et al., 2020) (for more details,
see also (Miolane et al., 2021) and the associated Github link).Wemore
specifically considered the subset of “DUNN” cells (that denotes a
specific lineage) from the control group (no treatment on the cells),
which yields 207 cells in total. The pairwise distance matrix of all cell
shapes was obtained from the same reference (Miolane et al. (2020;
2021)) using the so-called Square Root Velocitymetric that derives from
the L2 distance between velocities of the curves (Srivastava et al., 2010).

2.6.3 HMP dataset
The Human Microbiome Project (HMP) (Turnbaugh et al., 2007)

dataset represents the microbiome measured across thousands of
human subjects. The human microbiome corresponds to the set of
microorganisms associated to the human body, including the gut flora,
or the skin microbiota. The data used here corresponds to the
HMP1 phase of clinical production. The hypervariable region v13 of
ribosomal RNA was sequenced for each sample, which allowed to
identify and count each specific microorganism, called phylotype. The
processing and classification were performed by the HMP using
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MOTHUR, and made available as low quality counts (https://www.
hmpdacc.org/hmp/HMMCP/) (Turnbaugh et al., 2007). We
downloaded this dataset, and subsequently, counts were filtered and
normalized as previously described (Legrand, 2017). For our analysis,
we also restricted our dataset to samples collected in nose and throat.
Samples and phylogenies with less than 10 strictly positive counts were
filtered out (Legrand, 2017), resulting in an n × p-matrix where n = 270
samples and p = 425 phylotypes. Next, the data distribution was
identified with an exponential distribution, by fitting its rate
parameter. Normalization was then achieved by replacing the
abundances (counts) with the corresponding quantiles. Lastly, the
matrix of pairwise distances was obtained using the Euclidean distance.

2.6.4 scRNA-seq dataset
The scRNA-seq dataset contains single-cell transcriptomic

profiles from mouse pancreatic cells (raw count data accession
number: GSE84133), which were first processed using standard
quality control methods from McCarthy et al. (2017). From the
gene count matrix, which originally contained 1,886 cells with
13,357 genes, we focused on the cells from Mouse 2, yielding
1,063 cells with 13,357 genes. We further lognormalized the data
(Luecken and Theis, 2019) and selected highly variable genes using
scanpy package (Wolf et al., 2018). This procedure resulted in a
normalized gene count matrix of 1,603 cells with 2,601 genes. To
obtain a matrix of pairwise distances, we used the Euclidean distance.

3 Results

3.1 Using n-simplices for orthogonal outlier
detection and dimensionality reduction

Wepropose a robustmethod to reduce and infer the dimensionality
of a dataset from its pairwise distance matrix, by detecting and
correcting orthogonal outliers. The method, called DeCOr-MDS, can
be divided into three sub-procedures detailed in Sections 2.2–2.4, with
the overall algorithmprovided in Section 2.5. Thefirst procedure detects
orthogonal outliers and estimates the subspace dimension using the
statistics of simplices that are sampled from the data, using Eqs 4, 5. The
second procedure corrects for potential bias in estimated dimension
when the fraction of outlier is large. The third procedure corrects the
pairwise distance of the original data, by replacing the distance to
orthogonal outliers by that to their estimated projection on the main
subspace. In the next sections, we report the results obtained upon
running the procedure on synthetic and various biological datasets, that
demonstrate the performance and accuracy of the method. For all these
experiments, we also reported the runtime in Supplementary Table S1,
showing how the method can be used in practice with reasonable time
on experimental datasets (less than 10 min in our workstation, with
x86_64 CPU, 132 GB RAM and 447 GB disk storage).

FIGURE 3
Application of DeCOr-MDS on a synthetic dataset with a main subspace of dimension 10. (A) Distribution of median heights per data point xi as a
function of the tested dimension n. (B) Dimensionality inference based on the ratio of median heights (red curve, see also Eq. 1), with the optimal ratio
(black curve) found for the true dimension 10. (C) Shepard diagram comparing the pairwise distances between regular points and outliers that are
projected to the main subspace (true δij), with the same distances obtained after directly running MDS on the original pairwise distance matrix (red
dots), or after correcting these distances using our procedure (black dots).

FIGURE 4
Application of DeCOr-MDS on a dataset with a main subspace of
dimension 40: Dimension correction effect versus the fraction of
outliers. The vertical axis represents the remaining bias between the
inferred and actual dimensions, before and after bias correction.
After correction, the differences between the estimated dimensions
and the true dimension are always closer to 0 regardless of the fraction
of outliers.
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3.2 Performance on synthetic datasets

We first illustrate and evaluate the performance of the method on
synthetic datasets, (for a detailed description of the datasets and their
generation, see the Methods Section 2.6). On a simple dataset of points
forming a 2D cross embedded in 3D (Figure 2A), we observed that the
MDS is sensitive to the presence of orthogonal outliers and distorts the
cross when reducing the data in 2D (Figure 2B). In contrast, our procedure
recovers the original geometry of the uncontaminated dataset, with the
outliers being correctly projected (Figure 2C). The same results were
obtained when sampling regular points from a 2D plane
(Supplementary Figure S1). We further tested higher dimensions, and
illustrate in Figure 3A how the distribution of heights becomes
concentrated around 0, when testing for the true dimension (d* = 10),
as suggested in the Methods Section 2.2. As a result, our method allows to
infer the main subspace dimension from Eq. 4, as shown in Figure 3B. In
addition, the procedure accurately corrects the pairwise distances to
orthogonal points with the distances to their projections on the main
subspace, as shown in Figure 3C.

When the dimension of the subspace and fraction of outliers get
significantly large, we also illustrate the importance of the correction step
(see Methods Section 2.3), due to the sampling of simplices that contain
several outliers. Upon using synthetic datasets with d* = 40 and varying the
number (fraction) of outliers from 20 (2%) to 100 (10%), we observe this
bias appearing before correction, with d* being overestimated by 2 or
3 dimensions (Figure 4). Using the debiased estimate n* from Eq. 6
successfully reduced the bias,with an error ≤ 1 for all the parameters tested.

3.3 Application to cell shape data

We further show how DeCOr-MDS can be broadly applied to
biological data, ranging from images to high throughput sequencing.
We first studied a dataset of single cell images, from osteosarcoma

cells (see Figure 5A), which were processed to extract from their
contour a 100 × 2 array of xy coordinates representing a
discretization of a closed curve (see Dataset Section 2.6). We
obtained a pairwise distance matrix on this set of curves by using
the so-called Square Root Velocity (SRV) metric, which defines a
Euclidean distance on the space of velocities that derive from a
regular parameterization of the curve (Srivastava et al., 2010;
Miolane et al., 2020). Using DeCOr-MDS, we found a main
subspace of dimension 2 (Figure 5B), with 14 (7%) outliers
detected among the 207 cells of this dataset. The comparison
between the resulting embedding and that obtained from a
simple MDS is shown in Supplementary Figure S2, and reveals
that outliers, when uncorrected, affect the embedding coordinates,
while our correction mitigates it. By examining in more details the
regular and inferred outlier cells (Figure 5C, with all cell shapes
shown in Supplementary Figure S3), we found regular observations
to approximately describe elliptic shapes, which is in agreement with
the dimension found, since ellipses are defined by 2 parameters. One
can also visually interpret the orthogonal outliers detected as being
more irregular, with the presence of more spikes and small
protusions. Interestingly, the procedure also identified as outliers
some images containing errors, due to bad cropping or segmentation
(with 2 cells shown instead of one), which should thus be removed of
the dataset for downstream analysis.

3.4 Application to HMP data

As another example of application to biological data, we next
considered a dataset from the Human Microbiome Project (HMP).
The Human Microbiome Project aims at describing and studying
the microbial contribution to the human body. In particular, genes
contributed by microbes in the gut are of primary importance in
health and disease (Turnbaugh et al., 2007). The resulting data is an

FIGURE 5
Application of DeCOr-MDS on a cell shapes dataset. (A) An example of osteocarcoma cell image obtained from fluorescence microscopy. We
process and extract the cell contour in our analysis. (B) Dimensionality inference of the dataset obtained from 207 cell shapes using DeCOr-MDS. We
estimate the dimension of the main subspace n* = 2. The red line shows the median of heights and the black curve shows the heights median ratios
between hn−1 and hn. (C) Examples of cell shapes, including regular cells (in black), and orthogonal outliers detected. Among these outliers, we
highlight cell shapes that are likely to be invalid due to segmentation errors (in blue), with the other outliers shown in red.

Frontiers in Bioinformatics frontiersin.org06

Li et al. 10.3389/fbinf.2023.1211819

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1211819


array which typically contains the abundance of different elements
of the microbiome (typically 102–103), denoted phylotypes,
measured in different human subjects. To analyze such high
dimensional datasets, dimensionality reduction methods
including MDS (often denoted Principal Coordinates Analysis
PCoA), are typically applied and used to visualize the data
(Brooks et al., 2018; Trevelline and Kohl, 2022; Zhou et al., 2022).

To assess our method incrementally, we restricted first the
analysis to a representative specific site (nose), yielding a
136 × 425 array that was further normalized to generate
Euclidean pairwise distance matrices (see Material and Methods
Section 2.6 for more details). Upon running DeCOr-MDS, we
estimated the main dimension to be 3, with 9 (6.62%) orthogonal
outliers detected, as shown in Figure 6A. This is also supported by
another study that the estimated dimension of HMP dataset is 2 or 3

(Tomassi et al., 2021). We also computed the average distance
between these orthogonal outliers and the barycenter of regular
points in the reduced subspace, and obtained a decrease from
1.21 when using MDS to 0.91 when using DeCOr-MDS. This
decrease suggests that orthogonal outliers get corrected and
projected closer to the regular points, to improve the
visualization of the data in the reduced subspace, like in our
experiments with the synthetic datasets (Figure 2 and
Supplementary Figure S2). In Figure 6B, we next aggregated data
points from another site (throat) to study how the method performs
in this case, yielding a 270 × 425 array that was further normalized to
generate Euclidean pairwise distance matrices. As augmenting the
dataset brings a separate cluster of data points, the dimension of the
main dataset was then estimated to be 2, with 13 (5%) orthogonal
outliers detected, as shown in Figure 6B. The average distance

FIGURE 6
Application of DeCOr-MDS on HMP dataset. (A): Structure restituted on 3 axes usingMDS (left) and our procedure (right) using data from the nose
site. The points marked with cross represent orthogonal outliers detected byDeCOr-MDS, which are also put closer to regular points after correction. (B)
Same comparison as in (A) using data from nose and throat. The two clusters formed by nose and throat have a better separation using DeCOr-MDS.
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between the projected outliers and the barycenter of projected
regular points are approximately the same when using MDS
(1.46) as when using DeCOr-MDS (1.45) for nose, and are also
approximately the same when using MDS (1.75) to when using
DeCOr-MDS (1.74) for throat. This decrease also suggests that
orthogonal outliers get corrected and projected closer to the
regular points.

3.5 Application to scRNA-seq data

We further evaluated DeCOr-MDS on single cell RNA-seq
(scRNA-seq) data. In general, analyzing scRNA seq data requires
dimensionality reduction for visualization (including MDS-based
methods Canzar et al. (2021); Senabouth et al. (2019)), and specific
quality control procedures to mitigate various technical artifacts
McCarthy et al. (2017); Luecken and Theis (2019). We applied our
method as a potentially relevant tool for this purpose. We applied
DeCOr-MDS first on a dataset containing the expression level of
1063 cells for 2,601 genes (detailed in Methods Section 2.6). We
found the dimension of the main subspace to be 3, with 77 (7%)
outliers detected. In Figures 7A,B, we compared the embeddings in
3D using MDS and DeCOr-MDS. Similarly to the previous
experiments, the mean distance between the orthogonal outliers
and barycenter of regular points in the reduced subspace decreases
when using DeCOr-MDS (from 4.22 to 2.51), improving the
visualization of regular points. In Figure 7C, we further examined
the drop-out rates (indicating zero count for a given gene) of the
cells among the top 500highly expressed genes, determined by the
median of counts per gene. Among these highly expressed genes, we
identified 97.4% of the detected outliers that have drop-out rates
greater than 0.95, while this was the case for 27.4% of the regular
cells. Upon performing a pairwise t-test on the total counts for the
top 500 highly expressed genes from the outlier group and the
regular cell group, we found that the total counts are significantly
different between the two groups (p-value < 0.001). Therefore, our
method led to detect some outliers associated with high drop-out
counts for highly expressed genes, which were not captured by the

standard processing and quality control methods used in the first
place.

4 Discussion

We proposed DeCOr-MDS, a novel approach using geometric
characteristics to detect dimension, and to correct orthogonal outliers in
high dimensional space. That is, to the best of our knowledge, the first
statistical tool that addresses the challenge of the presence of orthogonal
outliers in high dimensional space. We validated the method using
synthetic datasets and demonstrated its potential applications to analyze
biological datasets, including cell shape data, count arrays frommicrobiome
data and scRNA-seq data. The visualization and numerical comparison
confirmed that DeCOr-MDS effectively detects dimensionalities in many
instances, corrects orthogonal outliers, and demonstrates superior
performance to classical dimension reduction methods.

The notion of simplices is used frequently with the aim of
robustness, either to detect the coreness of data [data depth and
multivariate median, Liu (1990); Aamari et al. (2021)], or to detect
outlying features [detection of extreme directions, Meyer and
Wintenberger (2021)]. Simplices can also be used to build a
flexible network of points for informative visualization
(McInnes et al., 2018). Outlier detection and accommodation
have been addressed by a wide array of methods, which can be
broadly divided into three categories: 1) robust metrics (Spence
and Lewandowsky, 1989; Cayton and Dasgupta, 2006; Oh et al.,
2008; Shieh and Hung, 2009; Forero and Giannakis, 2012), 2)
robust estimation (Mandanas and Kotropoulos, 2017), or 3)
exploiting the characteristics of outliers (Forero and Giannakis,
2012; Blouvshtein and Cohen-Or, 2019). Our method resorts to
both (3) by using the geometry of data, and 1) by using the median
as centrality estimator. Our method also aims at estimating
dimension. A common approach to do so is the screeplot (or
elbow) test in principal components analysis, where a notable drop
in the proportion of variance (or distance) explained can be taken
as a cutoff, and as the most relevant dimension. High-dimensional
biological datasets challenge this strategy, because fine-scale

FIGURE 7
Application of DeCOr-MDS on the scRNA-seq dataset. Structure restituted on 3 axes usingMDS (A), and usingDeCOr-MDS (B). The red points in (A)
and (B) are outliers detected by DeCOr-MDS. The blue points are regular points. (C) Violin plot for the drop-out rates for the scRNA-seq dataset, for the
top 500 highly expressed genes. Drop-out rates for outliers detected by DeCOr-MDS are shown in red.
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structure confounds in practice downstream analyses. Because of
this, authors often use an arbitrary large set of 10, or sometimes
20 or 50 components (Astle and Balding, 2009; Barfield et al., 2014;
Demmitt et al., 2017; Sakaue et al., 2020; Arciero et al., 2021; Deng
et al., 2021). Power analyses based on simulations also provide a
way to assess an adequate number of components (Barfield et al.,
2014). In this work, we proposed an alternative approach, by
exploiting the structure of the dataset to determine essential
versus non-essential dimensions.

Limitations of DeCOr-MDS include the non-automated choice of
the cutoff parameter c. This parameter sets the maximum tolerated
number of standard deviations σ before a point is considered an
outlier. A value for c = 3, which corresponds approximately to the
0.1%most extreme points in a Gaussian distribution, may be selected,
for instance. Dimension detection is also imperfect for heterogeneous
datasets where the distribution of regular points (e.g. with distant
clusters may prevent the height criterion for outlier detection to be
effective. In this case a possible solution would be to first perform a
clustering analysis (for instance k-means) to assess if the distance
between clusters is comparable with the distance between the outlier
and the main subspace, and if that’s the case separately perform our
method on each cluster. There are various potential directions to
improve the dimension detection in real datasets of high dimension.
Thismay be achieved by studying the behaviour of the Cayley-Menger
determinant, which is central in the procedure, in higher dimensions.
One may also associate the height criterion with a distribution
criterion (Legrand, 2017), which would be sensitive to clusters or
other notable structure, as was apparent in the HMP dataset. Another
beneficial improvement would be to reduce computing time, for
instance by implementing a parallelized version or using a call to a
compiled program. Finally, one could optimize the cutoff parameter c
automatically, either through a hyperparameter search, or by using a
data-driven procedure, during the exploration phase of the algorithm.
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