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How to understand the set of correlations admissible in nature is one outstanding
open problem in the core of the foundations of quantum theory. Here we take
a complementary viewpoint to the device-independent approach, and explore the
correlations that physical theories may feature when restricted by some particular
constraints on their measurements. We show that demanding that a theory exhibits
a composite measurement imposes a hierarchy of constraints on the structure of
its sets of states and effects, which translate to a hierarchy of constraints on the
allowed correlations themselves. We moreover focus on the particular case where
one demands the existence of a correlated measurement that reads out the parity of
local fiducial measurements. By formulating a non-linear Optimisation Problem, and
semidefinite relaxations of it, we explore the consequences of the existence of such
a parity reading measurement for violations of Bell inequalities. In particular, we
show that in certain situations this assumption has surprisingly strong consequences,
namely, that Tsirelson’s bound can be recovered.
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1 Introduction
Bell nonclassicality is a well-known phenomenon featured by quantum theory, and attests that
correlations observed in nature are not always compatible with a classical common cause shared
among the distant wings of an experiment [1]. That is, non-classical common causes are neces-
sary to explain our observational data [2]. Bell’s theorem not only teaches us a valuable lesson
about the foundational aspects of nature, but also underpins a variety of current technological
applications. For example, non-classical correlations enable cryptographic applications, such as
key distribution [3–8] and randomness generation [9–12], and provide an information-theoretic
advantage in other families of so-called non-local games [13–15].

Understanding quantum correlations – in particular their limitations – is therefore an im-
portant open problem within quantum information theory. Research on these lines has recently
been carried out within the device-independent formalism, that is, where the only information
used to reason about nature are the classical variables that denote measurement choices and
their outcomes, together with the observed outcome statistics. Within this paradigm, quan-
tum correlations are studied “from the outside”, by exploring the constraints that physical or
information-theoretical principles impose on the observed correlations [16–22]. In the device-
independent framework, hence, such proposed constraints are therefore formulated at the level
of the correlations themselves.

In this work we take a complementary viewpoint to the problem of characterising quantum
correlations, by examining the possible correlations that may arise when constraints are imposed
on the underlying physical theory. From this perspective, hence, one asks how various elements
of the physical theory constrain or enable particular correlations. The particular objects we are
interested in here are the measurements that the theory may feature. Even though in principle
one could also impose constraints on the states as well, our curiosity on measurements arises
from the results of Ref. [23] – if demanding such parity constraints on measurement outcomes
at the level of the statistics yields such substantial constraints on correlations (see below), what
can we expect if we open the box and demand conditions on the measurement themselves? On
the one hand, it is well known that the theory known colloquially as ‘Boxworld’ [24], which was
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formulated in order to realise arbitrary no-signalling correlations, only features local measure-
ments and wirings thereof. That is, Boxworld does not display entangled measurements. This
is in contrast to quantum theory, where entangled measurements are ubiquitous – you may for
instance think of the so-called Bell measurements. A natural question then arises: is there any
relationship between the types of measurements a theory features and the correlations it may
produce. Even seemingly simple at first sight, this question is far from trivial: by enlarging
the set of allowed measurements one necessarily needs to shrink down the set of allowed states,
since the state space featured by a given physical theory is constrained by the dual space of
the effects1 space. How the set of allowed correlations (measurements on states) changes in
consequence is therefore not straightforward.

Progress on this question was made in Ref. [23], where it was shown that demanding the
existence of a particular entangled effect would constrain the correlations admissible in a bipar-
tite Bell scenario to those realisable by an entangled pair of qubit quantum systems. That is,
by demanding that the theory features a particular entangled measurement, it was shown that
the allowed correlations in the so-called Clauser-Horne-Shimony-Holt (CHSH) scenario [25] was
indeed the set of quantum ones.

In this paper we explore what types of constraints the existence of bipartite effects impose
on the possible correlations that a theory may feature. The framework we use to describe the
underlying physical theory is that of General Probabilistic Theories (GPTs) [24,26–34] . First,
we take a compositional perspective and show how the existence of one (arbitrary) bipartite
effect imposes not one but an infinite hierarchy of constraints which must be satisfied by the
states and effects of the GPT. This hierarchy of constraints on bipartite states immediately
translates to a hierarchy of constraints on the correlations realisable within the theory. In-
spired by Ref. [23], we then consider a particular setup where we demand that there exists a
measurement in the GPT which can measure the parity of fiducial measurements (or a subset
thereof), which we call a (partial) parity reading measurement. We say that the observables
which appear in such partial parity reading measurement are parity-readable observables. We
then define an Optimisation Problem that computes the maximum violation of a Bell inequality
by the corresponding GPT, provided that such a parity reading measurement exists. Such an
Optimisation Problem provides a way to characterise the set of correlations allowed by such a
GPT when the parties choose among these parity-readable fiducial measurements in the Bell
tests. The solution to this optimisation problem is, however, computationally complex, given
that the problem itself is polynomial on the optimised variables. We hence present a series of
relaxations that upper-bound the solution to the Optimisation problem. We finish by apply-
ing our techniques to a variety of Bell inequalities, and discussing the necessity of the Local
Tomography assumption.

Inspired by our results, we moreover formulate a conjecture:

Conjecture 1. Under the assumption of local tomography, the local observables that are parity-
readable satisfy Tsirelson’s bound, i.e., they cannot violate Bell inequalities better than quan-
tum mechanics does (with arbitrary measurements).

The inspiration came from the fact that various of our numerical explorations do indeed
satisfy this property. Moreover, we have a counterexample demonstrating the necessity of the
assumption of local tomography within the conjecture. That is, if we have a GPT which does
not satisfy local tomography, then it is possible to create a PR box using observables which are
parity-readable.

1The so-called effects in a physical theory may be thought of as its dichotomic measurements.
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(a) Measuring parity of local ob-
servables.

(b) Reading parity of two pairs of
observables: XX and ZZ.

(c) Reading parity of three pairs of
observables XX, ZZ and Y Y .

Figure 1: The idea of a measurement that reads the parity of the parity-readable observables (denoted by
PRM): a composite measurement that measures parities of several pairs of local observables in one go.

Finally, as we comment in the Discussion section, our work opens the door to further con-
jecturing that Quantum Theory, within the landscape of possible locally-tomographic physical
theories, is the theory that features the best balance between allowed states and effects, in
the sense that it yields the largest violation of any Bell inequality by parity-readable fiducial
measurements.

2 Descriptive summary of the results
Suppose that two parties, the ubiquitous Alice and Bob, each have three binary observables,
X, Y , and Z, that they can measure on some shared system. Moreover, suppose that there
exists some joint measurement that they could perform on their joint system if they were to
get together, whose outcome would determine the parity of XX and ZZ. That is, the joint
measurement does not necessarily reveal the values that they would have obtained had they
measured X and Z individually, but just whether or not their XX and ZZ measurements would
have been correlated or not.2 We say that such observables are parity-readable, and illustrate
this idea in Fig. 1.

In this manuscript, we consider the impact that parity readability has on the correlations
that can be generated in a Bell scenario when measuring parity-readable observables. For
example, is it possible to create PR-box correlations via parity-readable observables?

It is clear that, even within the standard quantum mechanical formalism, this imposes a
restriction on the correlations which can be observed – not all observables are parity-readable,
and some correlations can only be achieved by those that are not. However, what about if we
go beyond quantum mechanics?

We conjecture that, within this landscape of parity-readable observables, quantum theory is
always optimal. That is, any correlation that can be generated by parity-readable observables,
independently of which underlying (tomographically-complete) physical theory they belong to,
can also be generated by parity reading observables within quantum theory.

If this conjecture is true, then this would be in stark contrast to the landscape of arbitrary
observables, in which there are correlations which cannot be realised within our quantum world.
It would therefore show, for the first time, a way in which quantum theory is an optimal physical
theory for an information theoretic task.

2Such is the case in quantum theory, where X and Z are incompatible measurements, but their parity can
nonetheless be measured by performing a suitable coarse graining of a standard Bell measurement.
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a) b)
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c) d)

PRM
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Figure 2: The existence of a measurement that reads the parity of the parity-readable observables, implies an
infinite hierarchy of positivity constraints. For instance, the probabilities of outcomes should be positive on
(a) a single copy of a state, (b) all pairs of products of steered states that can be obtained from the original
state, (c) three copies of the state in a triangle network, and (d) a single copy of the state times any two
pairs of steered states.

Utilising techniques and insight coming from the field of generalised probabilistic theories
we specify the constraints that the existence of a parity-reading measurement imposes on the
possible correlations those observables may generate in a Bell test. These constraints are for-
mulated as a hierarchy of convex optimisation problems which can be tackled using standard
numerical methods. We apply this technique to and numerically explore various Bell scenar-
ios and Bell inequalities, whose results lead us to formulating the conjecture discussed above.
More precisely, we consider scenarios in which each party has at most three observables X,
Y and Z, and in which either two or three of these are parity-readable. The Bell inequalities
explored include the CHSH [25], AMP [35], and AQ [36] inequalities. Further development of
both the numerical methods, as well as analytical convex optimisation techniques, are necessary
to explore this conjecture further.

It is worth highlighting that the main technique that we develop and apply here, relies on
demanding the parity-readable observables to yield valid probabilities when applied both to
a composite state as well as to products of steered states that can be generated from it (see
Figs. 2a, 2b.). These constraints are indeed phrased as positivity conditions on variables we
optimise over. However, to capture the full power of the constraints that these parity-readable
observables impose, one needs to take into account infinitely many conditions (examples of
which are presented in Figs. 2c and 2d), described in the article, and which deserve further
exploration.

3 Warm-up: non-existence of Popescu-Rohrlich correlations for parity mea-
surable X and Z observables.

While the general problem of finding a bound for Bell inequalities for parity-readable observables
is a complex one (as we will see further in this paper), one can relatively easily show that the
CHSH inequality cannot achieve its maximal algebraic bound. Namely, we shall show that
parity-readable observables cannot exhibit so called Popescu-Rohrlich correlations [16].

In this section we shall present such reasoning, as a simple warm-up exercise in anticipation
of the rest of the paper. In this warm-up we will take a device-independent approach, in the
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sense of relying only on the conditional probability distributions for the argument (these black
boxes are the only information we leverage for describing the underlying states of the system).
In the remainder of the paper we will utilise the language of Generalised Probabilistic Theories
(GPTs) and, in particular, we will express the question using a formal diagrammatic language.
Full justification of some formulas will be found later in the paper. For self-consistency of the
main part of the paper, we will repeat there some definitions used here.

3.1 States
The so called PR-box [16] is defined as the set of conditional probabilities:

p(ab|xy) =
{

1
2 if a⊕ b = xy
0 else

, (1)

where x, y ∈ {0, 1} are inputs, and a, b ∈ {0, 1} are outputs. The observables X,Z from the
previous section are now encoded by the classical variables x = 0, 1 for Alice, and y = 0, 1
for Bob. The PR-box is a maximally nonlocal non-signaling box, since it violates the CHSH
inequality up to its maximal algebraic value. Moreover, PR-box correlations have the feature
that the pairs of observables XX, XZ, and ZX are perfectly correlated, while the pair ZZ is
perfectly anticorrelated.

The principles of Local Tomography (see Sec. 4) and No Signaling allow one to characterise
any bipartite state s by means of the following table:

ps =

 ps(00|00) ps(00|01) p
(1)
s (0|0)

ps(00|10) ps(00|11) p
(1)
s (0|1)

p
(2)
s (0|0) p

(2)
s (0|1) 1

 , (2)

where (i) specifies the party (i.e., (1) for Alice and (2) for Bob). This is indeed similar to the
representation of non-signalling correlations in the CHSH scenario known as Collins-Gisin [37],
which shows how nine parameters are enough to fully specify the 16 components of the full
conditional probability distribution.

Since a PR box has perfect correlations or anticorrelations for each pair of observables, it is
natural that the steered states obtained from it are all the states that have well defined value
for both observables. Thus, we have that, for each party, there are four steered state, the state
s1 with X = 0, Z = 0, the state s2 with X = 0, Z = 1, the state s3 with X = 1, Z = 0 and
the state s4 with X = 1, Z = 1. These four states are depicted in Fig. 3. We shall present

Figure 3: Steered states coming from PR box.

here the four pairs of steered states which we will use in the proof. These are products of all
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Figure 4: Selected pairs of steered states.

four steered states on Bob’s site and a single fixed state on Alice’s side, namely the state with
XA = ZA = 1, as is depicted Fig. 4.

We denote these four states as:

s41 = sA
4 ⊗ sB

1 , s42 = sA
4 ⊗ sB

2 , s43 = sA
4 ⊗ sB

3 , s44 = sA
4 ⊗ sB

4 . (3)

In the above matrix notation these are characterised by:

s41 =

 0 0 0
0 0 0
1 1 1

 , s42 =

 0 0 0
0 0 0
1 0 1

 ,

s43 =

 0 0 0
0 0 0
0 1 1

 , s44 =

 0 0 0
0 0 0
0 0 1

 . (4)

3.2 Parity Reading Measurement.
Now we consider the measurement that measures the parities of XX and ZZ in a single shot,
that is, X and Z are parity-readable observables. Specifically, this parity reading measurement
(PRM) outputs a pair of bits: the first one reports the parity of XX and the second one reports
the parity of ZZ. This is expressed by the following pair of conditions:

RXX(ps) ≡ ps(00|PRM) + ps(01|PRM) = ps(00|00) + ps(11|00) , (5)
RZZ(ps) ≡ ps(00|PRM) + ps(10|PRM) = ps(00|11) + ps(11|11). (6)

where we denote by ps(rq|PRM) the probability of obtaining the pair of outcomes rq when
measuring the PRM on state ps. Notice that RXX (RZZ) have the interpretation of the prob-
ability of XX (ZZ) being correlated (i.e., the probability of obtaining the same outcomes by
Alice and Bob). In addition, note that the probabilities of the outcomes of the PRM satisfy the
normalisation condition:

ps(00|PRM) + ps(01|PRM) + ps(10|PRM) + ps(11|PRM) = 1. (7)

We therefore have a system of three linear equations with four unknown quantities ps(rq|PRM).
Hence, a solution may be found with one quantity remaining an independent variable, for
example the expression:

C(ps) = ps(00|PRM) − ps(01|PRM) − ps(10|PRM) + ps(11|PRM) . (8)

Due to local tomography, the probabilities of the outcomes of any measurement for a particular
state can be written as a linear combination of state parameters, ps. Hence, as C is a linear
combination of such probabilities, it can be computed via:

C(ps) = C · ps , (9)

7



where · denotes Frobenius matrix product, and C is the matrix of, at the moment, unspecified
parameters describing the PRM:

C =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 . (10)

Combining Eqs. (5), (7), (8) and (9), we obtain the formulas for computing the probabilities of
PRM outcomes, expressed in terms of the state parameters, as well as the free parameter C:

ps(00|PRM) = 1
4 (2RXX(ps) + 2RZZ(ps) + C · ps − 1) ,

ps(01|PRM) = 1
4 (2RXX(ps) − 2RZZ(ps) − C · ps + 1) ,

ps(01|PRM) = 1
4 (−2RXX(ps) + 2RZZ(ps) − C · ps + 1) ,

ps(11|PRM) = 1
4 (−2RXX(ps) − 2RZZ(ps) + C · ps + 1) . (11)

3.3 Proof of nonexistence of the PR-box.
We shall now argue that, for any arbitrary choice of C, the probability of at least one PRM
output will necessarily be negative on some of the pairs of steered states. This proves that
parity-readable observables cannot feature PR-box correlations, and hence cannot violate the
CHSH inequality up to its maximal algebraic bound.

We shall first impose positivity of ps(qr|PRM) for each of the four states in Eq. (3).
Note that, for the state s44, by definition, both XX and ZZ are perfectly correlated, since
XA = XB = 1 and ZA = ZB = 1. Hence, RXX(s44) = RZZ(s44) = 1 for the state s44. An
analogous reasoning for the remaining three states yields:

RXX(s41) = 0, RZZ(s41) = 0,
RXX(s42) = 0, RZZ(s42) = 1,
RXX(s43) = 1, RZZ(s43) = 0,
RXX(s44) = 1, RZZ(s44) = 1. (12)

Of course, we might alternatively compute these values from the matrix form of the states, and
the definition of RXX , RZZ . Inserting them into Eq.(11) for each of the four states, yields the
following conditions for the positivity of PRM probabilities:

ps41(qr|PRM) ≥ 0 ⇔ C · s14 = 1 ,
ps42(qr|PRM) ≥ 0 ⇔ C · s24 = −1 ,
ps43(qr|PRM) ≥ 0 ⇔ C · s34 = −1 ,
ps44(qr|PRM) ≥ 0 ⇔ C · s44 = 1. (13)

We then use the matrix form of our states of Eq. (4) and the form of C of Eq. (10) and rewrite
these conditions as:

c31 + c32 + c33 = 1, c31 + c33 = −1, c32 + c33 = −1, c33 = 1. (14)

We see that this set of equalities does not have any real solutions. We therefore conclude that
there does not exist a Parity Reading Measurement whose outcomes give legitimate probabilities
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for the above four pairs of steered states. Since the existence of a PR-box allows for such steered
states, we conclude that existence of Parity Reading Measurement excludes PR-box correlations.

The remainder of this work explores this curious property in more detail. In particular: on
the one hand, can we go beyond simply ruling out the PR-box and see how PRMs constrain
the set of correlations; and, on the other hand, can we go beyond the assumptions involved in
this derivation, namely, that of local tomography and that there are simply two observables per
party.

4 Generalised probabilistic theories
In order to explore the previously presented questions, we will work within the framework
of generalised probabilistic theories (GPTs) [24, 26]. This framework was developed in order
to be able to describe essentially arbitrary conceivable theories of nature – taking quantum
and classical theory as just two particular points within a broad landscape of potential physical
theories. The GPT framework is based on the idea that, ultimately, the way that we characterise
physical devices is by the probabilities that they give rise to in experiments. From this simple
observation, one can build a rich mathematical structure which any GPT must have.

GPTs have already proved a vital tool in the study of computation [38–46] and cryptography
[24, 47–52] beyond quantum theory. Moreover, recently tools from convex optimisation theory
have been used to gain new insight into GPTs [47–49, 53–55]. In particular, the generalisation
of quantum theory to GPTs is analogous to the generalisation from semi-definite to conic
programmes. These optimisation tools will be vital for developing a complete understanding of
how the structures of the GPT impact on the realisable correlations of the GPT.

For simplicity of the presentation, in this manuscript we will focus on a particular class
of GPTs, namely, those that satisfy the principle of Local Tomography. A GPT is locally-
tomographic if any state of a composite system can be uniquely determined by the information
obtained from performing local measurements on its constituents (see, e.g., Ref. [26] for a full
formal definition). GPTs that satisfy local tomography tend to have very useful properties, and
in particular they admit a useful parametrisation of their state and effect vectors, which will
come in handy in various stages in this manuscript. The majority of our results, such as the
formulation of the hierarchy of constraints, however, do not require this principle to hold, hence
we will highlight the instances where the assumption is indeed necessary.

In this paper we take a categorical approach to tomographically local GPTs. This is an
intrinsically compositional approach, which allows us to describe arbitrary experimental sce-
narios. Moreover, the diagrammatic representation in terms of string diagrams, which comes
from this approach, provides an intuitive way to reason about these complex situations. We
provide a brief technical introduction to the formalism in Appendix B, and refer the reader to
Refs. [32–34,56–58] for more extensive introductions to these tools.

4.1 Constraints on states and effects
We can see how the state and effect spaces constrain one another when demanding that scalars
are probabilities. For some system V (see the Appendix for details on notation), the states can
be thought of as vectors s ∈ ΩV living inside V , and effects as linear functionals, e ∈ EV living
in the dual space V ∗. Any pair of an effect and a state must satisfy:

s

e

V ∈ [0, 1] . (15)
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The geometric consequences of this for local and composite states are presented in App. C.
It was noted in Ref. [59], however, that even if a pair of state and effect spaces satisfy the

standard constraints discussed in App. C (i.e., Eqs. (169) and (170)), it is not straightforward
that they actually define a valid GPT, at least when the No-restriction hypothesis is not assumed
(i.e., when it is not required that Ω = E∗). An important condition that must also be checked,
as shown in Theorem 9 of Ref. [59], is that the steered states are also valid states within the
theory. That is, any bipartite state s must satisfy:

ew

V

W

s
∈ ΩV and

ev

W

V

s
∈ ΩW (16)

for all ev ∈ EV and ew ∈ EW . This constraint can be interpreted in many forms:
• as a constraint on the bipartite state space, namely, that a bipartite state must lead to

valid steered states,
• as a constraint on the local state spaces, namely, it forces them to include all of these

steered states as valid local states,
• as a constraint on the local effect spaces, namely, an effect is only allowed if it leads to

valid steered states when composed with any bipartite state.
However, we believe that the constraints of Eq. (16) are probably best viewed not from any of
these individual perspectives, but instead just as a compatibility condition between local states
and effects, and bipartite states.

Similarly, we can consider bipartite effects e and note that these have a similar compatibility
condition together with local states and effects:

sw
V

W

e

∈ EV and sv
W

V

e

∈ EW (17)

for all sv ∈ ΩV and sw ∈ ΩW .
One may be inclined to think that these constraints on bipartite states/effects, steered states,

and steered effects, are sufficient to characterise a valid GPT. However, there are only the tip of
the iceberg – a whole plethora of further compatibility constraints lie underneath the surface.
For example, consider a normalised bipartite state s and a bipartite effect e. By taking two
copies of each, one should be capable of wiring them as follows and obtain a valid probability:

WV

s s

e
W

e
V

V W

WV

∈ [0, 1]. (18)

In addition, if one takes two copies of s and one of e, one should be capable of wiring them as
follows and obtain a valid bipartite state:

WV

s s

W

e
V

V W

WV

∈ ΩV ⊗W . (19)
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Other types of compatibility constraints include diagrams like the following, which arise due
to symmetry in the special case when all the local systems have the same type:

VV

s s

V

e
V

V V

VV

e

∈ [0, 1],
VV

s s

V

e
V

V V

VV

e

s

e
V

V

V

V

∈ [0, 1]. (20)

One can readily see how these belong to an infinite family of constraints, each featuring the same
(but arbitrary) number of normalised bipartite states s and bipartite effects e being connected
in this “braided” fashion.

Even if the bipartite states consist of local systems of the same type, it is not necessary that
they are symmetric under a swap operation of the local systems. Hence, a different hierarchy of
braided-type constraints will arise by requiring consistent probability assignments to diagrams
of the form:

VV

s s

V

e
V

V V

VV

e

s

e
V

V

V

V

∈ [0, 1]. (21)

In Section 6.1 we will see how to formalise these types of hierarchies, and how they can be
used to constrain the potential correlations in a GPT.

4.2 Correlations in a GPT
To describe correlations in a GPT we must first introduce classical systems. Here we describe
a classical system by classical random variable, which can take values from a set, such as
X,Y,A,B. We denote these classical systems by thin gray wires (to distinguish them from
GPT wires). Correlations, in this formalism, are then viewed as no-signalling stochastic maps,
N : X × Y → A × B, between these random variables. Diagrammatically, we denote these
no-signalling boxes as:

X Y

A B

N , (22)

which must satisfy the no-signalling constraints:

X Y

A B

N =
YX

A
nA and

X Y

A B

N =
X Y

B
nB . (23)

This is equivalent to the standard view of correlations [60] as being described by a conditional
probability distribution Pr(A,B|X,Y ) = {p(ab|xy)}{a∈A,b∈B,x∈X,y∈Y }, which can be seen by
defining:

p(ab|xy) :=
X Y

A B

N

a b

x y

, (24)
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and checking that the no-signalling conditions of Eqs. (23) are equivalent to the standard no-
signalling conditions for the conditional probability distribution. To do so it is useful to note
that, for example:

X

:=
∑
x∈X

x

X

. (25)

Then, in order to understand the possible correlations in a GPT, it is useful to describe
measurements as transformations from a GPT to a classical system, where the choice of mea-
surement is controlled by another classical system. These controlled measurements must satisfy
the constraint:

V

M

X

A

=
VX

. (26)

Correlations that can be generated in a Bell experiment are hence of the form:

WV

s

MA MB

X Y

A B

(27)

where the local controlled measurements MA and MB (for Alice and Bob respectively) are
performed on a bipartite system on state s, with local system types V,W in the GPT. These
local measurements are controlled on the input classical variable and have an outcome recorded
in the output classical variable.

In any GPT, such a diagram corresponds to a no-signalling stochastic map:

WV

s

MA MB

X Y

A B

=:
X Y

A B

N . (28)

It can then be shown that the constraint on measurements of Eq. 26 immediately implies the
relevant no-signalling conditions, for example:

X Y

A B

N = WV

s

MA MB

X Y

A
B

= WV

s

MA

X Y

A

=:
YX

A
nA . (29)

A more general version of this proof first appeared in Ref. [61] and was generalised to arbitrary
causal structures in Ref. [62].
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Bell inequalities [1, 60] are then a particular class of linear functionals from this space of
stochastic maps to the reals. A linear functional corresponding to a Bell inequality, hereon
denoted by I, can be diagrammatically denoted as:

X Y

A B

I

::
X Y

A B

N 7→
X Y

A B

I

N ∈ R . (30)

Note that I should not be interpreted as a process within the GPT – I is simply some linear
functional, and can lead to negative values.

The value of a Bell inequality on a stochastic map N – realised within the GPT as per
Eq. (27) – is given by:

WV

s

MA MB

X Y

A B

I

. (31)

The maximal value of a Bell inequality I achievable by correlations within a given GPT G,
is therefore given by the following optimisation problem:

Imax := sup


WV

s

MA MB

X Y

A B

I
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
V,W,MA,MB, s ∈ G


. (32)

Notice that the optimisation is carried over the types of systems V and W present in G, as
well as over the local measurements MA and MB, and bipartite states s. The solution to
this optimisation problem will of course depend on the properties of the GPT being studied.
However, we readily see that when maximising over states and measurements from the theory,
the compatibility constraints we discussed in the previous section will play a crucial role. Indeed,
if the GPT admits some bipartite effect e, then the above mentioned hierarchy of constraints
(see Eqs. (18), (19), (20), and (21)) will restrict the sets of states that the value of I is optimised
over. In other words, the existence of bipartite effects e within the GPT will impose a hierarchy
of constraints on the correlations that such GPT may feature. In the next sections we elaborate
on this fact with a concrete example.

5 Parity reading measurement
In this section we will explore the constraints on the correlations that a GPT may feature, given
that bipartite effects associated to a particular measurement – which we call a Parity reading
measurement (PRM) – exist within the GPT.

Suppose we have a controlled measurement, M , for a system V , with a setting variable
labeled by the set η := {0, ..., n−1} such that |η| = n, and a binary outcome variable β := {0, 1}

13



as an outcome. This is diagrammatically denoted by:

V

M
η

β

. (33)

Recall that, as this is a measurement, it must satisfy:

V

M
η

β

=
VX
, (34)

which ensures that the correlations it can generate are no-signalling.
Then we can define a measurement P[M ] which reads out the parity of such a measurement

M as follows:

Definition 5.1. Parity Reading Measurement.–
A parity reading measurement for M , denoted by P[M ], is a bipartite measurement on V ⊗ V
with n binary variables as outputs:

V V

βn−1β0

P[M ]
· · ·

n

, (35)

such that tracing out all but the i-th outcome gives the parity of the i-th setting for M :

∀i ∈ η ,

V V

βn−1β0

P[M ]

· · · · · ·

βi

βi−1 βi+1

=

V

M

i

η

β

V
i

β

M
η

β

. (36)

We will also be interested in situations in which we have a measurement which can only
read the parity of a certain subset of the setting variable ι ⊆ η:

Definition 5.2. Partial Parity Reading Measurement.–
A partial parity reading measurement for the settings ι ⊆ η of measurement M , denoted by
P[M ]ι is simply a parity reading measurement for the measurement:

V

Mι

ι

β

:=

V

M
η

β

ι

(37)

where • is the canonical embedding of ι into η3. Using this notation we can succinctly define
these partial partity reading measurements by:

P[M ]ι := P[Mι] . (38)

3That is, it maps ι viewed as a set in its own right into ι viewed as a subset of η
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Note that when ι = η then we recover the notion of a PRM.
In order to see how the existence of a (partial) PRM constraints the correlations that the

GPT may feature, we will fist discuss the concepts of a Fiducial Measurement and Fiducial
effects.

Let n be the affine dimension of the normalised state space, that is, n = |V | − 1. A fiducial
measurement, F , is a controlled measurement with n settings (described by the set η) and
binary outcomes (described by the set β):

V

F
η

β

(39)

F is called a fiducial measurement if all of the fiducial effects can be obtained from such a
measurement. Fiducial effects, in turn, form a (minimal) spanning set for the effect space of the
GPT. As an example, consider the case where n = 2: here F will have a binary input system,
and the three fiducial effects will be given by V

F
0

0

,

V

F
1

0

,

V

F
0

=
V

=

V

F
1


, (40)

where the equality for the third effect comes from the fact that F is a valid controlled measure-
ment and hence satisfies:

V

F

η

β

=
Vη

. (41)

Coming back to the case of an arbitrary n, notice that the fact that fiducial effects, ej

V


j=0:n

(42)

span the corresponding vector space, means that any state s can be uniquely characterised by
the vector of probabilities:

ps :=


e0

s

V , . . . ,

en

s

V


T

. (43)

For example, going back to the case where n = 2, this vector of probabilities will be given by:

ps :=

 V
s

F
0

0

,

V
s

F
1

0

, V
s



T

. (44)

Now we can briefly state the case we will explore in this section: GPTs that have a PRM
for a Fiducial measurement, and where a bipartite Bell experiment is carried by Alice and Bob
performing this controlled fiducial measurement in each wing.
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A PRM P[F ] for the fiducial measurement F will satisfy the following constraints:

V V

βn−1β0

P[F ]

· · · · · ·

βi

βi−1 βi+1

=

V

F

i

η

β

V
i

β

F
η

β

∀i ∈ η . (45)

It is worth mentioning that a PRM P[F ] is not necessarily uniquely singled out by these
constraints – more than one PRM may qualify as potential candidates for the role. We denote
by ParMeas[F ] the set of all PRM P[F ] that satisfy Eq. (45) for the given F .

5.1 Examples
Qubits. Let us conclude this discussion with an example from quantum theory. Consider
the case of qubit systems, where the affine local dimension is n = 3. A fiducial measurement
corresponds to measuring the three Pauli observables X, Y , and Z. A PRM is given by (a
suitable post-processing of) the Bell measurement{∣∣∣ϕ+

〉〈
ϕ+

∣∣∣, ∣∣∣ϕ−
〉〈
ϕ−

∣∣∣, ∣∣∣ψ+
〉〈
ψ+

∣∣∣, ∣∣∣ψ−
〉〈
ψ−

∣∣∣} , (46)

with |ϕ±⟩ = |00⟩±|11⟩√
2 and |ψ±⟩ = |01⟩±|10⟩√

2 . Denoting the four element set of outcomes of the

Bell measurement as B := {0, 1, 2, 3}, and the qubit system by Q2, we can diagrammatically
represent this as:

B

Q2 Q2

Bell . (47)

To see that a post-processing is necessary for this measurement to fit into our definition of a
PRM is easy: the measurement of Eq. (47) is a four outcome measurement, but, a PRM for X,
Y , and Z should have three binary outcomes. The required post-processing can be described
diagrammatically as:

B

BBB
CX CY CZ

β β β

, (48)

where the white dot first makes three copies of the outcome, and the processes CX , CY and CZ

correspond to the three different equal bipartitions of B. For example:

B
CZ

β

=

B
0

0
β

+

B
1

0
β

+

B
2

1
β

+

B
3

1
β

. (49)
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To read the parity of observable ZZ, we hence apply post-processing {0, 1} → 0 and {2, 3} → 1
depicted in Eq. (49), which quantum mechanically comes from

|ϕ+⟩⟨ϕ+| + |ϕ−⟩⟨ϕ−| = |00⟩⟨00| + |11⟩⟨11|,
|ψ+⟩⟨ψ+| + |ψ−⟩⟨ψ−| = |01⟩⟨01| + |10⟩⟨10|, (50)
σz ⊗ σz = |00⟩⟨00| + |11⟩⟨11| − (|01⟩⟨01| + |10⟩⟨10|).

All three required post-processings, and the observables whose parity they read, are presented
below:

post-processing parity

CX : {ϕ+, ψ+} → 0, {ϕ−, ψ−} → 1 XX
CY : {ϕ−, ψ+} → 0, {ϕ+, ψ−} → 1 Y Y
CZ : {ϕ+, ϕ−} → 0, {ψ+, ψ−} → 1 ZZ

(51)

With this we conclude the argument for why the measurement given by

B

BBB
CX CY CZ

β β β

Q2 Q2

Bell

(52)

is a parity reading measurement for the X, Y and Z observables.

Mirror quantum correlations. Such correlations have been considered in Ref. [63]. To
introduce them, let us first notice a feature of the Bell measurement:

• the effect corresponding to ψ− appears only in the bipartitions of B that give rise to
anticorrelations, i.e., a value of 1 for the classical system β,

• the other three effects appear each only once in a bipartition that measures anticorrela-
tions.

The following table summarises this feature, where we specify, for each observable whose par-
ity we want to read, whether each effect belongs to the correlation (0) or anticorrelation (1)
bipartitions:

effect XX YY ZZ

ϕ+ 0 1 0
ϕ− 1 0 0
ψ+ 0 0 1
ψ− 1 1 1

(53)

We then say that quantum parity reading measurement has signature

{(+,−,+), (−,+,+), (+,+,−), (−,−,−)}. (54)

In the case of mirror quantum mechanics [63] the table in Eq. (53) does not hold anymore, and
instead the following are satisfied:

effect XX YY ZZ

(ϕ+)P T 1 0 1
(ϕ−)P T 0 1 1
(ψ+)P T 1 1 0
(ψ−)P T 0 0 0

(55)
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where PT stands for partial transposition4.
Thus in mirror quantum case we have signature:

{(−,+,−), (+,−,−), (−,−,+), (+,+,+)}. (56)

This case then corresponds to the following post-processing of the measurement outcomes:

post-processing parity

CX : {0, 2} → 0, {1, 3} → 1 XX
CY : {0, 3} → 0, {1, 2} → 1 Y Y
CZ : {2, 3} → 0, {0, 1} → 1 ZZ

(57)

Classical theory. In the quantum case, the parity reading measurement was entangled. It
had to be so, because it measured parities of observables that are not jointly measurable. In
classical theory we can consider three bit system, described by X,Y, Z which are now jointly
measurable. Then the PRM just amounts to post-process the joint measurement of all the 6
observables (three per party).

5.2 P [F ] and maximal violations of Bell inequalities for fiducial measurements F

So, how does the existence of a P[F ] in the GPT constrain the correlations we may observe in
a Bell test? More precisely, what are the constraints on the correlations that a bipartite system
of a certain type can produce when there exists a PRM for the fiducial measurements on that
system type? In this section we aim at optimising the value of a Bell inequality I when the
measurements that the parties perform are given by F on a system of type V .

Notice that, in general, the cardinality of the input settings for the Bell test need not coincide
with the number of settings for the fiducial measurement F . That is, |X| = |η| = |Y | does not
necessarily hold. In this manuscript we will work with the case where |X| ≤ |η| and |Y | ≤ |η|,
and hence only some of the settings of the controlled measurement F might be used for the
Bell test. In such a case, then, we will focus on the constraints that a partial PRM imposes
when its existence is demanded on the settings of F used in the Bell test. For simplicity in the
discussion, in this section we will present the case where |X| = |η| = |Y |, but the most general
case follows similarly. We will return to the optimisation problems for partial PRM later on in
the manuscript.

The optimisation problem that we focus on then reads:

Imax := sup


VV

s

F F

η η

β β

I
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s ∈ G


, (58)

where X,Y,A,B are all binary variables, and we are using the shorthand notation:

V

F
η

β

:=
V

F

η

β

. (59)

4In mirror quantum theory, these effects are partially transposed effects of Bell measurement.
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Given a particular GPT G – and, in particular, given a specification of its state and effect
spaces – this optimisation problem reduces to a type of cone program which has been explored
in recent literature [47, 48, 64] regarding their relationship to GPTs. That is, there is some
convex spanning cone of states KV ⊗V ⊂ V ⊗ V , which s belongs to, and some normalisation
constraint on s, uV ⊗ uV (s) = 1 so the above problem can be rewritten as:

Imax := sup


VV

s

F F

η η

β β

I
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s ∈ KV ⊗V , uV ⊗ uV (s) = 1


. (60)

Here, however, we do not consider a particular GPT G which we optimise over. What we carry
out here is an optimisation over the space of GPTs which have the relevant structure – those
which admit a PRM for the fiducial measurement. This optimisation problem is much more
complex than that of Eq. (60), as we will now explain.

In Section 4.1 we elaborated on the types of compatibility constraints between states and
effects that a GPT must feature. Here, we will demand that the GPT admits the fiducial
local measurement F and a PRM P ∈ ParMeas[F ]. By imposing the compatibility constraints
motivated in Section 4.1, we hence restrict the possible cones of states K[P] that such GPT
could feature. If we have a characterisation of K[P] ⊂ V ⊗ V , then the optimisation problem
becomes:

Imax := sup


VV

s

F F

η η

β β

I
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P ∈ ParMeas[F ], uV ⊗ uV (s) = 1, s ∈ K[P]


. (61)

This turns out to be a non-linear optimisation problem, as we will show next.

5.3 The cone K of bipartite states
The key question here is: how to characterise the cones of states K[P]? Here we will take the
types of diagrammatic constraints motivated in Section 4.1, and define a systematic hierarchy of
conditions that the existence of P[F ] imposes on the cone K. This hierarchy of conditions will
be specified in terms of the number of copies of the bipartite state s featured in the diagram.
Framing these constraints in the form of a hierarchy is useful because, as we will see, interesting
results can be obtained without needing to impose all of the constraints. For example, in our
case we will be interested in possible violations of a given Bell inequality, and, we can obtain
upper bounds on this by simply working at the second level of the hierarchy.

Hierarchy constraints – Level 1.
Given the fiducial measurement F and the PRM P ∈ ParMeas[F ], the normalised bipartite states
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s ∈ K[P] must satisfy:

VV

s

F F

η η

β β

≥ 0 , (62)

VV

s

β β

P ≥ 0 , (63)

VV

s

β β

P ≥ 0 , (64)

where by ≥ 0 we mean that every matrix element is non-negative.

Notice that the constraints that come from the deterministic effect u – in particular, the
normalisation condition uV ⊗ uV (s) = 1 – together with these positivity constraints, ensures
that diagrams in Eqs. 62, 63, and 64 are stochastic maps.

Notice moreover that the constraint of Eq. (64) has the same structure as that of Eq. (63)
but applied instead to the swapped state:

V V

s
. (65)

We see then that there is a certain structure emerging: (i) there are two layers – one
corresponding to the state s and one to the measurements F and P –, and (ii) we can vary the
order in which the output wires of the state are plugged into the measurements of the second
layer. This motivates the definition for the remaining levels of the hierarchy, which relies on
the concept of a wiring, which we explain next.

Definition 5.3 (Wiring).
A process which describes how a collection of input systems are connected to a collection of
output systems is here referred to as a wiring, and denoted usually by W .

When all the input systems are of the same type – a case we focus on here – wirings reduce
to permutations of the systems, e.g.:

V

VV

VV V

VVVV

V V

W =

V

VV

VV V

VVVV

V V

. (66)
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Hierarchy constraints – Level k.
Given the fiducial measurement F and the PRM P ∈ ParMeas[F ], the normalised bipartite states
s ∈ K[P] must satisfy the constraints imposed by Hierarchy Level k′ for all k′ < k, as well as
the following:

β

V

F

η

VV

s

VV

β

P

β

V

β

F

η

VV

s
· · ·

k

VV

s

V

P

β

V

β

· · ·

k − 1

W

≥ 0 , (67)

VV

s

V

P

β

V

β

VV

s
· · ·

k

V

P

β

V

β

· · ·

k

W ′
≥ 0 , (68)

for all distinct totally connected wirings W and W ′.
Here, two wirings are distinct if they do not give the same diagram under some permutation

of the external wires. A wiring is totally connected if the diagram it gives rise to does not
factorise.

First, notice that if the constraints of Level k+1 are satisfied, then the constraints of Level
k are also by definition satisfied. Moreover, the constraint that the wirings are distinct ensures
that there is no redundancy within a particular level in the hierarchy. In addition, the condition
that the wirings are totally connected ensures that the constraints they impose do not reduce
to constraints at lower levels in the hierarchy. We discuss the convergence of this hierarchy in
App. E. Enumerating and finding a simple description of the distinct totally connected wirings
is left as an interesting open problem.

We see that the constraints that each level k imposes are then of two types: (i) one where
the process in the second layer is the product of k copies of P – Eq. (68) –, and (ii) one where
the process in the second layer is the product of k−1 copies of P and two copies of F – Eq. (67).
Note that if we had more copies of F (and so fewer of P) then it would be impossible to have
a totally connected wiring, hence we need consider at most two copies of F .
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One particular example of a of constraint imposed by the hierarchy is

VV

s

β β

s

P

V

β

V

β

F F

η η

≥ 0 . (69)

This condition, imposed first in Level 2, can be given the following interpretation: the PRM P
must give valid probabilities on products of two steered states, each constructed from s.

6 The optimisation problems
The hierarchy of constraints presented in the previous subsection ultimately defines some convex
cone. To see this, suppose σ1 and σ2 satisfy the compatibility constraints of Eqs. (67) and (68)
for all k. Then, r1σ1 + r2σ2 will satisfy the constraints for all r1, r2 ∈ R+.

The optimisation problem of Eq. (61) is therefore carried out over Σ, the union of the cones
K[P]:

s ∈
⋃

P∈ParMeas[F ]
K[P] =: Σ. (70)

This allows us to cast the optimization problem in a deceptively simple form:

Optimisation Problem 1.

Imax := sup


VV

s

F F

η η

β β

I
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s ∈ Σ, uV ⊗ uV (s) = 1


. (71)

While this form of the optimisation may appear simple, determining membership of the set
Σ is computationally extremely difficult. Indeed, Σ is defined as the union of a (potentially
infinite) set of cones, each of which is defined by an infinite hierarchy of constraints. In the
remaining of the paper we will see how to relax these constraints, to make the optimisation
problem computationally tractable, and by so compute upper bounds to Imax. Note that, since
the objective function is linear, we can make this a convex optimisation problem by optimising
over the convex closure of Σ.

In addition, one may wish to optimise the value of a Bell inequality where the cardinality of
the input variables in the Bell test does not coincide with the number of settings in the fiducial
measurement, i.e., |X| ≤ |η| and/or |Y | ≤ |η|. In this case, only a subset ι ⊂ η of the control
settings are of interest, and the relevant constraint is the existence of a partial PRM for ι. In
this case, the Optimisation problem becomes:
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Optimisation Problem 1′.

Imax := sup


VV

s

Fι Fι

ι ι

β β

I
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s ∈ Σι, uV ⊗ uV (s) = 1


, (72)

where Σι is the set of potential states compatible with the existence of a partial PRM P[F ]ι for
the settings ι ⊆ η.

6.1 A relaxation to Optimisation Problem 1
In this section we will specify a particular subset of constraints imposed by the hierarchy that
defines K[P]. We will focus on a particular set of minimum requirements to demand to the
GPT, which are colloquially stated as:

• Valid states under local fiducial measurements – Eq. (62),
• P[F ] is a valid measurement on generic composite states – Eq. (63),
• P[F ] is a valid measurement on products of steered states – Eq. (69),
• P[F ] is a PRM – Eq. (45).

Implementing these conditions is already computationally demanding, since we are optimising
over the possible PRM P[F ] and the possible bipartite states s of the GPT.

The optimisation problem to solve therefore reads as follows:

Optimisation Problem 2.

IR
max = sup

{s,P} VV

s

F F

η η

β β

I

, (73)

s.t.



VV

s
= 1 [normalisation] ,

VV

s

F F

η η

β β

≥ 0 ,
VV

s

β β

P

· · ·

≥ 0 ,
VV

s

β β

s

P

V

β

V

β

F F

η η

· · ·

≥ 0 ,

V V

βn−1β0

P[F ]

· · · · · ·

βi

βi−1 βi+1

=

V

F

i

η

β

V
i

β

F
η

β

∀i ∈ η .
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It is readily seen how the Optimisation Problem 2 is a relaxation of the Optimisation Problem
1 – a solution IR

max to the former will yield an upper bound to the solution Imax of the latter.

To be able to implement this sort of optimisation problem on a computer, we must switch
from the high level diagrammatic description of the processes in a GPT, to a lower level tensorial
representation. The method for doing this is presented in App. D, together with a spelled-out
example for a particular scenario.

The constraints that appear in Optimisation Problem 2 can then be recast by means of the
tensor representation as constraints on real vectors. This lower level form of Eqs. (62), (63),
(69), and (45), will be used when coding the scripts to carry out the numerical calculations of
the next section.

Example 1.
Consider the case where n = 2. Here, as we discussed in Section 5, a normalised state s can be
fully parametrised as in Eq. (44) by the vector of probabilities:

ps = (ps(0|0) , ps(0|1) , 1)T , (74)

where ps(a|x) is the probability that outcome a is obtained when the fiducial measurement x
is performed on a system on state s. In a locally tomographic GPT, a bipartite system can be
parametrised as follows:

ps =
(
ps(00|00) , ps(00|10) , p(2)

s (0|0) , ps(00|01) , ps(00|11) , p(2)
s (0|1) , p(1)

s (0|0) , p(1)
s (0|1) , 1

)T
,

(75)

where p
(j)
s (a|x) denotes the marginal conditional probability of subsystem j, and ps(ab|xy)

denotes the joint conditional probabilities. Note that these parameters are also precisely those
required to characterise a no-signalling box with binary inputs and outputs. This is not a
coincidence – indeed, this is precisely the no-signalling box that we will obtain when we measure
this state with the fiducial measurement F on both systems. Hence, this parameterisation of
the bipartite state and the form of F ensure that the observed correlations are no-signalling.

Using the tensorial notation described in App. D and, in particular, the above parameterisa-
tion of the composite state (Eq. (75)), the constraints in Optimisation Problem 2 can be recast
as follows.

The first one, i.e., Eq. (62), reads:

ps(ab|xy) ≥ 0 ∀ a, b, x, y ∈ {0, 1} ,
∑

a,b=0:1
ps(ab|xy) = 1 ∀x, y ∈ {0, 1} , (76)

∑
a=0:1

ps(ab|xy) = ps(b|y)
∑

b=0:1
ps(ab|xy) = ps(a|y) ∀ a, b, x, y ∈ {0, 1} . (77)

That is, the outcome statistics of fiducial measurements on a state s are a well-defined
no-signalling normalised conditional probability distribution.

The second constraint, i.e., Eq. (63), reads∑
vw

Pqr
vw s

vw ≥ 0 ∀q, r ∈ {0, 1} , (78)

where v and w are the indices associated to the two GPT vector spaces V , and q and r are
the indices associated to the classical outcomes of the parity reading measurement, that is,
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each corresponds to one of the parities which is being read. Since svw is represented by a
9-dimensional probability vector ps, Pqr

vw may be represented by a 4 × 9 matrix, [P].
The third constraint, i.e., Eq. (69), reads:∑

v1,w1,v2,w2

Fa
xv1 Prq

w1v2 Fb
yw2 s

v1w2 sv2w2 ≥ 0 ∀x, y, q, r, a, b ∈ {0, 1} , (79)

where the indices x and y are the indices associated to the measurement settings of the two
fiducial measurements, and the indices a and b to their outcomes. Notice that the tensors Fa

xv1
and Fb

yw2 correspond to the definition of the fiducial effects for system of type V . Specifically,
we can write that:

ea|x = (Fa
x0,Fa

x1,Fa
x2) and eb|y = (Fb

y0,Fb
y1,Fb

y2) . (80)

Hence, this equation can be further written as:

[P] ◦
(
(ea|x ⊗ 1V ) ◦ s

)
⊗

(
(1V ⊗ eb|y) ◦ s

)
≥ 0 ∀x, y, a, b ∈ {0, 1} , (81)

where by ≥ 0 we mean that every element of the matrix must be ≥ 0. This equivalent form
of Eq. (69) makes it clear to see that it indeed imposes that P[F ] is a valid measurement on
products of steered states, which are steered by fiducial measurements. We can denote the
(subnormalised) steered states explicitly by

s
(1)
b|y := (1V ⊗ eb|y) ◦ s (82)

s
(2)
a|x := (ea|x ⊗ 1V ) ◦ s. (83)

Then, the condition (69) can be finally written as

[P] ◦ s(1)
b|x ⊗ s

(2)
a|x ≥ 0 ∀x, y, a, b ∈ {0, 1} , (84)

that is, the parity reading measurement must give valid probabilities on products of steered
states.

The last constraint, given by Eq. (45), can be recast in the n = 2 case as follows:∑
q=0:1

Pqr
vw = F0

1vFr
1w + F1

1vF1⊕r
1w ∀ r ∈ {0, 1} , (85)

∑
r=0:1

Pqr
vw = F0

0vFq
0w + F1

0vF1⊕q
0w ∀ q ∈ {0, 1} , (86)

where ⊕ denotes sum mod 2. These tensorial equations indeed correspond to equality constraints
between 9-dimensional covectors:

uβ ⊗ r⃗ ◦ [P] = e0|1 ⊗ er|1 + (uV − e0|1) ⊗ (uV − er|1) ∀ r ∈ {0, 1} , (87)
q⃗ ⊗ uβ ◦ [P] = e0|0 ⊗ eq|0 + (uV − e0|0) ⊗ (uV − eq|0) ∀ q ∈ {0, 1} . (88)

which can be straightforwardly verified by noting that:

uβ = (1, 1) , 0⃗ = (1, 0) , 1⃗ = (0, 1) , (89)

and that
uV = (F0

x0 + F1
x0, F0

x1 + F1
x1, F0

x2 + F1
x2) ∀ x ∈ {0, 1}. (90)

■
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Optimisation Problem 2, despite being a relaxation of Optimisation Problem 1 , still shares a
common feature with the latter: they are both nonlinear optimisation problems. Indeed, we can
see clearly in the formulation of Optimisation Problem 2 how the constraints feature products
of the variables being optimised over. Solutions to such polynomial optimisation problems may
be approximated by standard techniques in the literature. Here, we will consider the hierarchy
of semidefinite relaxations to polynomial optimisation problems given by Lasserre [65]. Each
level of such hierarchy will give an upper bound to the solution IR

max of Optimisation Problem
2.

Optimisation Problem 2 is formulated for the situations where the cardinality of the input
variables in the Bell test match the number of settings in the fiducial measurement, i.e., |X| =
|Y | = |η|. However, as we mentioned in Section 5.2, this is not always necessarily the case. We
will therefore next reformulate Optimisation Problem 2 to encompass the case of partial PRMs.
This adjusted version of the optimisation problem will come in handy when exploring quantum
correlations, since for example it allows the study of Bell inequalities with two measurement
settings per wing (see, e.g., the CHSH scenario in which |X| = |Y | = 2) on qubits (whose affine
dimension is 3 rather than 2). In addition, importantly, this adjusted version of the optimisation
problem might allow us to make device-independent studies of the results5, since do not require
full knowledge of the dimension of the local systems to impose the constraint of existence of
partial PRMs. Namely, we hope that the constraints for correlations obeyed by set of local
observables imposed by existence of PRM persists, regardless of the dimension of the system.

5As mentioned in Sec. 3, in such a black-box approach to describing the states of the systems we only want
to use the information provided by the correlations read out in the experiment. Hence, we cannot make any
assumptions on what the dimension of the underlying physical systems is.
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Optimisation Problem 2′.
Let ι ⊂ η.

IRP
max = sup

{s,Pι} VV

s

Fι Fι

ι ι

β β

I

, (91)

s.t.



VV

s
= 1 , [normalisation]

VV

s

F F

η η

β β

≥ 0 ,
VV

s

β β

Pι

· · ·

≥ 0 ,
VV

s

β β

s

Pι

V

β

V

β

F F

η η

· · ·

≥ 0 ,

V V

β|ι|−1β0

Pι

· · · · · ·

βi

βi−1 βi+1

=

V

Fι

i
ι

β

V

i

β

Fι
ι

β

∀i ∈ ι ⊆ η .

Notice finally that Optimisation Problem 2′ is indeed a relaxation of Optimisation Problem
1′, in the same way that Optimisation Problem 2 is a relaxation of Optimisation Problem 1.

Example 2.
Consider the case where n = 3. Here, as we discussed in Section 5, a normalised state s can be
fully parameterised as in Eq. (44) by the vector of probabilities:

ps = (ps(0|0) , ps(0|1) , ps(0|2) , 1)T , (92)

where ps(a|x) is the probability that outcome a is obtained when the fiducial measurement x
is performed on a system on state s. In a locally tomographic GPT, a bipartite system can be
parameterised as follows:

ps =
(
ps(00|00) , ps(00|10) , ps(00|20) , p(2)

s (0|0) , ps(00|01) , ps(00|11) , ps(00|21) , p(2)
s (0|1) ,

ps(00|02) , ps(00|12) , ps(00|22) , p(2)
s (0|2) , p(1)

s (0|0) , p(1)
s (0|1) , p(1)

s (0|2) , 1
)T

, (93)

where p
(j)
s (a|x) denotes the marginal probability of subsystem j.

We will furthermore consider the case where ι = {0, 1} ⊂ {0, 1, 2} = η. With this choice,
using the tensorial notation of App. D, the constraints in Optimisation Problem 2′ can be recast
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as follows. The first one, i.e., Eq. (62), reads:

ps(ab|xy) ≥ 0 ∀ a, b ∈ {0, 1}, x, y ∈ {0, 1, 2} ,
∑

a,b=0:1
ps(ab|xy) = 1 ∀x, y ∈ {0, 1, 2} , (94)

∑
a=0:1

ps(ab|xy) = ps(b|y)
∑

b=0:1
ps(ab|xy) = ps(a|y) ∀ a, b ∈ {0, 1}, x, y ∈ {0, 1, 2} . (95)

That is, the outcome statistics of fiducial measurements on a state s are a well-defined no-
signalling normalised conditional probability distribution.

The second constraint, i.e., Eq. (63), reads∑
vw

Pι
qr
vw s

vw ≥ 0 ∀q, r ∈ {0, 1} . (96)

Since sij is represented by a 16-dimensional probability vector ps, Pι
qr
vw may be represented by

a 4 × 16 matrix. Notice that the fact that Pι is a partial PRM is captured by the fact that it
only has two output systems – hence its matrix representation has four rows.

The third constraint, i.e., Eq. (69), reads:∑
v1,w1,v2,w2

Fa
xv1 Pι

rq
w1v2 Fb

yw2 s
v1w2 sv2w2 ≥ 0 ∀a, b, q, r ∈ {0, 1}, x, y ∈ {0, 1, 2} . (97)

Notice that the tensors Fa
xv1 and Fb

yw2 actually correspond to the definition of the fiducial effects
for system of type V . If we represent Pι

qr
vw by a 4 × 16 matrix [Pι], hence, this equation can be

further written as:

[Pι] ◦
(
(ea|x ⊗ 1V ) ◦ s

)
⊗

(
(1V ⊗ eb|y) ◦ s

)
≥ 0 ∀a, b ∈ {0, 1}, x, y ∈ {0, 1, 2} , (98)

where by ≥ 0 we mean that every element of the matrix must be ≥ 0. This equivalent form of
Eq. (69) makes it clear to see that it indeed imposes that Pι is a valid measurement on products
of steered states, which are steered by fiducial measurements.

The last constraint, given by Eq. (45), can be recast in the n = 3 case as follows:∑
q=0:1

Pι
qr
vw = F0

1vFr
1w + F1

1vF1⊕r
1w ∀ r ∈ {0, 1} , (99)

∑
r=0:1

Pι
qr
vw = F0

0vFq
0w + F1

0vF1⊕q
0w ∀ q ∈ {0, 1} , (100)

where ⊕ denotes sum mod 2. These tensorial equations indeed correspond to equality constraints
between 16-dimensional covectors:

uβ ⊗ r⃗ ◦ [P] = e0|1 ⊗ er|1 + (uV − e0|1) ⊗ (uV − er|1) ∀ r ∈ {0, 1} , (101)
q⃗ ⊗ uβ ◦ [P] = e0|0 ⊗ eq|0 + (uV − e0|0) ⊗ (uV − eq|0) ∀ q ∈ {0, 1} . (102)

■

7 Approximating Imax for various Bell inequalities
In Ref. [23] it was shown that existence of the Bell measurement for two systems, each with
three observables (i.e., for |η| = 3) imposes that there are no post-quantum correlations. In
our work we want to pose the more general problem of whether parity-readable observables can
lead to post-quantum correlations. In order to tackle this question, we defined a hierarchy of
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constraints that the existence of parity-readable observables imposes on the states and effects of
the underlying GPT, and therefore on the sets of correlations that the GPT allows. We explored
the boundary of the allowed correlations by tackling the Optimization Problems defined in the
previous section. The results of these numerical explorations led us to further formulate a
conjecture, re-stated below:

Conjecture 1. Suppose we have a bipartite system in a GPT that satisfies local tomography and
no-signaling. The, the observables for which there exists a parity reading measurement cannot
be used to violate any Bell inequality more than quantum mechanics does.
[Old below:]
Suppose that a bipartite system satisfies local tomography and no-signaling. Moreover, suppose
that product of states is a valid state. Then the observables for which there exists parity reading
measurement do not violate any Bell inequality more than quantum mechanics does.

Formally, the conjecture, if true, means that for any Bell inequality the Optimization Prob-
lem 1′ returns at most the quantum bound. Note, however, that we do not always expect OP1′

to actually reach the quantum bound, as the maximal quantum value is not necessarily achieved
by observables which are parity-readable within quantum theory.

In this section we present numerical computations towards upper-bounding the solution
to OP2. Indeed, our numerical explorations focus on the relaxed problems OP2 and OP2′,
depending on the cardinalities of β and η. As mentioned in the previous section, we will
approximate the solution to OP2′ by means of a hierarchy of semidefinite relaxations formulated
by Lasserre [65], using mostly the Lasserre hierarchy levels 1+AB and 2. A brief explanation of
what these two levels mean is presented below, and refer the reader to Ref. [65] for a thorough
exposition. Throughout the next subsection we also discuss the relation between the numerical
results and the conjecture we formulated.

Finally, in this section we provide an analytical proof that GPTs which violate local tomog-
raphy admit PR-box correlations under the constraints of OP2 – that is, OP2 may yield a value
of 1

2 for the CHSH inequality (in the notation of Eq. (103)) within non-tomographically local
GPTs. This highlights the relevance and impact of the assumption of local tomography. We
also discuss how the violation of local tomography by a GPT may impact whether its correla-
tions satisfy or not the conjecture. In particular, we discuss how the result we show does not
necessarily imply that non-tomographically local GPTs violate Conjecture 1, since the actual
optimisation problem to be solved – OP1′ – imposes additional constraints to those appearing
in OP2.

Before moving on to presenting the numerical results, let us briefly comment on the so-called
Lasserre hierarchy. Each Lasserre hierarchy level is related to the semidefiniteness of a matrix
(whose definition we will not give here), and the rows and columns of this matrix have particular
labels depending on what level we are focusing on. Let Υ be the set that contains the variables
we are optimising over plus the element 1. In the first level of the Lasserre hierarchy, the matrix
under study has row and columns labelled by the elements of Υ. In the second level of the
hierarchy, however, the matrix under study is of much larger size, and its rows and columns are
labelled by the elements of Υ×Υ, where × denotes the Cartesian product of sets. The so-called
1+AB level lies in between the first and the second – the matrix corresponding to 1+AB is a
sub-matrix of that of level 2, and the matrix corresponding to level 1 is a sub-matrix of that
of 1+AB. In particular, the rows and columns of the matrix corresponding to level 1+AB are
labelled by the elements of the set Υ × Υ \ {(υ, υ)|υ ∈ Υ}.

The numerical computations from Sec. 7.1 were performed with Python 3.7. The SDP
relaxation of polynomial programming was calculated with the package Ncpol2sdpa [66]. The
SDP problem was solved using SDPA [67]. All other numerical computations were carried out
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by a sparsity-adapted SDP relaxation of the polynomial optimization problem modeled with
the TSSOS [68] algorithm. For more details on the modeling syntax, we refer the interested
reader to the tutorial from [69, Appendix B.2] and the online website https://github.com/
wangjie212/TSSOS. Each SDP problem was solved using Mosek [70].

7.1 CHSH inequality
In a bipartite Bell scenario featuring two dichotomic measurements per party, the most studied
inequality is the Clauser, Horne, Shimony, Holt (CHSH) inequality [25], which, using the
notation of Eq. (75), reads:

ICHSH(ps) = −p(1)
s (0|0) − p(2)

s (0|0) + ps(00|00) + ps(00|10) + ps(00|01) − ps(00|11) . (103)

This inequality is bounded from above, and the corresponding classical, quantum, and non-
signalling bounds are:

βCCHSH = 0 , βQCHSH =
√

2 − 1
2 ∼ 0.2071 , and βNS

CHSH = 1
2 . (104)

Note that in this section we shall make a slight abuse of notation, and denote Alice and Bob’s
observables by X,Y, Z, which is not to be confused with the use of X and Y to denote the sets
of inputs.

The numerical results presented in this subsection are summarized in Fig. 6.

Case |ι| = |η| = 2. This is the simplest possible problem, where there are only two observables
per party (that is, Alice has two observables X,Z, and the same for Bob) and the PRM measures
the two parities XX and ZZ. We approximated the solution of OP2 applied to the CHSH
inequality, by applying a Lasserre SDP relaxation with hierarchy level ‘a bit lower than 1+AB’.
We will specify shortly what this means, but will first elaborate on the specific parameterisation
we chose for OP2. The state is described by 8 parameters coming from local tomography (see
Eq. (75)) which we recall here in a more compact, matrix notation:

ps =

 ps(00|00) ps(00|01) p
(1)
s (0|0)

ps(00|10) ps(00|11) p
(1)
s (0|1)

p
(2)
s (0|0) p

(2)
s (0|1) 1

 . (105)

The (unnormalized) Alice states steered by Bob given by Eq. (82) are expressed as:

s
(1)
0|0 = (ps(00|00), ps(00|10), p(2)(0|0))T ,

s
(1)
1|0 = (p(1)(0|0) − ps(00|00), p(1)(0|1) − ps(00|10), 1 − p(2)(0|0))T ,

s
(1)
0|1 = (ps(00|01), ps(00|11), p(2)(0|1))T , and

s
(1)
1|1 = (p(1)(0|0) − ps(00|01), p(1)(0|1) − ps(00|11), 1 − p(2)(0|1))T . (106)

Bob’s states steered by Alice have the same form as in Eq. (106) but exchanging XZ ↔ ZX
and (1) ↔ (2). Now, the constraint that PRM measures parity (given by Eq. (85)) reads

P00 + P01 =

 2 0 −1
0 0 0

−1 0 1

 ,

P10 + P11 =

 0 0 0
0 2 −1
0 −1 1

 . (107)
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This can be obtained from Eq. (85) as follows. First we have, for example,

(P00 + P01) · ps = ps(00|00) + ps(11|00) , (108)

where · represents the Frobenius inner product of the two matrices. Then using

ps(00|00) + ps(01|00) = p(1)(0|0) ,
ps(11|00) + ps(01|00) = p(2)(0|0) ,

ps(00|00) + ps(01|00) + ps(10|00) + ps(11|00) = 1 , (109)

we get
(P00 + P01) · ps = 1 + 2ps(00|00) − p(1)(0|0) − p(2)(0|0) , (110)

which leads to the form above. Preserving probability by PRM reads as

P00 + P01 + P10 + P11 =

 0 0 0
0 0 0
0 0 1

 = 1 . (111)

Thus, the condition that P is a PRM is captured by the following free parameters:

P00 − P01 − P10 + P11 =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 ≡ C. (112)

Finally, the constraints that we still need to impose are the positivity of PRM effects both
on the state, as well as on tensor products on all pairs of steered states that can be obtained
from it. We see then that OP2 requires us to optimise over the free parameters (state s given
by Eq. (105) and C), under the positivity constraints of the previous sentence.

Now, to approximate the solution to OP2, we apply a particular level of the Lasserre hi-
erarchy, which is slightly lower than the previously described 1+AB, and which we will de-
note by 1+AB∗. Let Υp denote the set of free parameters given by given by Eq. (105), and
ΥC that given by the free parameters in C. Here, Υ = Υp

⋃
ΥC

⋃
{1}. However, the matrix

under study in the level we consider here has rows and columns labeled by the elements of
(Υ × Υ) \ (Υp × Υp) \ (ΥC × ΥC) – that is, it is a submatrix of that considered in level 1+AB.

The upper bound to OP2 given by the 1+AB∗ level of the Lasserre hierarchy, gives a value

of ∼ 0.2071, which agrees up to numerical precision with IR
max =

√
2−1
2 . This equality follows

from recalling that the Tsirelson’s bound value can be achieved within Quantum theory by a
Bell measurement, and hence yields a lower bound to IR

max. In other words, here we recover
Tsirelson’s bound for the CHSH inequality.

Case |ι| = 2, |η| = 3. Here we still assume that the PRM measures just two parities (i.e., those
of XX and ZZ), but now Alice and Bob have one more additional observable (i.e., Y). This is
an important case, as it allows for the possibility that the constraints imposed by the existence
of a PRM are sensitive to the dimension of the local systems. Notice that if the constrains
stemming from the existence of a PRM turn out to be independent of the dimensions of the
local systems, one can then take a device-independent approach to the problem and only rely
on the black-box statistics to make assessments on the possible violations of the Bell inequality.

Our numerical results show that in this case Tsirelson’s bound is also not violated. The
results are computed exactly as in the previous case with |η| = 2: we upperbound the value
of IRP

max via the 1+AB∗ level of the Lasserre hierarchy, which agrees up to numerical precision
with Tsierlson’s bound for the CHSH inequality as the solution to OP2′.
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Case |ι| = 3, |η| = 3. Here, both parties have three observables, and the PRM measures the
parity of all three of them. In this case, there is no need to run numerics to approximate the
solution to IR

max. On the one hand, notice that the optimisation to be carried out is the same
as that for the case with |ι| = 2 and |η| = 3, with some additional constraints given by the
requirement that the PRM reads out the parity of the extra pair of fiducial measurements (since
now |ι| = 3). Hence, IR

max[|ι| = 3 , |η| = 3] ≤ IRP
max[|ι| = 2 , |η| = 3]. Given the results from

above it follows that, up to numerical precision, IR
max[|ι| = 3 , |η| = 3] ≤

√
2−1
2 , the latter being

Tsirelson’s bound for CHSH.
On the other hand, quantum theory is an example of a generalised probabilistic theory

that yields the value CHSH =
√

2−1
2 while complying with the constraints from OP1. Indeed,

taking the three fiducial measurements per side to be the Pauli observables, one can construct

a PRM that does the trick. Hence, IR
max[|ι| = 3 , |η| = 3] ≥

√
2−1
2 . From this follows that, up

to numerical precision, IR
max[|ι| = 3 , |η| = 3] ∼

√
2−1
2 .

7.2 AMP inequalities
In a bipartite Bell scenario featuring two dichotomic measurements per party, a relevant family
of inequalities was defined by Aćın, Massar, and Pironio (AMP) [35]. These correspond to
tilted CHSH inequalities, and have been found to be useful for randomness ‘generation’ [35]. In
the traditional language, the value assigned to the linear functional associated to the inequality
reads:

IAMP
α,γ = ⟨γ A0 + αA0B0 + αA0B1 +A1B0 −A1B1⟩ , (113)

where the parameters α and γ satisfy: α ≥ 1, γ ≥ 0, and γ < 2. These inequalities are
bounded from above, and their corresponding classical, quantum, and non-signalling bounds
when αγ ≤ 2 are:

βCAMP(α, γ) = 2α+ γ, (114)

βQAMP(α, γ) = 2
√

(1 + α2)
(

1 + γ2

4

)
, and (115)

βNS
AMP(α, γ) = 2 + 2α . (116)

In our notation, that is, in terms of the probabilities, the AMP inequialities are equivalently
captured by the following linear functional:

Iα,γ = − (2α+ γ) p(1)
s (0|0) − (1 + α) p(2)

s (0|0) + 2αps(00|00) + 2αps(00|01)
+ (1 − α) p(2)

s (0|1) + 2 ps(00|10) − 2 ps(00|11) , (117)

whose corresponding classical, quantum, and non-signalling bounds when αγ ≤ 2 are:

βCα,γ(α, γ) = 0 , βNS
α,γ(α, γ) = 1 − γ

2 , and (118)

βQα,γ(α, γ) =
√

(1 + α2)
(

1 + γ2

4

)
− 2α+ γ

2 , (119)

To explore the case of these inequalities in this section, we have only considered the case of
|ι| = |η| = 2.

The values of α and γ that we considered are quite varied. On the one hand, we took α from
the set {1, 3, 5, 7, 9, 11} and then, for each such α, considered six equally-spaced values for γ
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(see Sec. A in the Appendix). On the other hand, we wanted to explore the transition between
α = 1 and α = 3 more deeply, hence we explored the linear functionals Iα,γ also for α taken
from the set {1.01, 1.05, 1.1, 1.2, 1.5, 2, 2.2, 2.4, 2.6, 2.8, 2.9, 2.95} whilst keeping γ = 0. The
motivation for this will hopefully become clear later on.

For each of the linear functionals Iα,γ defined by the above-mentioned values of α and γ,
we asked what the value of Imax – the solution to the optimisation problem OP1 – is. Here we
computed an upper bound to Imax for each inequality, by applying two relaxations to OP1:

• First, instead of demanding that s ∈ Σ, we only request that the state s belongs to the
cone K[P] that satisfies the second level of our hierarchy (see Eqs. (62), (63), (64), (67),
and (68)).

• Second, by solving the associated level 3 of the Lasserre hierarchy, we upper bound the
solution to the relaxation to OP1 defined in the previous item.

Our numerical calculations show that, in the cases where α ≥ 3 the upper bound for
Imax is smaller than the inequality’s Tsirelson’s bound (see Fig. 5). Indeed, up to numeri-
cal precision Imax ≤ 0, where 0 is the classical bound of the inequality. For the case where
α = 1, the inequality becomes the CHSH inequality plus a extra term corresponding to
the single-party observable A0. Beyond the case γ = 0 (which corresponds to the tradi-
tional CHSH inequality), other values of γ give an upper bound to Imax that is larger than
yet close to the inequality’s Tsirelson’s bound (see Fig. 5). Finally, for the values of α ∈
{1, 1.01, 1.05, 1.1, 1.2, 1.5, 2, 2.2, 2.4, 2.6, 2.8, 2.9, 2.95, 3, 5, 7, 9, 11} and γ = 0 one observes
that the upper bound to Imax drops to 0 when α goes from 1 to 3. Reading into the data of
Fig. 5, one can notice some additional interesting behavior. For instance, in a few cases the
upper bound to Imax is equal to Tsirelson’s bound, at least, up to the numerical precision. In
particular, this happens for the cases where αγ = 2 explored in this manuscript. The numerical
results presented in this subsection are further summarized in Fig. 6.

The cases in which the PRM bounds the value of the AMP inequality to be smaller than
the maximal quantum value (in contrast to CHSH in which the exact quantum bound was
obtained) are likely to be cases in which the quantum bound is achieved for quantum observ-
ables for which there does not exist a PRM. This suggests that the observables which allow for
a PRM may feature some particular properties regarding them being maximally complemen-
tary. Understanding the scope of parity-readable observables within quantum theory, and the
correlations which they can realise, is therefore an important topic for future work.

Now, what does this all mean for the purpose of our conjecture? Well, no conclusive state-
ment can be drawn from the numerics run for α = 1 , γ ̸= 0. However all other cases are
consistent with (and hence support) Conjecture 1.

7.3 AQ inequality
In Ref. [36] an inequality was provided, which is violated by so called “almost quantum” corre-
lations [36], but is not violated by any quantumly realisable correlations. Here we refer to this
inequality as AQ inequality. In our notation it is given by

IAQ(ps) =30
31p

(1)(0|0) − 167
9 p(1)(0|1) + 30

31p
(2)(0|0) − 74

11p(00|00) + 174
11 p(00|10)

− 167
9 p(2)(0|1) + 174

11 p(00|01) + 244
23 p(00|11) . (120)

33



7.3 AQ inequality 34

Figure 5: Numerical results for the AMP inequalities. (a) Each integer value, x in the horizontal axis
corresponds to a different choice of pair of parameters (α, γ), i.e., a different AMP inequality (see Table in
Eq. (150)). The vertical axis plots, for each inequality, both the numerical approximation to OP1 (dashed
red line) and the Tsirelson’s bound of the inequality (solid blue line). (b) The horizontal axis is the same as
for the case (a). The vertical axis plots the difference between the numerical approximation to OP1 and the
Tsirelson’s bound of the inequality. (c) The value of the horizontal axis corresponds to the value of α. The
value of γ is always 0. The vertical axis plots, for each inequality, both the numerical approximation to OP1
(dashed red line) and the Tsirelson’s bound of the inequality (solid blue line). (d) The horizontal axis is the
same as for the case (c). The vertical axis plots the difference between the numerical approximation to OP1
and the Tsirelson’s bound of the inequality. In (b) and (c), witnessing a nonnegative value in the plot means
that IR

max lies below Tsirelson’s bound for that particular inequality. In all these figures, we approximate OP1
by first relaxing OP1 and then using the third level of the Lasserre hierarchy – see main text for details.



This inequality is bounded from above, and the corresponding classical, quantum, almost-
quantum, and non-signalling bounds are:

βCAQ = 30
31 ∼ 0.9677 , βQAQ < 1 , (121)

βAQ
AQ = 1.0232 , and βNS

AQ = 3.5347 . (122)

Let us first consider the case |ι| = 2, |η| = 2. Similarly to the case for the AMP inequalities,
we upper-bound Imax by the solution to OP1 provided by the second level of the PRM-hierarchy
of constraints presented in this paper. This solution is moreover estimated (i.e., upper bounded)
by using the third level of the Lasserre hierarchy for polynomial optimisation problems. In this
case, we obtain Imax ≤ 1.387818418422242. This upper bound to Imax is quite larger than
the quantum bound, and hence not much can be concluded. Going to higher levels in the
PRM-hierarchy might be the most promising step to take, however our current computational
capabilities cannot handle the number of constraints and hence we defer this option for future
work.

Next, we considered the case of |ι| = 3, |η| = 3. Approximating the solution of OP2 via
the 1+AB level of the Lasserre hierarchy gives IR

max < 1.7. This number is substantially larger
than the quantum bound for the inequality, and hence we are in a similar situation to the case
presented before.

In this case, however, one can further explore the specific cases where some extra properties
are required of the PRM being optimised over. This is similar to what we discussed in Sec. 5.1.
So let us remind ourselves first of what these two specific types of PRM we focus on are. Notice
that since |ι| = 3 and |η| = 3 the outcome of a PRM is of the form (±,±,±|1, 2, 3), where ±j

tells whether the pair of fiducial measurements (j, j) is correlated (+) or anti-correlated (−). A
PRM is of ‘quantum’ type if it assigns non-zero probability only to the outcomes

{(−,−,−|1, 2, 3), (−,+,+|1, 2, 3), (+,−,+|1, 2, 3), (+,+,−|1, 2, 3)} , (‘quantum’) . (123)

The motivation behind the name is that a PRM of Pauli measurements satisfies this constraints.
In turn, a PRM is of ‘mirror quantum’ type if it assigns non-zero probability only to the outcomes

{(−,−,+|1, 2, 3), (−,+,−|1, 2, 3), (+,−,−|1, 2, 3), (+,+,+|1, 2, 3)} , (‘mirror quantum’) .
(124)

The motivation behind the name is that it is exactly the complement of the ‘quantum’-type
PRM.

With this in mind, we approximated the solution of OP2 via the second level of the Lasserre
hierarchy. The results we obtained are:

IR
max < 0.8782940363666021 , (‘quantum’) , (125)

IR
max < 1.3953137950470862 , (‘mirror quantum’) . (126)

We see that restricting the optimisation to PRMs that are of ‘quantum’ type give quite a
strong constraint on the possible value of Imax, which here happens to be below the quantum
bound (even below the classical bound) of the inequality. We believe that demanding that
a PRM of ‘quantum’ type exists somehow forces the fiducial measurements to display some
complementarity properties, and hence are not ideal for maximising the value of the linear
functional IAQ.

The numerical results presented in this subsection are summarized in Fig. 6.
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Figure 6: Bounds for Bell inequalities from parity reading measurement. “Arbitrary PRM” means that we do
not restrict it in any way. In particular, for |ι| = 3 it means that the PRM has 8 outcomes.

7.4 Necessity of local tomography
In this section we show that, if we give up on the assumption of local tomography in Optimization
Problem 2, then Tsirelson’s bound is violated. Moreover, it is violated in an extreme way,
namely, that PR-box correlations can be achieved. Recall that the PR-box is a nosignaling box
that reaches the nosignaling bound, that is, the algebraic maximum, for the CHSH inequality
(i.e., in our notation of Eq. (103) it achieves the value of 1/2). The PR box can be defined
by the fact that it exhibits perfect correlations for XX, XZ, and ZX observables, and perfect
anticorrelations for ZZ.

We now assume that local tomography does not hold, and, in particular, that the states
are described by one extra non local, “holistic”, parameter, which we denote by wNL. Our
parameterisation of the state, that is, the equivalent of Eq. (75), now takes the form:

ps = (pLT
s , wNL)

=
(
ps(00|00) , ps(00|10) , p(2)

s (0|0) , ps(00|01) , ps(00|11) , p(2)
s (0|1) ,

p(1)
s (0|0) , p(1)

s (0|1) , 1, wNL

)
. (127)

The parameter wNL is described as a holistic degree of freedom, as products of local observables
are independent of its value. In general, however, a PRM will not be simply a product of local
observables, and hence, it is possible that it will indeed depend on this holistic parameter.

For the remaining of this section it is more convenient to use a more compact matrix notation
for bipartite states and effects, given by:

ps =


ps(00|00) ps(00|01) p

(1)
s (0|0)

ps(00|10) ps(00|11) p
(1)
s (0|1)

p
(2)
s (0|0) p

(2)
s (0|1) 1

wNL

 . (128)
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In this notation, the state which realises a PR box looks as follows

pPR
s =


1
2

1
2

1
2

1
2 0 1

2
1
2

1
2 1

wPR
NL

 , (129)

where wPR
NL can be an arbitrary value. By definition of a PRM, the sums P00+P01 and P00+P10

depend only on local parameters – hence, their holistic parameter is zero and we get

P00 + P01 =


2 0 −1
0 0 0

−1 0 1
0

 ≡ R0, P00 + P10 =


0 0 0
0 2 −1
0 −1 1

0

 ≡ R1. (130)

Preserving probability by PRM reads as

P00 + P01 + P10 + P11 =


0 0 0
0 0 0
0 0 1

0

 ≡ 1 . (131)

Using this, we can write the free parameters for our optimisation problem as follows:

P00 − P01 − P10 + P11 = (CLT , cNL) =


c11 c12 c13
c21 c22 c23
c31 c32 c33

cNL

 ≡ C. (132)

Here, cNL corresponds to the holistic parameter.
We can then express our parity reading effects in terms of these matrices R0, R1 and 1 and

the free parameters C, as:

P00 = 1
4

(
2R0 + 2R1 + C − 1

)
,

P01 = 1
4

(
2R0 − 2R1 − C + 1

)
,

P10 = 1
4

(
−2R0 + 2R1 − C + 1

)
,

P11 = 1
4

(
−2R0 − 2R1 + C + 31

)
. (133)

In particular, the nonlocal parameter for PRM effects amounts to

P00
NL = P11

NL = cNL

4 , P01
NL = P10

NL = −cNL

4 . (134)

Let us now write the requirement of PRM effects to be positive on the PR-box state. First,
notice that

R0 · pPR
s = 1, R1 · pPR

s = 0 , (135)
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Figure 7: Steered states coming from PR box. Here we are drawing the hyperplane of normalised vectors
defined by (0, 0, 1) · v = 1.

(as it should be, since PR box has perfect XX correlations and perfect ZZ anticorrelations). We
thus get

P00 · pP R
s = 1

4
(
1 + C · pP R

s

)
,

P01 · pP R
s = 1

4
(
3 − C · pP R

s

)
,

P10 · pP R
s = 1

4
(
−1 − C · pP R

s

)
,

P11 · pP R
s = 1

4
(
1 + C · pP R

s

)
. (136)

We see that the positivity of a PRM effect on the PR-box is equivalent to the following condition:

C · pP R
s = −1. (137)

Let us now explore the conditions that follow from products of steered states. The form of the
unnormalized steered state is given by Eq. (82). Thus, the normalized ones arising from the
PR-box state (for each party) are given by

s1 = (0, 0, 1)T , s2 = (0, 1, 1)T , s3 = (1, 0, 1)T , s4 = (1, 1, 1)T . (138)

We see that these define the vertices of the so-called square bit, as can be seen in Fig. 7. The

tomographically local degrees of freedom for the products of steered states are pij
s,LT = s

(1)
i ⊗s(2)

j ,
i, j = 1, . . . 4. We then denote:

pij
s = (pij

s,LT , w
ij
NL) = (s(1)

i ⊗ s
(2)
j , wij

NL). (139)

Note that, here, the bracket does not mean scalar product, but rather indicates two groups of
parameters: the group of locally tomographic ones, and the group consisting of one nonlocal
parameter. For steered states, the nonlocal parameter wij

NL must be a linear combination of the
local parameters:

wij
NL = h · pij

s,LT . (140)

This follows from noting that:
i) the way that local states are combined to give product states must be given by a bilinear

function from the local vector spaces into the global vector space;
ii) the universal property of the tensor product means that this can be written as a linear

function from the tensor product space of the local vector spaces into the global vector
space;
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iii) the local parameters are simply the tensor product space;
iv) this means that the value of the non-local parameter is given by a linear functional on the

local parameters (i.e., a linear map from the local vector spaces into the reals);
v) finally, the Riesz representation theorem means that we can write this as the dot product

with some vector h in the local parameter space.
We thus have

Pqr · pij
s = Pqr

LT · pij
s,LT + Pqr

NL pij
s,NL = (Pqr

LT + Pqr
NL h) · pij

s,LT , (141)

where we recall, that Pqr
NL are numbers (the values of the nonlocal parameter for PRM effects)

given by Eq. (134). Using the above equation together with Eq. (133), we obtain

P00 · pij
s = 1

2(R0 + R1)pij
s + 1

4(−1 + g · pij
s )

P01 · pij
s = 1

2(R0 − R1)pij
s + 1

4(1 − g · pij
s )

P10 · pij
s = 1

2(−R0 + R1)pij
s + 1

4(1 − g · pij
s )

P11 · pij
s = 1

2(−R0 − R1)pij
s + 1

4(3 + g · pij
s ) , (142)

where we have denoted
g = CLT + cNLh , (143)

with CLT being the locally tomographic part of C, and cNL the holistic part of C. Now, the
positivity of PRM effects on products of steered states means that we require all four terms to
be positive for all i, j = 1, . . . , 4. By using Mathematica [71] we find that positivity is satisfied
for only one choice of g:

g =

 4 0 −2
0 4 −2

−2 −2 4

 . (144)

To summarise, positivity conditions of the PRM on the PR-box states and products of its
steered states reduce to:

positivity on PR box state: CLT · pP R
s,LT + cNLw

P R
NL = −1 (145)

positivity on steered states: CLT + cNLh =

 4 0 −2
0 4 −2

−2 −2 4

 . (146)

To prove our original claim, the idea is to choose values for CLT , cNL,h and wP R
NL such that the

above two constraints hold. Our choice is the following:

CLT = 0, cNL = 1, wP R
NL = −1, h =

 4 0 −2
0 4 −2

−2 −2 4

 . (147)

These values for CLT and cNL fix the PRM to take the form:
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p(0|0)

p(0|1)

2

1

1

0
s1

s2

s3

s4

0

1

Figure 8: The value of the nonlocal parameter for the pairs of steered states. Each dashdotted-red loop
denotes a pair of the same steered states. Each dotted-green or dashed-blue line means two pairs depending
on which state goes to Alice and which to Bob. This gives rise to 16 pairs of steered states. Dashdotted-red
pairs have the same value for both observables and dashed-blue pairs have the same value for one observable,
whilst for dotted-green pairs both observables have opposite values.

P00 = 1
4


4 0 −2
0 4 −2

−2 −2 −1
1

 , P01 =


4 0 −2
0 −4 2

−2 2 1
−1



P10 = 1
4


−4 0 2
0 4 −2
2 −2 1

−1

 , P11 =


−4 0 2
0 −4 2
2 2 3

1

 . (148)

In addition, our choice of h defines the value of the nonlocal parameter for steered states to be

wij
NL = h · pij

s,LT . (149)

We see then that the PR-box state is consistent with the existence of a PRM that satisfies the
constraints of OP2. Since performing fiducial measurements on a PR-box state yields PR-box
correlations, this shows that IR

max = 1
2 for the CHSH inequality, as per Eq. (103). With this we

conclude the proof of our claim.

Let us make a final comment on an interesting interpretation for the values of the nonlocal
parameter for the pairs of steered states: they count the number of correlations. If both
observables have the same value for a given pair of steered states (which happens when Alice
and Bob’s steered states are the same) then the parameter takes the value 2. When only one of
the observables has the same value, then it takes the value 1, and when both observables have
the opposite value, then it takes the value 0. This is depicted in Fig. 8.

8 Discussion
In this paper we have shown that postulating within a theory the existence of particular bipartite
measurements has a surprisingly rich set of consequences for the structure of the theory itself.
Indeed, we showed that this leads to an infinite hierarchy of constraints on the possible bipartite
states. These conditions translate analogously into constraints on the statistical correlations
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allowed by the theory. In other words, the maximum violation of any Bell inequality by the
correlations among fiducial measurements featured by the theory will be subjected to an infinite
hierarchy of constraints.

We further explored the consequences of this rich structure for the particular case where
there exists a bipartite measurement that can read out the parity of local fiducial measurements.
For the case of tomographically-local GPTs, we found that these constraints on the structure of
bipartite sates are enough to recover (up to numerical precision) Tsirelson’s bound for various
inequalities in the CHSH scenario. In addition, we also showed that non-tomographically local
GPTs may still reach the maximum algebraic violation of such inequalities (i.e., go beyond
Tsirelson’s bound) when only the first levels of the hierarchy of constraints are considered. We
also noticed that, for inequalities where the maximum quantum violation is not achieved by
measuring complementary observables, our technique may also yield values below Tsirelson’s
bound.

Our initial numerical results led us to formulate a conjecture on the constraints that the
existence of a Parity Reading Measurement may yield for tomographically local GPTs:

Conjecture 1. Under the assumption of local tomography, the local observables that are parity-
readable satisfy Tsirelson’s bound, i.e., they cannot violate Bell inequalities better than quan-
tum mechanics does (with arbitrary measurements).

It is worth mentioning that, after formulating the conjecture, we ran further numerics in
other scenarios (all presented in this manuscript) which did not disprove the conjecture.

From looking at Conjecture 1 one can take a step back and further conjecture that quantum
theory, among the landscape of GPTs that are locally tomographic, is the theory that displays
the necessary balance between its allowed states and effects to feature the following property:

Conjecture 2. Quantum Theory yields the largest violation of any Bell inequality by parity-
readable fiducial measurements, within the landscape of possible locally-tomographic physical
theories.

Notice that in this conjecture we are comparing correlations obtained from parity-readable mea-
surements in quantum theory vs. in other more generic (yet locally-tomographic) GPTs, and
state that quantum theory will always produce correlations that are more non-classical. This is
in contrast to Conjecture 1 which compared correlations obtained from arbitrary measurements
in quantum theory vs. those that are achieved with parity-readable measurements in an arbti-
rary tomographically-local GPT. The significance of this is that not all quantum correlations
can be achieved with parity-readable measurements alone. However, if measurements beyond
parity-readable ones may be used, then it is possible that other GPTs beyond quantum (e.g.,
Boxworld) can generate correlations that are more non-classical than any that quantum theory
may produce. Now, whether Conjecture 2 is true, how to formally express it, and what its
consequences are, comprise a topic for future work.

Going beyond the CHSH scenario or GPTs with affine local dimension ≥ 3 is a computa-
tionally demanding task. Indeed, the complexity of the optimisation problems to be solved rises
considerably with the number of settings and dimension. A complete understanding of the reach
of the constraints imposed by parity reading measurements require the further development of
analytical and numerical techniques, which are deferred to future work.

Moving forward, one may apply our technique to explore the constraints that entangled
measurements beyond parity reading ones may impose. Indeed, Optimisation Problems 2 and
2′ may be straightforwardly adapted to study other bipartite measurements. It would be inter-
esting to see if there is a relation between the properties of bipartite entangled measurements
and those of the Bell inequalities whose Tsirelson’s bound they recover.
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More ambitiously, there is the natural question of multi-partite entangled measurements.
Would the structure they impose on multi-partite state spaces have special features that we
cannot envision from the phenomenology at the bipartite level? We hope such explorations will
bring new insight into the structure of states and effect spaces in GPTs, and their non-classical
properties.
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A Results for AMP inequalities
In Table (150) we present the values we chose for the pairs of parameters (α, γ), used to de-
fine AMP inequalities that we examine in our numerical optimization. Here, the variable x
corresponds to the value of the x-axis in Fig. 5.

x α γ
1 1 0
2 1 0, 4
3 1 0, 8
4 1 1, 2
5 1 1, 6
6 1 2
7 3 0
8 3 0, 133333333
9 3 0, 266666667
10 3 0, 4
11 3 0, 533333333
12 3 0, 666666667

13 5 0
14 5 0, 08
15 5 0, 16
16 5 0, 24
17 5 0, 32
18 5 0, 4
19 7 0
20 7 0, 057142857
21 7 0, 114285714
22 7 0, 171428571
23 7 0, 228571429
24 7 0, 285714286

25 9 0
26 9 0, 04444444
27 9 0, 088888889
28 9 0, 133333333
29 9 0, 177777778
30 9 0, 222222222
31 11 0
32 11 0, 036363636
33 11 0, 072727273
34 11 0, 109090909
35 11 0, 145454545
36 11 0, 181818182

(150)

B Introduction our GPT formalism
In this paper we take a categorical approach to GPTs, which we summarise in this Section. The
reader unfamiliar with the mathematics of category theory is referred to Ref. [72] for a physicist
friendly introduction to the topic, and to Ref. [73] as the classic mathematics textbook on the
subject.

The particular formalism that we use here is based on the observation that any tomograph-
ically local GPT can be thought of as a particular symmetric monoidal subcategory of the
symmetric monoidal category VectR of real vector spaces and linear maps (see, e.g., Ref. [34]).
In particular, such a subcategory has the following properties:

1. objects are finite dimensional;

2. the scalars are the unit interval;

3. the hom-sets6 are closed under convex combinations;

4. the points (and copoints) for an object span the vector space (resp. dual vector space);

5. there is a unique ‘deterministic’ copoint, uV , for each object V . This is defined by the
constraint that for any other copoint e for the object V there exists a copoint e⊥ such
that e+ e⊥ = uV .

One of the benefits of this categorical approach to generalised probabilistic theories is that
there is a faithful diagrammatic representation using string diagrams, which we will use through-
out the paper. This diagrammatic notation moreover immediately suggests the correct inter-
pretation of the abstract categorical definition given above. For example, consider the following
diagram (read bottom to top):

6A hom-set is the set of transformations from one object to another, in this case, this will be a subset of the
set of linear maps from one vector space to another.
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E

S

T1

T2

U

VV

V W

W

. (151)

We view the wires in the above diagram, corresponding to objects (i.e. finite dimensional real
vector spaces), as representing physical systems. Then, points, such as, S : R → V ⊗ V ,
represent physical states, general morphisms, such as T1 : V ⊗U → V ⊗W and T2 : V ⊗V → W
represent physical transformations, and copoints, such as E : W → R, correspond to physical
effects. Closed diagrams, such as:

S

E

V , (152)

that is, elements of the unit interval, are interpreted as the probability of observing effect E
given the system was prepared in state S. We denote the unique deterministic effect as:

V , (153)

which defines the normalised states S as those satisfying:

S

V = 1 . (154)

Note that for a set of effects {Ei}i∈I to describe a measurement it must be the case that:

∑
i∈I

Ei

V

=
V

. (155)

One can then see that (finite dimensional) quantum theory defines such a GPT by noting that
the set of Hermitian operators for some Hilbert space H forms a real vector space B(H), and that
completely positive trace non-increasing (CPTNI) maps between these spaces are a particular
class of linear maps between these vector spaces. The other constraints are simple to verify.
Similarly, classical stochastic dynamics can be represented as such a GPT. To see this note
that stochastic dynamics from some (finite) set X to another (finite) set A can be represented
as a particular class of linear maps from the finite dimensional vector space RX to the finite
dimensional vector space RA.

We will work with the representation of GPTs in which this classical GPT is included as a
subtheory. To distinguish it, we will represent the classical systems by thin gray wires, and, for
convenience, we will simply label them by the finite set X, A, ..., rather than the vector spaces
RX , RA, ... . This is convenient because it allows us to explicitly represent measurement out-
comes and setting variables within the diagrammatic representation. For example, a controlled
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measurement of system V with setting variable X and outcome variable A is denoted as:

V

M

X

A

, (156)

which must satisfy the constraint:

V

M

X

A

=
VX

. (157)

The situation where we perform this measurement M on the system V prepared in some
normalisted state S is denoted by:

V

M

X

A

S

, (158)

and is simply a stochastic map from the setting variable X to the outcome variable A. The
probabilities of obtaining a particular outcome a ∈ A given a setting x ∈ X can be extracted
from this map via:

V

M

X

A

S

x

a

= pS(a|x) . (159)

We will also find it useful to use certain processes which live in VectR but which are not
part of the subtheory describing the GPT. To visually distinguish these ‘non-physical’ processes
we draw them as shaded objects:

L

U

V

. (160)

Finally, we will define a particular type of linear functionals I. The objects these act on are
linear maps from one vector space U to a vector space V . We diagrammatically denote them
as:

I
U

V

. (161)

Such a linear functional, I, maps some linear map L : U → V to a real number by:

I
U

V

:: L

U

V

7→ I
U

V

L . (162)
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Note that, as VectR is a compact closed category, it can be readily verified that these linear
functionals can always be written as:

I
U

V

=

vI

U

V

cI

ζI , (163)

for some vector space ζI , vector vI and covector cI .

C Geometric constraints on state and effect spaces
We define the dual of a set of vectors V ⊆ V by:

V∗ := {w ∈ V ∗|w(v) ∈ [0, 1] ∀v ∈ V} . (164)

If we then denote the set of states by ΩV and the set of effects by EV then the constraint on
state-effect pairs implies7 the pair of constraints:

EV ⊆ Ω∗
V and ΩV ⊆ E∗

V . (165)

That is, the effect space is constrained by the state space and vice versa.
Now, if we consider the special case of bipartite systems V ⊗W then this means that:

EV ⊗W ⊆ Ω∗
V ⊗W and ΩV ⊗W ⊆ E∗

V ⊗W . (166)

Hence, introducing some bipartite effects for the theory (i.e., enlarging EV ⊗W ) will induce a
constraint on the bipartite state space (since E∗

V ⊗W will potentially be smaller).
This constraint, however, whilst necessary is not sufficient to ensure that we will end up

with a valid GPT. Considerations of compositionality and convexity further constrain our state
spaces. For example, it follows from compositionality and convexity, that any state of the form:

∑
i

pi
s

(i)
v s

(i)
w

V W

, (167)

where s
(i)
v ∈ ΩV and s

(i)
w ∈ ΩW , pi ∈ R+, and

∑
i pi = 1, is a valid state for the composite

system. This condition – that the bipartite state space contains all separable states – means
that ΩV ⊗min ΩW ⊆ ΩV ⊗W , where, the so called ‘min tensor product’ is defined as the set of
separable states. The same is also true for effects – compositionality and convexity mean that
any effects of the form:

∑
j

qj
e

(j)
v e

(j)
w

V W
, (168)

where e
(j)
v ∈ EV and e

(j)
w ∈ ΩW , qj ∈ R+, and

∑
j qj = 1, is a valid effect for the composite

system. This means that EV ⊗min EW ⊆ EV ⊗W .

7Where we identify V ∗∗ ∼= V
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In conjunction with condition Eq. (166), we can use this to obtain an upper bound on the
state space as follows:

ΩV ⊗min ΩW ⊆ ΩV ⊗W ⊆ (EV ⊗min EW )∗ =: E∗
V ⊗max E∗

W . (169)

That is, the bipartite state space is bound between the min-tensor product of the local state
spaces and the max-tensor of the duals of the local effect spaces. Similarly for the bipartite
effect space we obtain:

EV ⊗min EW ⊆ EV ⊗W ⊆ (ΩV ⊗min ΩW )∗ =: Ω∗
V ⊗max Ω∗

W . (170)

D Tensor representation
Essentially this representation boils down to picking a suitable basis (and dual basis) for each
vector space.

We have already seen, via Eq. (43), how a local state of V can be represented as a n + 1-
dimensional vector. Next we will see how to extend this to arbitrary processes. The simplest
way to do so is to introduce a decomposition of the identity into orthogonal rank-1 projectors
for each system. There are actually only three relevant systems (and their composites) in the
above problem, the two classical systems, β and η, which decompose as:

β
=

0
β

0
β

+
1
β

1
β

and
η

=
∑
i∈η i

η

i

η

, (171)

and the GPT system V which decomposes as:

V
=

∑
i∈η

V

F
i

0

v0

V

+

V

v2

V

(172)

=
∑
i∈η ei

V

vi

V

+
en

V

vn

V

. (173)

The ei are physically realisable effects, however, the vi are simply vectors in V which satisfy
ei(vj) = δij . It is important that we do not demand that the vi are physically realisable states,
as, for any non-classical GPT, there are insufficient perfectly distinguishable states to span the
vector space.

A remark on notation: in the following sections we will also denote the unit effect for the β
systems as uβ, and their fiducial effects by 0⃗ and 1⃗.

Now, to obtain a tensorial representation of any diagram we simply decompose all of the
internal identities in the diagram and attach ei and vj to the free inputs and outputs, for

50



example:

V

V

s

F

η

β

7→



∑
l

ek

V

V

s

el

F

j

i

η

β

vl

V



ik

j

(174)

=
∑

l


F

j

i

η

β

vl

V



i

jl


ek

V
V

s

el


lk

(175)

=:
∑

l

F i
jls

lk (176)

A bipartite state, such as s in the above diagram, is therefore represented by a two-index tensor.
If this bipartite state is a product state, then it is easy to see that this two-index tensor is simply
the Kronecker product of the one-index tensors associated to the two components:

(s1 ⊗ s2)ij =


s1

ei

s2

ej

ij

=


s1

ei

i 
s2

ej

j

= si
1s

j
2 . (177)

D.1 Example
Consider the case where β = {0, 1}, η = {0, 1}, and |ι| = 2. Moreover, take the dimension of
the local GPT system to be 3.

Define Fa
xv real tensors where a, x ∈ {0, 1} v ∈ {0, 1, 2} as follows:

Fa
xv :=

v = 0 v = 1 v = 2
a = 0, x = 0 1 0 0
a = 1, x = 0 −1 0 1
a = 0, x = 1 0 1 0
a = 1, x = 1 0 −1 1

(178)

We then define our variables svw, Ppq
vw as real tensors with v, w ∈ {0, 1, 2} p, q ∈ {0, 1}. The

tensors F , P and s will determine local fiducial measurements, parity reading measurement,
and state, respectively.

Given a particular linear functional Ixy
ab we optimise:

β := sups,P
∑
abxy

Ixy
ab

∑
v1,v2

Fa
xv1Fb

yv2sv1v2 (179)

subject to the following constraints. Note that in these constraints any sum is implicitly taken
over its whole range and there is an implict ∀ for any index which is not contracted:
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• Parity Reading: ∑
p

Ppq
vw = F0

1vFq
1w + F1

1vF1⊕q
1w (180)

∑
q

Ppq
vw = F0

0vFp
0w + F1

0vF1⊕p
0w (181)

• Probabilities for fiducial measurements:∑
v1,v2

Fa
xv1Fb

yv2sv1v2 ≥ 0 (182)

1 =
∑

a,b,v1,v2

Fa
xv1Fb

yv2sv1v2 (183)

• Hierarchy L1: ∑
v1,v2

Pp1p2
v1,v2svπ(1)vπ(2) ≥ 0 (184)

for all π where π is a permutation of {1, 2}.
• Hierarchy L2: ∑

v1,v2,v3,v4

Pp1p2
v1,v2Pp3p4

v3,v4svπ(1)vπ(2)svπ(3)vπ(4) ≥ 0 (185)
∑

v1,v2,v3,v4

Pp1p2
v1,v2Fa

xv3Fb
yv3svπ(1)vπ(2)svπ(3)vπ(4) ≥ 0 (186)

for all π where now π is a permutation of {1, 2, 3, 4}
• Hierarchy L3: ∑

v1,v2,v3,v4

Pp1p2
v1,v2Pp3p4

v3,v4Pp5p6
v5,v6svπ(1)vπ(2)svπ(3)vπ(4)svπ(5)vπ(6) ≥ 0 (187)

∑
v1,v2,v3,v4,v5,v6

Pp1p2
v1,v2Pp3p4

v3,v4Fa
xv5Fb

yv6svπ(1)vπ(2)svπ(3)vπ(4)svπ(5)vπ(6) ≥ 0 (188)

(189)

for all π where now π is a permutation of {1, 2, 3, 4, 5, 6}.

Notice that the constraints (182) and (183) just say that the

p(ab|xy) =
∑

v1,v2

Fa
xv1Fb

yv2sv1v2 (190)

are probability distributions for each fixed x, y.
Also, the form of tensor F of Eq. (178) further says that the parametrization state

s = (s00, s10, s2,0, s01, s11, s21, s02, s12, s22) (191)

has the following interpretation in terms of the box p(ab|xy):

s =
(
ps(00|00) , ps(00|10) , p(2)

s (0|0) , ps(00|01) , ps(00|11) , p(2)
s (0|1) , p(1)

s (0|0) , p(1)
s (0|1) , 1

)
.

(192)

Here p(1) and p(2) are marginals obtained from p(ab|xy), e.g., p(1)(a|x) =
∑

b p(ab|xy). Note
that the latter does not depend on y due to no-signaling of p(ab|xy), which in turn is enforced
by the form of Eq. (190) and the definition of F given in Eq. (178).
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E Convergence of state cone hierarchy
In this appendix we demonstrate that the hierarchy that we define does indeed converge to the
cone K[P].

The cone K[P] is characterised by the condition: s ∈ K[P] if and only if every diagram with
only classical inputs and outputs formed from a finite number of processes must be non-negative.

We now show that this condition is equivalent to our hierarchy.
To begin with, note that any diagram in our theory is constructed by wiring together a

finite number of each of: i) the bipartite state, s, ii) the controlled fiducial measurement, F ,
and iii) the parity reading measurement, P. We call these the generating processes. We can
therefore classify diagrams by first representing them in terms of the generating processes, and
then counting the number of copies, k, of s that appear.

Next, note that if a diagram has only classical inputs and outputs, then any copy of V that
appears in the diagram must have a start point and an end point in the diagram. There is only
one generating process which can serve as a start point, namely, the bipartite state s, and either
F or P can serve as the end point.

If we have k copies of the state s within the diagram, then these must therefore be wired
into the measurements F and P. Every such diagram will factorise into totally connected
subdiagrams. Note then, that nonnegativity of the full diagram is guaranteed by nonnegativity
of the component subdiagrams. That is, to ensure nonnegativity for every diagram (with only
classical inputs and outputs) we must only demand nonnegativity of totally connected diagrams
(with only classical inputs and outputs).

It is then simple to see that the totally connected diagrams with k copies of s come in two
forms. Firstly, those in which there are k copies of P which the states s are wired to, and
secondly, those in which there are k − 1 copies of P and two copies of F . If there were more
than two copies of F then the diagram would necessarily not be totally connected. Clearly, the
first of these is captured by condition (68) and the second by the condition (67) of level k in
the hierarchy. Therefore, our hierarchy of constraints fully charaterises the cone K[P].
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