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Recent developments in artificial neural networks and their learning algorithms

have enabled new research directions in computer vision, languagemodeling, and

neuroscience. Among various neural network algorithms, spiking neural networks

(SNNs) are well-suited for understanding the behavior of biological neural circuits.

In this work, we propose to guide the training of a sparse SNN in order to replace

a sub-region of a cultured hippocampal network with limited hardware resources.

To verify our approach with a realistic experimental setup, we record spikes of

cultured hippocampal neurons with a microelectrode array (in vitro). The main

focus of this work is to dynamically cut unimportant synapses during SNN training

on the fly so that the model can be realized on resource-constrained hardware,

e.g., implantable devices. To do so, we adopt a simple STDP learning rule to

easily select important synapses that impact the quality of spike timing learning.

By combining the STDP rule with online supervised learning, we can precisely

predict the spike pattern of the cultured network in real-time. The reduction in the

model complexity, i.e., the reduced number of connections, significantly reduces

the required hardware resources, which is crucial in developing an implantable

chip for the treatment of neurological disorders. In addition to the new learning

algorithm, we prototype a sparse SNN hardware on a small FPGA with pipelined

execution and parallel computing to verify the possibility of real-time replacement.

As a result, we can replace a sub-region of the biological neural circuit within

22 µs using 2.5× fewer hardware resources, i.e., by allowing 80% sparsity in the

SNN model, compared to the fully-connected SNN model. With energy-e�cient

algorithms and hardware, this work presents an essential step toward real-time

neuroprosthetic computation.

KEYWORDS

brain-chip interface, dynamic synapses, hardware implementation, spiking neural

network, online learning

1. Introduction

In the field of systems neuroscience, studies on brain-machine interface (BMI) to replace

semi-permanent functions of the human brain have been conducted for the treatment of

neurological disorders or the use of neuroprosthetics (Zhang et al., 2020). For example,

Song et al. (2007) have replaced the function of damaged hippocampal neurons with a

mathematical model. Themodel predicts the electrical transmission between neurons so that

similar electrical functionality can be artificially generated for damaged neurons. Recently,

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1161592
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1161592&domain=pdf&date_stamp=2023-08-10
mailto:jhkung@korea.ac.kr
https://doi.org/10.3389/fnins.2023.1161592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1161592/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hwang et al. 10.3389/fnins.2023.1161592

the authors in Hampson et al. (2018) have demonstrated that

electrical stimulation to the biological neuron improves memory

function in human subjects by predicting electrical transmission

between neurons. However, most studies on BMI are based on

traditional offline learning, making it challenging to actively cope

with biological learning such as neuroplasticity. Moreover, the

complexity of a mathematical model becomes intractable as a

biological neural circuit to be replaced becomes larger (Song et al.,

2016; She et al., 2022).

Recently, artificial neural networks (ANNs) were used in

explaining how the brain learns to perform perceptual and

cognitive tasks (Richards et al., 2019). Specifically, brain-inspired

spiking neural networks (SNNs) were utilized to understand

activity patterns of neural circuits (Doborjeh et al., 2019; Lee

et al., 2019; Kumarasinghe et al., 2021). Several recent studies have

shown promising results on the capability of understanding a high-

level brain functionality using SNN models, e.g., decoding neuro-

muscular relationships (Kumarasinghe et al., 2021) or establishing a

peripheral nervous system (Lee et al., 2019). Owing to the biological

interpretability of the SNN model, it is even possible to mimic

the microscopic behaviors of neural circuits, i.e., spike timings,

firing rates, and burst patterns (Sun et al., 2010; Dominguez-

Morales et al., 2021). In addition to biological plausibility, SNNs

are energy efficient because they only compute when spikes are

present (event-driven). Therefore, many studies have focused on

improving the training accuracy of SNNs by introducing surrogate

gradient descent (Fang et al., 2021; Zheng et al., 2021) or converting

pre-trained ANNs into SNNs (Han and Roy, 2020; Han et al., 2020)

even for tasks that are mainly used for ANNs such as computer

vision.

In addition to the algorithmic improvement, neuromorphic

hardware chips have been designed, either analog (Benjamin et al.,

2014) or digital (Akopyan et al., 2015; Davies et al., 2018), to process

large-scale asynchronous SNNs efficiently. The main objective of

neuromorphic hardware is to simulate the behavior of a large

number of neurons in real-time with low power consumption.

However, prior works suffer from the inability to support, or

partially support, biologically plausible neuron models, or synaptic

learning rules. To address these challenges, Lee et al. (2018) and

Baek et al. (2019) have presented programmable SNN hardware

that supports a wide range of neuron models and synaptic

learning rules. Another approach is to use an FPGA platform,

which allows flexible modification of neuron models and network

structures by reconfiguring the hardware architecture (Cheung

et al., 2016; Sripad et al., 2018). To efficiently process large-scale

SNNs on multiple FPGA chips, SNN hardware with novel routing

algorithms for energy-efficient computation of nonlinear neuron

models have been proposed (Yang et al., 2019). Moreover, efficient

implementations and algorithms have been proposed to support

the mechanisms of various biological brain regions, such as the

cerebellum and hippocampus, in large-scale SNNs (Yang et al.,

2021a,b).

In short, SNNs can imitate biological neural networks (BNNs)

more closely than other ANN counterparts with higher energy

efficiency. Therefore, SNN is an ideal option in neuroprosthetics

modeling to increase energy efficiency and biological plausibility (Li

et al., 2021). In order to predict precise spike timings, several

supervised learning rules have been proposed (Wang et al., 2020),

and are typically divided into gradient descent learning (Bohte

et al., 2002) and STDP-based learning (Ponulak and Kasiński,

2010). Although gradient descent learning can solve complex tasks,

it is unsuitable for online learning because of its higher parameter

dependence and slower learning speed than the synaptic plasticity

learning (Lobo et al., 2020). STDP-based supervised learning is

more suitable for online learning. To minimize the complexity of

STDP-based supervised learning, we present a simple yet effective

learning method called STDP-assisted spike-timing learning (SA-

STL).With the help of our SA-STL rule, we can aggressively remove

less important synapses dynamically in the SNN model with a little

loss in the learning capability.

In this work, we focus on reproducing the target spike train

with a limited number of synapses in the SNNmodel. It is validated

using both synthetic data and our cell culture data. Then, this

paper provides an initial set of experiments to understand the

possibility of replacing a sub-region of a neural circuit by training

a recurrent SNN. To directly replace the sub-region of the neural

circuit, we map each artificial neuron in our SNN model to each

cultured biological neuron being monitored by a single probe

in a microelectrode array (MEA). Connectivity between artificial

neurons is trained by STDP-assisted supervised learning to generate

a spike train that is identical to the desired spike train of the MEA.

To demonstrate the real-time replacement, we implemented our

SNN model on a hardware platform, i.e., Xilinx PYNQ-Z2 board,

running at 50 MHz with pipelined execution. Overall, the key

contributions of this work can be summarized as:

1. Dataset Collection: We cultured a hippocampal neuronal

network to collect spike activities of biological neurons for more

realistic experiments. The data is collected every 12 h over 10

days, which provides 20 sessions in total.

2. Learning Algorithm: We replaced the sub-region of the

biological neural network by predicting spikes based on input

spikes through an online STDP-based supervised learning rule.

We proposed a novel learning method that reliably removes

synapses in the SNN model, which leads to a more efficient

hardware implementation. This results in the hardware design

occupying less area and consuming less power.

3. Hardware Implementation: We implemented a sparse SNN

hardware on FPGA that predicts spikes of biological neurons in

the replaced region in real-time (i.e., <1 ms).

The remainder of this paper is organized as follows. Section 2.1

introduces various neuron models and synaptic learning rules.

Section 2.2 presents our SA-STL rule that dynamically selects

important synapses to be connected when training an SNN model.

In Section 2.3, we provide an experimental setup for replacing

a sub-region of a neural circuit with the trained SNN model.

Section 3.2 presents the details of SNN hardware architecture

and analyzes the spike prediction accuracy using the actual

hardware for real-time replacement. Then, we conclude the paper

in Section 4.
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2. Materials and methods

2.1. Preliminaries: learning precise spike
timings

2.1.1. Spiking neuron models
A biological neuron’s membrane potential is defined by the

difference between the extra- and intra-cellular potentials due to

ion concentration gradients. The neuron’s membrane potential

increases by external stimuli (depolarization). The spike propagates

to other post-synaptic neurons after the cell membrane potential

depolarizes to its threshold level. As a spike generate, themembrane

potential decreases (repolarization) until it reaches the resting state.

At the resting state, the membrane potential settles to resting

membrane potential, e.g., Erest = −70 mV, and is stable during

the refractory period, e.g., Tr = 2 ms. In its refractory period, the

neuron cannot generate any spikes. This complicated process of

neuronal behavior has been modeled and imitated by an artificial

neuron, i.e., leaky integrate-and-fire (LIF), quadratic integrate-

and-fire (QIF), depending on the artificial neuron model, the

computational complexity varies regarding membrane decay, spike

accumulation, spike initiation, and refractory behavior (Lee et al.,

2018).

Since our goal is to mimic BNNs by SNNs in the real-time

and energy-constrained environment, we stick to a relatively simple

LIF model throughout the paper. The dynamics of the LIF neuron

model is defined as

τj
dvj(t)

dt
= (Erest − vj(t))+

Npre∑

i=1

wijδi(t − ti)

vj(t) = Erest when vj(t) > Vθ ,

(1)

where i or j is the index of a pre-or post-synaptic neuron, Npre is

the number of pre-synaptic neurons, vj is the membrane potential

of the post-synaptic neuron j (negative value), and τj is the time

constant of the membrane potential. The wij is the strength of a

synaptic connection between the neuron i and j, ti is the spike time

at the pre-synaptic neuron i, and δi(·) is the Dirac delta function,

i.e., δ(x) = 1 (if x = 0) or 0 (otherwise). Each pre-synaptic

neuron has synapses that convey a weighted spike to the post-

synaptic neuron increasing vj. The synaptic strength determines the

amount of change in the membrane potential of the post-synaptic

neuron. When the vj reaches the pre-determined threshold Vθ , the

neuron j generates the spike, and its membrane potential resets to

Erest . When there are no stimuli to the post-synaptic neuron, the

membrane potential constantly falls over time, which is determined

by the term “Erest − vj(t).” Our work was performed with Vθ fixed

at−55 mV and τj at 10 ms.

2.1.2. Synaptic learning rules
The dynamics of a neuron in Equation (1) involves wij which

represents the strength of the synaptic connection between the

neuron i and j. This synaptic strength determines the amount of

change in the membrane potential of the post-synaptic neuron.

When constructing an SNN model, the weight update rule, the

so-called synaptic learning rule, becomes essential to estimate the

spike timings of post-synaptic neurons precisely. Therefore, various

synaptic learning rules were studied in the field of computational

neuroscience (Markram et al., 1997; Bi and Poo, 1998; Pfister and

Gerstner, 2006).

2.1.2.1. Spike-timing-dependent plasticity (STDP)

The most common and unsupervised synaptic learning rule is

the STDP rule. Following the standard STDP rule, each weight wij

is potentiated or depressed by the relative time difference between

the pre-synaptic and post-synaptic spikes. The pair-wise STDP rule

is defined as:

1wij = A+xi(t) · δ(t − tj)− A−xj(t) · δ(t − ti), (2)

where ti or tj is the spike time of the neuron i or j, A+ (or A−) is

the coefficient for the weight potentiation (or depression), and xi(t)

or xj(t) is the trace of the neuron i or j. The trace of each neuron is

used to determine the amount of increase/decrease in its membrane

potential depending on how close the pre-synaptic spikes and post-

synaptic spikes are (Pfister and Gerstner, 2006). The trace of the

pre-synaptic neuron i, i.e., xi(t), may contain the history of all spikes

at previous time steps, i.e., all-to-all interactions. Another type of

the trace model considers only the most recent spike, i.e., nearest-

neighbor interactions. Since our experimental results showed little

difference between the two, we update the trace of each neuron with

all-to-all interactions, which is defined as

dxi(t)

dt
= −

xi(t)

τx
+ δ(t − ti), (3)

where τx is the time constant of the trace. However, the objective

of the STDP rule is not to learn precise spike timings at the post-

synaptic neuron. Instead, it focuses on identifying how strong/weak

each synaptic connection is by looking at every pre-and post-spike

pair.

2.1.2.2. Remote supervised method (ReSuMe)

To train synaptic weights so that neurons fire spikes at

desired time steps, STDP-based supervised learning rules have been

proposed (Ponulak and Kasiński, 2010; Mohemmed et al., 2013;

Xu et al., 2013b; Yu et al., 2013; Zhang et al., 2017, 2018). The

main difference between supervised learning and STDP rules is

that supervised methods quantify spike timing errors to precisely

predict the desired spike timings. ReSuMe (Ponulak and Kasiński,

2010) is a supervised learning rule based on the Widrow-Hoff

rule, i.e., the compound of two Hebbian processes (Kistler, 2002;

Roberts and Bell, 2002). ReSuMe uses both desired spikes (target)

and output spikes that the SNN model incurs. ReSuMe can be

interpreted as an STDP-like process relating the pre-synaptic spikes

[as a trace xi(t); Equation 3] with the timing error [Sdj (t) − Soj (t)],

which is defined as

1wij = (Sdj (t)− Soj (t))(ad + xi(t)), (4)

where wij is a synaptic weight from a pre-synaptic neuron i to a

post-synaptic neuron j, ad is a constant for setting a specific firing

rate, Sdj is the desired spike train at the target neuron j, and Soj (t)

is the output spike train from the corresponding spiking neuron j.
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Here, the spiking neuron represents an artificial neuron in the SNN

model. The spike train of a neuron can be expressed as

Sj(t) =
∑

f

δ(t − t
f
j ), (5)

where t
f
j is the spike time of the f th spike at the neuron j.

2.1.2.3. Supervised learning with a kernel function

Other STDP-based supervised synaptic learning rules try to

transform discrete spike trains to continuous-valued trains with a

kernel function κ(t) (Mohemmed et al., 2013; Yu et al., 2013). In

Spike Pattern Association Neuron (SPAN) method (Mohemmed

et al., 2013), the authors convolve all spike trains, i.e., input, output,

and desired spike trains, with an alpha kernel so that gradient

descent can be used to minimize the timing error. Then, the spike

timing error is defined as the difference between (transformed)

desired and output spike trains. The synaptic learning rule of SPAN

can be expressed as

1wij = (
∑

t
f

d
<t

κ(t − t
f

d
)−

∑

t
f
o<t

κ(t − t
f
o))

∑

t
f
i <t

κ(t − t
f
i ),

κ(t − t
f
i ) =

e

τ
(t − t

f
i )e
−(t−t

f
i )

τ ,

(6)

where t
f
i is the spike timing at a pre-synaptic neuron, t

f

d
(or t

f
o)

is the desired (or output) spike timing at a post-synaptic neuron,

and τ is the decay constant. Instead of convolving all the spike

trains, Precise Spike-Driven plasticity rule (PSD; Yu et al., 2013)

only convolves the input spike train with a kernel function having

two independent decay constants. The synaptic learning rule of

PSD can be expressed as

1wij = (Sdj (t)− Soj (t))
∑

t
f
i <t

κ(t − t
f
i ),

κ(t − t
f
i ) = V0(e

−(t−t
f
i )

τs − e

−(t−t
f
i )

τf ),

(7)

where t
f
i is the spike timing of a pre-synaptic neuron, V0 is the

normalization factor, τs is the slow decay constant, and τf is the

fast decay constant. The ratio τs/τf is set to 4.

2.2. Precise spike-timing learning with
STDP-assisted functional connectivity
estimation

This section proposes a simple yet effective learning rule, STDP-

assisted spike-timing learning (SA-STL), that accurately predicts

precise spike timings with limited synapses between neurons. Since

we target real-time processing on hardware, saving the memory

footprint and computing resources is crucial. It can be done by

dynamically estimating the useful connections within the target

neural network by using a simple STDP learning rule (Figure 1A).

To demonstrate the effectiveness of the proposed SA-STL, we

generated synthetic data consisting of 500 pre-synaptic neurons

and a single post-synaptic neuron. The objective is to precisely

predict the spike timings at the post-synaptic neuron with an SNN

model.

2.2.1. Learning precise spike timings with
synthetic data

In our synthetic data, the spike train for each neuron is a 2 s

Poisson process with a firing rate of 10 Hz (Figure 1B). We have set

the firing rate of pre-and post-synaptic neurons to 10 Hz, which is

lower than the other work (Mohemmed et al., 2013; Yu et al., 2013;

Zhang et al., 2018), to mimic the behavior of hippocampal neural

networks. Then, we can use any supervised learning rules, e.g.,

ReSuMe, PSD, and SPAN, to precisely predict the spike timings at

the post-synaptic neuron [defined as the desired spike train Sdj (t)].

In our simulation, each synaptic weight wij that connects the pre-

synaptic neuron “i” to the post-synaptic neuron “j” is trained for

100 epochs. When the training is completed, output spike train

Soj (t) of the SNNmodel trained by the selected learning rule should

fire spikes simultaneously as Sdj (t). To reduce the complexity of the

SNN model, our SA-STL learning keeps the important synapses,

e.g., only 10%, and cuts off the rest. Here, the important synapses

help the SNN model improve the accuracy of the spike timing

prediction.

2.2.2. Relation between STDP and STDP-based
supervised learning rules

In order to cut the synapses that have little impact in predicting

the precise timings of desired spike trains, we need a simple metric

that can determine the importance of each synapse on the fly

during training. As Section 2.1.2.1 explains, the STDP rule only

focuses on the relative timing between pre- and post-synaptic spike

pairs. If the post-synaptic spike follows the pre-synaptic spike (pre-

before-post), the weight wij is potentiated. On the contrary, if

the post-synaptic spike comes before the pre-synaptic spike (post-

before-pre), the weight wij is depressed. After the STDP learning,

the synapse can be classified as excitatory (or inhibitory) if the

net weight change is positive (or negative). However, none of the

previous studies have shown how excitatory or inhibitory synapses,

determined by the STDP rule, affect the accuracy of spike timing

predictions. Thus, we extracted the relation between the weight

change learned by the STDP rule and the trained weights via

supervised learning rules, such as ReSuMe.

As shown in Figure 2A, themagnitude of the trainedweights via

ReSuMe has a high correlation with the weight change computed

by the STDP rule when 1wij > 0. This implies that excitatory

synapses with large1wij, i.e., strong “pre-before-post” connections,

can be considered necessary in predicting the spike timings. In

other words, disconnecting these strong connections can devastate

the accuracy of reproducing the desired spike train Sdj (t). The

trained weights via ReSuMe are clustered near 0 mV for those

synapses classified as inhibitory by the STDP rule. It implies that

the inhibitory synapses can be safely disconnected when predicting

the spike timings with a limited number of synapses. This trend

was also observed using other supervised learning methods, such as

PSD and SPAN. Based on this analysis, we selected the STDP rule
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FIGURE 1

(A) A simple illustration of STDP-assisted functional connectivity estimation used in the proposed SA-STL learning rule. (B) A simple experimental

setup to validate the e�ectiveness of the proposed SA-STL learning rule. It consists of 500 pre-synaptic neurons connected to a single post-synaptic

neuron. The firing rate of both pre- and post-synaptic neurons is set to 10 Hz.

FIGURE 2

(A) Relation between weight changes (1wij) by STDP learning rule and trained weight values by ReSuMe learning rule on all 500 synaptic

connections. The ReSuMe focuses on predicting the precise spike timings. (B) Comparison of the accuracy between randomly connected SNNs and

SNNs using the proposed SA-STL rule. Only 10% of synapses out of 500 are kept for both cases.

for dynamically pruning insignificant synapses during the precise

spike-timing learning to achieve higher hardware efficiency.

2.2.3. Prediction accuracy on synthetic data
To validate the effectiveness of the proposed SA-STL, we

analyzed the accuracy of predicting the desired spike train Sdj (t) by

keeping only 10% of synapses out of 500. The proposed SA-STL

rule is summarized in Algorithm 1. As a spike-timing learning rule

used in line 11 of Algorithm 1, we selected a supervised learning

rule presented in Sections 2.1.2.2 and 2.1.2.3, i.e., ReSuMe, PSD,

or SPAN. For every session, SA-STL runs two separate learning

rules: (i) the supervised learning rule that trains the weights to

generate the desired spike train precisely, and (ii) the STDP rule

for estimating functional connectivity is used to select useful

connections in the next training session. For the experiment using

the synthetic data, input, and desired spike patterns [Si(t) and S
d
j (t)]

are fixed over training sessions. One can consider each session as

a training epoch. Thus, the evaluation of functional connectivity

within an SNN model happens only in the first session. After the

first session, only a subset of pre-synaptic neurons is connected to

a post-synaptic neuron j, and the selected supervised learning rule

trains weights.

We compared the accuracy of spike-timing learning when 10%

of synapses were randomly selected and when selected by the

STDP rule. The accuracy is measured by a correlation-based metric

presented in Schreiber et al. (2003). The correlation-based score

is one of the conventional methods to evaluate the accuracy of

predicting the desired spike train, and it can be expressed as

C =
Esd · Eso

| Esd|| Eso|
, (8)

where Esd (or Eso) is the desired (or output) spike train that is

Gaussian filtered, and |Es| is the Euclidean norm of Es. As C gets

closer to 1, the confidence in predicting the desired spike train is

higher. When using SA-STL, we select the top 10% synapses with

large 1wij obtained by the STDP rule (Nsyn = 50). Figure 2B

compares the prediction accuracy in terms of “C” provided in

Equation (8). Experiments were performed for 20 trials, and the
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1: Number of available neurons in SNN: N

2: Number of synapses per post-synaptic neuron: Nsyn

3: Number of training sessions: Nsession

4:

5: 0) Initialization

6: k← 0, IDj ← {1, 2, ...,N} for 1 ≤ j ≤ N

7: while k < Nsession do

8: (1) Train synaptic weights to by any

spike-timing learning rule for each session

9: for j := 1 to N do

10: for i ∈ IDj do

11: Update each synaptic weight wij by

Equations (4), (6), or (7)

12: end for

13: end for

14: (2) Evaluate the functional connectivity with

STDP rule for the next training session

15: for j := 1 to N do

16: for i := 1 to N do

17: Compute 1wij by STDP according to

Equation (2)

18: end for

19: end for

20: (3) Connect Nsyn synapses at each neuron j

21: for j := 1 to N do

22: Sall ← {1w1j,1w2j, · · ·1wNj}

23: Ŝall ← Sort Sall in descending order

24: IDj ← Get pre-synaptic neuron index of the top

Nsyn synapses from Ŝall

25: end for

26: k← k+ 1

27: end while

Algorithm 1. STDP-assisted spike-timing learning (SA-STL).

SA-STL approach achieves an accuracy improvement by 15–27%

when the SNN model allows only a tiny fraction of synapses (10%

in this simulation). Note that the best accuracy of the randomly

connected SNNmodel fails to exceed the mean accuracy of SA-STL

in all test cases. This accuracy improvement with a limited number

of synapses is more evident by looking at the raster plot of both

desired and output spike train in Figure 3. The SNN model that

randomly connects pre-synaptic neurons missed 55% of the target

spikes (20 spikes in total) even after the training with 100 sessions.

With the SA-STL rule, the training converges much faster, and 20%

of the target spikes are missed after the training.

We can expect a higher prediction accuracy by allowing more

connections within the SNN model. Figure 4 shows how the

accuracy improves as more synapses are connected in the SNN

model. By connecting more than 300 pre-synaptic neurons, i.e.,

over 60%, the desired spike train was perfectly reproduced (C ≃

1). The smaller the number of synapses, the greater the accuracy

gap between the randomly connected SNN model and the STDP-

assisted SNN model. In addition, among the three supervised

learning rules, ReSuMe shows the best accuracy when the number

of synapses in the SNN is small (<100). The effectiveness of SA-

STL increases with larger models. To verify this, we have generated

synthetic data with 50,000 pre-synaptic neurons. First, we assumed

0.1% of the pre-synaptic neurons, i.e., 50 neurons, are connected to

the output neuron. Then, the spike prediction accuracy of 33.7%

on average is observed with random connections, while 91.0%

is achieved with the proposed SA-STL. If more than 1% of the

pre-synaptic neurons in a randomized experiment are connected,

the prediction accuracy increases to 80.0% on average but varies

widely depending on the connectivity pattern. Therefore, the SA-

STL method provides more reliable training as the model size

increases. This set of experiments shows that connections in the

SNN model can be reliably initialized and re-connected using the

STDP rule during the precise spike-timing learning.

2.3. Replacement of a biological neural
circuit

Asmentioned in Section 1, themain goal of precisely estimating

spike timings in this work is to replace a sub-region of a biological

neural circuit with an SNN model. To physically replace the part

of the neural circuit, we eventually need an extremely small SNN

hardware. We utilize the proposed SA-STL rule to maintain high

learning capability while reducing the SNN model complexity.

The reduction in the model complexity leads to a more efficient

hardware implementation, as discussed in Section 3.2.1.

2.3.1. Multichannel recording experimental setup
and cell culture data collection

To collect biologically meaningful neural recording data, we

cultured embryonic hippocampal neurons on a microelectrode

array (MEA) chip (60MEA200/30iR-ITO-gr, Multi-Channel

SystemsMCS GmbH, Germany) in which we have 60 electrodes for

each single-cell neural recording. The hippocampus in the brain

is in charge of memory storage and reminding memory. Also, the

embryonic phase typically shows noticeable brain development

and differentiation. Thus, cell-to-cell signal transmission is actively

generated during embryonic development, which is one of the

reasons why we chose hippocampal neurons extracted from rat

embryos. Despite the lack of sensory inputs or motor outputs of

the cultured neuronal network, it has been known that the cultured

network still contains electrophysiological signal patterns similar

to the brain in vivo (Belle et al., 2018). In addition, the in vitro

cultured network can be maintained for a long time, e.g., more

than 1 or 2 months. Thus, it gives a great experimental biological

model for us to develop an SNN model for training and replacing

the part of a cultured neural circuit.

We incubated the cultured hippocampal neurons (1,000

cells/mm2) on the MEA chips at (37◦C, 5% CO2) for long-term

stability while we recorded the neuronal activity signals over

several days. We chose cell density to guarantee enough cell-

to-cell interactions in the network while avoiding overcrowded

cells for reduced network stability. We used a 60-channel

pre-amplifier headstage (MEA2100-Mini-HS60) in the humid

incubator. Spontaneous extracellular neural spikes were recorded at
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FIGURE 3

Raster plot of the output spike train Soj (t) from an SNN model compared with the desired spike train Sdj (t). (A) An SNN model in which 50 pre-synaptic

neurons are randomly selected that connect to a post-synaptic neuron j. (B) An SNN model in which 50 pre-synaptic neurons are selected by

running the STDP rule.

FIGURE 4

Accuracy comparison by varying the number of connected pre-synaptic neurons. Three di�erent supervised learning rules, i.e., ReSuMe, PSD, and

SPAN, are tested to validate the proposed SA-STL rule.

25 kHz sampling frequency and digitized at 24-bit data resolution.

The recorded multi-channel signals were obtained after digital

bandpass filtering (from 200 Hz to 3.5 kHz with the 2nd order

Butterworth filter). In order to use the recording data as inputs to

the SNN model, only the timestamps of the recorded extracellular

neural spikes were used after a conventional threshold-based spike

detection method. Each spike recording session is 10 min long,

which becomes one training session in Algorithm 1, and the

periodic recording was conducted every 12 h over 10 days without

any physical movement. The recording was initiated at least after

14 days in vitro (DIV) to allow complete synapse connections

in the neuronal network. There are 20 sessions in total prepared

for experiments from one culture model on replacing a biological

neural circuit in the following sections. Please find more detailed

experimental procedures in the Supplementary material.

2.3.1.1. Ethics approval statement

All experiments were performed in accordance with the

guidance of the Institutional Animal Care and Use Committee

(IACUC) of Daegu Gyeongbuk Institute of Science and Technology

(DGIST), and all experimental protocols were approved by IACUC

of DGIST (DGIST-IACUC-21041903-0002).

2.3.2. Problem definition and SNN structure
To replace a sub-region of cultured hippocampal networks, i.e.,

biological neural circuits, we designed a recurrent SNN composed

of artificial spiking neurons. As shown in Figure 5, the SNN model

has the same number of neurons as the number of electrodes

in the MEA, i.e., 60 in our experiments. Then, the objective is

to train the SNN model to generate a spike train Soj (t) that is

identical to the desired spike train Sdj (t) of the MEA. Here, an

artificial neuron index j represents the paired electrode in theMEA.

As a neuron model, we use the simplest LIF model presented in

Section 2.1.1 to realize real-time spike prediction on hardware. At

each time step (1 ms), the membrane potential of each neuron

j is updated according to the pre-synaptic spikes that are fired

from the previous time step [Sdi (t − 1)], as we are using the

recurrent SNNmodel. The index i represents pre-synaptic neurons

connected to the neuron j. If the membrane potential of the neuron

j exceeds the pre-determined threshold, it fires a spike which

becomes Soj (t).

To train the SNN model capable of replacing a sub-region of

the biological neural circuit, we use the measured spike train of

the MEA as the target spike train Sdj (t). Then, we use one of the

supervised learning rules presented in Section 2.1.2 so that the

output spike train Soj (t) of the SNN matches Sdj (t). The supervised
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FIGURE 5

A recurrent SNN model that is designed to mimic the behavior of a biological neural circuit. Each synaptic weight is trained by the supervised learning

rule so that a spike train Soj (t) from the SNN model becomes identical to the desired spike train Sdj (t) of the biological neural circuit.

learning rules are based on the following rules: (i) a synaptic

weight wij is decreased when the neuron j fires at undesired time,

and (ii) the wij is increased when the neuron j fires at desired

time. Since these training methods are event-driven, the number

of computations is less than that of other training methods, such

as gradient-based algorithms (Bohte et al., 2002; Xu et al., 2013a).

The input spike train Sdi (t − 1) is the measured spike train of the

MEA at the previous time step. The time difference between the

current time step t and the time when the input spike occurs t
f
i

determines the trace (for ReSuMe) or kernel value (for PSD and

SPAN).

After training the SNN through a set of training sessions,

it becomes possible to replace some biological neurons with

trained artificial neurons and their synaptic weights. In Figure 6,

white neurons are artificial neurons in the replaced region, and

gray neurons are biological neurons in the non-replaced region.

Note that every neuron is connected to all neurons except itself

(fully-connected). Spikes from biological neurons in the non-

replaced region Sdi (t − 1) are measured spikes by the MEA.

Spikes from artificial neurons in the replaced region Soi (t − 1)

are computed by the SNN model. All synaptic connections to or

from a neuron in the replaced region are modeled with the trained

weights. Generated spikes at the artificial neurons in the replaced

region Soi (t − 1) are assumed to propagate to the non-replaced

region by electrical stimulation, as demonstrated by many prior

works (Bruzzone et al., 2015; Chou et al., 2015; Buccelli et al.,

2019).

3. Results

3.1. Experimental results on biological
neural circuit

3.1.1. Spike prediction accuracy with SNN (no
replacement)

Prior to evaluating SNN accuracy in replacing a biological

neural circuit, we need to validate the accuracy of the trained

SNN model in mimicking the behavior of the biological neural

circuit. The experimental setup is identical to Figure 5, and the

accuracy is measured by the correlation-based score (Equation 8).

In this section, we assume fully-connected SNN models and the

supervised learning rules are directly used without evaluating the

functional connectivity by the STDP rule. To check the SNN

trainability on each session (10 min), we trained the weights for

8 min. Then, we validated the spike prediction accuracy using

the MEA data of the remaining 2 min using the first 10 sessions.

We compared the convergence speed of training between different

supervised learning rules. As shown in Figure 7A, all three spike-

timing learning rules converge to a spike correlation of 0.8 with

more than 200 s of training on session 1. The convergence speed of

SPAN is lower than the other learning rules, but the final accuracy

is slightly higher. Figure 7B shows the validation accuracy at each

session using the three learning rules. The mean accuracy for all

sessions was about 76–79% with variation of 3.6–3.8%. In Figure 8,

the correlation score and firing rate per neuron are shown when

ReSuMe is used for training. The correlation score is relatively low
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FIGURE 6

Experimental setup for replacing a sub-region of a biological neural circuit with an SNN model.

for some neurons that fire little due to the lack of target spikes to

be trained. The firing rate of the actual spike train Sdj (t) is shown

in Figure 8B as a reference (black solid line). The firing rate of the

output spike train Soj (t) from the SNN has a high correlation of 0.91

with Sdj (t).

3.1.2. Accuracy with sub-region replacement
So far, we demonstrated the accuracy of spike prediction

with the well-known supervised learning rules on our cell culture

data. Note that the supervised learning rules have been only

tested on synthetic data previously (Ponulak and Kasiński, 2010;

Mohemmed et al., 2013; Yu et al., 2013), while this work applies

these learning rules on the in vitro cultured network. As our

main objective is to replace a sub-region of the biological neural

circuit with the SNN, we replace some biological neurons with

artificial neurons from now on (i.e., the same experimental setup

shown in Figure 6). To do so, we trained the SNN model for

15 sessions and validated the spike prediction accuracy using the

remaining five sessions with a sub-region being replaced. We

varied the ratio of replaced neurons from 0 to 50% and observed

the correlation score to measure the spike prediction accuracy

(Figure 9A). As expected, the more neurons are replaced, the

higher the prediction error. Since the biological neural circuit is

recurrent, incorrect spike prediction leads to errors in subsequent

predictions. As shown in Figure 9A, spike prediction with SPAN

provides the highest accuracy at all replacement ratios. Even when

50% of biological neurons are replaced with artificial neurons,

the correlation score becomes higher than 0.72 for all learning

rules.

It is important not only to improve the correlation score

but also to estimate the burst pattern accurately. Figure 9B

presents the mean firing rate of replaced neurons when 50% of

biological neurons are replaced. For the comparison, the actual

mean firing rate of biological neurons is also presented (black

solid line). The replaced spike train generates spike bursts at

similar times to the desired spike train, which is crucial to

understanding and mimicking neuronal behaviors (Zeldenrust

et al., 2018). A spike burst can be defined as a set of spikes

lasting up to 100 ms that occur together from multiple neurons.

Figures 10A, B present raster plots of the original spike train

[Sdj (t)] and the estimated spike train [Soj (t)], respectively, during

several spike bursts. The neurons from indices 15–44 were

replaced by artificial neurons of the SNN model trained by

ReSuMe. By comparing Figures 10A, B, it is clear that burst

patterns are accurately predicted. Figure 10C shows the magnified

raster plot view near t = 55 s where the last spike burst

happens.

3.2. Real-time replacement of a biological
neural circuit with the proposed SA-STL
rule

In order to replace biological neurons in real-time, a sub-

network consisting of artificial neurons needs to be computed

within 1 ms (short latency). In addition, since the actual

replacement (in vivo) will be made with an implantable chip,

hardware needs to be designed with the minimum resources

(small form factor). Therefore, we apply the SA-STL proposed

in Section 2.2 to reduce the number of connections within the

SNN model to minimize the required hardware resources and

computations for the replacement. Since the SA-STL rule makes

the SNN model sparse, we designed an SNN hardware capable of

processing sparse computations with pipelined execution for real-

time processing. Then, the spike prediction accuracy is measured

by running the replaced region, a part of the trained SNN model,

on the hardware accelerator.
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FIGURE 7

(A) Convergence speed of each supervised learning rule on the cell culture data (session 1). (B) Spike prediction accuracy of various supervised

learning rules at each training session.

FIGURE 8

(A) Accuracy of spike-timing learning in terms of the correlation score C at each electrode when trained by ReSuMe. (B) Comparison of firing rate

between the desired and output spike trains when trained by ReSuMe.

3.2.1. Hardware implementation of sparse SNNs
To demonstrate the real-time processing and analyze the

required hardware resources, we implemented our SNN hardware

on a small FPGA, i.e., Xilinx PYNQ-Z2 (ZYNQ XC7Z020). The

clock frequency is set to 50 MHz to keep the power consumption of

the SNN hardware low. To process an SNNmodel, we need to place

processing units for (i) updating membrane potentials of neurons

and (ii) propagating spikes via weighted synapses. These processing

units are depicted in Figure 11A. The spike generation unit (SGU)

updates the membrane potential vj(t) of a post-synaptic neuron j

and generates a spike soj (t) when the potential exceeds the threshold

Vθ . The potential increase/decrease1vj(t) is computed by the spike

propagation unit (SPU), which will be explained shortly. When the

neuron fires, i.e., soj (t) = 1, then counter value cj(t) is set to Tr

(refractory period). During the refractory period, the membrane

potential is not updated [1vj(t) is neglected]. The SGU has the

same number of LIF units as the number of replaced neurons,

where LIF units operate in parallel for higher throughput.

To compute the potential update vector 1Ev(t), we need to

perform matrix-vector multiplication between the synaptic weight

matrix W ∈ R
N×N and the pre-synaptic spike vector Es(t − 1) =

{ Esd(t − 1), Eso(t − 1)}. Here, Esd is the spike vector of non-replaced

neurons measured by the MEA, and Eso is the spike vector of

replaced neurons computed by the SNN model. Our SA-STL rule

cuts less critical synapses by running the STDP rule at each training

session, whichmakesW sparse, as shown in Figure 11B.We convert

W to a modified CSR format to store the sparse weight matrix

in a small memory block. Since we strictly limit the number of

synapses per post-synaptic neuron to S, i.e., Nsyn in Algorithm 1,

the number of non-zero weights per row remains the same. In the

SPU shown in Figure 11C, the sparse W stored in the modified

CSR format is used to perform weighted spike accumulations, i.e.,
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FIGURE 9

(A) Spike prediction accuracy when a sub-region of biological neurons is replaced. The ratio of replaced neurons is varied from 0 to 50%. (B) Mean

firing rate of replaced neurons and the associated biological neurons (measured from electrodes). Neurons from indices 15–44 were replaced with

artificial neurons (50% replacement). The ReSuMe learning rule trains the SNN model.

FIGURE 10

Temporal raster plots of (A) the original spike train and (B) estimated spike train during several spike bursts (12 s long in total). (C) The detailed raster

plot view at the last spike burst event (from 54.7 to 54.8 s).

1vj(t) =
∑S−1

k=0 W(j, k) · si(t − 1) where i = C(j, k). An element

in the pre-synaptic neuron index buffer, i.e., C(j, k), points to the

pre-synaptic spike si(t−1) in the spike buffer connected to the post-

synaptic neuron j. Only when si(t − 1) = 1, the synaptic weight

W(j, k) is added. For real-time processing, the accumulation path is

pipelined to improve the throughput.

Figure 12 presents the hardware utilization and compute

latency of our SNN hardware at various sparsity levels. Increasing

the sparsity ofW reduces the required hardware resources. Look-up

tables (LUTs), flip-flops (FFs), and digital signal processing units

(DSPs) are used to realize the datapath and its related control

signals. Block RAMs (BRAMs) are memory blocks that store the

weight matrix W, potential update vector 1Ev(t), and spike vector

Es(t). The size of BRAMs decreases linearly with high sparsity due

to the reduction in data size by storing the weight matrix in

the modified CSR format. If we do not utilize the CSR format,

BRAM usage will increase since zero-valued weights also need to be

stored. Despite the overhead of storing an index buffer in addition

to the weight matrix, our modified CSR format reduces BRAM

usage by 2.5× compared to the case without using CSR at 80%

sparsity. Reducing the required hardware resources is crucial to

designing a small SNN chip that consumes less power. Moreover,

the computation latency is kept below 27 µs, i.e., far <1 ms (real-

time execution), in all cases owing to the pipeline execution and

parallel computation. Compared to the hardware without pipelined

execution, it was possible to reduce the latency by 4.2× (when 80%

sparsity) or 14.3× (when 0% sparsity). The power consumption

tends to decrease when the sparsity increases through SA-STL

learning. As presented in Table 1, the dynamic power of all-to-

all connected SNN without SA-STL is estimated to be 151 mW.

On the other hand, with SA-STL, the dynamic power at 80%

sparsity becomes 114 mW, which is about 25% less power than the

fully-connected case.

3.2.2. Accuracy of real-time replacement with
SA-STL rule

With the support of our SNN hardware, we can generate spikes

at the replaced region with artificial neurons in real-time. Since we

can minimize the required hardware resources by increasing the

sparsity of W, we trained the SNN model at various sparsity levels

using the proposed SA-STL rule. As explained in Section 3.1, we

use the first 15 sessions as a training dataset, and the remaining

five sessions are used to validate spike predictions with sub-region
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FIGURE 11

(A) The overall architecture of the proposed SNN hardware for the real-time replacement of a sub-region of a neural circuit. (B) The modified

compressed sparse row (CSR) format is used to minimize the required memory footprint. (C) The spike propagation unit (SPU) that pipelines the

accumulation path for the real-time processing (i.e., <1 ms latency).

FIGURE 12

The hardware utilization and compute latency of the proposed SNN

hardware for each timestep (1 ms) at various sparsity levels.

replacement. The experimental process is illustrated in Figure 13.

Synapses to be connected at the next training session are selected

by the STDP rule at the previous training session.

Weak synapses are removed from the connectivity list at

each training session, and stronger synapses are newly connected.

To stabilize the training, we initialized the weights of newly

connected synapses to the mean weight value of the remaining

synapses. After 15 training sessions, the synapses are fixed, and

their weights are programmed into the SNN hardware for real-time

replacement. Figure 14A presents the spike prediction accuracy

TABLE 1 Hardware performance comparison between sparse SNN (80%

sparsity with SA-STL) and fully-connected SNN.

Zynq7020
(Clock:
50 MHZ)

BRAM
utilization

(%)

LUT
utilization

(%)

Dynamic
power
(mW)

Latency
(µs)

SA-STL

(80%

sparsity)

14 25 114 22.24

All-to-all

connections

65 62 151 26.16

at various replacement ratios from 0 to 50%. For the hardware

efficiency, only 20% of synapses are connected when training the

SNN model, i.e., 12 pre-synaptic neurons are connected to a post-

synaptic neuron. Obviously, allowing all-to-all connections, i.e., 0%

sparsity, achieves the highest accuracy with significant hardware

overhead. By randomly selecting a part of synapses to be connected

for better hardware efficiency, however, the accuracy significantly

degrades by 4.77, 2.31, and 3.76% on average when trained with

the ReSuMe, PSD, and SPAN rule, respectively. Using the proposed

SA-STL rule, we can improve the accuracy by 2.32, 1.43, and 1.46%

on average using the ReSuMe, PSD, and SPAN rules, respectively.

Therefore, the SA-STL rule can be used as a stable learning method

that keeps the accuracy as high as possible with a limited number

of synapses. With a larger sub-region replaced, e.g., 50%, the

average spike prediction accuracy degrades by 2.88%. Regarding the

learning rule, SPAN provides the best accuracy, while PSD shows

the lowest accuracy.

To see how the accuracy changes with respect to the sparsity

level of an SNN model, we varied the sparsity level from 0 to
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FIGURE 13

Experimental process of training an SNN model for the sub-region replacement and deploying the trained model on the SNN hardware for the

real-time replacement.

FIGURE 14

(A) Comparison of spike prediction accuracy between SNNs using all-to-all connections, SA-STL, and random connections at various replacement

ratios. The sparsity level for the SNN with SA-STL or random connections is selected as 80%. (B) Comparison of spike prediction accuracy between

SNNs using SA-STL and random connections at various sparsity levels. In this experiment, 50% of biological neurons were replaced with artificial

neurons. The cuto� electrodes were randomly determined and experimented with 20 trials. Due to a high variation in experiments with random

connections, we conducted 20 trials to present average values.

90%. Similar to the results shown in Figure 14B, the prediction

accuracy with SPAN was the highest among three learning rules.

The ReSuMe rule’s accuracy drops faster than the other two,

implying that it is less suitable for training sparse SNNs for precise

spike-timing learning. At all sparsity levels, sparse SNNs trained

with the proposed SA-STL rule perform better than the randomly

connected SNNs. Compared to the SNNwith the proposed SA-STL,

the variance of the prediction accuracy of a randomly connected
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FIGURE 15

The spike prediction accuracy at a given number of LUTs in the FPGA (i.e., Xilinx PYNQ-Z2). The sparsity level of an SNN model is determined by the

given number of LUTs. In this experiment, 50% of biological neurons were replaced with artificial neurons.

SNN was larger, and the mean accuracy was much lower. To keep

the correlation score higher than 0.70, we need to keep the sparsity

of an SNN model at 80% or lower.

To see the impact of the hardware budget on the spike

prediction accuracy, we constrained the number of LUTs and

analyzed the accuracy. As shown in Figure 15, the reduction in

prediction accuracy is minimized by using the proposed SA-STL

rule for training a sparse SNN model. With the support of SA-

STL, the required number of LUTs reduces by 2.5× with only 2.3%

accuracy loss using the SPAN rule. For more practical use cases,

we may need to implement hardware for an SNN model with a

greater number of neurons. The number of computations involved

in processing the SNN model is proportional to N2 where N is the

number of neurons in the network. Therefore, our SA-STL rule

becomes more effective when we scale the size of the SNN model

that replaces the biological neural circuit.

4. Discussions

In this paper, we presented a novel learning algorithm, SA-STL,

to efficiently remove synapses in an SNN model that replaces a

sub-region of a biological neural circuit. The proposed SA-STL rule

dynamically selects synapses that have more relevance to predicting

spike timings of the target neural circuit. Then, the hardware

prototype was designed on a small FPGA to reproduce spikes at

the replaced region in real-time. To demonstrate the effectiveness

of our software-hardware co-design approach, we collected neural

recording data to conduct more realistic experiments. This work

can be seen as an initial step for multidisciplinary research to

replace a brain function with SNN hardware. Compared to the

fully-connected SNN, our sparse SNN hardware could infer the

spikes of the replaced sub-region in 22µs with 2.5× fewer hardware

resources. It will have a more significant impact when we replace

the brain functionality of a larger region in real-time using an

implantable chip.

Based on this initial set of experiments, our future work

is to implement a closed-loop system where real-time spike

communication happens between the main neural circuit (BNN)

and the replaced SNN via electrical stimulation. This can be done

by developing a precise electrical stimulation system that stimulates

biological neurons connected to an SNN. Currently, our work

assumes that such a stimulation system is available, and we allow

inferred/measured spikes to convey data without any loss across

BNN-SNN boundaries. Developing a precise electrical stimulation

system along with low-impedance electrodes is one of our future

works and is a fundamental challenge for repairing damaged

neural circuits. Another challenge in processing spike trains in

real-time is spike sorting, a process to identify the location of a

neuron that has generated the spike at each electrode. Therefore,

hardware for real-time spike classification across a large number

of electrodes becomes another future research direction. Despite

these limitations, this work presents an essential step toward real-

time computation for neural prosthetics. Beyond the cultured

hippocampus, we could replace a neural function at an impaired

sub-region of the human brain with SNNs.
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