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Lipids are a principal component of plasma membrane, acting as a protective

barrier between the cell and its surroundings. Abiotic stresses such as drought

and temperature induce various lipid-dependent signaling responses, and the

membrane lipids respond differently to environmental challenges. Recent studies

have revealed that lipids serve as signal mediators forreducing stress responses in

plant cells and activating defense systems. Signaling lipids, such as phosphatidic

acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, and N-

acylethanolamines, are generated in response to stress. Membrane lipids are

essential for maintaining the lamellar stack of chloroplasts and stabilizing

chloroplast membranes under stress. However, the effects of lipid signaling

targets in plants are not fully understood. This review focuses on the synthesis

of various signaling lipids and their roles in abiotic stress tolerance responses,

providing an essential perspective for further investigation into the interactions

between plant lipids and abiotic stress.

KEYWORDS

lipid signaling, abiotic stress, lipid remodeling, phosphatidic acid, inositol
phospholipids, stress tolerance
1 Introduction

The world’s growing population, increased per capita caloric intake, and growing need

for renewable resources from plants have increased the demand for agricultural products

(Singer et al., 2020). However, abiotic stressors, such as heat, cold, and drought, have a

detrimental effecton crop yields, and their frequency and severity are increasing due to
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climate change (Myers et al., 2017; Zaid et al., 2022). As sessile

organisms, plants are subjected to various biotic and abiotic stresses,

typically sensed through the plasma membrane that contains

signaling lipids. The modification of enzymes such as

phosphatases, phospholipases, or lipid kinases generates stress

signals (Testerink and Munnik, 2011), which are translated into

biological reactions. In recent years, lipids have gained significant

attention as an essential element of biological membranes in all

plant tissues, particularly in response to stresses. Membrane lipid

modification is an efficient adaptation method for plants to defend

against various abiotic stimuli, including drought, salt, cold, heat,

nutritional deficiencies, and intense psychological pressures. The

ability of plants to adapt to various environmental challenges

depends on their ability to respond to various abiotic stressors by

altering membrane lipids (Liu et al., 2019). Increasing evidence

suggests that lipids play a role in the alleviation of stress responses

in plant cells and the activation of defensive systems as signal

mediators (Gaude et al., 2008; Nakamura et al., 2009; Moellering

et al., 2010; Gasulla et al., 2013; Okazaki and Saito, 2014). Lipids can

be categorized into eight major classes based on their hydrophobic

and hydrophilic components: fatty acids, glycolipids, glycerolipids,

glycerophospholipids, sphingolipids, sterol lipids, prenol lipids,

saccharolipids and polyketides (Fahy et al., 2005). Signaling lipids,

including lysophospholipids, fatty acids, phosphatidic acid (PA),

diacylglycerol, oxylipin, sphingolipid, and N-acylethanolamine

(Wang and Chapman, 2013), are generally found in minute

concentrations in tissues. Diacylglycerol pyrophosphate (DGPP)

is generated by the process of phosphorylating PA and is typically

not present in non-stimulated cells, but its concentration rapidly

rises within minutes upon exposure to various stimuli such as

osmotic stress which suggests that DGPP plays a significant role in

signaling pathways related to stress responses (Van Schooten et al.,

2006).Esterase and other lipid hydrolytic enzymes, such as

phospholipases, are crucial in signaling lipid formation from pre-

existing membrane lipids or membrane lipid biosynthetic

intermediates (Wang et al., 2006; Munnik and Testerink, 2009).

Triacylglycerol (TAG), which has a glycerol backbone and three

esterified fatty acids, is primarily kept in plants as a high-energy

storage substance in lipid droplets in seeds or fruits (Xu and

Shanklin, 2016). TAG does not typically accumulate insignificant

amounts in vegetative tissues under non-limiting growth

conditions, but various stress events, such as dehydration and

extreme heat or cold, can stimulate its formation, particularly in

leaves (Lee et al., 2019).

Chloroplasts are typically the first abiotic damage sites observed

in plant ultrastructure. Chloroplast deterioration decreases the net

photosynthetic rate and plant growth (Janik et al., 2013).

Temperature and drought stress can permanently alter

chloroplast structure by reducing their size and aspect ratio and

changing the membrane phase (Varone et al., 2012), compromising

their integrity and fluidity and rendering the chloroplasts inactive

(Upchurch, 2008; Han et al., 2010). Photosynthetic membrane

lipids play a significant role in preserving chloroplast structural

integrity by maintaining the grana lamellar structure stack,

stabilizing membranes, and facilitating the dense packing of

proteins in the membrane (Garab et al., 2000; Gaude et al., 2007;
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Wang et al., 2014). Membrane lipids plays a significant role under

stresses by preserving the chloroplast’s lamellar stack, stabilizing the

chloroplast membranes (Shimojima and Ohta, 2011), making it

easier to pack the membrane’s proteins, and controlling membrane

fluidity by adjusting the degree of fatty acid desaturation (Dakhma

et al., 1995; Zhang et al., 2005; Sui et al., 2010; Wang et al., 2010;

Barnes et al., 2016). The thylakoid lipid bilayer mainly comprises

four distinct lipids: monogalactosyldiacylglycerol (MGDG),

digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol

(SQDG), and phosphatidylglycerol (PG) (Moellering and

Benning, 2011). MGDG and DGDG are uncharged galactolipids,

forming the main body of thylakoid membrane lipids, and provide a

lipid bilayer matrix as the main component for photosynthetic

complexes (Shimojima et al., 2015).

In response to stresses like cold, dehydration, and nutrient

loss, membrane lipid modifications take place, helping maintain

membrane characteristics impacting lipid dynamics, membrane

integrity, and membrane-bound protein activities (Samuels et al.,

2008). Lipids also serve as intermediates in signal transduction

pathways, and their role as signaling molecules is gaining

attention. This review emphasizes the function of six prominent

signaling lipids—phosphatidic acid (PA), phosphoinositides

(PI), sphingolipids, lysophospholipids, oxylipins, and N-

acetylethanolamines—and their roles in abiotic stress responses.
2 Signaling lipids biosynthesis in plants

2.1 Phosphatidic acid

Phosphatidic acid (PA), a diacyl glycerophospholipid, functions

as a cellular signaling molecule and acts as a precursor for the

synthesis of complex lipids (Wang et al., 2016). PA-based structural

phospholipids and glycolipids are synthesized in the endoplasmic

reticulum, plastids, and mitochondria, but PA as a signaling

molecule is mostly derived from various phospholipase pathways

in the plasma membrane (Testerink and Munnik, 2011).Two

different phospholipase pathways synthesize phosphatidic acid,

which has a significant role in cell signaling (Arisz et al., 2009;

Bargmann et al., 2009a; Hong et al., 2009; Li et al., 2009). The first

pathway involves the direct production of PA by the enzyme

phospholipase D (PLD), which hydrolyzes phosphatidylcholine

(PC) and phosphatidylethanolamine (PE) structural lipids to

produce PA and the remaining headgroup (Pappan et al., 1998;

Hong et al., 2008). The second pathway generates PA through the

subsequent actions of the enzymes phospholipase C (PLC) and

diacylglycerol kinase (DGK). PLC converts inositol-1,4,5-

trisphosphate (Ins(1,4,5)P3) and DAG from phosphatidylinositol-

4,5-bisphosphate (PtdIns(4,5)P2). Ins(1,4,5)P3 diffuses into the

cytosol, while DAG remains in the membrane and is promptly

phosphorylated to PA by DGK. PA phosphatase(PAP) then

converts PA back into DAG and Ins(1,4,5)P3. PA kinase (PAK)

converts PA into DAG pyrophosphate (DGPP), which diminishes

the signal. DGPP phosphatase(DPP) is the enzyme that converts

DGPP back into PA (Munnik et al., 1996; Meijer and Munnik,

2003). Figure 1 shows the biosynthetic pathway of PA.
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2.2 Phosphoinositides

Phosphoinositides (PI) are a group of lipids that serve as cellular

signaling molecules and are produced from phosphatidylinositol

(PtdIns) by lipid kinases and phosphatases. They also may act as

precursors to second messengers. Seven different isoforms of PI are

produced based on the location of phosphates on the inositol ring,

including three monophosphates, three bisphosphates, and one

trisphosphate- PtdIns3P, PtdIns4P, PtdIns5P, PtdIns(3,4)P2,

PtdIns(3,5)P2, PtdIns(4,5)P2 and PI(3,4,5)P3 (Meijer and

Munnik, 2003). In plants, PIPs constitute significantly less than

1%, with PI(4)P the most prevalent, followed by PI(4,5)P2 (Balla,

2013; Hou et al., 2016).

The discovery of the PIP second messenger system in plants

dates back to 1985 when PI(4)P and PI(4,5)P2, collectively known

as the PIP second messenger system, were identified for the first

time in plants using carrot suspension cultures and thin-layer

chromatography of 3H radiolabelled phospholipids (Boss and

Massel, 1985). Further studies using high-performance liquid

chromatography of radio-labelled samples led to the isolation of

PI(3)P from Spirodelaolyrhiza L., raising the possibility of the PI3K
Frontiers in Plant Science 03
kinase signaling pathway in plants. In 1997, PI(3,5)P2 was

discovered in carrot suspension cells under osmotic stress with

NaCl (Dove et al., 1997), and in 2001, PI(5)P was identified in

Arabidopsis thaliana plants under water stress. However, certain

stress conditions may be required for the cells to produce other PIs,

such as PI(3,4)P2 and PI(3,4,5)P3, which have not yet been

discovered in plants. Nonetheless, some plant-specific proteins

may be able to bind or synthesize these PIs under certain

conditions; for example,AtPTEN1 binds to PI(3)P and PA in vivo

and PI(3,4,5)P3 in vitro, while AtPIP5K1 kinase synthesizes PI(3,4)

P2 from PI(3)P and PI(3,4,5)P3 in vitro (Zhang et al., 2011).

Inositol phosphates (IPs) and diacylglycerol (DAG) are

produced from phosphoinositides by PI-specific PLCs.

While DAG is extensively studied as a signaling lipid in

mammals, its function in plants remains unclear. DAG kinases in

plants can phosphorylate DAG further, resulting in the production

of PA (Arisz et al., 2013). Figure 2 summarizes the formation of

PIs by sequential acylation of glycerophosphate and lyso-

phosphatidic acid. Inositol 1,4,5-triphosphate (IP3), the most

prevalent IP in plant cells, regulates various cellular processes,

including plant development and stress responses (Franklin-Tong
FIGURE 2

Biosynthetic pathway of Phosphoinositides. PA, Phosphatidic Acid; DAG, Diacylglycerol; PtdIns, Phosphoinositides; PtdCho, Phosphatidylcholine; PtdEtn,
Phosphatidylethanolamine; PtdSer, Phosphatidylserine; PtdIns4P, Phosphatidylinositol 4 phosphate; PtdIns4,5P2, Phosphatidylinositol4,5 Bisphosphate.
FIGURE 1

Synthesis Pathways for signaling PA. PLC, Phospholipase D; DGK, Diacyl glycerol kinase; PAK, Phosphatidic acid kinase; PAP, Phosphatidic acid
phosphatase; DPP, DGPP phosphatase.
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et al., 1996; DeWald et al., 2001), and may regulate cellular reactions

by inducing Ca2+ production in the cytoplasm of guard cells to

increase Ca2+ levels and closestomata (Sanders et al., 1999). Plants

use IP3 as a precursor to produce inositol hexakisphosphate (IP6),

which could be the true signaling molecule in plants (Tsui and York,

2010; Williams et al., 2015). IP6 has a critical role in guard cell

responses, leading to stomatal closure (Lemtiri-Chlieh et al., 2003).

IP5 and IP6 have also been identified as structural co-factors of the

auxin receptor–transport inhibitor response 1 (TIR1) and jasmonic

acid receptor-coronatine insensitive 1 (COI1), respectively (Sheard

et al., 2010), connecting phytohormone-controlled pathways with

PI signaling. PIs are involved in various cellular functions, including

membrane trafficking, cytoskeleton organization, polar tip growth,

and stress responses (Ischebeck et al., 2010). The Arabidopsis

genome encodes 20 PtdIns kinases that generate different PtdIns

isoforms. In addition to phosphorylating PtdIns4P, PI4P 5-kinases

also catalyze the unspecific process of phosphorylating PtdIns3P,

resulting in PtdIns(3,5). The synthesis of PtdIns(4,5) P2 is likely

catalyzed by PI4P 5-kinase using PtdIns4P as a substrate, whereas

PtdIns5P is likely generated by the dephosphorylation of PtdIns

bisphosphate. However, no gene encoding PI 5-kinase or PI5P 4-

kinase has been found in plants (Heilmann and Heilmann, 2015).
2.3 Sphingolipids

Sphingolipids are a highly diverse group of compounds

involved in numerous cellular processes (Pata et al., 2010). They

constitute a significant proportion of the lipid content in higher
Frontiers in Plant Science 04
plants and are abundant in endosomes and tonoplasts, making up

to 40% of the lipids in the plasma membrane (Moreau et al., 1998;

Cacas et al., 2016). Sphingolipids are structurally diverse,

comprising asphingoid long-chain base (LCB) backbone amide

joined to an N-acylated fatty acid (FA) attached to a polar head

group (Gault et al., 2010; Pata et al., 2010). Sphingolipid metabolism

occurs mainly in the endoplasmic reticulum (ER) and the golgi

apparatus, where they are synthesized, transferred, sorted,

transported, and eventually localized to membranes (Luttgeharm

et al., 2016). In plants and yeast, dihydrosphingosine and

phytosphingosine are the main LCBs (Hannun and Obeid, 2008).

Plant sphingolipids mainly comprise glucosylceramides (GlcCers)

or glycosylated inositolphosphoryl ceramides (GIPCs) (Markham

et al., 2006). Figure 3 shows the biosynthesis pathway of

sphingolipids, which involves the condensation of serine and

palmitoyl-CoA catalyzed by serine palmitoyl transferasein the ER

to produce various LCBs, typically with 18 carbons (Chen M. et al.,

2006), followed by the reduction of 3-ketosphinganine to

sphinganine (d18:0) by 3-ketosphinganine reductase (Beeler et al.,

1998). Sphingosine N-acyltransferase then joins the LCBs to a fatty

acid and further modifies them to create ceramides, which serve as

the building blocks for more complex sphingolipids (Spassieva

et al., 2002; Merrill, 2011). Ceramides are synthesized in the ER

and transported to the Golgi, where they are modified by the

attachment of various polar head groups to form GlcCers,

inositolphosphoryl ceramides, and GIPCs (Berkey et al., 2012).

Sphingolipids are highly concentrated in the cytoplasm and

vacuolar membrane, creating membrane microdomains called lipid

rafts, crucial for protein trafficking to the plasma membrane and
FIGURE 3

Biosynthetic pathway of sphingolipids. LCB, Long-chain base; PI, Phosphatidylinositol; DAG, Diacylglycerol.
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other cell surface activities (Simons and Toomre, 2000; Pike, 2006).

Sphingolipids must be transported from the ER to the Golgi

network and then to plasma and vacuolar membranes to produce

and translocate complex GIPCs. However, sphingolipid transport in

plant cells is not well understood. Studies suggest that accelerated

cell death protein 11 and glycolipid transfer protein 1 might be

involved in sphingolipid transport in plants (Simanshu et al., 2014),

but further research is needed to confirm this. Several studies have

revealed information on the role of sphingolipids in plant

development and in response to diverse abiotic and biotic stresses

(Markham et al., 2013; Luttgeharm et al., 2016; Ali et al., 2018; Huby

et al., 2020; Mamode Cassim et al., 2020; Liu et al., 2021).

Sphingolipids play a key role in programmed cell death (PCD)

during immune response or plant development. The accumulation

of LCBs stimulates CPK3, a calcium-dependent kinase, which then

phosphorylates its 14-3-3 protein binding partners and triggers

PCD (Lachaud et al., 2013). Moreover, LCB-Ps are involved in

ABA, cold, and drought stress responses (Worrall et al., 2008;

Guillas et al., 2013). While the role of sphingolipids in animals is

well understood, the sphingolipid signaling system in plants is still

largely unknown. In plants, complex sphingolipids such as GlcCers

and GIPCs play a structural role similar to sphingomyelin in

mammals and are important structural elements of cell

membranes, but their role in signaling is not yet known.

Researchers have questioned whether plants have an enzymatic

breakdown pathway for GIPCs, similar to the one found in

mammals (Worrall et al., 2003). The answer to this question

could provide a fresh perspective on how sphingolipid signaling

functions in plants.
2.4 Lysophospholipids

Lysophospholipids are generated from glycerophospholipids

M.via phospholipase A catalysis, leading to a lipid containing only

a single acyl chain, such as lysophosphatidylcholine (LPC),

lysophosphatidic acid (LPA), and sphingosylphosphorylcholine.

Figure 4 summarizes the process of enzymatic production of LPs

by phospholipase A1 (PLA1), phospholipase A2 (PLA2), and lipases.

When natural phosphatidic acid (PA) or phosphatidylcholine (PC)

undergo a hydrolysis reaction with phospholipase A2 (PLA2), the
Frontiers in Plant Science 05
resulting products are 2-lysophosphatidic acid (2-LPA) and

2-lysophosphatidylcholine (2-LPC) (Kim and Kim, 1998).They are

abundant in the membrane’s lipid bilayer, with glycerol and

sphingosine as their main components, and have various details

that determine their cell receptor selection, including the position of

the acyl chain on the glycerol moiety, the length, degree, and

saturation of the fatty acyl chain, and the phosphate head group.

Lysophospholipids accumulate in plants in response to freezing,

wounding, or pathogen infection (Wi et al., 2014).

Lysophospholipids play a crucial role in pollen growth, stomatal

opening, and reactions to hypoxia and salt stress (Wang et al.,

2019). Analyzing the regulatory mode and function of

phospholipase A (PLA) will help understand the signaling

cascades involving lysophospholipids as PLA1 and PLA2,the

essential enzymes for producing lysophospholipids. G-proteins

have been shown to regulate PLA2 activities in plants (Heinze

et al., 2013). However, LPCs can cause a cytoplasmic pH change by

activating tonoplast H+/Na+ antiporter activity and H+-

transporting ATPase of the plasma membrane, which affect auxin

responses (Viehweger et al., 2002). According to one study, plants

may have evolved H+-ATPases as lysophospholipid sensors

(Wielandt et al., 2015), suggesting that lysophospholipid signaling

receptors are distinct in plants and animals. Moreover, PLA2

expression is down regulated during heat and drought stress and

upregulated during salt, osmotic, and cold stress (Hruz et al., 2008).

Despite this, the function and regulatory mechanism of

lysophospholipids are still poorly understood, in contrast to the

extensively studied PA signaling molecule.
2.5 Oxylipins

Oxylipins are a broad category of compounds that perform

various functions in plant growth, development, and interactions

with biotic and abiotic stresses. The most extensively studied

subgroup of plant oxylipins is jasmonates (JAs), commonly

known as defense phytohormones. While the biosynthetic

pathway is very straight forward, the metabolites produced are

structurally diverse and biologically active. Oxylipins interact with

various signaling pathways in plant cells, including auxin,

gibberellin, ethylene, and ABA signaling pathways involved in
FIGURE 4

Biosynthetic pathway of lysophospholipids. PA, Phosphatidic Acid; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine.
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regulating stress-induced gene expression and stress signal

transduction (Yang et al., 2012). Oxylipins are comprised of

complex oxidized fatty acids such as fatty acid hydroperoxides,

divinyl ethers, and jasmonic acid. They can be synthesized

enzymatically or spontaneously through auto-oxidation (Andreou

et al., 2009; Mosblech et al., 2009). Lipoxygenases (LOXs) (e.g.,

jasmonates) or 18-carbon unsaturated fatty acids, such as linolenic

acid or linoleic acid, are typically involved in oxylipin production in

plants (Savchenko et al., 2014). The biosynthesis process can be

divided into various classes using synthesized fatty acid

hydroperoxides as substrates for various enzymes (Figure 5).

Hydroperoxide lyase produces aldehydes, alcohols, and oxo-acids

that play important roles in pathogen defense, and allene oxide

synthase that catalyzes the process leading to JA signaling (Griffiths,

2015). Peroxygenases (POX) and divinyl ether synthases synthesize

epoxy-hydoxy FA and divinyl ethers of fatty acids used in

antimicrobial drugs. Epoxy alcohol synthases and LOXs are

involved in synthesizing epoxy hydroxy fatty acids and keto fatty

acids (Mosblech et al., 2009). Hydroxyl fatty acids can also be

synthesized in the reduction of hydroperoxides by a reductase

(Andreou et al., 2009).Oxylipin production may already have

begun before a lipase releases fatty acids. Evidence suggests that

lipoxygenase uses esterified lipid-bound fatty acids as substrates. In

Cannabis sativa, there might exist a partially shared biosynthetic

pathway in oxylipins and cannabinoids production. In the plant, a

specific examination of trichomes’ gene expression revealed that

the genes responsible for producing oxylipins, namely
Frontiers in Plant Science 06
LIPOXYGENASE (LOX) and HYDROPEROXIDE LYASE (HPL),

were found to be co-expressed with genes already known to be

involved in the production of cannabinoids (Stout et al., 2012;

Livingston et al., 2020). This observation has led to the hypothesis

that the oxylipin pathway provides the necessary substrate for the

production of cannabinoids (Borrego et al., 2023).

Another subclass of oxylipins is phytoprostanes, produced through

a biochemical process in volving free radicals and non-enzymatic

gtransformation of a-linolenic acid (Griffiths, 2015). During

photosynthesis, the reactive oxygen species (ROS) produced in

chloroplasts promote fatty acid oxidation in green leaves, with

photosynthetic tissue containing ten times more phytoprostanes than

roots. Phytoprostanes are likely formed from fatty acid residues in

lipids, much like animal isoprostanes, and then released by lipases

(Imbusch and Mueller, 2000). Phytoprostanescan regulate the

expression of genes involved in detoxification processes and

stimulate the production of secondary metabolites. A unique class of

oxylipins known as reactive electrophile species includes 12-OPDA,

certain phytoprostanes, fatty acid ketodienes and ketotrienes, 2(E)

alkenals, and other unsaturated carbonyl compounds. These

compounds have high chemical reactivity due to the electrophilicity

of the carbonyl group’s double bond. ROS attack the nucleophilic areas

of organic compounds, including glutathione, proteins, and nucleic

acids, altering their characteristics and damaging cell structures. ROS

also stimulate the production of genes involved in cell cycle regulation,

xenobiotic, and excessive light defense responses (Farmer and

Mueller, 2013).
FIGURE 5

Biosynthetic pathway of oxylipins.
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2.6 N-acylethanolamines

N-acylethanolamines (NAEs) are a family of signaling lipids

with a wide range of functional properties. They are categorized

according to the number of carbons and saturation level in their

acyl chains and comprise a fatty acid linked to ethanolamine by an

amide bond. Figure 6 shows the biosynthesis of NAEs (Arias-

Gaguancela and Chapman, 2022).The most extensively researched

NAE is N-arachidonylethanolamine, often known as anandamide,

which functions as an endogenous ligand for cannabinoid (CB1 and

CB2) receptors located on the plasma membrane in the brain and

activates intracellular signaling cascades in mammalian neurons

(Felder et al., 1993). Other more prevalent types of NAEs, such as

ethanolamides of oleic, linoleic, linolenic, and palmitic acids, have

also drawn attention as lipid mediators that primarily work without

the assistance of G-protein-coupled cannabinoid receptors

(Movahed et al., 2005). NAE concentrations vary depending on

the stage of plant growth and development (Chapman,

2004).Among the different plant tissues examined, it was found

that the content of NAE is highest in desiccated seeds of various

plant species. However, the quantities are typically at low levels,

measured in parts per million (ppm) (Chapman, 2004; Venables

et al., 2005; Kilaru et al., 2007). According to radio-labeling

research, plants use nacylphosphatidylethanolamines (NAPE) as a

metabolic substrate of naphthalene (NAE) (Chapman et al., 1999).

Animals can hydrolyze NAPE directly by a PLD to produce NAEs

or indirectly through PLC- or PLA2/a/b-hydrolase-4 (ABHD4)-

mediated pathways. PLC and PLA2/ABHD4 hydrolyze NAPE into

phospho-NAE and lyso-NAPE, respectively. ABHD4 further

hydrolyzes lyso-NAPE to produce glycerophospho-NAE (GP-

NAE). Phosphatases and phosphodiesterasesthen convert GP-

NAE and phospho-NAE to NAE, respectively. However, the

biosynthesis pathway of NAE in plants is still unknown because
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several enzymes required for mammalian NAE synthesis pathways

are absent inplants or have little in common with proteins found in

animals (Blancaflor et al., 2014). Several NAE isoforms impact the

regulation of plant development and pathogen defense (Wang et al.,

2006; Kang et al., 2008). However, unlike animals, plants have little

information about the perception and molecular targets of NAEs.
3 Lipid binding proteins

Plants had to develop mechanisms to detect changes in their

environment and communicate these changes to different organs,

and adjust accordingly (Thomas and Vince-Prue, 1996). These

responses can occur within one cell or tissue or at a location

distal from the detection of those environmental changes. The

complexity of lipid metabolism becomes more apparent when

considering that each membrane in a plant has a distinct

composition of acyl and lipid. Additionally, all acyl-chains are

produced in plastids and are assembled either in plastids or the

endoplasmic reticulum, necessitating the transport of fatty acids and

lipids. Since hydrophobic molecules cannot freely move in a watery

cellular environment, multiple modes of transportation are

employed such as diffusion or flip transfer within the same

membrane system, vesicular trafficking, and transport processes

facilitated by proteins. Lipid transfer proteins (LTPs) have a crucial

function in aiding the transfer of phospholipids and galactolipids

from one membrane to another (Kader, 1996). These proteins are

alternatively referred to as nsLTPs (non-specific lipid-transfer

proteins) or pLTPs (plant lipid transfer proteins). The peptides

within this category possess a hydrophobic cavity resembling a

tunnel that can accommodate various lipids (Edqvist et al., 2018).

NsLTPs can be characterized as proteins that induce the relaxation

of the cell wall (Nieuwland et al., 2005) by increasing its internal
FIGURE 6

Biosynthetic pathway of NAE formation in plants. NAPE, N-acylphosphatidylethanolamine; PLD, phospholipase D; NAE, N-acylethanolamine;
LOX, lipoxygenase; AOS, allele oxide synthase; PA, phosphatidic acid; NAAA, N-acylethanolamine-hydrolyzing acid amidase; FAAH, fatty acid amide
hydrolase; PE, phosphatidylethanolamine.
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volume through turgor. Studies have demonstrated that annexins

proteins possess the ability to interact with phospholipids and

membranes. The expression of Arabidopsis annexin 1 is increased

in response to both salt and water stress conditions. Plant Acyl CoA

binding proteins (ACBPs) have the ability to bind long-chain

acylCoA esters (Brown et al., 1998)., participate in acyl-CoA

transport (Johnson et al., 2002), maintain the acyl-CoA pool

(Yurchenko et al., 2014). Another way to move the long-distance

signals is through plant phloem. The view of the phloem function

has evolved from that of simple assimilate transport to a complex

trafficking system for stress signals and developmental regulators. A

recent analysis of phloem exudates of Arabidopsis thaliana, led to

the identification of several glycerolipids within the phloem

including PA, PC, PI, di- and triacylglycerols (Benning et al.,

2012; Tetyuk et al., 2013). Similarly, lipids have been detected in

canola phloem as well (Madey et al., 2002). Table 1 summarizes

various lipid binding proteins and their functions.

PDK1- phosphoinositide-dependent protein kinase 1, CDPK-

Ca2+-dependent protein kinase, TGD- trigalactosyl diacylglycerol,

PEPC- phosphoenolpyruvate carboxylase, PID- PINOID, AGD7-

ARF gap domain, CTR1- constitutive triple response 1, TPM1-

tropomyosin alpha1, MPK6- mitogen-activated protein kinase6,

RbohD/F- respiratory burst oxidase homolog D/F, PTEN2A-

Phosphatase and TENsin homolog deleted, WER- Werewolf,

GAPC- glyceraldehyde-3-phosphate dehydrogenase, RCN1 –

roots curl in naphthylphthalamic acid 1, PARP1- poly(ADP-

ribose) polymerase-1, GDSL-lipase- Gly-Asp-Ser-Leu lipase,

PLAFP1- phloem lipid-associated family protein, PIG-P-

phosphatidylinositol N-acetylglucosaminyltransferase subunit P,

LHY- Late elongated hypocotyl, CCA1- circadian clock

associated, AHL4- AT-hook motif-containing nuclear localized

protein, LTP- long-term potentiation, ACBP2- acyl-CoA-binding

protein, PCaP1,2- Plasma membrane cation binding protein,

FAB1- Formation of aploid and binucleate cells, ACD11-

Accelerated cell death, GLTP1- Glycosphingolipid transfer

protein, PDLP5- plasmodesmata-located protein, ACBP2- acyl-

CoA-binding protein.
4 Lipid-mediated tolerance of
abiotic stresses

The degree of unsaturation of the lipid acyl chain (e.g., lipid

packing) plays a crucial role in controlling membrane dynamics.

Creating hydrogen connections between the membrane’s

constituent parts inhibits membrane lipids from transitioning

from a liquid crystalline state to a stiff gel state or vice versa

(Wang et al., 2020). Unsaturated fatty acid chains bend at the cis-

double bond, hindering membrane packing and resulting in

membrane fluidization (He et al., 2018). The PM’s receptors and

sensors are the primary sites for detecting and deciphering

environmental stress signals. The response regulators transmit

these signals downstream for appropriate molecular feedback,

resulting in proper and adaptive responses to environmental

stress (Barkla and Pantoja, 2010). Changes in the degree of fatty
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acid desaturation are crucial for plants to respond to different

abiotic stressors. The principal polyunsaturated fatty acid species

in membrane lipids are 16:3 and 18:3, with changes in those

unsaturated fatty acid levels often dictating the membrane’s

fluidity (Zhang et al., 2005; Wang et al., 2010). Maintaining high

levels of fatty acid desaturation enables plants to stabilize membrane

fluidity and reduce the damage inflicted on the membrane by

abiotic stressors. Figure 7 illustrates the changes in membrane

lipid saturation due to various abiotic stresses and the associated

acclimation processes.

In addition to their signaling functions, lipids also serve as stress

mitigators, reducing the impact of abiotic stressors. For instance,

membrane lipid modifications occur in response to stresses like

cold, dehydration, and nutrient loss. This membrane remodeling

helps maintain membrane characteristics impacting lipid dynamics,

membrane integrity, and the activities of membrane-bound

proteins (Samuels et al., 2008).
4.1 Lipid signaling in response to
drought stress

Drought stress inhibits plant development by affecting various

physiological and biochemical processes, including photosynthesis,

chlorophyll production, nutrient metabolism, ion absorption and

translocation, respiration, and carbohydrate metabolism (Jaleel

et al., 2008; Li et al., 2011). Drought stress indicators include

reduced leaf water potential and turgor pressure, stomatal closure,

and reduced cell development and enlargement (Farooq et al.,

2009). Lipid signaling molecules play a crucial role in controlling

plant water demand, developing drought tolerance, and adapting

to long-term drought. Dehydration leads to the production of PA,

inositol phosphates, oxylipins, and sphingolipids (Bargmann et al.,

2009b; Munnik and Testerink, 2009; Gasulla et al., 2013),

highlighting the complexity of the stress response network and

making it challenging to specify the particular physiological

functions of different molecular lipid species. Controlling

transpiration is a crucial defense mechanism against water

scarcity, with most water loss occurring during transpiration

through stomata. ABI1 is bound to the plasma membrane by PA

binding, preventing it from moving to the nucleus, where it

interacts with the transcription factor ATHB6, a regulator of the

ABA response. The binding of PA and ABI1 suggests that ABA-

mediated pathways require PA signaling (Zhang et al., 2004). The

nitric oxide signaling cascade that causes stomatal closure also

includes PA (Distéfano et al., 2008). Dehydrins, universally

expressed in response to dehydration and connected with stress

protection, are also activated by the upregulation of PA under

drought stress (Koag et al., 2003). Both inositol phosphate 3 and

inositol phosphate 6 affect stomata closure, while At5Ptase1, an

inositol phosphatase activated in response to ABA, can block the

IP3 pathway (Lemtiri-Chlieh et al., 2003). Arabidopsis fiery1

encodes another inositol phosphatase, which functions as a

contraregulator of ABA (Xiong et al., 2001). Furthermore, the

fiery1 mutation leads to the expression of ABA-responsive and

stress-responsive genes, resulting in mutant plants with reduced
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TABLE 1 Lipid binding proteins and their functions.

Lipid binding proteins Functions References

Phosphatidic Acid Binding Proteins

PDK1 Root hair development, defense against pathogens Deák et al., 1999; Anthony et al., 2004; Anthony et al., 2006

CDPK Protein kinase Farmer and Choi, 1999

TGD2 Chloroplast structure Awai et al., 2006

PEPC Phosphoenolpyruvate carboxylase Testerink et al., 2004

14-3-3 protein Plasma membrane H+ATPase pathway Testerink et al., 2004

PID PIN localization Zegzouti et al., 2006

AGD7 ER/Golgi trafficking Min et al., 2007

CTR1 Ethylene response Testerink et al., 2007

TPM1 Lipid metabolism Jost et al., 2009

MPK6 Abiotic and biotic stress signaling Yu et al., 2010

RbohD/F ABA signaling Ma et al., 2012

PTEN2A Lipid phosphatase activity Pribat et al., 2012

TGD4 Chloroplast structure Wang et al., 2012; Wang et al., 2013

WER Root hair formation Yao et al., 2013

GAPC Metabolism Kim et al., 2013; McLoughlin et al., 2013

RCN1 Auxin/BR signaling, root development Gao et al., 2013; Wu et al., 2014

PARP1 Lipid transport/Co-signal Hyun et al., 2014

Annexin Lipid transport/Co-signal Nakamura et al., 2014

GDSL-lipase Lipid release/Phloem entry Barbaglia et al., 2016

PLAFP 1 Lipid transport/Co-signal Barbaglia et al., 2016

PIG-P like protein Receptor function Barbaglia et al., 2016

LHY, CCA1 Circadian clock regulation Kim et al., 2019

AHL4 Lipid mobilization/Seedling establishment Cai et al., 2020

Phosphatidylinositol Binding Proteins

LTP1 Cutin biosynthesis Cameron et al., 2006

ACBP2 Heavy metal stress tolerance Gao et al., 2010

P4M, PTB, PX Biogenesis of vesicles, cell division, and defense response Szumlanski and Nielsen, 2010; Munnik and Nielsen, 2011

BATS, FYVE Plant growth and development, membrane biogenesis and trafficking Munnik and Nielsen, 2011; Gillaspy, 2013

PH, PROPPIN Function unknown, putative role in stomatal closure Bak et al., 2013

PCaP1 and PCaP2 Stomatal closure Nagata et al., 2016

FAB1 Maintaining membrane trafficking Hirano and Sato, 2019

Sphingolipid Binding Proteins

ACD11 Sphingolipid transport Brodersen et al., 2002

GLTP1 Sphingolipid transport West et al., 2008

PDLP5 Sphingolipid translocation Liu et al., 2020

Lysophospholipid Binding Proteins

LTP1 Cutin biosynthesis Cameron et al., 2006

(Continued)
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resistance to cold, drought, and salt stress. Studies using transgenic

plants have shown that IP3 levels play a crucial role in the

expression of ABA-regulated genes, such as RD29A, KIN1,

Cor15A, and HSP70, which were upregulated in plants with

higher IP3 levels in response to stress treatments. Conversely,

transgenic tomato lines with lower basal IP3 levels exhibited

dramatically enhanced drought tolerance and changes to several

metabolic and developmental alterations, such as higher net CO2

fixation and sucrose export to sink and storage tissues

(Khodakovskaya et al., 2010). In addition to PA and IP3/IP6,

sphingolipidsare also involved in controlling stomatal closure.

ABA activates sphingosine kinases, which produce sphingosine-

1-phosphate (S1P) that controls guard cell turgor. A downstream

component of the S1P signaling pathway, heterotrimeric G-

proteins, mediates ABA control of stomatal closure (Coursol

et al., 2003). Upon binding to PA, phytosphingosine kinases

(SPHKs) produce phytosphingosine phosphates, inducing

stomatal closure in an ABA-dependent form (Guo et al., 2011;

Guo et al., 2012). The link between oxylipin levels and drought

tolerance was evidenced in Arabidopsis mutants, with lower

oxylipin levels being more susceptible to drought (Grebner et al.,

2013). In Cannabis sativa, there exists a partially shared

biosynthetic pathway which is involved in the production of
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both oxylipins and cannabinoids. Drought stress has been found

to have a significant impact on initiation of flowering in Cannabis.

The production of cannabinoids, which are highly lipophilic

molecules, changes under drought stress that led to decrease in

the accumulation of cannabidol (CBD), while simultaneously

increasing cannabigerol (CBG) levels (Park et al., 2022). Further

research is necessary to fully understand the extent and

mechanisms of this potential shared pathway and its

implications for the production of oxylipins and cannabinoids.

The involvement of several plant PLCs in abiotic stress signaling is

strongly supported by functional analyses of these proteins using

reverse genetic methods. For instance, increased drought

endurance was evident in plants with Zea mays (maize)

ZmPLC1, Brassica napus (rapeseed) BnPLC2, and Nicotiana

tabacum (tobacco) PLC overexpression (Tripathy et al., 2012).

Recent research found that constitutive AtPLC3 and AtPLC5

expression reduced stomatal aperture, preventing excessive water

loss and enabling drought adaptation in Arabidopsis (Zhang et al.,

2018). Concomitantly higher amounts of IP3 and PI(4,5)P2 were

found in plant cells under osmotic stress, pointing to the

simultaneous activity of PI-PLC and phosphoinositide kinase

(Pokotylo et al., 2014). As exemplified by the above examples,

lipid signaling molecules alter the activity and translocation of
TABLE 1 Continued

Lipid binding proteins Functions References

Phosphatidic Acid Binding Proteins

LTP2 Suberin Biosynthesis Edstam and Edqvist, 2014

ACBP2 Heavy metal stress tolerance Gao et al., 2010
FIGURE 7

Variations in membrane fluidity in response to various abiotic stresses and acclimation processes. Drought affects the efficiency of water channels by
increasing saturated fatty acyl chains and causing lipid peroxidation. Membrane rigidification occurs at low temperatures, while fluidization occurs at
high temperatures. Plants acclimatize to drought by increasing their membrane lipid unsaturation levels to stabilize PM and activate their water
channels (e.g., AQPs) to keep water moving through their cells. Plants adapt to high and low temperatures by decreasing and increasing membrane
fluidity, respectively.
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target proteins and, in some cases, cause conformational changes

or the phosphorylation of downstream targets, altering their

susceptibility to dehydration stress.

Research has shown that many plant species exhibit a response to

drought stress by increasing the deposition of cuticular wax (Kosma

and Jenks, 2007). The cuticle consists of two significant hydrophobic

components: cutin and waxes (Kolattukudy, 1980). The waxes consist

of long-chain aliphatic lipids, triterpenoids, and other minor secondary

metabolites such as sterols and flavonoids. The composition of

cuticular wax is believed to influence the barrier properties of

cuticular transpiration. Within the cuticular wax biosynthetic

pathways, C16 and C18 fatty acids are initially synthesized in the

plastids and then transported to the cytoplasm. In the cytoplasm, they

undergo further elongation to form very-long-chain fatty acids ranging

from C20 to C34 in the endoplasmic reticulum. This elongation

process is facilitated by a series of enzymes, including 3-ketoacyl-

CoA synthetases (KCS), 3-ketoacyl-CoA reductases (KCR), 3-

hydroxyacyl-CoA dehydratases, and trans-2-enoyl-CoA reductases

(ECR) (Kunst and Samuels, 2009).The presence or absence of

MYB96 in plant systems has been found to affect the content of

cuticular wax, indicating that MYB96 integrates various signals related

to drought stress and regulates the biosynthesis of cuticular wax. The

myb96-1D mutant shows resistance to drought, whereas the myb96-1

mutant, deficient in MYB96, is highly susceptible to drought. Notably,

the myb96-1D mutant exhibits a shiny surface on its leaves and stems,

indicating the accumulation of cuticular waxes to a high degree. The

MYB96 transcription factor directly binds to the promoters of genes

that encode fatty acid elongation enzymes (Seo et al., 2009). The

upregulation of genes involved in cuticular wax biosynthesis in the

myb96-1D mutant suggests that MYB96 acts as a regulator of this

process. Therefore, while cuticular wax biosynthesis may not be the

primary mechanism for drought response, it likely becomes more

important and potentially protective during severe drought stress.

The lipid matrix found in photosynthetic membranes contains

70–80% of MGDG and DGDG and it is crucial to regulate these

lipids to ensure the continuous functioning of photosynthesis. The

amount of DGDG and/or the DGDG to MGDG ratio are also vital

in various essential cellular processes occurring within the

chloroplast. These include protein folding, insertion of proteins,

and intracellular protein trafficking (Dormann and Benning, 2002).

A detailed analysis of plants with various susceptibilities to drought

stress revealed that a decrease in MGDG levels was accompanied by

an increase in oligogalactolipids, PI, and PA. These lipid profile

modifications after desiccation were more evident in desiccation-

tolerant species than in desiccation-sensitive ones (Gasulla et al.,

2013). The interaction of DGDG and PG with external proteins

stabilizes the PSII manganese cluster (Fujii et al., 2014). Changes in

the DGDG/MGDG ratio may affect chloroplast membrane stability

(Liu et al., 2017), as MGDG can be especially sensitive to drought

stress (Kalisch et al., 2016). The MGDG synthetic gene knockout

Arabidopsis mutant, mgd1, exhibited decreased MGDG expression

but no change in PSII activity (Hernandez et al., 2016). However, in

another study, the electrical conductivity of the mgd1 mutant’s

thylakoid membrane increased, decreasing its photoprotective

action (Cao et al., 2015). The growth and photosynthetic

efficiency of an Arabidopsis mutant known as dgd1 were found to
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be adversely affected. This mutant exhibits a significant decrease in

DGDG content (Dormann et al., 1995). Spring wheat subjected to

drought stress had decreased PG content and increased DGDG/

MGDG ratio. The author speculated that PC or PC-derived lipids

might be delivered directly or indirectly to galactolipid biosynthetic

plastids or that DAG may be phosphorylated into PA to produce

DGDG. DGDG confers thermotolerance to plants due to its ability

to stabilize bilayers, as evidenced by the inability of DGDG-deficient

dgd1 mutant plants to adapt to high growth temperatures

(Kobayashi, 2016). While the total lipid content of desiccation-

tolerant plants does not vary, the membrane lipid composition does,

and the amount of MGDG decreases. The production of

phospholipids by DAG is one way to reduce MGDG levels.

Another method involves converting MGDG to the DGD1/DGD2

pathway, followed by the production of oligogalactolipids from

SFR2. This pathway significantly increases the stability of the

chloroplast membrane by lowering the MGDG/DGDG ratio,

which also helps maintain the bimolecular shape of lipids in

membranes (Nakajima et al., 2018). Recent studies have focused

on the modification and turnover of photosynthetic membrane

lipids as a successful coping mechanism for adapting to and

developing tolerance to adverse environments (Li et al., 2020;

Yang et al., 2020). During periods of stress, plants decrease the

amounts of MGDG, DGDG, PG, and total lipids, while the fatty

acid composition of total lipids varied depending on the stress

(Higashi et al., 2015). Plants frequently reduce tissue MGDG levels

in response to drought, salt, cold temperatures, and aluminum

stressors, with smaller declines in DGDG levels (Wang et al., 2014).

Dehydration can decrease the amount of fatty acid desaturation in

plants (Dakhma et al., 1995). During drought stress, a drought-

tolerant maize cultivar maintained a higher level of fatty acid

desaturation than a sensitive cultivar (Chen et al., 2018), which

can provide plants with the capacity to stabilize membrane fluidity

and reduce the damage inflicted by abiotic stressors on

the membrane.
4.2 Lipid signaling in response to
cold stress

Cold stress can cause membrane integrity loss and cellular

dehydration, resulting in various phenotypic symptoms that impede

plant reproduction and survival, including diminished leaf growth, leaf

wilting, and leaf yellowing (Chinnusamy et al., 2007). Cell membranes

are the primary site of cold-induced damage in plants (Kratsch and

Wise, 2000). Low-temperature stress enhanced the relative conductivity

of maize seedlings (Nguyen et al., 2009). Similarly, low-temperature

stress increased the relative conductivity of tea leaves (Li et al., 2012).

Altering the saturation rate of a specific lipid class by genetic

modifications confirmed the clear relationship between membrane

composition and chilling sensitivity (Nishida and Murata, 1996).

Studies have shown that oligogalactolipids can minimize the effects

of freezing stress.The SFR2 (SENSITIVE TO FREEZING 2) protein

plays a vital role in preserving the integrity of chloroplast membranes

when they are subjected to freezing temperatures (Roston et al., 2014).

SFR2,a galactosyltransferase that transfers galactose moieties from
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MGDG molecules to other galactolipids, produces oligogalactolipids

and DAG, which is then converted to triacylglycerol in the chloroplast

envelope. This process of remodeling the lipid composition of

chloroplast membrane in response to freezing assists in adapting the

envelope membranes by elimination of excess polar lipids (Moellering

et al., 2010).The sfr2 mutant of Arabidopsis was extremely sensitive to

freezing, leading to chloroplast rupture (Thorlby et al., 2004). Cold

stress-induced membrane rigidification activates Ca2+ channels in the

plasma membrane, with the extracellular Ca2+ influx increasing PA

produced by PLC/DGK (phospholipase C/diacylglycerol kinase). Cold

stress induces the synthesis of PA through the phospholipase D (PLD)

and PLC/DGK pathways (Li et al., 2009). The PLC/DGK pathway

mainly generates 16:0/18:2 and 16:0/18:3 PA species, while the PLD

pathway generates 18:3/18:2 and 18:2/18:2 PA species (Vergnolle et al.,

2005). Cold-tolerant plants can acclimate to low temperatures by

increasing the FA unsaturation of PG molecules in the lipids of

thylakoid membranes. Low-temperature stress (5°C) increased the

PE and PA contents of Z. mays roots, indicating that Z. mays

modifies its membrane lipid metabolism in response to temperature

stress (Zhao et al., 2021). Barley cultivated at normal (25°C) and low (4°

C) temperatures differed in glycerol lipid composition, with lower

phospholipid and galactolipid contents in the cold-grown plants. Barley

plants may be able to increase their cold resistance by modifying

glycerol lipid content and FA saturation level to maintain the bilayer

membrane structure and ensure membrane fluidity (Ruelland et al.,

2015). Cold stress tolerance may also be influenced by the saturation

level of membrane lipids (Routaboul et al., 2000). Studies on several

species, including rice, maize, and tobacco, have also confirmed the

relationship between membrane lipid saturation and cold tolerance

(Kodama et al., 1995, Kodama et al., 1997; Murata and Wada, 1995).

Peanut may increase cold tolerance by increasing unsaturated fatty acid

levels and decreasing the buildup of saturated fatty acids (Liu et al.,

2017). During cold stress, peanut plants significantly increased the

concentrations of three unsaturated FAs—oleic acid (18:1), linoleic acid

(18:2), and linolenic acid (18:3)—while those of saturated FAs, such as

stearic acid (18:0) and palmitic acid (16:0), decreased. Four regulatory

genes involved in lipid metabolism (AhACP1, AhmtACP3, AhACP4,

and AhACP5) are closely associated with cold tolerance in peanut

(Zhang et al., 2019). Linolenic acid and palmitic acid were closely

associated with cold tolerance in winter wheat research (Dong-Wei

et al., 2013). After cold acclimation, the ratio of unsaturated to

saturated fatty acids increases. Nevertheless, evidence suggests that

sphingolipid and oxylipin signaling are involved in low-temperature

responses (Lynch, 2012; Hu et al., 2013). In Arabidopsis, a decrease in

temperature from 22 to 4°C led to a rapid increase in phosphorylated

long-chain phytosphingosine phosphate (PHS-P), which then activated

MPK6 kinase, suggesting its involvement in an early response signaling

pathway (Dutilleul et al., 2012). Jasmonate regulates the inducer of CBF

expression C-repeat binding factor/DRE binding factor1 (ICECBF/

DREB1) transcriptional pathway, indicating that jasmonate is an

upstream signal that positively regulates Arabidopsis freezing

tolerance (Hu et al., 2013). After 20 days of treatment at 4°C, the

thylakoid membrane of sweet pepper expanded and distorted, the

thylakoid grains split, and the starch grains grew (Kong et al., 2018).

Studies have shown that low temperatures promote chloroplast
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deterioration, while chloroplast swelling improves cell matrix

permeability (Moellering et al., 2010; Yang et al., 2011).
4.3 Lipid signaling in response to
heat stress

Plants are constantly exposed to daily and seasonal temperature

variations, necessitating the development of sophisticated

mechanisms to detect and respond to environmental changes.

High temperatures can destabilize proteins, enzymes, nucleic

acids, biomembranes, and cytoskeletal structures (Asthir, 2015). A

common effect of heat stress is tissue senescence, characterized by

membrane damage caused by increased membrane lipid fluidity,

lipid peroxidation, and protein degradation in various metabolic

pathways (Savchenko et al., 2002). Plants have developed short-

term stress avoidance and acclimation mechanisms and long-term

phenological and morphological evolutionary adaptations to

survive under high-temperature conditions, including shifting leaf

orientation, transpiration cooling, or modifying membrane lipid

composition (Wang et al., 2004). Membrane lipid saturation is

considered a critical factor in determining a plant’s ability to

tolerate high temperatures. The proportion of saturated fatty

acids in membrane lipids affects the lipid melting point,

regulating membrane fluidity and heat-induced membrane-

fluidity changes. Therefore, plants increase their saturated and

monounsaturated fatty acid concentrations in response to rising

temperatures, regulating their metabolism and retaining membrane

fluidity (Zhang et al., 2005). Heat stress alters the composition of

membrane lipids, increasing lipid saturation levels in cell

membranes (Schroda et al., 2015) to preserve membrane stability

and improve heat tolerance (Larkindale and Huang, 2004). High-

temperature stress increases membrane fluidity (Quinn, 1988).

Temperature fluctuations significantly influence membrane-

localized protein activity and membrane permeability to water,

solutes, and proteins (Whiting et al., 2000). To counter the drop in

phase transition temperature caused by unsaturated lipids, plants

regulate the saturation level of membrane glycerolipids (Nishida

and Murata, 1996). Plants can detect changes in ambient

temperature using a complex network of sensors located in

various cellular compartments. The resulting increase in

membrane fluidity triggers lipid-based signaling cascades, Ca2+

influx, and cytoskeletal rearrangement, generating osmolytes and

antioxidants. The Arabidopsis cyclic nucleotide-gated calcium

channel (CNGC2) gene encodes a part of the membrane-bound

cyclic nucleotide-gated Ca2+ channels, acting as the main

thermosensors in terrestrial plant cells. The activation of these

channels in the plasma membrane in response to an increase in

the surrounding temperature triggers an ideal heat shock response

(Saidi et al., 2009). Thylakoid lipids were observed to have a higher

frequency of 16:0-acyl chains and lower frequency of 16:3-acyl

chains under heat stress (Falcone et al., 2004). A shift toward higher

saturation levels in membrane lipids has been observed during

long-term heat exposure; however, short-term heat treatment

appears insufficient for lipid remodeling (Balogi et al., 2005). The
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response of glycerolipids to moderate heat stress has been

extensively studied. During this, plants exhibit an increase in

galactolipids containing 18:2 (linoleate) and a decrease in

galactolipids containing 18:3 (a-linoleate). In the endoplasmic

reticulum and plasma membrane, there are increases in

phospholipids containing 16:0 (palmitate), 18:0 (stearate), and

18:1 (oleate). Additionally, under moderate heat stress, there is an

increase in lipid droplets containing triacylglycerol with 18:3 and

16:3 (hexadecatrienoic acid) (Falcone et al., 2004; Chen J. et al.,

2006; Li et al., 2015; Higashi and Saito, 2019).

Moreover, heat stress activates MAPKs that regulate the

expression of HSP genes (Horvath et al., 2012). High-temperature

tolerance in Arabidopsis was correlated with a high DGDG/MGDG

ratio (Chen J. et al., 2006). In maize, the drought-tolerant cultivar

had a higher DGDG/MGDG ratio than the drought-sensitive

cultivar, possibly related to delayed drought-induced leaf

senescence (Chen et al., 2018). Similarly, drought stress increased

the DGDG/MGDG ratio in Arabidopsis (Gigon et al., 2004). It is

well-known that MGDG and DGDG are easily convertible, and the

DGDG/MGDG ratio is correlated with plant growth stage. Thus, it

is believed that while the DGDG/MGDG ratio may not determine a

plant’s capacity to withstand stress, plants may adjust this ratio to

some extent to enhance membrane stability under stress. In

Arabidopsis, the process of heat acclimation can enhance the

ability of plants to withstand extreme temperatures. In the case of

heat acclimation, where plants are exposed to a temperature of 38°C

for 2 hours, there is a reduction in the levels of MGDG and PG.

This decrease in MGDG content plays a role in maintaining the

membrane’s integrity during heat shock (Deme et al., 2014). It is

possible that the reduced MGDG is converted into triacylglycerols,

which accumulate as a result of the heat acclimation process (Mueller

et al., 2015).Changes in the degree of fatty acid desaturation are crucial

for plants to respond to different abiotic stressors. The principal
Frontiers in Plant Science 13
polyunsaturated fatty acid species in membrane lipids are 16:3 and

18:3, and their levels often dictate membrane fluidity (Zhang et al.,

2005; Wang et al., 2010). Over time, heat stress increases the degree of

membrane lipid saturation, while MGDG and DGDG are enriched in

polyunsaturated acids (Higashi et al., 2018). Chinese cabbage Wucai

(Brassica campestris L.) subjected to high temperatures had damaged

chloroplast envelopes, expanded thylakoids, loosely organized grana

lamellae, and larger and more chloroplast osmiophilic particles (Zou

et al., 2017). Lipid osmiophilic particles also called plastoglobules

(PGs) were found within chloroplasts, are closely associated with the

photosynthetically active thylakoid membranes. They exhibit dynamic

changes in size, number, and composition, indicating their active

involvement in cellular processes. Their dynamic nature highlights

their importance in the functioning and adaptation of chloroplasts to

various physiological and environmental conditions (Austin et al.,

2006). The important role of PGs has been suggested in enabling

crucial adaptive responses of the thylakoid membrane to

environmental changes by modifying the lipid composition of the

thylakoid membrane, capturing and isolating catabolic intermediates,

reducing the harmful effects of reactive oxygen species and generating

stress signals (Rottet et al., 2015; Pralon et al., 2020).
5 Conclusion and future perspectives

Lipid signaling molecules play crucial roles in plant responses to

various abiotic stresses. Figure 8 details the pathway of lipid-mediated

abiotic stress tolerance. Lipid signaling molecules comprise many

different types of signal transmitters. While PA and PIs have been

extensively studied, other lipids such as sphingolipids,

lysophospholipids, oxylipins, and NAEs are less understood but have

recently garnered attention. However, identifying lipid signaling

pathways in plants is challenging due to multifunctional enzymes,
FIGURE 8

Outline of lipid-mediated pathways for abiotic stress tolerance in plants. Abiotic stresses activate membrane-bound phospholipases to generate lipid
signaling molecules, such as phosphatidic acid (PA), inositol phosphates (IP3, IP6), and oxylipins, and induce the abscisic acid (ABA) signaling
pathway. These lipids control protein activity, location, and structure while activating specific stress genes. Although the downstream mechanisms of
lipid signaling remain poorly understood, changes in gene expression can cause physiological changes that lead to an environmental stress
response. PLC, phospholipase C; PLD, phospholipase D; IP3, inositol triphosphate; IP6, inositol hexakisphosphate; DAG, diacylglycerol; DGK,
diacylglycerol kinase; PA, phosphatidic Acid; PYR/PYL/RCAR, PYR/PYL/RCAR proteins that interact with ABI; MEKK1, MAPK kinase 1; MPK3/4/6,
mitogen-activated protein kinase 3/4/6.
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parallel isozyme networks, and a complex regulatory network involving

several lipid species in response to stress. Advanced analytical detection

techniques are needed to overcome these challenges and to identify

direct downstream targets of lipid mediators.

Profiling minor signaling lipids and determining their

interactions with downstream proteins in vivo are critical to

understanding the function of lipid signaling in response to

environmental stress. Synthesizing lipid signaling molecules into

existing signaling stress pathways will enable a better interpretation

of how plants respond to environmental stress, with the potential to

create plants adaptable to harsh environmental conditions. Further

studies on the role of lipid signaling in plant reactions to abiotic

stress will advance fundamental plant science and crop breeding,

helping to mitigate the impact of challenging environmental

conditions. Additional research is need to characterize the

changes in total lipid profiles in response to diverse abiotic and

biotic stress conditions.
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Demé, B., Cataye, C., Block, M. A., Maréchal, E., and Jouhet, J. (2014). Contribution
of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J. 28 (8),
3373–3383. doi: 10.1096/fj.13-247395

DeWald, D. B., Torabinejad, J., Jones, C. A., Shope, J. C., Cangelosi, A. R.,
Thompson, J. E., et al. (2001). Rapid accumulation of phosphatidylinositol 4, 5-
bisphosphateand inositol 1, 4, 5-trisphosphate correlates with calcium mobilization
in salt stressed Arabidopsis. Plant Physiol. 126 (2), 759–769. doi: 10.1104/pp.126.2.759
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et al. (2012). Phytosphingosine-phosphate is a signal for AtMPK6 activation and
Arabidopsis response to chilling. New Phytol. 194 (1), 181–191. doi: 10.1111/j.1469-
8137.2011.04017.x

Edqvist, J., Blomqvist, K., Nieuwland, J., and Salminen, T. A. (2018). Plant lipid
transfer proteins: are we finally closing in on the roles of these enigmatic proteins.
J. Lipid Res. 59, 1374–1382. doi: 10.1194/jlr.R083139

Edstam, M. M., and Edqvist, J. (2014). Involvement of GPI-anchored lipid transfer
proteins in the development of seed coats and pollen in Arabidopsis thaliana.
Physiologia Plantarum 152 (1), 32–42. doi: 10.1111/ppl.12156

Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H.Jr., Murphy, R.
C., et al. (2005). A comprehensive classification system for lipids. J. Lipid Res. 46, 839–
861. doi: 10.1194/jlr.E400004-JLR200

Falcone, D. L., Ogas, J. P., and Somerville, C. R (2004). Regulation of membrane fatty
acidcomposition by temperature in mutants of Arabidopsis with alterations in
membranelipid composition. BMC Plant Biol. 4, 1–17. doi: 10.1186/1471-2229-4-17

Farmer, P. K., and Choi, J. H. (1999). Calcium and phospholipid activation of a
recombinantcalcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota
L.). BiochimicaetBiophysica Acta (BBA)-Protein Structure Mol. Enzymology 1434 (1), 6–
17. doi: 10.1016/s0167-4838(99)00166-1

Farmer, E. E., and Mueller, M. J. (2013). ROS-mediated lipid peroxidation and RES-
activatedsignalling. Annu. Rev. Plant Biol. 64, 429–450. doi: 10.1146/annurev-arplant-
050312-120132

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). Plant
droughtstress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185–212.
doi: 10.1051/agro:2008021

Felder, C. C., Briley, E. M., Axelrod, J., Simpson, J. T., Mackie, K., and Devane, W. A.
(1993). Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned
humancannabinoid receptor and stimulates receptor-mediated signal transduction.
Proc. Natl. Acad. Sci. 90 (16), 7656–7660. doi: 10.1073/pnas.90.16.7656

Franklin-Tong, V. E., Drobak, B. K., Allan, A. C., Watkins, P. A., and Trewavas, A. J.
(1996). Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving
calciumwavepropagated by inositol 1, 4, 5-trisphosphate. Plant Cell 8 (8), 1305–1321.
doi: 10.1105/tpc.8.8.1305

Fujii, S., Kobayashi, K., Nakamura, Y., and Wada, H. (2014). Inducible knockdown
of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 reveals roles
ofgalactolipids in organelle differentiation in Arabidopsiscotyledons. Plant Physiol.
166 (3), 1436–1449. doi: 10.1104/pp.114.250050

Gao, H. B., Chu, Y. J., and Xue, H. W. (2013). Phosphatidic acid (PA) binds PP2AA1
to regulatePP2A activity and PIN1 polar localization. Mol. Plant 6 (5), 1692–1702.
doi: 10.1093/mp/sst076

Gao, W., Li, H. Y., Xiao, S., and Chye, M. L. (2010). Acyl-CoA-binding protein 2
binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced
oxidative stress in transgenic Arabidopsis. Plant J. 62 (6), 989–1003. doi: 10.1111/
j.1365-313X.2010.04209.x

Garab, G., Lohner, K., Laggner, P., and Farkas, T. (2000). Self-regulation of the lipid
content ofmembranes by non-bilayer lipids: a hypothesis. Trends Plant Sci. 5, 489–494.
doi: 10.1016/S1360-1385(00)01767-2

Gasulla, F., Vom Dorp, K., Dombrink, I., Zahringer, U., Gisch, N., Dörmann, P.,
et al. (2013). The role of lipid metabolism in the acquisition of desiccation tolerance in
C raterostigmaplantagineum: a comparative approach. Plant J. 75 (5), 726–741.
doi: 10.1111/tpj.12241

Gaude, N., Brehelin, C., Tischendorf, G., Kessler, F., and Dörmann, P. (2007).
Nitrogendeficiency in Arabidopsis affects galactolipid composition and gene expression
andresults in accumulation of fatty acid phytyl esters. Plant J. 49, 729–739. doi: 10.1111/
j.1365-313X.2006.02992.x

Gaude, N., Nakamura, Y., Scheible, W. R., Ohta, H., and Dormann, P. (2008).
PhospholipaseC5(NPC5) is involved in galactolipid accumulation during phosphate
limitation inleaves of Arabidopsis. Plant J. 56, 28–39. doi: 10.1111/j.1365-
313X.2008.03582.x

Gault, C. R., Obeid, L. M., and Hannun, Y. A. (2010). “An overview of sphingolipid
Q24 metabolism:from synthesis to breakdown,” in Sphingolipids as Signalling and
Regulatory Molecules. Advances in Experimental Medicine and Biology, 1–23.

Gigon, A., Matos, A. R., Laffray, D., Zuily-Fodil, Y., and Pham-Thi, A. T. (2004).
Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana
(ecotype Columbia). Ann. Bot. 94 (3), 345–351. doi: 10.1093/aob/mch150

Gillaspy, G. E. (2013). The role of phosphoinositides and inositol phosphates in plant
cellsignalling. Lipid-mediated Protein Signalling, 991, 141–157. doi: 10.1007/978-94-
007-6331-9_8

Grebner, W., Stingl, N. E., Oenel, A., Mueller, M. J., and Berger, S. (2013).
Lipoxygenase6dependent oxylipin synthesis in roots is required for abiotic and biotic
stress resistance of Arabidopsis. Plant Physiol. 161 (4), 2159–2170. doi: 10.1104/
pp.113.214544

Griffiths, G. (2015). Biosynthesis and analysis of plant oxylipins. Free Radical Res. 49
(5), 565–582. doi: 10.3109/10715762.2014.1000318
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