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Abstract. This paper presents a novel hybrid FEM-based approach to 

establish the mathematical model for solving the nonlinear buckling 

problem of truss systems with length imperfection under mechanical and 

thermal load.  due to constant temperature change-based hybrid FEM. The 

proposed approach deals with establishing hybrid types of truss elements, 

including perfect truss elements without thermal deformation and truss 

elements with length imperfection and thermal deformation. The 

equilibrium equation of both truss elements is established based on 

compatibility relationships considering geometric nonlinearity. The hybrid 

global equilibrium equations of truss systems are developed by assembling 

constructed perfect truss elements without thermal deformation and truss 

elements with length imperfection and thermal deformation. The 

incremental-iterative algorithm based on the arc-length method is used to 

establish calculation programs to solve the hybrid global equilibrium 

equation for investigating the geometrically nonlinear buckling behavior of 

the truss system. The numerical test is presented to investigate the buckling 

and post-buckling behavior of truss systems having some elements with 

length imperfection under thermal and mechanical load.  

1 Introduction 

The geometric imperfection of truss elements as a result of the manufacturing, transporting, 

and handling processes significantly influences the buckling behavior of the truss system, 

especially in nonlinear buckling analysis. In recent years, many research works have been 

published and addressed the influence of geometrical imperfection on the behavior of truss 

structures [1-3]. In many practical cases, the designing truss system with initial length 

imperfection needs to consider thermal deformation due to temperature load affected to the 

truss system. Research works for nonlinear analysis of buckling behavior of truss under 

temperature load can be found in some modern publishing papers [4,5]. The thermal load 

will affect the behavior of the truss system and increase the difficulty of establishing an 

algorithm for solving the geometrically nonlinear buckling problem of the truss system with 

initial length imperfection. The approaches and techniques for solving geometrically 

nonlinear problems of structures such as truss systems based on FEM have been developed 
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decades ago.  Using the displacement-based finite element method, the establishing 

algorithm for solving a geometrically nonlinear problem of the truss system with initial 

length imperfection under thermal loading requires imposing length imperfection and 

temperature deformation constraint depending on the incremental element length to the 

master stiffness equation by using mathematical methods for constrained optimization such 

as penalty augmentation method or Lagrange multiplier adjunction method [6-7]. The 

mathematical technique for treating initial length imperfection and thermal load 

considerably increases the difficulty of developing an incremental-iterative algorithm for 

solving the geometrically nonlinear buckling problem of the truss system. Based on mixed 

finite element formulation, the author introduced an approach for establishing the 

mathematical model for solving the geometrically nonlinear buckling problem of truss with 

initial length imperfection [8] and under thermal load [9]. Using a mixed model shows a 

significant advantage over the displacement-based formulation model but there is not 

without a disadvantage that deals with increasing the dimension of the solving system. The 

hybrid finite element formulation [10-11] is widely utilized in solving the nonlinear 

mechanical contact problem [12] and it can be used as a novel approach to overcoming 

difficulties in the mathematical treatment of length imperfection and thermal load in 

geometrically nonlinear buckling analysis of truss system. The main idea of hybrid FEM 

formulation is based on discretizing the truss system into different types of truss elements 

including perfect truss elements without thermal deformation and length imperfection truss 

elements with thermal deformation. Both common truss elements are established based on 

compatibility relationships considering geometric nonlinearity. The hybrid global 

equilibrium equations are developed by assembling constructed perfect truss elements 

without thermal deformation and truss elements with length imperfection and thermal 

deformation. The incremental-iterative algorithm based on the arc-length method is used to 

establish calculation programs to solve the hybrid global equilibrium equation for 

investigating the geometrically nonlinear buckling behavior of the truss system. The 

numerical test is presented to investigate the buckling and post-buckling behavior of truss 

systems having some elements with length imperfection under thermal and mechanical 

load.  

2 Equilibrium equations for the truss elements considering large 
displacements  

The hybrid finite element model of the truss system consists of two types of truss elements 

(shown in fig.1), including ( )Ie - the first type element is a perfect truss element without 

temperature change; ( )IIe - the second type element is a truss element having initial length 

imperfection i and thermal expansion
TL due to a constant temperature change T (the 

truss element subjected to uniform thermal loads. 

 

Fig. 1. Types of truss elements. 
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Consider two-node truss elements ( )Ie and ( )IIe in the global coordinate system (X0Y) 

as shown in Fig.2. 

 

Fig. 2. Truss elements before and after deformation: a) truss element ( )Ie ; b) truss element ( )IIe . 

For establishing the finite element equation, designating the followings: 

-   1 1 2 2, , ,X Y X Y : i
th

 and j
th

 nodal coordinates in the global coordinate system before 

and after deformation;  

- L : distance between i
th

 and j
th

 node after deformation; iL and
i initial length 

(manufactured length) and length imperfection of the truss element ( )IIe ;  

- : linear thermal expansion coefficient; 
0. .TL T L   : the change in length due to 

thermal expansion [13] in case of temperature change T of the truss element ( )IIe ; 

- 1 2 3 4, , ,u u u u and 1 2 3 4, , ,P P P P : nodal displacements and forces in global coordinates;

eP : resultant external force at the i
th

 cross-section after deformation; 

- 5  eu P N : resultant external force at the i' cross-section of the truss element ( )IIe

after deformation;  

- A: cross-sectional area of truss element; E: elastic modulus of material; N: an axial 

load of truss element; 

The length of the truss element after deformation is defined as follows 

 
2 2

2 1 3 1 2 1 4 2( ) ( )       L X X u u Y Y u u     (1) 

 

The axial deformation of the truss elements can be computed by the expression 
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 Work of internal axial force can be calculated for both truss elements as below 
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 Neglecting the body forces the virtual external work can be defined for each truss 

element 
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 The total work done by internal and external forces for each truss element is obtained 

by summing Eq. (3) and Eq. (4), getting 
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Applying the principle of virtual work to establish governing equation for each truss 

element, from equation (5) obtaining 
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Expressing axial force through deformation and adding axial deformation from equation (2) 

to equation (6), getting the system 
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The incremental equilibrium equation for each truss element is obtaining by applying 

incremental loading [14-15] into equation (7), expressing in compact matrix format as 

follows 
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are the tangent stiffness matrices in equation (8)  

The change in length due to thermal expansion length imperfection TL
and length 

imperfection i is included in the matrix 
( ) ( )

( , )k u
e eII II

 . 

3 Incremental finite element equation of global truss system 
based on hybrid formulation 

The incremental equation of the truss system (9) is constructed by assembling all perfect 

truss element temperature change and length imperfection truss elements with temperature 

change, expressed by equation 
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 Where: “m” is a number of truss elements and “n” is number of unknowns;  

Using arc length technique [16-17] the incremental-iterative algorithm is established for 

solving nonlinear system (Shown in Fig.3). Based on proposed incremental-iterative 

algorithm, the calculation program for solving geometrically nonlinear buckling problem of 

truss system is written using Matlab software. 
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Fig. 3. Block diagram of the incremental-iterative algorithm for solving geometrically nonlinear 

buckling problem of truss system based on arc length method. 

4 Numerical investigation 

Investigate the truss system shown in Fig. 4, the 1
st
, 3

rd
, and 5

th
 truss element having initial 

length imperfection and temperature change. All of the truss bars made of the same material 

and have the same cross-sectional area.  

The parameters are given 

4 2 2 6 1

,(1) , (2) , (3) , (4) , (5)

(2),(4) (1),(3),(5)

2.10 / ; 4 ; 11.10 ( )
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Fig. 4. Investigated truss system. 

The hybrid model of the truss system is assembled from 1
st
 type elements and 2

nd
 type 

elements. The unknowns of the hybrid truss model are designated as shown in Fig. 4, 

including 
1 2 3 4( , , , )u u u u - nodal displacement unknowns and 

5 1 6 3 7 5( ; ; )u N u N u N   - 

axial force unknowns.  

The calculation results are load-displacement and load-internal force equilibrium path in 

different cases of temperature change shown in Fig. 5 & 6. 
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Fig. 5. Load-displacement equilibrium path 4( )P u in cases
(5) ; ; ;0 100 200 300o o o oC C C CT . 

 

Fig. 5. Load-displacement equilibrium path 5( )P N in cases
(5) ; ; ;0 100 200 300o o o oC C C CT . 

Comment: The calculation results show the significant influence of length imperfection and 

temperature change on the equilibrium path making the critical load value into both 

negative and positive sides. 

5 Conclusion 

The hybrid model for solving geometrically nonlinear buckling problem of truss system 

with length imperfection subjected to mechanical and thermal had been built in this 

research. The proposed approach has a significant advantage of indirectly inserting length 

imperfection and thermal deformation in the truss element matrix considering geometrical 

nonlinearity. The hybrid finite element model of the truss system overcomes the 

mathematical difficulty in constructing the solving algorithm associated with the 

displacement-based finite element model and decreases the unknowns of the equilibrium 

equations in comparison with the mixed-based formulation.  The proposed hybrid model 

and established algorithm can be effectively used to determine the equilibrium path and 

investigate the buckling and post-buckling behavior of the truss system with length 

imperfection subjected to thermal load. 
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