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Abstract. One of the main hypotheses accepted in the mechanics of 
deformable solids is the assumption of the homogeneity of materials. This 
means that all mechanical characteristics of the material (modulus of 
elasticity, Poisson's ratio, yield strength, relaxation parameters, etc.) are 
constant over the volume of the body, in other words, these characteristics 
are constants. This hypothesis makes it possible not to take into account 
the natural inhomogeneity of materials at the microlevel - the presence of 
various fractions in composite materials (concrete, fiberglass, etc.), crystal 
lattice defects, etc. Examples can be given when various physical 
phenomena (temperature field, radiation exposure, explosive impact, etc.) 
lead to a change in the mechanical characteristics along the body. These 
changes can be quite significant. So, for example, in the presence of high-
gradient temperature fields, the deformation characteristics of materials at 
different points of the body can change dozens of times. Thus, when 
calculating and designing structures, it is necessary to take into account 
such macro heterogeneity, since it leads to a significant change in the 
stress-strain state of bodies. This article considers the problem associated 
with the continuous inhomogeneity of materials. It means such a 
heterogeneity that arose in the process of creating an underground cavity 
with the help of an explosion. In contrast to the classical mechanics of a 
deformable solid body, the problems of which are reduced to differential 
equations with constant coefficients, in the mechanics of continuously 
inhomogeneous bodies we deal with equations with variable coefficients, 
which greatly complicates their solution. In this case, depending on the 
type of inhomogeneity functions—functions that describe the change in 
mechanical characteristics along the coordinates—differential equations 
turn out to be significantly different. 

Keywords: heterogeneity, explosion, sphere, mechanical characteristics, 
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1 Introduction 

In contrast to classical mechanics of a deformable solid body, the problems of which are 

reduced to differential equations with constant coefficients, in the mechanics of 

continuously inhomogeneous bodies, problems are associated with equations with variable 

coefficients, which greatly complicates their solutions. Depending on the type of 

inhomogeneity functions that describe the change in mechanical characteristics along the 

coordinates, differential equations are obtained significantly different. The first works 

published in the mid-thirties of the twentieth century were the works of Mikhlin S.G. [1], 

devoted to the derivation of the equations of a plane problem of the theory of elasticity of 
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an inhomogeneous. Thus, one of the first tasks is to find a way to approximate real 

dependencies. The functions of inhomogeneity, which are further included in the system of 

equations for solving a particular problem, should, on the one hand, be quite simple, which 

makes it possible to obtain simpler equations, and, on the other hand, should most 

adequately describe the experimental data, since even small differences in the choice of 

approximating functions can lead to significantly different results. A significant 

contribution to the development of the mechanics of inhomogeneous bodies was made by 

Soviet and Russian scientists: Kolchin G.B. [2,3], Lekhnitsky S.G.[4], Lomakin V.A.[5], 

Rostovtsev N.A. [6] and many others. We should also mention the works of Polish 

scientists, primarily Olshak V. [7-9] and his students. 
 

2 Methods 

For an inhomogeneous medium, all the basic equations of the mechanics of a deformable 

solid are valid. The difference lies in the fact that in inhomogeneous bodies in the 

relationships connecting the components of the stress and strain tensors, the mechanical 

characteristics are functions of the coordinates. To solve problems in the mechanics of 

inhomogeneous bodies, both analytical and numerical methods are usually used. To solve 

the axisymmetric problem considered in this chapter in spherical coordinates, a numerical-

analytical method was applied. 

 

3 Results  

3.1. Equations of a three-dimensional problem in displacements 
 
All equations and relations used below are expressed in spherical coordinates. To derive the 
equilibrium equations in displacements, substituting the Cauchy relations into Hooke's law 
in the Lame form, we obtain expressions in terms of stress displacements: 
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Substitution (1) into the equilibrium equations, taking into account the dependences of the 

mechanical characteristics ,  and ,,r of the material and K on the coordinates, leads to 

a system of equilibrium equations in displacements [10]:      
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    In these equalities 
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      Equations (2-4) are the most general relations of the problem of the theory of elasticity 
of continuously inhomogeneous bodies in spherical coordinates. From them, one can obtain 

various special cases. For example, assuming  0


 and 0w  , one can show that 

equation (8.4) is satisfied identically, and from (2) and (3) one can obtain equations 
corresponding to an axisymmetric torsion-free problem: 
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Considering bodies of a spherical shape (solid or hollow), the boundary conditions in 
stresses for an axisymmetric problem can be written as follows:           

,
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where а  and b  are, respectively, the radii of the inner and outer surfaces of the thick-

walled hollow ball (in particular cases, it can be 0а and b ); ba pp , – normal, 

ba qq , – tangential surface loads.                       

 
3.2. Numerical-analytical method of solution axisymmetric problem  

The system of differential equations of the considered problem is described by equalities 

(5), (6). From equalities (1) one can obtain the corresponding expressions for stresses: 

;2ctg
21

r

u

r

v

r

uv

rr

u
r























       

;
1

2ctg
21



































r

uv

rr

v

r

uv

rr

u
  

;ctg2ctg
21






























r

v

r

u

r

v

r

uv

rr

u
         

















 

u

rr

v

r

v
r

1
. 

(8) 

We will look for the solution of equations (5), (6) in the form of expansions in Fourier 

series in Legendre polynomials: 
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where  cosnP  is the Legendre polynomial of the n-th degree, which is the solution of 

the equation [10, 11]: 
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For integer values of n, the Legendre polynomials form a complete orthogonal system of 
functions in the interval 0 , so that 
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It is known from the theory of special functions [10, 11] that the expansion of a function in 

a Fourier series in Legendre polynomials has the same properties as any expansion in a 

Fourier series, for example, in trigonometric functions. 

To satisfy the boundary conditions (7) corresponding to the axisymmetric problem, the 

surface loads should be represented in the form of series: 
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The expansion coefficients are determined by the formulas:    
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Substitution of relations (9) into formulas (8) allows, using equation (10), to obtain 
representations in the form of series for stresses included in the boundary conditions: 
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Here and below, the prime denotes differentiation with respect to the radius. 
Using relations (9) from the equilibrium equations (5), (6) we obtain a series of systems 

(for each n) of two ordinary differential equations for the functions  run and  rvn : 
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Equations (12), (13) must be supplemented with boundary conditions for the functions and , 
which are written as: 
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Thus we have obtained a number of boundary value problems (for each n) described inside 
the domain by differential equations (12), (13), and on the surface by relations (14). The 
question of choosing the number of members of the Fourier series, as in the problems 
considered above in polar and cylindrical coordinates, should be decided on the basis of an 
analysis of the expansions of surface loads in Fourier series using formulas (11). 
Taking into account the arbitrary nature of the dependences of the mechanical 
characteristics of the material on the radius, the solution of the obtained one-dimensional 
boundary value problems should be carried out numerically. 
It should be noted that a similar numerical-analytical method for calculating thick-walled 
radially inhomogeneous spherical shells was also developed in [11] using other resolving 
functions. 

3.3. Numerical solution algorithm 

For the numerical solution of one-dimensional boundary value problems, two second-order 

ordinary differential equations (12), (13) with respect to the functions  run and  rvn are 

reduced to a system of four first-order equations:    

nnn
n FYA

dr

dY
  (15) 

where is a vector of unknowns of length 4, while 

;;;; 4321 nnnnnnnn vyvyuyuy   

A is a matrix of coefficients of the system with a size of 4 х 4, the coefficients of which are 
equal to: 

;011 a     ;112 a     ;01413  aa  
 

    
 

   
;

2

22

2

1
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






rrr

nn
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2

22
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




r
a  

 
   

;
22

3
1
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







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


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
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nna    

 
;

2
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


r
nna  

 
;0333231  aaa      ;134 a  

 

 
;

22
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








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a     ;42






r
 

 

  ;
2

1
243











rr
nna     ;

2
44






r
a  

is the vector of the right side of length 4, the components of which are expressed by the 
equalities: 

;031  ff     
 

;
2

3
2






 nn RKg
f     


 nT

f4 . 

Boundary conditions (14) can also be written in matrix form: 
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,;, nnnYBbar   (16) 

where 

.;
0

0

2

1

242321

131211




 nn

bbb

bbb
B  

In these equalities, the nonzero elements of the matrix B and the vector are determined by 
the equalities: 

 
 

.;3

;;;;
1

;2;
2

,

,
2

,

,
1

242321131211

















































nb

na

nb

na
n q

q

p

p
Kg

b
r

b
r

b
r

nn
bb

r
b

 

The numerical solution of the boundary value problem described by equation (15) with 
boundary conditions (14) can be carried out using the matrix orthogonal sweep method. 

 

 

4 Results 

Consider the axisymmetric deformation problem radially inhomogeneous array with a 
spherical cavity radius a. On fig. 1. the calculation scheme is shown. Let us cut out from the 
array a sphere of radius ab  , whose center coincides with the center of the cavity. The 

resulting thick-walled hollow ball is loaded with external normal ( bp ) and tangential ( bq ) 

loads corresponding to the repulsion of the medium: 

where   is the specific gravity of the material; H is the depth of the cavity. Body forces R

and  are expressed in terms of equalities:  

   

    ,2sin
1

21
cos

2

;cos
1

21

1
cos 2






























bHq

bHp

b

b

 (17) 

 
 

Fig. 1. Calculation scheme of an array with a spherical cavity 
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In some cases, the self-weight of the cut out part of the array can be neglected. In this case, 
the cut array turns out to be unbalanced, however, the accepted convention does not 
significantly affect the results. 
The radial inhomogeneity of the material is due to the centrally symmetric temperature 
field. In the case of a stationary regime, the temperature distribution in the array is 
described by the dependence 

where aT and bT  are the temperatures of the inner and outer surfaces of the sphere, 

respectively. Such a task corresponds, for example, to storage in a cavity of a product that 
tends to self-heat. Note that for b , equality (19) transforms into formula 

0
0 Ta

r

TT
T a 


 , 

 in which aT – cavity contour temperature and 0T  – in the array before the explosion.  

To solve the problem under consideration, the numerical-analytical method described in 
p.p. 2, 3.  
Consider the question of choice N– the number of terms in the series (9) necessary to obtain 
sufficiently accurate results. First of all, the value N is determined by expansions of surface 
and volume loads in Fourier series. In this case, both loads are exactly represented by 
partial sums of series in Legendre polynomials. 
The direct form of the Legendre polynomials and their derivatives is represented by the 
equalities [10]: 
 

 





2

0

2
n

k

kn
nknn tBAP ;    

  







2/1

0

12
n

k

kn
nkn

n tСA
dt

dP
, 

where 

;
!2

1

n
A

nn       
   
   

;
!2!!

!221!

knknk

knn
B

k

nk



       

   
   

;
!12!!

!221






knknk

kn
C

n

nk  

 
 

 cost ; square brackets mean the integer part of the number in them. 
In accordance with the above formulas for the first four n, the Legendre polynomials have 
the form: 

Representing, according to (11), loads bp and bq in the form 












d

dP
q

d

dP
q

d

dP
qq

PpPpPpPpp

bbbb

bbbbb

3
3,

2
2,

1
1,

33,22,11,00, ;

 

  
and nbq , comparing the resulting expressions with equalities (17), we can find the 

coefficients ,bnp  ( 3,2,1,0n ): 

;
3

2

1

21
;

51

3
;

31

1
2,1,0,

H
p

b
p

H
p bbb
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
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
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
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
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
    ;

5

2

1

21
3,

b
pb







  

  

;
51

21
1,

b
qb







 .

15

2

1

21
;

31

21
3,2,

b
q

H
q bb















  

 sin;cosR . (18) 

  










 aTbT

r

ab
TT

ab
rT abba

1
)( , (19) 

   ttPtPtPP 35
2

1
;13

2

1
;;1 3

3
2

210   (20) 
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The remaining coefficients for are 4n equal to zero. 
 Similarly, comparing representations for R and  with formulas (18), taking into account 
(20), we find 

 11 TR ,at the same time 00 R  and 0 nn TR  для 2n . 

Note that, in contrast to the problems in which the numerical-analytical method was used, 
where the accuracy of the numerical solution was mainly determined by two parameters: N 
– the number of terms of the Fourier series and M – the number of steps into which the 
integration interval was divided, in this case, the accuracy depends only on M, since the 
finite sums of the series exactly satisfy the boundary conditions. 
Thus, the solution of the problem under consideration can be obtained by numerically 

solving 4 boundary value problems (for 

n=0,1,2,3) described by the matrix 

differential equation (15) with boundary 

conditions (16). In this case, the solution 

of the problem for 0n  is simplified, 

since 0)(0 rv . 

The calculation was carried out using the 

MOPVU program, in Fortran IV.  
Let us consider an example of calculation, 
when the array is only under the action of 

external surface loads  bp and  bq , 

and the inhomogeneity of the material is 
due only to the explosive effect. The 
obtained results in comparison with some 
analytical data allow us to determine the 
required values of the number of steps 

 ba,  , into which the segment M is 

divided, and the radius of the outer surface of the cut array b . 

Considering that at Hba  volume forces can be neglected, we will carry out the 

calculation without taking into account the self-weight of the cut-out array ( 0R ). In 

the absence of temperature influence, temperature inhomogeneity can be ignored. The 

modulus of elasticity, depending on r, is changed by the formula: 

 
Here k and m are parameters that allow an increase or decrease in the modulus of elasticity. 
The accuracy of the results obtained can be estimated by comparing the calculated stresses 
at some points of the surface with analytical values, which partially follow from the 
boundary conditions, as well as from the solution of the problem of loading a solid mass, 
since at a sufficient distance from the cavity, the stress concentration near the cavity and the 
influence of local inhomogeneity can be neglected. 
In table 1. formulas for stresses at characteristic points are given (see Fig. 2). 

 
 
 
 
 
 
 
 
 
 

 

Fig. 2. To the determination of stresses on the 
outer surface of a spherical array 

  .11)( 0
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


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a
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Table 1. Formulas for stresses on the outer surface cut array (r=b) 
 

Points 

 
  

 

r  
 

  
 

  
 

r
 

 
A 

 
0о 

 
 bH   

 

 bHk  *  

 

 bHk  *  
 
- 

 
B 

 
45о 

 
  bp  

 
- 

 
- 

 

 bq  

 
C 

 
90о 

 

Нk  *
 

  

Н  

 

Нk  *
 

 
- 

 
D 

 
135о 

 

  bp  
 
- 

 
- 

 

 bq  

 
E 

 
180о 

 
 bH   

 

 bHk  *  

 

 bHk  *  
 
- 

In table. 2 shows the results of calculating the stresses   and   at points A, C 

and E by the numerical-analytical method for homogeneous (in the formula (21) 11 k ) and 

inhomogeneous ( 5,01 k ) materials, as well as according to the analytical formulas of 

Table1. At the same time, it should be noted that the formulas given in Table 1, in 
accordance with the assumptions made above, are valid for both homogeneous and 
inhomogeneous materials. The calculation was carried out with the following values of the 

initial data: ;25ma   ;250mb   ;1200mH   ;25 3mkN  ;102 4
0 МPaE   23,0 , 

100М . 
 

Table 2. Comparison of stresses calculated by numerical - analytical  method, with 
analytical values 

 

Some differences in the given stress values can be explained by the fact that when 

calculating  and  , the functions u and v are numerically differentiated, which always 

leads to a decrease in accuracy.  

In general, it can be noted that with the numerical-analytical method of calculation, the 

choice of the ratio 10ab  and the division of the segment  ba,  into 100 steps gives 

quite satisfactory results. 

On fig. 3 shows diagrams of normal stresses built along the horizontal radius ( 90 ) and 

along the contour of the cavity. 

 

 
   

 
Points 

 
Stress Method 

Material 

Method 

Material Material 
 

A 
 

C 
 

E 

 numerical homogeneous 
 

7,09 
 

30 
 

10,82 

, МРa analytical inhomogeneous 
  

7,06 

  
29,99 

  
10,52 

  any option 
 

7,35 
 

30,01 
 

10,85 

 numerical homogeneous 
 

7,09 
 

8,96 
 

10,82 

, МРа МРa analytical inhomogeneous 
  

7,06 

  
8,95 

  
10,52 

  any option 
 

7,35 
 

8,89 
 

10,85 
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Fig. 3. Stress diagrams in an array with a spherical cavity: 

а - along the radius at 90 ; 

b - along the angular coordinate at и ar  ; 

- - - - homogeneous material;  ——— inhomogeneous material  

As in the one-dimensional problem of calculating an array with a spherical cavity, as well 

as in the plane problem of calculating an array with a cylindrical hole, in the zone closest to 

the cavity, significant differences are observed in the stress values in homogeneous and 

inhomogeneous arrays. In the presence of a spherical cavity, stress decay occurs faster than 

in the case of a cylindrical hole. It can be noted that at ar 3 , the stresses in homogeneous 

and inhomogeneous arrays coincide. Approximately at the same distance, the stress 

diagrams approach the asymptotic values corresponding to the stresses on the outer surface 

of the cut out spherical region. Hence, we can conclude that the assumption about the local 

influence on the stress state of the spherical concentrator and inhomogeneity is quite 

reasonable. The change in stresses along the contour of the cavity also qualitatively agrees 

with the results obtained for an array with a cylindrical hole.  

 

5 Conclusions 

Summing up the results of the article, it should be noted that the questions of linear and 

nonlinear mechanics of inhomogeneous bodies have been of interest to scientists for almost 

90 years. At the beginning of the article, the authors are mentioned - the initiators of the 

development of the mechanics of inhomogeneous bodies. The volume of the article does 

not allow listing scientists who work in the field of mechanics of inhomogeneous bodies. 

At the end of the conclusions, a small list of works [11-20] of Russian scientists who are 

currently devoting their efforts to the development of the mechanics of inhomogeneous 

bodies is given. 
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