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Abstract. The paper consider an inhomogeneous creep equation arising 

from a generalized Voigt model containing a Riemann-Liouville 

fractional derivative of the order 0 < β < 1. The Laplace transform is used 

for the numerical solution. The obtained solutions are compared with 

experimental data of polymer concrete samples. On the basis of this 

comparison the conclusion about the adequacy of the numerical solution 

method is made, and estimates of the model parameters are given. 

1 Introduction 

The creep of materials is a solid body deformation change over time under a constant load. 

In mathematical terms, this means that the relationship between the stresses and strains of 

the material contains time explicitly or by means of operators. 

The most important task arising in the design of new and examination of existing 

buildings and structures is the prediction of their service life, as well as determining the real 

picture of deformation of structures over time. The solution of this problem is impossible 

without building an adequate method of mathematical modeling of creep. 

Models with standard viscous and elastic elements (the model of Maxwell, Voigt, 

Zener, etc.) [1] do not always correspond adequately to the experimental data, although 

many consist of a large number of elements and contain many parameters. 

Models using fractional-order derivatives are the most suitable for describing the creep 

of materials with viscoelastic properties. These include, for example, some types of 

polymers, concretes, etc. Differential equations of fractional order arising in this case 

require special methods for exact or numerical solution.  

The papers [2, 3] are considered fundamental for the modern theory of fractional 

calculus in viscoelasticity. Those ideas were developed later in many subsequent papers, 

e.g., [4-8] for modeling systems with damping. 

An overview of creep models with viscoelastic elements is presented in [9]. In turn, the 

mathematical apparatus necessary for the fractional differential equations study is also 

continuously developing, the latest results can be found in [10]. 

In this paper a generalized Maxwell model under periodic loading and its corresponding 

inhomogeneous fractional differential equation is considered for the first time. For the 

numerical solution, the Laplace transform is used, with the solution image decomposed into 

a series. The solution itself is also obtained as a series. A good correspondence between the 
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numerical solution and the experimental data for polymer concrete samples  in the vibrotest 

has been established. 

2 Inhomogeneous fractional differential equation of creep 

We use a generalized Voigt model in which the viscous element is replaced by a 

viscoelastic one for a better creep description (Fig.1). 

 
Fig. 1. Voigt generalized model. 

Let us consider modeling and numerical solution of the generalized Voigt model with 

periodic loading. Such conditions arise naturally, for example, in the case of daily or 

seasonal load variations.  Equation of creep under periodic (sinusoidal) load will look like 

[11]: 

 

𝜎0𝑠𝑖𝑛(𝜔𝑡) = 𝐸𝜀(𝑡) + 𝜂𝐷𝛽𝜀(𝑡)     (1) 

 

The parameter β is determined for a particular material by experimental data, in our case 

it takes the value 0 < β < 1. Various methods of parametric identification are described in 

[12]. To determine the fractional derivative of order β, we will use the Riemann-Liouville 

definition [13]: 

 

𝐷𝛽𝜀(𝑡) =
1

Г(1−𝛽)

𝑑

𝑑𝑡
∫ ε
𝑡

0
(𝜏)(𝑡 − 𝜏)−𝛽𝑑𝜏    (2) 

3 Numerical solution method 

Equation (1) has no analytical solution, approaches to numerical solution of similar 

equations can be found in [14-16]. Let us integrate (1) within 0 to t as done in [14]: 

 
𝜎0

𝜔
(1 − cos(𝜔𝑡)) = ∫ 𝐸𝜀(𝜏)𝑑𝜏

𝑡

0
+

𝜂

Г(1−𝛽)
∫ 𝜀(𝑡)(𝑡 − 𝜏)−𝛽𝑑𝜏
𝑡

0   (3) 

 

Let us perform the Laplace transform for integral equation (3), going from original to 

image by the following formulas: 

 

 1 ≓
1

𝑝
 

cos⁡(𝜔𝑡) ≓
𝑝

𝑝2 +𝜔2
 

∫𝐸𝜀(𝜏)𝑑𝜏 ≓
𝐹(𝑝)

𝑝

𝑡

0

 

∫ 𝜀(𝑡)𝑔(𝑡 − 𝜏)𝑑𝜏 ≓
𝑡

0

𝐹(𝑝)𝐺(𝑝) 

𝑡𝛽 ≓
Г(1 + 𝛽)

𝑝1+𝛽
 

(4) 
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We get the following equation for the image 

 

 𝝈𝟎
𝝎
(
𝟏

𝒑
−

𝒑

𝒑𝟐 +𝝎𝟐
) = 𝑬

𝑭(𝒑)

𝒑
+

𝜼
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(5) 

 

Simplifying equation (5), we obtain an expression for the image 

 

 𝜎0
𝜂
(

𝜔
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) =

𝐸

𝜂
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𝐹(𝑝) [𝑝𝛽 +
𝐸

𝜂
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𝜎0𝜔
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(6) 

 

To restore the original, let us decompose expression (6) into a series of infinitely 

decreasing geometric progressions in the vicinity of zero: 
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(7) 

Let's go from a product of sums to a double sum: 

 

 
𝐹(𝑝) =∑(−1)𝑛

∞

𝑛=1

𝜔2𝑛+1

𝑝2𝑛+2
∙∑(−1)𝑛(

𝐸

𝜂
)𝛽𝑛

∞

𝑛=1

1

𝑝𝛽𝑛+𝛽
= 

=∑∑(−1)𝑛+𝑘(
𝐸

𝜂
)𝛽𝑘

𝜔2𝑛+1

𝑝2𝑛+𝛽𝑘+2+𝛽

∞

𝑛=1

∞

𝑘=1

 

 

(8) 

Going back from the image to the original function using the formula: 

 

∑
1

𝑝𝑛+1
∞
𝑛=0 ≒ ∑

𝑡𝑛

Г(𝑛+1)
∞
𝑛=0        (9) 

 

We get an analytical solution of (1) as double series: 

 

(𝑡) = ∑ ∑ (−1)𝑛+𝑘 ∙ 𝜔2𝑛+1 ∙ (
𝐸

𝜂
)𝛽𝑛 ∙

𝑡2𝑛+𝛽𝑘+1+𝛽

Г(2𝑛+𝛽𝑘+2+𝛽)
⁡∞

𝑛=1
∞
𝑘=1    (10) 

 

We take a finite number in each sum, for example N = 20⁡и⁡K = 50 to obtain an 

approximate solution. 

4 Numerical results and experimental data  

Samples of polymer concrete based on polyester resin were taken for experimental study. 

Polyester resin is polyethers based on dian and dichlorohydride-1,1-dichloro-2,2 di (n-

carboxyphenyl) ethylene. Although all polyester resins are similar, a wide range of 

mechanical properties can always be achieved by varying the basic constituents and their 

proportions. 
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Researches of samples were carried out on vibrotest, the scheme of which is resulted on 

Fig. 2 with parameters of loading σ0 = 20⁡MPa,⁡ω = 0,2 и ω = 0,1. 

 

Fig. 2. Vibrotest scheme. 

The calculation of mathematical model was carried out at the following parameters 

η = 135⁡МПа ∙ cβ, E = 20,35 МПа, β = 0,5 и β = 0,8 which correspond to the given 

samples of polymer concrete. To confirm the adequacy of calculations, the value β = 0 was 

added, which corresponds to the obvious analytical periodic solution. 

Fig. 3-4 shows the results of numerical calculations by formula (10) at different values 

of parameters, performed in the Mathcad system. 

 

Fig. 3. Numerical solution (ω = 0,2) and experimental vibrotest data. 
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Fig. 4. Numerical solution (ω = 0,1) and experimental vibrotest data. 

5 Conclusions 

The paper considers a creep model of a viscoelastic material with a periodic load and the 

corresponding fractional differential equation with a fractional-order derivative of the 

Riemann-Liouville type. Using the Laplace transform, an image of the solution was 

obtained and the solution itself was obtained in the form of a series. Numerical experiment 

has demonstrated good agreement with experimental data for polymer concrete samples, 

which testifies to adequacy of the model and sufficient accuracy of the solution. 

This work was financially supported by the Ministry of Science and Higher Education of Russian 

Federation (grant # 075-15-2021-686). Tests were carried out using research equipment of The Head 

Regional Shared Research Facilities of the Moscow State University of Civil Engineering 
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