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Abstract. The article presents the calculation of a polymer thick-walled 

cylindrical shell, taking into account creep under the action of a uneven 

temperature field. The relevance of the work lies in the widespread intro-

duction of polymer pipes in the repair and construction of pipelines for 

heating, sewerage, and water supply systems. The problem is solved in an 

axisymmetric formulation under plane deformation conditions. The calcu-

lation is based on the non-linear Maxwell-Gurevich equation, which is 

widely used in the calculations of polymer structures. 

In the problem under consideration, the cylindrical shell is in a flat de-

formed state. It is also believed that temperature is a function of radius and 

time. 
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1 Introduction  
In the problem under consideration, the cylindrical shell is in a flat deformed state. It is also 

believed that temperature is a function of radius r  and time t . Relaxation and elastic char-

acteristics, strongly dependent on temperature, will be functions of the coordinate and time; 

temperatures T(a) = Ta and T(b) = Tb act on the inner and outer surfaces of the shell. Here a 

and b 

respectively, the radii of the inner and outer surfaces of the shell. Taking into account the 

axial symmetry, the problem in the geometric formulation is one-dimensional (all functions 

depend only on r), and in relation to the influence of temperature, which in some cases can 

change over time, it is considered as quasi-stationary. 

 

2 Physical relationships for a viscoelastic material 
The problems of viscoelasticity of continuously inhomogeneous bodies considered in this 

article are related to the problems of polymer mechanics. Below are physical relations in 

differential form, which are valid for polymers and composites [1], which can be considered 

quite general and, in particular cases, applicable to other materials [2, 3]. Let us consider 

the equations describing the actual viscoelastic behavior of the material, i.e. defining the 
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term
*
jk . Due to the micro-heterogeneity of the structure at the molecular and supramo-

lecular levels, the polymer can have a spectrum of relaxation times, therefore, in the general 

case; highly elastic deformations are the sums of individual components, each of which 

corresponds to a certain member of the spectrum:  
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s

        (1) 

 

Usually, when solving problems of mechanics in relation to rigid polymers in quasi-

static modes, we consider it sufficient to take into account one or two components of highly 

elastic deformation. 

For the rate of components of highly elastic deformation, there is an unambiguous depend-

ence on the parameters of the deformation process. As analytical expressions of these de-

pendencies (coupling equations), the generalized nonlinear Maxwell equation is valid. This 

equation was derived in [4] based on molecular concepts of the behavior of materials. Sub-

sequently, it was repeatedly tested in solving various problems of the mechanics of poly-

mers and composites [2, etc.]: 
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The function
*
s  in (2) is the coefficient of relaxation viscosity, which is invariant with 

respect to the coordinate system, has the form: 
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     In (2) and (3) the following designations are accepted: sE - modulus of high elasticity 

( )s sE    ;
*
sm  - modulus of strain rate; 

*
s - volumetric coefficient; *

0s - is the 

coefficient of the initial relaxation viscosity of the s -component of the highly elastic de-

formation.       

    The index ll in (3) denotes the principal stresses and strains for which the equalities are 

valid: 

     The coefficient of relaxation viscosity 
*
s  , defined by equality (3), is related to the 

relaxation time 
*
sT by the relation 
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3 Derivation of resolving equations 
As in the problems of the theory of elasticity, the problems of the theory of creep can be 

solved in stresses and in displacements. The following is a way to solve in displacements. 

The basic formulas of the theory of creep formally coincide with the equations of the theory 

of elasticity. 

For deformations z we have
0

z z z T      . 

 Assuming 0z  from the plane strain condition, we obtain:
0
z z ТT    . Then 

the elastic component of the average strain 
0
сp  will be equal to 

     The last transformation was made on the basis of the hypothesis that the bulk creep strain 

is zero. 

Using the Cauchy relations and Hooke's law for elastic deformations, we obtain: 
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whence follow the expressions 
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Substituting (6) and (7) into Hooke's law in the Lame form, we obtain 

We obtain the resolving equation in displacements by substituting expressions for 

stresses (8) into the equilibrium equation: 

 In this equation: 
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4 Solution method 
The resolving equation (9) is a second-order partial differential equation with variable coef-

ficients. Due to the nonlinearity and complexity of the coefficients, the analytical solution of 

these equations cannot be found even with significant simplifications. 

If we assume that the temperature field and force loads change slowly with time, then 

creep problems can be considered as quasi-stationary. One of the first papers in which a 

"layered" method for solving quasi-stationary creep problems was proposed was [5]. Subse-

quently, this method was used in [6, 7, etc.]. 

Let us explain the essence of the “layered integration” method by the example of solving 

equation (9) under the action of a temperature field. At the zero stage (at 0t  ), the prob-

lem of determining the temperature field 0 ( )T T r  is first solved and the dependences of 

the elastic and relaxation parameters of the material on temperature and coordinates are 

found:  

0 0 0 0 ,0 0[ ( )], [ ( )], [ ( )],...s sE E T r T r E E T r       

If we consider the loading to be instantaneous, then at the moment of time 0t   the in-

itial conditions will be valid: 

Thus, at the zero stage, we arrive at an elastic problem. In this case, in equation (9), the 

partial derivatives with respect to the radius can be replaced by ordinary ones 

where 

    Here, the dependences of the mechanical characteristics on the radius are due to the 

initial (in this case, temperature) inhomogeneity of the material. 

Equation (12) with boundary conditions ,0 ,00; 0rt  
      is a two-point 

boundary value problem, which, due to the complexity of the coefficients of the equation, 

must be solved numerically. One of the effective methods for solving such boundary value 

problems is the sweep method [8, 9, etc.]. 

Having determined at the zero stage all the necessary quantities (displacements, strains 

and stresses), from the corresponding physical equations (for example (2)) it is possible to 

find the creep strain rates 

0 0
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Assuming that the time step t can be arbitrarily small, it is possible to carry out a line-

ar approximation in time and calculate the creep strains on the next “time layer” t t  : 
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By means of numerical differentiation, the derivatives of creep deformations along the 

radius, which are included in the right side of equation (9), are also found. In a non-

stationary thermal process, it is also necessary to determine analytically or by linear approx-

imation in time a new temperature distribution and new dependences of mechanical charac-

teristics on temperature, and, consequently, on the radius. Having thus formed the right side 

of equation (9), we again come to an elastic problem with a new function ( )f r  and, in the 

general case, with new coefficients ( )r  and ( )r . 

Also, solving this problem numerically, we obtain the solution at the first stage. Continuing 

the process up to an arbitrary point in time, it is possible to determine stresses, deformations 

and displacements at any point of the body. 

In step methods, the question of their convergence remains open. One way to analyze 

convergence is to compare the results obtained at different values. In long processes, when 

the creep rate decreases, a non-uniform (increasing) time step can be used. There are some 

other possibilities for analyzing and improving the convergence of the method, based, for 

example, on comparing the results at two successive stages of the iterative process with 

subsequent adjustment of the previous time step. 

5 Creep of an unevenly heated cylinder  

A characteristic feature of temperature problems for structural elements made of polymeric 

materials is the strong dependence of all mechanical characteristics on temperature. Thus, 

even with relatively small temperature field gradients, it is necessary to solve the problem of 

mechanics, taking into account the inhomogeneity of the material. 

     Consider the problem of calculating a thick-walled cylinder located in an axisymmetric 

temperature field determined by the following boundary and initial conditions ((a,b) - re-

spectively, the radii of the inner and outer surfaces of the cylinder). 

 

Fig. 1. Temperature distribution in cylinder at different times. : 

1 -  0,4 h.; 2 -  1,2 h.; 3 -  3,6 h.; 4 -  100 h. 

0
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      In accordance with (14), a constant temperature 0Т  is maintained on the outer surface 

of the cylinder during the entire time, and the inner surface is first heated (during time 1t ), 

and then its temperature is also maintained constant. If you set the final temperature of the 

inner surface of the cylinder 1Т  , then the heating time 1t can be determined by the formula 

 1 1 0 /t Т Т    , where   is the heating rate. 

     The process is non-stationary until some point in time 2 1t t , until the final tempera-

ture distribution along the radius is established. On fig. 1 shows the results of the numerical 

solution of the equation 

The process is non-stationary until sometime, until the final temperature distribution 

along the radius is established. On fig. 1 shows the results of the numerical solution of the 

equation 

2 0
T

T c W
t


    


, 

obtained under the assumption of a constant thermal diffusivity with the following initial 

data: 8mm;a   28mm;b   0 28 C;Т   1 100 C;Т   60  о
С/h. From the above 

dependences, we can conclude that the stabilization of the temperature field occurs at a time 

2t  3.6 hours. Assuming a sufficiently long cylinder, we will assume that a plane de-

formed state occurs in it, for which the resolving equation in displacements (9) is valid. 

   Considering a short-term process (up to 100 hours), we limit our calculations to only the 

“senior” component of the highly elastic deformation. 

    Below are the results of solving the problem of creep of a cylinder made of EDT-10 

epoxy resin. For this material, the dependences of mechanical characteristics on temperature 

were studied in fundamental work [10] Given the slight change in the considered tempera-

ture range of the Poisson's ratio   and the coefficient of linear thermal expansion  , we 

will assume them constant and equal to 3,0 ; 
5108  1/deg. In the mentioned 

work, for EDT-10, the following empirical dependences on temperature of the modulus of 

elasticity and relaxation characteristics corresponding to the leading component of the high-

ly elastic deformation are given: 

 

Fig. 2. Changing a module 

elasticity Е  (–––) and modulus of high elas-

ticity Е  (- - -) in cylinder for various 

points in time  

 

Fig. 3. Change in the coefficient of initial relaxation 

viscosity  

 
01  (–––) and velocity modulus m 

1� (- - -) in the 

cylinder for different moments of time 
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On fig. 2 and 3 show the change along the radius of these characteristics for some time 

points. Numerical designations in these and subsequent figures are the same as in Fig.1. It 

should be noted that, with the exception of the modulus of elasticity, all other characteristics 

of the material are already stabilized by the end of the heating of the inner surface of the 

cylinder at t  1.2 hours. 

 

Fig. 4. Distribution of stresses   in the cylinder for various moments of time; 

- - - elastic solution. 

  As will be presented below, taking into account in the calculations a relatively small densi-

ty compared to the whole time is essential, since the process of increase in the period of 

temperature increase increases the creep significantly from the very beginning. The calcula-

tion was carried out by the numerical method described in Section 3. Figure 4 shows trans-

fer diagrams   for some points in time. 

In the same place, for comparison, the stress diagram     obtained by the elastic solution 

and corresponding to the end time of heating (t=1.2 hours) is shown. The following results 

should be noted. In the initial period, during the heating process, the stresses increase, 

which is natural, since the temperature loads increase. Then, during the creep of the cylin-

der, a significant relaxation of stresses occurs both in the stretched and in the compressed 

zones. In this case, if at t >3.6 hours the temperature distribution along the radius remains 

unchanged (see Fig. 1), then the relaxation process continues, which leads to an even great-

er decrease in stresses. 

In the same place, for comparison, the stress diagram obtained by the elastic solution 

and corresponding to the end time of heating ( t 1.2 hours) is shown. The following results 

should be noted. In the initial period, during the heating process, the stresses increase, this is 

natural, since the temperature loads increase. Then, during the creep of the cylinder, a sig-

nificant relaxation of stresses occurs both in the stretched and in the compressed zones. At 

the same time, if at t >3.6 hours the temperature distribution along the radius remains un-
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changed (see Fig. 1), then the relaxation process continues, which leads to an even greater 

decrease in stresses. 

 

6 Conclusion 

The article shows that the solution of viscoelasticity problems based on the nonlinear Max-

well-Gurevich equation using differential equations is quite simple. Several papers [11 – 13, 

etc.] have been published on a related topic. Note that the method of successive loadings 

was used in the article to solve the nonlinear problem. You can also use the method of suc-

cessive approximations [14], which can be a development of the topic under consideration. 
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