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Abstract. This note is concerned with the rigorous justification of the so-called hard congestion limit
from a compressible system with singular pressure towards a mixed compressible-incompressible system
modeling partially congested dynamics, for small data in the framework of BV solutions. We present a
first convergence result for perturbations of a reference state represented by a single propagating large
interface front, while the study of a more general framework where the reference state is constituted
by multiple interface fronts is announced in the conclusion and will be the subject of a forthcoming
paper. A key element of the proof is the use of a suitably weighted Glimm functional that allows to
obtain precise estimates on the BV norm of the front-tracking approximation.

Résumé. Dans cette note, nous nous intéressons à la justification de la limite dite “de congestion
dure” entre un système compressible avec pression singulière et un modèle limite mixte modélisant une
dynamique partiellement congestionnée couplant zones compressibles et zones incompressibles. Cette
limite est réalisée dans un cadre de solutions à données petites dans BV. Nous présentons un premier
résultat de convergence pour des perturbations d’une solution de référence composée d’un unique front
d’interface, l’étude de solutions de référence plus générales composées de fronts multiples fera quant
à elle l’objet d’un article à venir. Un élément clé de la preuve est l’utilisation d’une fonctionnelle
de Glimm adéquate permettant d’obtenir des estimations quantifiées sur la norme BV de la solution
construite par l’approximation de suivi de fronts.

Introduction

In this note, we analyze the following p−system expressed in terms of pressure, p, and velocity, u:{
∂tTε(p)− ∂xu = 0, (0.1a)

∂tu+ ∂xp = 0, (0.1b)

where τ = Tε(p) is the specific volume, i.e. is the inverse of the density of the fluid, ϱ = τ−1. The law Tε is
then defined as the inverse of the pressure Pε = Pε(τ) that we assume to be a singular function with a vertical
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Figure 1. Behavior of the pressure Pε(τ) (on the left) and its inverse Tε (on the right) as
ε → 0, for κ = 1.

asymptote in τ = τ⋆ = 1:

Tε = P−1
ε with, for τ > 1, Pε(τ)

.
=

κ

τγi
+

ε

(τ − 1)γc
, κ, ε > 0, γi,c > 1. (0.2)

The functions Pε and Tε are plotted in Figure 1. System (0.2) can be actually derived from the one-dimensionnal
compressible Euler equations: {

∂tϱ+ ∂y(ϱu) = 0,

∂t(ϱu) + ∂y(ϱu
2) + ∂yP̃ε(ϱ) = 0,

passing first to the Lagrangian mass coordinates [25] to get the “usual” p-system expressed in terms of specific
volume, τ = ϱ−1, and velocity, and then reformulating the equations in terms of pressure and velocity (see
Remark 0.6 for further comments on this reformulation).

We are interested in the rigorous justification of the limit as ε → 0 towards the target system{
∂tT (p)− ∂xu = 0, (0.3a)

∂tu+ ∂xp = 0, (0.3b)

where

T (p) =

{
(κp−1)

1/γi =: T i(p) if p < κ,

1 if p ≥ κ.
(0.4)

The domain {τ = 1} is said to be congested. The systems (0.1) and (0.3) are indeed used to model congestion,
or saturation, effects. At the level of the approximate system (0.1)-(0.2), the singular pressure law Pε (or

equivalently P̃ε(ϱ)
.
= Pε(ϱ

−1)) models some repulsive forces preventing the specific volume τ to take values
below the threshold τ⋆ = 1, like standard penalty methods. This type of model is called in the literature
(c.f. [21]) soft congestion model. At the level of the limit system (0.3)-(0.4), the specific volume law T saturates,
i.e. attains its minimal value, at the value τ⋆. This type of model is called in the literature hard congestion
model.

Such models (or their reformulations) can be used in numerous contexts.

• Modeling of mixtures: The Eulerian version of (0.3) has been originally derived in [9]. It is seen as an
asymptotic model of biphasic liquid-gas equations when the ratio between the reference gas and liquid
densities tends to 0.
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At the approximate level, ε > 0, singular pressure laws such as Pε are sometimes called hard sphere
potentials and used for granular mixtures (see for instance [13]).

• Modeling of crowds and vehicular traffic: In this context, it is natural to consider singular pressure laws
to model short-range repulsive social interactions, see for instance [16], [21] or [11].
In the context of vehicular traffic, the famous Aw-Rascle-Zhang (ARZ) model can also include such
singular potential in the offset function as proposed in Berthelin et al [5]. The hard congestion version
of the ARZ model has been justified through a particle approximation (so called Follow-The-Leader
model) by Berthelin and Goatin in [6]. The limit ε → 0 between the soft congestion ARZ and the hard
congestion ARZ systems has been studied numerically in Berthelin et al. [7].

• Modeling of wave-structure interactions and partially free surface flows: Several systems have been
recently derived and analyzed to model flows in closed pipes (see [10] and [17]) on one hand, and
floating objects on the other hand (see for instance [20] or [18], [17]). There is indeed a structural analogy
between compressible Euler equations (and so (0.3)) and the shallow water system by identifying ϱ with
h, the height of the flow. In the above studies, the height of the flow is constrained by a roof of a channel
or a floating structure. The isentropic component κϱγi appearing in (0.2) can be then understood as
the hydrostatic pressure in the shallow water equations.

From the mathematical viewpoint, the singular limit ε → 0 from soft-congestion systems towards hard congestion
systems has been previously studied in various frameworks, in particular: a strong C1 (local-in-time) setting
in [8], and a weak setting (namely global-in-time finite energy weak solutions) when additional viscosity is taken
into account, see for instance [24], or at the level of the Riemann problems in [16] (Appendix A). Weak solutions
to the Eulerian version of (0.3), when κ = 0, have been constructed by other means: through a discrete (sticky
blocks) approximation in [4], via a convex optimization point of view in [23]. The interested reader is referred
to the survey paper [22] for more references on the subject.

In this note, we present a convergence result for (global-in-time) solutions with BV regularity. This framework
is, to some extent, natural in view of the hyperbolic nature of system (0.1) and the general theory developed by
Di Perna, Risebro, Bressan and collaborators (see [12] and references therein) around the construction of such
solutions via Wave Front Tracking algorithms for hyperbolic systems of conservation laws.

It is natural in the BV setting to look for solutions lying in a neighborhood of a reference partially congested
solution. Hence a given reference solution (pref, uref) of (0.3)-(0.4) is approximated at ε > 0 by a solution
(prefε , uref

ε ) to (0.1)-(0.2). Our goal is then to construct BV solutions (pε, uε) to (0.1)-(0.2) in the neighborhood
of (prefε , uref

ε ) via the wave front tracking method and, for ε → 0, to extract a subsequence (pε, uε)ε converging
weakly towards a weak entropy (partially congested) solution (p, u) of the limit system (0.3)-(0.4). Moreover,
we aim at characterizing the solution in the congested domain and the dynamics of the interface between the
free domain and the congested one.

Our result is the first global-in-time convergence result of the ”hard congestion” type in an inviscid set-
ting. To some extent, the singular limit ε → 0 shares similarities with the famous low Mach number limit
characterizing the transition between a compressible regime and an incompressible one (see for instance [1]).
Indeed system (0.1) corresponds to a fully compressible system, while system (0.3)-(0.4) is a mixed compress-
ible/incompressible system since the incompressibility condition, ∂xu = 0, holds in the congested domain where
τ = 1. Wave Front Tracking methods have been previously used for studying the low Mach number limit. In
particular, in the works of Colombo, Guerra and Schleper [14, 15], the low Mach number limit in a biphasic
system with separated gas (compressible) and liquid (nearly incompressible) phases, is analyzed. Our study
relies on a similar formulation in terms of pressure and velocity (instead of specific volume/velocity for the
classical p-system), and faces the same type of difficulties related to the unbounded speed of propagation of
waves in the incompressible (congested) phase. However it strongly differs from [14, 15] on the treatment of
the interface between the compressible/free phase and the incompressible/congested phase. In [14, 15], the gas
and liquid phases are supposed to be immiscible, which means that there is no mass exchange between the two
regions and the volume of the liquid, incompressible, phase remains constant. From the mathematical point
of view, it means that the interface is stationary in the Lagrangian mass coordinates. This property is not
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satisfied by the free-congested system (0.3). There are obviously mass exchanges between the free region and
the congested one, and the interface is a free boundary whose location is related to the traces of the solution
on both sides of the interface (see (0.30) below, and the study [19] on the notion of fully nonlinear boundary
condition). The analysis of the evolution and of the interactions of the free/congested interface with the other
waves in the approximate system and in the limit hard congestion model is one of the main novelties of our
approach, which relies on sharp BV estimates and on appropriate rescaling of the singular pressure law and of
the corresponding specific volume function in the congested region.

Let us now describe more in details our framework and the main results. We will be tracking the evolution
of small BV perturbations of a reference state constituted by a single propagating large interface front. There
will be two parameters playing a distinct role:

- a parameter ε > 0 related to the approximation of the reference solution for the soft-congestion sys-
tem (0.3)-(0.4);

- a parameter δ > 0 that identifies an L∞ bound on the solutions and a BV bound on the two parts of
the solutions that do not include the interface, for both the soft-congestion and the hard-congestion
systems.

Reference solution formed by a single discontinuity interface and functional setting. We choose p0,1, p0,2, u0,1, u0,2

such that

p0,2 < κ < p0,1, u0,2 < u0,1, (0.5)

and

p0,2 − p0,1 = − (u0,2 − u0,1)
2

1− T i(p0,2)
. (0.6)

Such conditions ensure that (p0,2, u0,2) is a free state that is the right state of a discontinuity interface of the
second family with left state (p0,1, u0,1):

(pref, uref)(t, x)
.
=

{
(p0,1, u0,1) if x < λ̄2t,

(p0,2, u0,2) if x > λ̄2t,
(0.7)

The reference solution (0.7) is a discontinuity interface, which is partially congested on the left and travels to
the right with speed

λ̄2
.
= − u0,2 − u0,1

T (p0,2)− 1
> 0. (0.8)

Approximated reference solution. The first step is to construct the initial data of the approximate model (0.1)-
(0.2) as a suitable approximation (in ε) of the original reference solution (0.7). For fixed ε > 0, we choose
(pε0,1, u

ε
0,1) and (pε0,2, u

ε
0,2) as follows.

pε0,1 = p0,1 > κ,

pε0,2 < κ, with pε0,2 → p0,2 as ε → 0,

and

uε
0,1 = u0,1 > uε

0,2,

such that

pε0,2 − pε0,1 = −
(uε

0,2 − uε
0,1)

2

Tε(pε0,1)− Tε(pε0,2)
. (0.9)

We observe that the above conditions, together with (0.2), imply that uε
0,2 → u0,2 as ε → 0.

The initial data are represented in Figure 2.

Notation and convention. Here, and throughout the paper, we use the following notation.
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Figure 2. Plain line: limit reference solution; dotted line: ε-reference solution that is an
entropic shock of the second family.

• For a function g ∈ BV(R), and for any −∞ ≤ a < b ≤ +∞, introducing the notation

g̃(x) :=


lim

x→a+
g(x) if x ≤ a,

g(x) if a < x < b,

lim
x→b−

g(x) if x ≥ b,

we denote

TV(g, [a, b])
.
= TV( g̃ ), (0.10)

the total variation of the restriction of the function g to the interval [a, b]. Moreover, we will use the

notation g(a±)
.
= limx→a± g(x) for the one-side limits of g in a. For any set A we let

◦
A denote the

interior of A. We will also use the notation R+ .
= ]0,+∞[.

• A wave connecting a left state Uℓ = (pℓ, uℓ) and a right state Ur = (pr, ur) is characterized by its
amplitude denoted σα := pr − pℓ and its location xα(t).

Functional setting. Given δ, ε > 0 and a curve (x̄ε(t))t≥0, with x̄ε(0) = 0, we set

Ωδ,ε
i

.
= ]pε0,i − δ, pε0,i + δ[ × ]uε

0,i − δ, uε
0,i + δ[ , i = 1, 2,

Iε1,t
.
=]−∞, x̄ε(t)], Iε2,t

.
= [x̄ε(t),+∞[ . (0.11)
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At ε fixed, we will look for solutions (pε(t, ·), uε(t, ·)) of (0.1)-(0.2) belonging for a time t ≥ 0 to the domain

Dδ,ε
t

.
= {(p, u) ∈ BV(R;R+ × R) : (p, u)(x) ∈ Ωδ,ε

i ∀ x ∈
◦
Iεi,t,

2∑
i=1

TV(p, Iεi,t) +
1

ε
1

2γc

TV(u, Iε1,t) + TV(u, Iε2,t) < δ}.
(0.12)

As ε → 0, the limit (p(t, ·), u(t, ·)) is expected to belong to the domain

Dδ
t
.
= {(p, u) ∈ BV(R;R+ × R) : (p, u)(x) ∈ Ωδ

i ∀ x ∈
◦
Ii,t, u(x) ≡ uc = const. ∀x ∈

◦
I1,t

2∑
i=1

TV(p, Ii,t) + TV(u, I2,t) < δ},
(0.13)

where

Ωδ
i
.
= ]p0,i − δ, p0,i + δ[ × ]u0,i − δ, u0,i + δ[ , i = 1, 2, (0.14)

I1,t
.
=]−∞, x̄(t)], I2,t

.
= [x̄(t),+∞[ . (0.15)

Definition of entropy weak solutions and main results. As usual in the context of weak distributional solutions,
our (weak distributional) solutions to (0.1) and (0.3) will be additionally required to satisfy some suitable ad-
missibility conditions that provide a stronger characterization. First, we introduce the notion of entropy/entropy
flux pairs.

Definition 0.1. A continuously differentiable function η = η(τ, u) is called:

- an entropy for (0.1), with entropy flux q = q(p, u) being a continuously differentiable function, if there
holds

∂τη(Tε(p), u) = −∂uq(p, u), ∂uη(Tε(p), u) = ∂pq(p, u) ∀ p ∈ R+, u ∈ R ; (0.16)

- an entropy for (0.3), with entropy flux q = q(p, u) being a continuously differentiable function, if there
holds

∂τη(T (p), u) = −∂uq(p, u), ∂uη(T (p), u) = ∂pq(p, u) ∀ p ∈ R+, u ∈ R . (0.17)

A pair (η(τ, u), q(p, u)) is called a convex entropy/entropy flux pair for (0.1) (resp. for (0.3)) if η is a convex
map and it is an entropy for (0.1) (resp. for (0.3)), with associated entropy flux q.

Definition 0.2 (Entropy weak solution of soft-congestion p-system). A function

U .
= (p, u) : [0,+∞[×R → R+ × R,

is said an entropy weak solution of the Cauchy problem for (0.1)-(0.2) with initial datum (pin, uin) ∈ BV(R;R+× R)
if the following holds:

(i) the map t 7→ U(t), t ≥ 0, is continuous as a function with values in L1
loc(R;R+ × R) and the initial

condition

(p, u)(0, ·) = (pin, uin), (0.18)

is satisfied.
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(ii) U is a weak distributional solution of (0.1) on R+×R, that is, for any test function φ ∈ C1
c with compact

support contained in R+ × R, there holds∫
R+

∫
R
{Tε(p) ∂tφ− u ∂xφ}dxdt = 0 ,

∫
R+

∫
R
{u ∂tφ+ p ∂xφ}dxdt = 0 .

(iii) for every pair (η, q) of convex entropy/entropy flux for (0.1), and for any non-negative test function
φ ∈ C1

c with compact support contained in R+ × R, there holds∫
R+

∫
R
{η(Tε(p), u) ∂tφ+ q(p, u) ∂xφ}dxdt ≥ 0 .

Definition 0.3 (Entropy weak solution of the hard-congestion p-system). A function

U .
= (p, u) : [0,+∞[×R → R+ × R

is said an entropy weak solution of the Cauchy problem for (0.3)-(0.4) with initial datum (pin, uin) ∈ Dδ
0 if there

holds:

(i) the map t 7→ U(t), t ≥ 0, is continuous as a function with values in L1
loc(R;R+ × R) and it satisfies the

initial condition

(p, u)(0, ·) = In(pin, uin), (0.19)

where

In(pin, uin)(x)
.
=

{
(pin, uin)(x) if x > x(0),

(pcin, u
c
in) if x < x(0),

(0.20)

with

pcin
.
= pin(x(0)+) +

(uc
in − uin(x(0)+))

2

T (pin(x(0)+))− 1
, (0.21)

where uc
in is the constant value of the initial velocity uin in the congested domain as in (0.12).

(ii) U is a weak distributional solution of (0.3) on R+×R, that is, for any test function φ ∈ C1
c with compact

support contained in R+ × R, there holds∫
R+

∫
R
{T (p) ∂tφ− u ∂xφ}dxdt = 0 ,

∫
R+

∫
R
{u ∂tφ+ p ∂xφ}dxdt = 0 .

(iii) For every pair (η, q) of convex entropy/entropy flux for (0.3), and for any non-negative test function
φ ∈ C1

c with compact support contained in R+ × R, there holds∫
R+

∫
R
{η(T (p), u) ∂tφ+ q(p, u) ∂xφ}dxdt ≥ 0 .

Remark 0.4. Notice from (i) in Definition 0.3 that the initial pressure pin is in general not attained by the
solution in the congested region, because of the infinite propagation speed of waves of the congested domain,
see Remark 1.4 below. This is the reason why the initial datum needs to be redefined by means of the function
In(pin, uin) in (0.20). The new congested initial datum (pcin, u

c
in) provided by such function In(pin, uin) is precisely

the left state of a 2-discontinuity interface with right state (pr, ur)
.
= (pin(x(0)+), uin(x(0)+)). The intermediate

state (pm, um)
.
= (pcin, uin(x(0)−)) can be seen as the unique state such that:

- (pm, um) is the right state of a 1-wave with infinite speed with left state
(pl, ul)

.
= (pin(x(0)−), uin(x(0)−));
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- (pm, um) is the left state of a 2-discontinuity interface with right state
(pr, ur)

.
= (pin(x(0)+), uin(x(0)+)).

It is also important to note that if two states are connected by a wave of infinite speed, then they have the same
velocity (the velocity is constant in the congested domain). This is why we only need to define the congested
pressure pcin. Indeed for the velocity we simply have um = ul = uin(x(0)−) = uc

in.

We state now our main result.

Theorem 0.5. Let (pref, uref) satisfy (0.5)-(0.8), and δ0, ε0 > 0.

• There exist constants 0 < δ1 < δ0, 0 < ε1 < ε0, such that, for any 0 < ε < ε1, and for every initial datum

(pin, uin) in the domain Dδ1,ε
0 defined as in (0.12), the Cauchy problem (0.1)-(0.18) admits an entropy

weak solution Uε = (pε, uε) in the sense of Definition 0.2 which satisfies Uε(t) ∈ Dδ0,ε
t . Moreover, there

exists a Lipschitz continuous curve xε : [0,+∞) → R, with xε(0) = 0, representing the interface between
the congested domain Iε1,t and the free domain Iε2,t, such that:

λ̄2 − δ0 ≤ ẋ
ε
(t) ≤ λ̄2 + δ0, for a.e. t > 0, ∀ ε > 0 (0.22)

where λ̄2 is the speed of the reference propagating front defined in (0.8).

• Consider an initial datum Uin
.
= (pin, uin) in the domain Dδ1

0 defined as in (0.13), and let Uε
in

.
=

(pεin, u
ε
in) ∈ Dδ1,ε

0 , ε > 0, be initial data such that

Uε
in → Uin in L1

loc(R; R+ × R) as ε → 0 . (0.23)

Let Uε = (pε, uε) denote the entropy weak solutions of the Cauchy problem (0.1)-(0.2) with initial
datum Uε

in, and xε : [0,+∞) → R, with xε(0) = 0, denote the corresponding discontinuity interface.
Then there exist functions

U∗ .
= (p∗, u∗) : [0,+∞[×R → R+ × R , x : [0,+∞[→ R , (0.24)

so that
(i) up to a subsequence, as ε → 0, one has:

xε → x uniformly on every [0, T ], T > 0,

ẋ
ε
(t) → ẋ(t) for a.e. t ∈ R+.

(0.25)

uε → u∗ strongly in L1
loc(R+ × R;R), (0.26)

pε(·, ·) ⇀ p∗(·, ·) weakly-* in L∞(R+ × R;R+), (0.27)

and ˙̄x satisfies inequality (0.22).
(ii) U∗ is an entropy weak solution of the Cauchy problem (0.3)-(0.4)-(0.18) in the sense of Defini-

tion 0.3 and
U∗(t) ∈ Dδ2

t ∀ t > 0 . (0.28)

(iii) In the congested domain, i.e. for a.e. (t, x) ∈
⋃
t≥0

{t} × I1,t, the dynamics is given by:

u∗(t, x) = uc(0), (0.29)

˙̄x(t) =
uc(0)− u(t, x̄(t)+)

τ(t, x̄(t)+)− 1
, (0.30)

p∗(t, x) = pc(t) = p(t, x̄(t)+) +
(uc(0)− u(t, x̄(t)+))

2

τ(t, x̄(t)+)− 1
. (0.31)
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Remark 0.6. • As anticipated in the introduction, we rely on a reformulation of the p-system in (p, u),
similarly to Colombo and Guerra in [15]. In that latter, the use of the pressure variable (instead of
the specific volume) has the clear advantage that the pressure and the velocity are continuous across
the (fixed, stationary) interface. This is not the case in the present study, all the quantities are indeed
discontinuous across the moving interface x̄(t), which can be understood as a limit 2-shock wave. This
makes the identification of the limit traces across the interface very different from [15].

• The use of the pressure variable, instead of the specific volume, allows us to characterize (see Defini-
tion 1.1) and describe in a quantitative manner (with respect to ε) the dynamics of the congested zone,
but more importantly, it allows a simple characterization of the limit solutions captured by limit ε → 0.
Previously, hard congestion systems have been set in terms of specific volume and velocity (see the
models introduced in [22]). The congestion constraint was expressed through the following unilateral
constraint (macroscopic version of the well-known Signorini’s conditions for contact problems):

τ ≥ 1, (τ − 1)π = 0, π ≥ 0, (0.32)

where the limit congestion pressure π = limε [ε(τε− 1)−γc ] is seen as the Lagrange multiplier associated
to constraint on the velocity field in the congested domain. In the formulation (0.3), the congestion
constraint on the specific volume is explicitly included in the (inverse) equation-of-state T (0.4), and
we can formulate a natural entropy criteria to select weak solutions (see Definition 0.3). Note that the
presence of an isentropic component in the pressure (i.e. κ > 0) is crucial to express the system in
(p, u), since it allows to express the specific volume as a function of the pressure in the free domain.

• Let us finally observe that the present setting and the use of the Wave Front Tracking algorithm allows
us to ”track” the dynamics of the interface for all times t ≥ 0. This is a strong improvement compared
to the previous work of Bianchini & Perrin [8] where the limit ε → 0 is tackled by means of compactness
methods and a weak (L1) control of the pressure on a limited time interval (independent of ε). The
study of global-in-time solutions is also a important difference with the study of Iguchi and Lannes [19]
on the floating body problem.

In the rest of the notes, we give the key elements of the proof of Theorem 0.5. In Section 1, we explain
how to construct approximate wave front tracking solutions, Uε,ρ, that are piecewise constant for fixed ρ > 0.
In particular, we introduce the key weighted Glimm functional which yields important Lipschitz properties
(Section 2.1) to pass to the limit: first the WFT limit, ρ → 0, in Section 2.2 leading to the existence of entropy
weak solutions Uε to system (0.1), then the hard congestion limit, ε → 0, in Section 2.3 leading to the existence
of entropy weak solutions U to system (0.3). We finally present in Section 3 some extensions of Theorem 0.5 to
more complicated reference solutions Uref that are constituted by more than one interface.

For sake of brevity and clarity, we have made the choice to present only the key elements of the proof of
Theorem 0.5, elements that are the most representative of the features of system (0.1) and the singularities
appearing in the hard congestion limit as ε → 0. The interested reader will find in the forthcoming paper [2] a
more detailed description of the proofs.

1. Approximate solution constructed by a Wave Front Tracking algorithm

A key advantage of working in pressure-velocity variables (p, u) is an easy characterization of the nature of
the states, which is provided below.

Definition 1.1 (Nature of the states). Let p−f , p
+
f , p

−
c , p

+
c > 0 be independent of ε, and

p−f < p+f < κ < p−c < p+c .
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Take δ0, ε̄0 in Theorem 0.5 such that{
p−f < pε0,2 − δ0 < pε0,2 + δ0 < p+f ,

p−c < pε0,1 − δ0 < pε0,1 + δ0 < p+c ,
for all ε < ε̄0. (1.1)

A state U = (p, u) is called

• a free state, denoted (F), if p ∈ [p−f , p
+
f ];

• a congested state, denoted (C), if p ∈ [p−c , p
+
c ].

Hyperbolicity of the soft congestion system. Here we collect some properties of the soft congested system (0.1)-
(0.2).

Proposition 1.2. System (0.1)-(0.2) is strictly hyperbolic on the domain R+ × R with eigenvalues:

λε
1(p, u) = −

√
−1/T ′

ε (p), λε
2(p, u) =

√
−1/T ′

ε (p). (1.2)

Moreover, the two associated characteristic fields are genuinely nonlinear on the domain R+ × R. We denote
Lε
i = (Sε

i ,Rε
i ) the Lax (shock and rarefaction) curves of the ith family associated with the eigenvalue λi

ε. In the
(p, u) variables, the curves emanating from the left state Uℓ = (pℓ, uℓ) are represented in Figure 3 and read as
follows:

Sε
1(σ)(Uℓ) : u = uℓ −

√
−(Tε(p)− Tε(pℓ))(p− pℓ), σ = p− pℓ > 0,

Rε
1(σ)(Uℓ) : u = uℓ −

∫ p

pℓ

√
−T ′

ε (ξ) dξ, σ < 0, (1.3)

Sε
2(σ)(Uℓ) : u = uℓ −

√
−(Tε(p)− Tε(pℓ))(p− pℓ), σ < 0,

Rε
2(σ)(Uℓ) : u = uℓ +

∫ p

pℓ

√
−T ′

ε (ξ) dξ, σ > 0. (1.4)

Properties of the singular pressure. We observe that the behavior of the rarefaction and shock waves (1.3)-(1.4)
strongly depends on the size of T ′

ε (p). The next lemma provides bounds on T ′
ε (p) according to the nature of

the state.

Lemma 1.3. • Let U = (p, u) be a free state (F) with p ∈ [p−f , p
+
f ]. Then:

C(p+f ) ≤ |T ′
ε (p)| ≤ C(p−f ); (1.5)

• let U = (p, u) be a congested state (C) with p ∈ [p−c , p
+
c ]. Then:

ε
1
γc C(p+c ) ≤ |T ′

ε (p)| ≤ ε
1
γc C(p−c ), (1.6)

where C(p−f ), C(p+f ), C(p−c ), C(p+c ) are positive constants independent of ε.

Remark 1.4. Notice that the speed of waves connecting congested states tends to ±∞ as ε → 0 since |T ′
ε (p)| ∝

ε
1
γc for p ∈ [p−c , p

+
c ]. This can be interpreted as a degeneracy of the R2 and S1 Lax curves into horizontal lines

in the (p, u)−plane (see Figure 3). At the level of the limit system (0.3), this leads to define waves with infinite
speed. A wave of the first (resp. second) family with infinite speed is then located along a line that is parallel
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Figure 3. Lax curves emanating from the state Uℓ = (2, 1) are represented in the (p, u)−plane
for ε = 0.1 (left) and ε = 10−5 (right). We observe that the Lax curves tend to behave like
horizontal lines for p > κ = 1, as ε → 0. This is a peculiarity of waves with infinite speed that
connect states with the same velocity but different pressures (Remark 1.4).

to the x-axis in the x− t plane, and it is the limit of a sequence of waves of the first (resp. second) family for
the ε-soft congestion system (0.1). Such wave connects states with the same velocity but different values of the
pressure. The existence of these waves with infinite speed is the reason why the initial datum (pin, uin) is in
general not attained on ]−∞, x(0)], see Definition 0.3 and Remark 0.4.
The so-called declustering waves exhibited by Degond et al. in [16] (Appendix A, Proposition 5) can be seen
as a subclass of waves with infinite speed. Let us point out however that such declustering waves involving one
state with zero pressure cannot be observed in our context as we work in the case where all the congested states
have a positive pressure (larger than κ).

Front Tracking Algorithm. To establish the existence of weak entropy solutions to the ε-soft-congested system
(0.1), we rely on a front-tracking algorithm that we describe below.

Definition 1.5 (ρ-Approximate front tracking solution, [12]). For ρ > 0 given, U is a ρ-approximate front
tracking solution to (0.1) with initial datum

U(0, ·) = Uε
in(·) (1.7)

if the following hold:

(i) U is piecewise constant, with discontinuities occurring along finitely many straight lines in the x − t
plane. Jumps can be either shocks (S) or rarefactions (R).

(ii) Along each shock x = xα(t), α ∈ S, the values Uℓ = (pℓ, uℓ)
.
= U(t, xα−) and Ur = (pr, ur)

.
= U(t, xα+)

are linked by the relation

Ur = Skα
(σα)(Uℓ) for kα ∈ {1, 2},

Moreover the speed ẋα(t) of the shock wave satisfies

|ẋα − λkα(Ur,Uℓ)| ≤ ρ,
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where λk(Ur,Uℓ) are the eigenvalues of the averaged matrix A(Ur,Uℓ):

A(Ur,Uℓ)
.
=

∫ 1

0

DF (θUr + (1− θ)Uℓ)dθ, F (U) =
(

−u
Pε(τ)

)
,

where D = (∂τ , ∂u).
(iii) Along each rarefaction x = xα(t), α ∈ R, one has

Ur = Rkα(σα)(Uℓ) for kα ∈ {1, 2},

where σα = pr − pℓ ∈]0, ρ]. Moreover

|ẋα − λkα
(Ur)| ≤ ρ.

(iv) At the initial time ∥U(0, ·)− Uε
in(·)∥L1(R) ≤ ρ.

Description of the algorithm [3]. At time t = 0, we approximate the initial datum U0
ε by a piecewise constant

function with a finite number of jumps. At each discontinuity point, we solve the corresponding Riemann
problem. Every generated rarefaction wave with strength |σ| > ρ is partitioned in small (entropy violating)
discontinuities travelling with speed equal to the characteristic speed of the state at the right.
The fronts are prolonged until two of them interact. At that time, we solve (approximately) the emerging
Riemann problem and so on. For interaction times t > 0, we always partition an outgoing rarefaction wave
with strength |σ| > ρ, except when one of the incoming waves is a rarefaction of the same characteristic family.
In that latter case, the outgoing rarefaction is replaced by a single jump of the same strength, with speed equal
to the characteristic speed of the state at the right.

1.1. Interaction estimates

To study solutions constructed via the algorithm described above, it is necessary to provide estimates of the
difference between the strengths of the corresponding incoming and outgoing fronts. The next lemma states
that, away from the interface, the classical interaction estimates hold independently of ε.

Lemma 1.6 (Interactions between two waves away from the interface). Let a 2-wave of strength σ′ connecting
free states (resp. congested states) interact with a 1-wave of strength σ′′ connecting free states (resp. congested
states). The outcome is a 1-wave of strength σ+

1 connecting free states (resp. congested states) and a 2-wave of
strength σ+

2 connecting free states (resp. congested states). Moreover, the following inequality holds

|σ+
1 − σ′′|+ |σ+

2 − σ′| ≤ C|σ′σ′′|, (1.8)

for some C > 0 independent of ε.

Similar estimates can be obtained for two incoming waves of the same family, we refer to [12] [Chapter 7,
Lemma 7.2] for a complete statement and a detailed proof.
The next lemma is concerned with interactions of small waves with the interface.

Lemma 1.7 (Interactions with the interface). • Small wave coming the left congested domain: Let a 2-
wave of strength σ′ connecting congested states interact with the interface of strength σ̄′′. It results a
1-wave of strength σ+

1 connecting congested states and a 2-shock interface of strength σ̄+
2 . Moreover,

the following inequalities hold

|σ+
1 |+ |σ̄+

2 − σ̄′′| ≤ C|σ′|, (1.9)

with C > 0 independent of ε.
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• Small wave coming the right free domain: Let a 1-wave (or a 2-wave) of strength σ′′ connecting free
states interact with the interface of strength σ̄′. It results a 1-wave of strength σ+

1 connecting congested
states and a 2-shock interface of strength σ̄+

2 . Moreover, the following inequality holds

|σ+
1 |+ |σ̄+

2 − σ̄′| ≤ C|σ′′|, (1.10)

with C > 0 independent of ε.

Remark 1.8. In the case of an interaction between the interface and a wave connecting free states, observe
that no wave is reflected in the free domain. The outgoing small wave is indeed a wave connecting congested
states.

Remark 1.9. Note that in the case of an interaction with the interface, the interaction estimates (1.9)-(1.10)
are not quadratic in terms of the strengths of the incoming waves. This is due to the fact that the strength of
the interface σ̄′ (or σ̄′′) is large in comparison with the strength of the other waves connecting free or congested
states and hence it is absorbed by the constant C. Nevertheless, we can prove the decreasing of the Glimm
functional by taking into account the potential interactions of waves of the second family connecting congested
states as well as waves connecting free states of both families with the interface, see (1.11) below.

1.2. Glimm functional

In connection with any given approximate front tracking solution U to (0.1), we introduce now a Glimm
functional to provide a uniform bound on its total variation. In view of our hypotheses, the strength of the
initial 2-shock interface is only slightly perturbed by the interactions with the small waves coming from the
left (i.e. from the congested domain) and from the right (i.e. from the free domain). We define x̄(t) = x̄ε,ρ(t)
the position of the interface at time t and σ̄(t) = σ̄ε,ρ(t) its strength. Namely, σ(t) is the difference at time t
between the pressure on the right/free side of the interface and the pressure on the left/congested side of the
interface. We recall the notation

I1,t
.
=]−∞, x̄(t)], I2,t

.
= [x̄(t),+∞[ .

Definition 1.10 (Glimm functionals). For t > 0, we define two Glimm functionals Υ(t), Υ(t), as follows

Υ(t)
.
= σ(t) +

∑
xα∈I2,t

|σα|+
∑

xα∈I1,t

|σα|+ ki,cQi,c(t) + ki,fQi,f (t) + kf,fQf,f (t) + kc,cQc,c(t),

Υ(t)
.
=

∑
xα∈I2,t

|σα|+
∑

xα∈I1,t

|σα|+ ki,cQi,c(t) + ki,fQi,f (t) + kf,fQf,f (t) + kc,cQc,c(t),
(1.11)

where the functionals Qi,f , Qf,f , Qc,c are quadratic in terms of the strengths of the waves:

Qi,c(t) = |σ̄(t)|
∑

xα∈I1,t, iα=2

|σα|, Qi,f (t) = |σ̄(t)|
∑

xα∈I2,t

|σα|,

Qf,f (t) =
∑

xα,xβ∈I2,t

|σασβ |, Qc,c(t) =
∑

xα,xβ∈I1,t

|σασβ |,

the summations being made on “approaching fronts” (xα, σα), (xβ , σβ), iα = 2 denoting that the wave σα

belongs to the second family, and ki,f , ki,c, kf,f , kc,c are suitable positive constants (independent of ε).

Remark 1.11. The two functionals in (1.11) differ only for the presence of the term σ in Υ. The proof of
their monotonicity is entirely similar. The general idea is that one first shows that the map t 7→ Υ(t) is not
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increasing, thus yielding a uniform bound in time on the total variation of 7→ Uε,ρ(t, ·), which in turn implies
a uniform bound on the strength σ(t) of the interface, for all t > 0. Then, relying on this bound, one can also
prove that the functional t 7→ Υ(t) is not increasing, thus showing that the total variation of all the waves (but
the interface) remain uniformly small.

Proposition 1.12 (Decrease of the Glimm functionals). Under the hypotheses of Theorem 0.5, we can find
kf,f , kc,c, ki,f and ki,c sufficiently large such that

Υ(t) ≤ Υ(0), Υ(t) ≤ Υ(0) ∀t ≥ 0. (1.12)

Lemma 1.13 (Weighted total variation). Let us assume that we have constructed the piecewise constant solution
(t, x) 7→ Uε,ρ(t, x) = (pε,ρ, uε,ρ)(t, x) up to time t > 0, by means of the wave front tracking algorithm. Let us
define its weighted total variation:

WTVε(t)
.
=

2∑
i=1

TV (pε,ρ(t, ·), Iεi,t) +
1

ε
1

2γc

TV(uε,ρ, Iε1,t) + TV(uε,ρ, Iε2,t). (1.13)

Then, there exist two constant 0 < C1 < C2, independent of ε such that

C1WTVε(t) ≤ Υ(t) ≤ C2WTVε(t). (1.14)

Sketch of the proof. The equivalence between TV (pε,ρ(t, ·), Iε1,t) + TV (pε,ρ(t, ·), Iε2,t) and Υ(t) is direct since all
the quadratic terms in Υ can be absorbed in the linear ones. For the total variation of the velocity, we write
the Rankine-Hugoniot condition satisfied by any discontinuity:

ur − uℓ = ±
√

−(τr − τℓ)(pr − pℓ) = ±
√

−(Tε(pr)− Tε(pℓ))(pr − pℓ) = ±|pr − pℓ|
√

−T ′
ε (p̂),

for some p̂ between pr and pℓ. and observe that

T ′
ε (p̂) =

{
O(1) if pr, pℓ ∈ [p−f , p

+
f ],

O(ε
1
γc ) if pr, pℓ ∈ [p−c , p

+
c ].

□

Corollary 1.14. Combining (1.14) with (1.12) yields the following inequality:

1

ε
1

2γc

TV(uε,ρ, Iε1,t) ≤ C−1
1 Υ(0) i.e. TV(uε,ρ, Iε1,t) ≤ Cε

1
2γc .

The above inequality will imply that in the limit ε → 0 the velocity is constant in the congested domain.

Remark 1.15. In order to construct a front tracking approximate solution Uε,ρ(t, x) for any time t > 0, we
need to ensure that the number of interactions among the wave fronts remains finite on any strip ]0, t] × R.
Observe that the interactions that generate more than two outgoing fronts are only the interactions that produce
an outgoing rarefaction wave that is split in several fronts. Moreover, such interactions can occur only when
the incoming fronts, say of size σ′, σ′′, are both shocks, and have an amount of interaction |σ′ σ′′| > c · ρ, for
some constant c > 0. In turn this implies that at every time t > 0 where such interactions occur, the Glimm
functional decreases of a uniform amount ∆Υ(t) < −c′ ρ, for some other constant c′ > 0. Since from (1.12)
Υ(t) ≤ Υ(0) for all t > 0, this can happen only a finite number of times.
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2. Existence of a BV approximate solution at ε fixed and convergence as
ε → 0

2.1. Some properties of the wave front tracking approximation

We provide below Lipschitz estimates in time.

Lemma 2.1 (Lipschitz continuity in time). Let (t, x) 7→ Uε,ρ(t, x) be the wave front tracking approximation
constructed in the previous section. Let 0 < s < t, then there exists L > 0 independent of ε, such that

∥pε,ρ(t, ·)− pε,ρ(s, ·)∥L1(I1,t) ≤ ε−
1

2γc L(t− s), ∥pε,ρ(t, ·)− pε,ρ(s, ·)∥L1(I2,t) ≤ L(t− s), (2.1)

∥uε,ρ(t, ·)− uε,ρ(s, ·)∥L1(R) ≤ L(t− s), (2.2)

∥τε,ρ(t, ·)− τε,ρ(s, ·)∥L1(I1,t) ≤ ε
1

2γc L(t− s), ∥τε,ρ(t, ·)− τε,ρ(s, ·)∥L1(I2,s) ≤ L(t− s). (2.3)

Idea of the proof. • Pressure estimate. To simplify, let us assume first that there is single front connecting
free states with xα(t

′) > x̄(t′) for all t′ ∈ [s, t] (no interaction with the interface x̄(t′)), we observe that∫
|p(t, x)− p(s, x)|dx = |xα(t)− xα(s)||σα|.

In the general case, summing the contributions of all the fronts, we have∫
I2,t

|p(t, x)− p(s, x)|dx ≤
∑
α∈A1

|xα(t)− xα(s)||σα|+
∑
α∈A2

|xα(t
′
α)− xα(s)||σα|

where A1 denotes the set of waves connecting free states such that xα(t
′) > x̄(t′) for all t′ ∈ [s, t], i.e.

which do not interact with the interface; A2 denotes the set of waves connecting free states that interact
with the interface for some time t′α ∈ [s, t], i.e. xα(t

′
α) = x̄(t′α) for some t′α ∈ [s, t]. We then get the

second inequality announced in (2.1):∫
I2,t

|p(t, x)− p(s, x)|dx ≤
∑
α∈A1

|ẋα||σα|(t− s) +
∑
α∈A2

|ẋα||σα|(t′α − s) ≤ L(t− s),

since all the speeds ẋα are bounded uniformly with respect to ε.
Let us now consider the congested domain I1,t, we have similarly∫

I1,t

|p(t, x)− p(s, x)|dx ≤
∑
α∈A1

|xα(t)− xα(s)||σα|+
∑
α∈A2

|xα(t
′
α)− xα(s)||σα|

+
∑
α∈A3

|xα(t)− xα(t
′
α)||σα|,

where A1 denotes the set of waves connecting congested states such that xα(t
′) < x̄(t′) for all t′ ∈ [s, t],

i.e. which do not interact with the interface in the time interval [s, t]; A2 denotes the set of waves
connecting congested states that interact with the interface at some time t′α ∈ [s, t], i.e. xα(t

′
α) = x̄(t′α)

for some t′α ∈ [s, t]; A3 denotes the set of waves connecting congested states that have been created

from an interaction with the interface at some time t′α. Since |ẋα| ∝ ε−
1

2γc , we deduce (2.1).
• Velocity estimate. The same reasoning can be applied by replacing σα = ∆p by ∆u. We use Lemma 1.13

to bound the velocity differences ∆u by sup |
√

−T ′
ε (p)||σ| ≤ Cε

1
2γc in domain I1,t. This compensates

the singularity of the speed ẋα in the congested domain and yields (2.2).
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• Specific volume estimate. In the same manner, we derive (2.3) by writing |∆τ | ≤ sup |T ′
ε (p)||σ| and

estimating |T ′
ε (p)|.

□

Remark 2.2. The singularity ε−
1

2γc in the estimate (2.1) involving the pressure is the main originality of the
model and the signature of the infinite speed of propagation in the congested domain (a similar estimate is
derived by Colombo et al. in [14] for the low Mach limit). From the standpoint of the mathematical analysis,
this singularity prevents us to get the strong convergence of the pressure as ε goes to 0 (see Section 2.3 below).

Lipschitz estimates in space are collected in the following.

Lemma 2.3 (Lipschitz continuity in space). Under the assumptions of Theorem 0.5, let t > 0 and Uε,ρ(t) ∈
Dδ2,ε

t be the wave front tracking approximate solution. For any 0 < x1 < x2, the following estimates hold.

• On the free side of the interface:

∥pε,ρ(·, x̄ε(·) + x1)− pε,ρ(·, x̄ε(·) + x2)∥L1(0,t) ≤ C(x2 − x1); (2.4)

∥uε,ρ(·, x̄ε(·) + x1)− uε,ρ(·, x̄ε(·) + x2)∥L1(0,t) ≤ C(x2 − x1); (2.5)

• On the congested side of the interface:

∥pε,ρ(·, x̄(·)− x1)− pε,ρ(·, x̄(·)− x2)∥L1(0,t) ≤ C(x2 − x1), (2.6)

∥uε,ρ(·, x̄(·)− x1)− uε,ρ(·, x̄(·)− x2)∥L1(0,t) ≤ Cε
1

2γc (x2 − x1), (2.7)

for some positive constant C independent of ε.

Idea of the proof. Following a similar idea as before, we can write for a single front (σα, xα) propagating in the
free domain (without any interaction with the interface or other waves)∫ t

0

|pε,ρ(τ, x̄(τ) + x1)− pε,ρ(τ, x̄(τ) + x2)|dτ ≤ |t̂1 − t̂2||σα|, (2.8)

where t̂i, i = 1, 2, denotes the time at which the front arrives at the position x̄(ti) + xi. Let us assume that the
front was located at x̄(t0) + x0 at time t0 and define the function x 7→ t̂(x) for x > 0 such that it holds

x̄(t0) + x0 + (t̂(x)− t0)ẋα = x̄(t̂) + x.

We observe that

t̂′(x) =
1

ẋα − ẋ(t̂)
.

As a consequence, coming back to (2.8), we get∫ t

0

|pε,ρ(τ, x̄(τ) + x1)− pε,ρ(τ, x̄(τ) + x2)|dτ ≤ |x1 − x2|
infτ∈[0,t]{|ẋα − ˙̄x|}

|σα|.

One can then show that the difference between the speed of propagation of waves connecting free states (i.e.
with pressure in the interval [p−f , p

+
f ]) and the speed of the interface is controlled from below uniformly with
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respect to ε, which allows to control the above quantity by C|x1 − x2|, where C is a constant independent of ε.
More generally, one can prove that∫ t

0

|pε,ρ(τ, x̄(τ) + x1)− pε,ρ(τ, x̄(τ) + x2)|dτ ≤ |x1 − x2|
infτ∈[0,t]{|ẋα − ˙̄x|}

sup
x∈[x1,x2]

TV[0,t](p
ε,ρ(·, x̄(·) + x)),

and we use the decrease of the Glimm functional to prove that

sup
x∈[x1,x2]

TV[0,t](p
ε,ρ(·, x̄(·) + x)) ≤ C,

with C independent of ε when x1,2 > 0 (i.e. on the free side of the interface).
On the congested side of the interface, we combine the unbounded speed of propagation of the congested

waves (proportional to ε−
1

2γc ) and the uniform control of supx∈[x1,x2] TV[0,t](u
ε,ρ(·, x̄(·) − x)) to deduce (2.7),

while supx∈[x1,x2] TV[0,t](p
ε,ρ(·, x̄(·)− x)) is shown to be controlled by Cε−

1
2γc . Additional details are provided

in [2]. □

2.2. Existence of a BV solution Uε = (pε, uε)

Let now explain how to pass to the limit ρ → 0 and prove the first result announced in Theorem 0.5.

Let ρ = ρn decreasing to 0 as n → +∞. For each n ≥ 1 we have constructed a ρn-approximate solution,
Uε,ρn , of the Cauchy problem (0.1)-(1.7). From the estimates of Section 1.2, we ensure that (Uε,ρn)n has a
bounded total variation in space (for fixed ε). On the other hand, the maps t 7→ Uε,ρn(t, ·) have been shown to
be Lipschitz continuous with values in L1(R;R2) in Lemma 2.1, with a Lipschitz constant uniform with respect
to n (but dependent on ε > 0). We can then extract a subsequence (see Theorem 2.4 from [12]), still denoted

by (Uρn,ε)n, which converges in L1
loc to some limit Uε belonging to Dδ2,ε

t for a.e. t ≥ 0 and for some δ2 ≤ δ0.
Initially, by Lemma 2.1, ∥Uε,ρn(0, ·)−Uε

in(·)∥L1 → 0 as n → +∞. One can next follow the lines of [12] [Chapter
7.4] to verify that Uε is a weak entropy solution of (0.1) in the sense of Definition 0.2.
Let us recall that we have defined in Section 1.2 the curve t 7→ x̄ε,ρn(t) representing the position of the interface
between the congested domain Iε,ρn

1,t and the free domain Iε,ρn

2,t . We have

˙̄xε,ρn(t) = − uε,ρn(t, x̄ε,ρn(t)+)− uε,ρn(t, x̄ε,ρn(t)−)

Tε(pε,ρn(t, x̄ε,ρn(t)+))− Tε(pε,ρn(t, x̄ε,ρn(t)−))
.

In view of the control of Uε(t, ·) in Dδ2,ε
t , it is easy to observe that for ε small enough

λ̄2 − δ0 < ˙̄xρn,ε(t) < λ̄2 + δ0, (2.9)

λ̄2 being the speed of the reference 2-shock interface defined in (0.8) (which is also independent of n and ε).
This control ensures that there exists x̄ε ∈ W 1,∞(R+) such that

x̄ε,ρn → x̄ε uniformly on any [0, T ], T > 0, (2.10)

˙̄xε,ρn(t) → ˙̄xε(t) a.e. t ∈ [0, T ]. (2.11)

2.3. Convergence ε → 0

Let us now achieve the proof of Theorem 0.5 by passing to the limit with respect to the parameter ε. We
split the proof in several steps.
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• First, let us observe that, with the same arguments as in Section 2.2, we ensure the existence of
x̄ ∈ W 1,∞(R+) such that

x̄ε → x̄ uniformly on any [0, T ], T > 0, (2.12)

˙̄xε(t) → ˙̄x(t) a.e. t ∈ [0, T ]. (2.13)

• Using estimates (2.2) on the one hand and (1.12)-(1.14) on the other hand, we can again extract a
subsequence (uε)ε converging in L1

loc towards some limit u∗. In the same manner, we ensure that (τε)ε
converges (up to a subsequence) towards some limit τ∗ in L1

loc. Regarding the pressure, we only infer
that (pε)ε converges weakly-* in L∞(R+ × R). We also ensure that the limit (p∗(t, ·), u∗(t, ·)) belongs
to Dδ2

t for any t.
Passing to the limit in the sense of distributions in (0.1), we check that the following equations{

∂tτ
∗ − ∂xu

∗ = 0,

∂tu
∗ + ∂xp

∗ = 0,
(2.14)

hold in the sense of distributions.
• Let us now define the shifted variable:

Ũε(t, x)
.
= Uε(t, x− x̄(t) + x̄ε(t)), ∀ t > 0, x ∈ R, (2.15)

so that Ũε(t, x̄(t)) = Uε(t, x̄ε(t)). In view of the previous arguments, we ensure that

ũε(t, ·) → u∗(t, ·) strongly in L1(I1,t) for a.a. t ≥ 0,

and from Corollary 1.14:

TV (u∗(t), I1,t) ≤ lim inf
ε→0

TV (ũε(t), I1,t)

≤ lim inf
ε→0

TV (uε(t), Iε1,t) = 0.

Consequently, u∗(t, ·) is constant on the congested domain I1,t, for a.a. time t ≥ 0:

u∗(t, x) = uc(t) ∀ x ∈ I1,t. (2.16)

Similarly, we show that

τ̃ε(t, ·) → τ∗(t, ·) strongly in L1(I1,t) for a.a. t ≥ 0. (2.17)

and τ∗(t, x) ≡ const = 1 for all x ∈ I1,t.
• We now use the Lipschitz continuity estimates in space derived in Lemmas 2.3 to infer the strong
convergence of the traces of the different variables from both sides of the interface. On the free side of
the interface, we have

p̃(·, x̄(·)+) → p∗(·, x̄(·)+) in L1
loc(R+),

ũ(·, x̄(·)+) → u∗(·, x̄(·)+) in L1
loc(R+),

τ̃(·, x̄(·)+) → τ∗(·, x̄(·)+) in L1
loc(R+),
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while on the congested side of the interface:

ũ(·, x̄(·)−) → u∗(·, x̄(·)−) = uc(·) in L1
loc(R+),

τ̃(·, x̄(·)−) → τ∗(·, x̄(·)−) = 1 in L1
loc(R+),

• For a.a t, the value uc(t) is calculated by passing to the limit in the Rankine-Hugoniot relation

ũε(t, x̄(t)−) = ũε(t, x̄(t)+) + ẋ
ε
(t)(τ̃ε(t, x̄(t)+)− 1),

and using the convergence of the traces from both sides of the interfaces:

uc(t) = u∗(t, x̄(t)+) + ẋ(t)(τ∗(t, x̄(t)+)− 1). (2.18)

• Let us now discuss the pressure. First, we observe from the estimates of the previous sections that p̃ε

satisfiesuniform estimates in the free domain I2,t, so that

p̃ε → p∗ strongly in L1
loc(

⋃
t≥0

{t} × I2,t).

This strong convergence in the free domain, combined with the fact that τ ≡ 1 in the congested domain
I1,t allows us to identify the limit specific volume: τ∗ = T (p∗) with T defined by (0.4), i.e. the following
equations hold in the sense of distributions{

∂tT (p∗)− ∂xu
∗ = 0,

∂tu
∗ + ∂xp

∗ = 0.
(2.19)

• We can determine the pressure p∗(t, ·) in the congested domain I1,t. Looking at the limit momentum
equation and using the fact that u∗(t, ·) is constant on I1,t, we deduce that p

∗(t, ·) is affine. On the other

hand, since U∗(t, ·) ∈ Dδ2
t , we have p∗(t, x) ∈]p0,1−δ2, p0,1+δ2[ for all x ∈ I1,t. Hence p∗(t, ·) is constant

in I1,t: p
∗(t, x) = pc(t) for all x ∈ I1,t. The value pc(t) is finally calculated from the Rankine-Hugoniot

condition, since we know that (p∗, u∗) is a distributional solution of (2.19). Hence,

pc(t) = p∗(t, x̄(t)+) + ˙̄x(t)(uc(t)− u∗(t, x̄(t)+)). (2.20)

• Since p∗(t, ·) is constant in the congested domain, the limit momentum equation tells us that t 7→ uc(t)
is constant, i.e.:

uc(t) = uc(0) ∀ t > 0.

As a consequence, we get from (2.18)-(2.20):

pc(t) = p∗(t, x̄(t)+) + ˙̄x(t)(uc(0)− u∗(t, x̄(t)+)),

˙̄x(t) =
uc(0)− u∗(t, x̄(t)+)

τ∗(t, x̄(t)+)− 1
.

In particular, one can check that pc(0) = In(pin) according with (0.20) introduced in Definition 0.3.

This achieves the proof of Theorem 0.5.
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Figure 4. Reference solutions with two non-interacting interfaces, ε = 0.2, κ = 1.

3. Extension to more general reference solutions

We presented the general strategy of construction of weak-entropy BV solutions in the case of an initial

datum Uin = (pin, uin) ∈ Dδ,ε
0 as defined in (0.12). As pointed out before, the initial configuration is a small BV

perturbation of a reference solution that is given by a 2-shock congested/free interface, see Figure 2. However,
the general strategy applies to more general configurations, with more than one single free/congested interface.

The case of two non-interacting discontinuity interfaces

The reference solution for the limit (hard-congested) system (0.3) is piece-wise constant with two jump
discontinuities: the external states are free and the middle one is congested. Then, given x1,0 < x2,0, we let

pref(x)
.
= p1,01]−∞, x1,0[(x) + p2,01]x1,0, x2,0[(x) + p3,01]x2,0,+∞[(x),

uref(x)
.
= u1,01]−∞, x1,0[(x) + u2,01]x1,0, x2,0[(x) + u3,01]x2,0,+∞[(x),

x ∈ R, (3.1)

where
p1,0, p3,0 < κ < p2,0, u1,0 > u2,0 > u3,0, (3.2)

with

p2,0 − p1,0 =
(u2,0 − u1,0)

2

T i(p1,0)− 1
, p3,0 − p2,0 = − (u3,0 − u2,0)

2

T i(p3,0)− 1
. (3.3)

This way the left interface is a 1-shock wave and the right one is a 2-shock wave. Similarly to (0.9), the
initial data of the approximate model is a suitable approximation (pref,ε, uref,ε) of (pref, uref): we can choose in
particular (see Figure 4)

pε1,0 = p1,0, pε3,0 = p3,0, uε
1,0 = u1,0 > u2,0 > uε

3,0 = u3,0,

where (pε2,0, u
ε
2,0) is obtained by requiring that it is both: the right state of a 1-shock with left state given by

(pε1,0, u
ε
1,0); the left state of a 2-shock with right state (pε3,0, u

ε
3,0).
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Result. [see [2]] For any initial datum Uε
in = (pεin, u

ε
in) that is a small BV perturbation of the above (pref,ε, uref,ε),

there exists an entropy weak solution Uε = (pε, uε) to the (approximate) soft-congested system (0.1) (with a
suitably adapted singular pressure Pε(τ)) and two (Lipschitz) interfaces xε

i (t), i ∈ {1, 2}. Moreover, for any
initial datum U in such that Uε

in → U in in L1
loc, there exists a global-in-time entropy weak solution U∗ = (p∗, u∗)

to the (limit) hard-congested system (0.3) with (limiting) interfaces xi(t), i ∈ {1, 2}. In particular, the solution
(p∗, u∗) inside the congested domain {(t, x) : x1(t) < x < x2(t), t ≥ 0} has different properties with respect to
the case of one single interface:

p∗(t, x) =

(
x2(t)− x

x2(t)− x1(t)

)
pc1(t) +

(
x− x1(t)

x2(t)− x1(t)

)
pc2(t) ,

u∗(t, x) = uc(t) = uc
in −

∫ t

0

pc2(s)− pc1(s)

x2(s)− x1(s)
ds ,

(3.4)

where pci (t), i ∈ {1, 2} are given by the Rankine-Hugoniot conditions as in (0.6):

pc1(t) = p∗(t, x1(t)−) +
(uc(t)− u∗(t, x1(t)−))2

T i(p∗(t, x1(t)−))− 1
;

pc2(t) = p∗(t, x2(t)+) +
(u∗(t, x2(t)+)− uc(t))2

T i(p∗(t, x2(t)+))− 1
.

A striking point of the above result is that the construction of the entropy solution U∗ to the limit system (0.3),
as a suitable limit of solutions Uε of the approximate one (0.1), relies on a linearization of the singular pressure
Pε(τ), which is crucial to obtain the desired uniform bounds on the the Glimm functional.

The case of two interacting discontinuity interfaces

This is the case where the reference solution for the limit system (0.3) has again two jumps but the external
states are congested and the middle one is free. More precisely, the left (congested) extreme and the middle
(free) state are connected by a 2-shock interface, while the middle (free) and the right (congested) extreme
are connected by a 1-shock interface. Being the 2-shock interface initially located at the left of the 1-shock
interfaces, such interfaces will interact at some time t∗ > 0. The interaction between two interfaces is a delicate
issue since it involves interactions of congested states with different velocities. Once the interfaces connecting
such external congested states with different velocities interact, they generate two shocks with an intermediate
state having unbounded pressure, that blows up in the limiting system with a precise rate given by the singular
pressure Pε. This interesting phenomenon is the reason why in this case we can provide an entropy weak
solution U∗(t) to (0.3) that is defined only on a finite interval of time.

The general case

Consider now the case of a reference solution with three interfaces given by two interacting discontinuity
interfaces (say a 2-shock interface x1 on the left of a 1-shock interface x2 as in the previous case) followed by a
2-shock interface x3. After the interaction between the shocks located at x1, x2 occurs, two new discontinuities
emerge, say a 1-shock x′

2 on the left of a 2-shock x′
1 that travels with a faster speed than the one of the 2-

discontinuity x3. Therefore the two discontinuities x′
2, x3 will eventually interact generating a 1-rarefaction

located between two lines x4, x5, and a 2-discontinuity x1,3. Notice that the 1-rarefaction generated by such an
interaction connects two congested states: a left state with unbounded pressure (along x4) with a right state
with bounded pressure (along x5). On the other hand, all waves connecting congested states in the limit system
travel with infinite speed. Hence, the front lines x′

1, x
′
2, x4, x5 will all converge to parallel lines to the x-axis in

the solution of the limit system and the congested region of unbounded pressure between x′
1, x

′
2, x4, as well as

the rarefaction fan between x4, x5, coalesces in a line of measure zero in x-t plane. As a result, in this case we
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Figure 5. Sketchy representation of the case of three interfaces in the (x− t)-plane for small ε.

can indeed obtain a solution for the limit system which is globally defined in time. We give a representation of
the wave interactions in Figure 5.

Our conjecture is that, for a general reference solution U ref = (pref, uref) with a finite number of discontinuity
free/congested (resp. congested/free) interfaces, there are two possibilities:

(1) if at least one of the extreme states is free, then there exists a global-in-time BV entropy weak solution;
(2) if the extreme values are both congested, then there exists a BV entropy weak solution defined on a

finite time interval.
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