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Introduction: In this study, we classified electroencephalography (EEG) data of

imagined speech using signal decomposition and multireceptive convolutional

neural network. The imagined speech EEG with five vowels /a/, /e/, /i/, /o/, and

/u/, and mute (rest) sounds were obtained from ten study participants.

Materials and methods: First, two different signal decomposition methods

were applied for comparison: noise-assisted multivariate empirical mode

decomposition and wavelet packet decomposition. Six statistical features were

calculated from the decomposed eight sub-frequency bands EEG. Next, all

features obtained from each channel of the trial were vectorized and used as

the input vector of classifiers. Lastly, EEG was classified using multireceptive field

convolutional neural network and several other classifiers for comparison.

Results: We achieved an average classification rate of 73.09 and up to 80.41%

in a multiclass (six classes) setup (Chance: 16.67%). In comparison with various

other classifiers, significant improvements for other classifiers were achieved

(p-value < 0.05). From the frequency sub-band analysis, high-frequency band

regions and the lowest-frequency band region contain more information about

imagined vowel EEG data. The misclassification and classification rate of each

vowel imaginary EEG was analyzed through a confusion matrix.

Discussion: Imagined speech EEG can be classified successfully using the

proposed signal decomposition method and a convolutional neural network.

The proposed classification method for imagined speech EEG can contribute to

developing a practical imagined speech-based brain-computer interfaces system.

KEYWORDS

brain-computer interfaces, imagined speech EEG, multiclass classification,
multireceptive field convolutional neural network, noise-assisted empirical mode
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1. Introduction

Brain-computer interfaces (BCIs) use brain signals to control
machines and allow individuals to communicate with the
outside world. BCI implementation requires careful selection of
specific brain signals to perform particular tasks. Many signal
measurement methods, such as electroencephalography (EEG),
near-infrared spectroscopy (NIRS), magnetoencephalography
(MEG), and electrocorticography (ECoG), are used for measuring
various brain signals for BCI implementation (Bojak and
Breakspear, 2013; Chaudhary et al., 2016; Bakhshali et al.,
2020). EEG measures the brain’s electrical activity through
electrodes spaced on the scalp (Bojak and Breakspear, 2013).
EEG has many limitations, such as low spatial resolution,
non-stationarity, and low signal-to-noise ratio. However, it
is used in many BCIs systems because of its high temporal
resolution, noninvasiveness, and cost-friendly characteristics;
other signals do not provide these advantages (Bojak and
Breakspear, 2013; Pandarinathan et al., 2018; Bakhshali et al.,
2020).

There are some limitations in BCIs studies. For example,
BCIs based on motor imagery (MI) are limited by the maximum
allowable number of tasks (Wang et al., 2013; García-Salinas et al.,
2019). Visual stimulus-based BCIs, such as P300 and SSVEP, are
limited by more extended periods for obtaining results and the
necessity of an external device to generate stimuli (Nguyen et al.,
2018; Kaongoen et al., 2021). Therefore, many studies have been
conducted on imagined speech-based BCIs to solve these problems
and act as an alternative BCI system.

An algorithm that extracts features and classifies EEG is one
of the most significant parts of BCI systems. Deng et al. (2010)
classified imagined syllables /ba/ and /ku/ in three different rhythms
using the Hilbert–Huang transform, and their classification
accuracy was more significant than the chance level. Dasalla et al.
(2009) proposed a method to classify imagined vowels /a/ and
/u/, and resting-state using a common spatial pattern (CSP) filter
and support vector machine (SVM) in a binary classification
manner. Their classification results were up to 82% (Dasalla
et al., 2009). D’Zmura et al. (2009) conducted a speech imagery
experiment with four study participants to extract features in
wavelet envelope in the theta (3–8 Hz), alpha (8–13 Hz), and beta
(13–18 Hz) bands. Their highest accuracy was reported at the
beta band of speech imagery /ba/ and /ku/ (D’Zmura et al., 2009).
Kaongoen et al. (2021) revealed that the gamma (30–100 Hz) band
activity has the highest mean F-score in ear-EEG and scalp-EEG
during imagined words “right,” “left,” “forward,” and “go back”. As
such, several studies have reported that different frequency bands
are related to imagined speech. Research on feature-based deep
learning in BCIs is progressing with the advancements in deep
learning.

Common spatial pattern-based deep learning algorithms have
also been proposed in MI BCIs (Kumar et al., 2017; Sakhavi
et al., 2018; Zhu et al., 2019). Kumar et al. (2017) proposed
CSP to extract features fed into a multilayer perceptron (MLP)
to classify MI EEG signals. Sakhavi et al. (2018) proposed
combining the filter-bank CSP (FBCSP) and Hilbert transform
to extract spatial and temporal features that were used as input

for five-layer convolutional neural networks (CNNs) for MI
EEG classification. Unlike MI BCIs, imagined speech BCI has
been widely proposed as a discrete wavelet transform (DWT)-
based deep learning technique (Rezazadeh Sereshkeh et al., 2017;
Cooney et al., 2020; Pawar and Dhage, 2020; Panachakel and
Ramakrishnan, 2021a). Rezazadeh Sereshkeh et al. (2017) used
DWT to extract features and a regularized neural network to
classify imagined speech “yes” and “no”. Pawar and Dhage (2020)
used DWT as a feature extraction method and an extreme
learning machine based on a feed-forward neural network to
classify imagined words “left,” “right,” “up,” and “down” and
achieved a maximum multiclass calssification accuracy of 49.77%.
Cooney et al. (2020) used relative wavelet energy features and
several CNNs (shallow CNN, deep CNN, and EEGNet) with
different hyperparameters to classify two different imagined speech
datasets. Panachakel and Ganesan (2021b) used ResNet50 to
classify imagined vowels (two classes) and short-long words (three
classes) and obtained classification accuracy of 86.28 and 92.8%,
respectively. Lee et al. (2020) achieved 13 class (12 words/phrases
and rest state) classification accuracy of 39.73% using frequency
band spectral features and SVM with RBF kernel classifier. Li et al.
(2021) used a hybrid-scale spatial-temporal dilated convolution
network for eight imagined Chinese words EEG with 54.31%
classification accuracy and compared it with various classification
methods, including EEGNet. However, the usage of deep learning
is lacking in the multiclass classification of imagined speech EEG
compared to MI EEG (Altaheri et al., 2021; Lopez-Bernal et al.,
2022).

In this study, we classified five vowel speech imagery
and resting-state EEG, as displayed in Figure 1. First, the
imagined speech EEG data was preprocessed using a band-
pass filter, band-stop filter, and artifact removal via visual
rejection. Then, EEG data were divided into training and
test datasets using 10 × 10-fold cross-validation. After that,
the EEG data were segmented and separated into different
frequency bands through noise-assisted multivariate empirical
mode decomposition (NA-MEMD). Finally, six statistical features
were extracted from the separated frequency bands. The extracted
feature vectors were then classified through the proposed
multireceptive field CNN (MRF-CNN) and various comparison
classifier methods.

Although deep learning has been applied as a state-of-the-
art method in many fields of EEG research, such as emotion
classification, MI, and covert speech, many other machine learning-
based classification methods are still used as much as deep learning.
So, several machine learning and end-to-end CNN-based deep
learning algorithms and wavelet packet decomposition (WPD), a
widely known signal decomposition method, were compared with
the proposed deep MRF-CNN with NA-MEMD.

The remaining of this paper is organized as follows. The section
“Materials and methods” explains the experimental paradigm,
details regarding the participants, EEG preprocessing, NA-MEMD,
and the proposed MRF-CNN. Then, the section “Results” compares
the classification performance of the proposed architecture and
other algorithms. Finally, sections “Discussion” and “Conclusion”
have been included at the end of the article.
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FIGURE 1

Block diagram for the proposed method.

2. Materials and methods

2.1. Participants

Nine healthy participants (gender: male, average age:
26.78 ± 2.94 years, range: 24–32 years) were recruited for the
study. All participants were native Korean and had no known
neurological diseases or other specific health problems. The
experimental procedure passed the International Review Board
of Gwangju Institute of Science and Technology (No. 20141218-
HR-16-01-02). All participants provided written consent for the
experimental procedure before the experiments.

2.2. Experimental paradigm

e-Prime 2.0 software (Psychology Software Tools, Inc.,
Sharpsburg, PA, USA) was used to design the experimental
procedure. EEG signals were recorded at a sampling rate of
1,000 Hz (Net Station version 4.5.6) using a HydroCel Geodesic
Sensor Net with 64 channels and Net Amps 300 amplifiers
(Electrical Geodesics, Inc., Eugene, OR, USA). EEG sensors were
placed according to the international 10–20 system.

The participants sat in comfortable armchairs at a certain
distance from a computer monitor that provided visual stimulation.
They wore earphones to listen to the voice stimulation. Five
vowel stimuli, namely /a/, /e/, /i/, /o/, and /u/, and a rest (mute
sound) stimulus, were used in this experiment. All voice stimuli
were recorded using the Goldwave software (GoldWave, Inc., St.
John’s, NL, Canada), and source audio was obtained from oddcast’s
online. Figure 2 displays the experimental paradigm. Each trial
shows a beep and cross mark that denotes a preparation period
for the participant before listening to the target vowel. After
1 s, the target vowel stimulus is provided to the participant.
Each stimulus was given to the participants randomly. Next,
1 s after the target vowel stimulus, two beeps at intervals of
150 ms are provided to the participant as a preparation for
the vowel imagery. The cross mark disappears after the beeps,
and the participant is then instructed to imagine the target
vowel stimulus for 3 s. Each session repeats each vowel stimulus

10 times, and the participant performs 5 sessions within a
day.

2.3. EEG processing and NA-MEMD

For EEG preprocessing, we first resampled the acquired EEG
data into 250 Hz for the fast preprocessing procedure. Then, the
EEG data were high-pass filtered with 0.1 Hz. Next, an IIR notch
filter (Butterworth; order: 4; bandwidth: 59–61 Hz) was applied
to remove the power line noise. After filtering, to obtain a clean
EEG signal, a noisy trial was rejected via Fieldtrip (Oostenveld
et al., 2011). Then, using 10 × 10-fold cross-validation, the EEG
data were divided into a training set and a test set so that the
training set and the test set were not mixed in the subsequent
process. Finally, to obtain enough samples for training and testing
the classifier, we divided each 3 s trial into five segments with a 1 s
duration and 0.5 s overlap. Therefore, the amount of each vowel
imagery EEG data was up to 250 if not removed via noisy trial
rejection.

Empirical mode decomposition (EMD) is a data-driven single-
channel signal decomposition algorithm proposed by Huang et al.
(1998) that uses a sifting algorithm to extract intrinsic mode
functions (IMFs) from the original signal. Several versions of EMD
have been proposed thus far. Ensemble EMD (EEMD) applies EMD
after directly mixing noise with a signal (Wu and Huang, 2009). It
has a better signal decomposition performance than EMD due to
the influence of noise. Multivariate EMD (MEMD) forms a natural
extension algorithm of EMD that can be used for multivariate
signals because EMD cannot be applied to multivariate signals
(Rehman and Mandic, 2010; Ur Rehman et al., 2013; Zhang et al.,
2017). NA-MEMD is safer than EEMD for noise effects as it does
not directly add noise to the signal. Instead, it adds an extra noise
channel with the same length as the existing multivariate signal
(Ur Rehman and Mandic, 2011; Ur Rehman et al., 2013). Standard
EMD decomposes the time domain signal y(t) into a finite set of
IMFs and residue as follows:

y (t) =
N∑

n = 1

Dn(t)r (t) , (1)
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FIGURE 2

Experimental procedure.

where Dn(t) and r(t) represent the IMFs and residue of the signal,
respectively. Dn(t) is calculated from the local extrema (local
maxima and local minima) of the original signal as follows:

m (t) =
Emax (t) + Emin (t)

2
, (2)

Dn (t) = y (t)−m (t) , (3)

where Emax (t) and Emin (t) respectively represent the envelope
of local maxima and local minima, and m (t) represents
the mean envelope.

The local mean of an n-dimensional signal cannot be
calculated directly, as opposed to standard EMD. Therefore, a
multidimensional signal envelope is generated from multiple signal
projections of an input signal, and the local mean is calculated
by averaging the generated envelopes. NA-MEMD applies MEMD
after adding an independent white Gaussian noise channel to the
multidimensional signal (Ur Rehman et al., 2013). The detailed
procedure for the NA-MEMD algorithm is as follows:

1. Generate a q-channel uncorrelated white Gaussian noise
time series which has the same length as the input signal,
with q ≥ 1.

2. Add the generated noise channels to the multivariate
n-channel input signal (n ≥ 1) to obtain (n+ q) dimensional
multivariate input signal.

3. Choose a suitable point set for sampling on an
(n+ q− 1) sphere.

4. Calculate a projection
{

pθk(t)
}T

t = 1 of the input signal
{v(t)}Tt = 1 along the direction vector xθk for all k (the whole
set of direction vectors), which gives

{
pθk(t)

}K
k = 1 set of

projections.
5. Find the time instants tθk

j corresponding to the maxima of the

set of projected signals
{

pθk(t)
}K

k = 1.

6. Interpolate
[

tθk
j , v(tθk

j )
]

to obtain multivariate envelope

curves
{

eθk(t)
}K

k = 1.
7. Calculate mean m(t) of the envelope curves for a set of K

direction vectors as m (t) = 1/K ×
∑K

k = 1 eθk(t).
8. Extract “detail” ci(t) using ci (t) = v (t)−m(t). If the

“detail” ci(t) fulfills the stoppage criterion for a multivariate

IMF, apply the above procedure to v (t)−ci(t). otherwise,
apply it to ci ( t).

9. Discard q channels corresponding to noise from the resulting
(n + q)-variate IMFs, which gives a set of n-channel IMFs
corresponding to the original signal.

Herein, steps 3–8 refer to the application of MEMD to the
(n + q)-dimensional multivariate signal.

As displayed in Figure 3, nine IMFs obtained for each channel
using NA-MEMD were calculated from participant 7 (denoted as
S7) at channel F5, which covers the Broca’s area (Qureshi et al.,
2017). The figure also describes the decomposition dynamics of
NA-MEMD for imagined speech EEG. The frequency band of IMF
1 is the highest, while that of IMF 9 is the lowest. Therefore,
IMF 1, which has the highest frequency band, was excluded
from this study. Six statistical features, namely mean, absolute
mean, variance, standard deviation, skewness, and kurtosis, were
obtained from each IMF of each channel, and feature vectors were
constructed and used as input to the classifier. The mean value
and absolute mean are the measurements of the arithmetic average
of the signal and absolute signal, respectively (Risqiwati et al.,
2020). Standard deviation is a measured amount of variation or
signal distribution, and variance is the square of standard deviation
(Risqiwati et al., 2020). Skewness is a measure of the asymmetry
of the probability distribution of a real-valued random variable,
and kurtosis is a measure of the peak or flatness of the probability
distribution of a real-valued random variable (Priya et al., 2018).

To confirm the performance of NA-MEMD, WPD was selected
as a comparative signal decomposition method. First, to match
the number of used sub-band, 3-level WPD with Daubechies 2
wavelet was conducted (Zainuddin et al., 2018). Then, from the
eight wavelet coefficients generated by WPD, six statistical features,
which were the same as those for the IMF of NA-MEMD, were
calculated. Finally, feature vectors were constructed and used as
input to the same classifier.

2.4. Multireceptive field CNN

Convolutional neural networks are one of the most popular
feed-forward neural networks, and their structure is inspired by

Frontiers in Human Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1186594
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1186594 August 12, 2023 Time: 10:41 # 5

Park and Lee 10.3389/fnhum.2023.1186594

FIGURE 3

Representation of original EEG (raw) and the extracted IMFs of participant 7 (S7) at channel F5.

the human brain’s visual cortex (Dai et al., 2020). They generally
comprise convolutional layers, pooling layers, and fully connected
layers. The convolutional layer and pooling layer have higher-
dimensional features from the input, and the fully connected
layer mainly plays the role of classification. CNNs have been
used in many bio-signal processing because they mimic the
essential characteristics of the inspired cerebral cortex, such as local
connectivity, invariance to location, and local transition.

One of the characteristics of CNNs is that the units in
individual layers can extract features only from specific samples
called receptive fields (RF) (Schirrmeister et al., 2017). A way
to further narrow down the features likely to be used is to use
domain-specific prior knowledge and investigate whether CNNs
have learned known class discrimination functions. After that, they
calculate the function values of all RFs extracted by all individual
units for each class-distinguishing ability, giving the effect of this
function on the unit output.

The optimal RF may vary from participant to participant. It
may even change for the same participant (Gao et al., 2022).
Therefore, we propose the MRF-CNN approach, combining CNNs
with multiple RFs, as shown in Figure 4. MRF-CNN consists of four
single-receptive field convolutional neural networks (SRF-CNNs).
Each SRF-CNN has different kernel sizes at the first convolutional
layer, which produces a different size of the RF and can therefore
extract broad ranges of high-dimensional features. For instance,
SRF-CNN1 comprises the first convolutional layer with a kernel
size of 1 × 20, which provides the smallest RF compared to
other SRF-CNNs. Each SRF-CNN adds a batch normalization
layer after the convolution layer to improve the training process
and mitigate overfitting. The ReLU activation function follows
an average pooling layer. Moreover, each SRF-CNN consists of
two convolutional layers and one fully connected layer. Therefore,
the output of the fully connected layer is concatenated and

followed by the soft-max layer to classify six imagined speech
EEG.

In our study, the initial learning rate and the iteration of the
CNN-based classification method were set to 0.001 and 2,000,
respectively. The adaptive moment estimation optimizer was used
during the training process. Our graphics processor is NVIDIA
GeForce RTX 2080 TI with 11 GB RAM, and all computational
procedure was done using MATLAB (Mathwork, Inc., USA).
To check the performance of deep MRF-CNN, various machine
learning methods, SRF-CNN, shallow MRF-CNN, and various
end-to-end CNN-based deep learning were used for comparison.
The SVM with the linear kernel (SVMlin), SVM with radial basis
function kernel (SVMrbf ), linear discriminant analysis (LDA), and
k-nearest neighbor (KNN) method were used for classification in
conventional machine learning. The kernel parameters for SVM
were calculated as appropriate through a heuristic procedure using
subsampling during training. The number of neighbors is chosen
to be four which has the best performance in KNN for our data.
EEGNet (Lawhern et al., 2018), deepConvNet (Schirrmeister et al.,
2017), ShallowConvNet (Schirrmeister et al., 2017), and Channel-
wise Convolution with Channel Mixing (C2CM) (Sakhavi et al.,
2018) were also used for comparison end-to-end CNN-based deep
learning methods. To compare the results statistically, the proposed
MRF-CNN method and the results of each classifier were reached
through a paired t-test to calculate statistical significance.

3. Results

3.1. Classification results

Table 1 displays the classification results of the proposed
method and other methods used for comparison. Herein, S1–S9
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FIGURE 4

Architecture of the proposed MRF-CNN.

refer to participants 1–9, respectively. The average classification
accuracy and standard deviation were calculated for each subject
using k-fold cross-validation. In the k-fold cross-validation, all the
trials were randomly divided into k subsets with the same size. After
dividing k subsets, one subset was randomly selected to be used as
a testing set, and the others were used as a training set of classifiers.
In this study, we used 10× 10-fold cross-validation (k= 10), which
repetes ten times of 10-fold cross-validation.

The average classification rate of the proposed method is
approximately 73%, which is higher than the classification accuracy
of the other methods with different CNN architectures. In addition,
the results of the proposed MRF-CNN show statistically significant

differences (p-value < 0.05) from those of other classifiers via
paired t-test.

We compared the performance of NA-MEMD with WPD to
evaluate the performance of NA-MEMD. First, a three-level WPD
was used to match the number of sub-bands used. Next, the same
six statistical features were used using eight wavelet coefficients. As
per Table 1, NA-MEMD and the proposed MRF-CNN outperform
WPD with MRF-CNN, which means the signal decomposition
performance of NA-MEMD is better than WPD.

Table 2 displays the results of SRF-CNN and the proposed
MRF-CNN. The proposed MRF-CNN shows a statistically
significant difference (p-value < 0.05) from the results of each
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TABLE 1 Comparison of the average classification accuracy for all participants of the proposed method with machine learning methods and other
signal decomposition methods.

SVMlin SVMrbf LDA KNN Shallow
MRF-CNN

Deep
MRF-CNN

Deep MRF-CNN
with WPD

S1 61.16 (±4.00) 73.74 (±3.54) 61.42 (±4.24) 68.64 (±5.97) 70.92 (±5.23) 79.51 (±3.51) 75.25 (±3.65)

S2 44.93 (±4.03) 64.33 (±4.07) 48.81 (±4.28) 62.12 (±4.42) 46.00 (±16.87) 64.17 (±5.29) 52.39 (±5.49)

S3 52.79 (±4.59) 68.30 (±4.15) 57.85 (±4.92) 65.07 (±4.81) 57.87 (±7.73) 70.53 (±4.84) 53.46 (±5.91)

S4 53.55 (±3.86) 67.41 (±4.85) 52.30 (±4.61) 62.89 (±4.20) 68.29 (±4.71) 74.45 (±3.98) 67.74 (±5.04)

S5 67.65 (±3.79) 74.70 (±3.64) 60.20 (±4.03) 67.10 (±4.19) 72.19 (±7.56) 80.41 (±6.27) 78.65 (±3.49)

S6 52.69 (±4.50) 67.41 (±4.11) 50.60 (±4.40) 67.27 (±4.36) 65.41 (±4.71) 73.74 (±3.93) 64.84 (±4.89)

S7 55.35 (±3.64) 66.25 (±3.97) 53.52 (±3.90) 61.60 (±4.22) 66.78 (±9.81) 72.28 (±4.34) 69.40 (±5.16)

S8 58.66 (±4.52) 67.86 (±3.77) 53.83 (±4.24) 63.28 (±4.34) 72.82 (±5.82) 76.53 (±4.35) 69.34 (±4.20)

S9 50.95 (±4.09) 67.86 (±4.03) 50.33 (±4.85) 62.89 (±4.20) 56.04 (±3.98) 66.16 (±5.81) 50.19 (±5.03)

Average 55.30 68.65 54.32 64.54 64.04 73.09 64.59

The bold values indicate the classification values of the classifier that performed the highest in each subject.

TABLE 2 Average classification accuracy for all participants in MRF-CNN and SRF-CNN.

Participant Deep
MRF-CNN

Deep
SRF-CNN1

Deep
SRF-CNN2

Deep
SRF-CNN3

Deep
SRF-CNN4

S1 79.51 (±3.51) 73.90 (±5.34) 75.15 (±6.51) 74.16 (±7.16) 75.39 (±7.07)

S2 64.17 (±5.29) 50.21 (±9.52) 51.06 (±13.68) 48.57 (±15.36) 50.09 (±13.62)

S3 70.53 (±4.84) 58.31 (±9.67) 58.44 (±11.66) 57.03 (±13.71) 55.12 (±15.14)

S4 74.45 (±3.98) 67.16 (±8.98) 63.64 (±11.97) 68.77 (±6.32) 65.39 (±13.89)

S5 80.41 (±6.27) 79.51 (±6.40) 76.57 (±8.11) 76.98 (±9.91) 74.37 (±14.00)

S6 73.74 (±3.93) 62.57 (±14.44) 63.81 (±13.05) 63.36 (±14.44) 62.81 (±9.65)

S7 72.28 (±4.34) 66.80 (±9.39) 67.63 (±7.65) 66.95 (±8.96) 67.65 (±10.77)

S8 76.53 (±4.35) 69.52 (±11.87) 70.36 (±9.11) 70.09 (±9.82) 67.97 (±13.39)

S9 66.16 (±5.81) 52.20 (±9.87) 49.12 (±13.35) 47.26 (±14.26) 43.65 (±15.59)

Average 73.09 64.46 63.98 63.69 62.49

The bold values indicate the classification values of the classifier that performed the highest in each subject.

FIGURE 5

Average validation accuracy and loss of each iteration during training at participant 8 (S8).
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deep SRF-CNN via paired t-test. This is because each SRF-CNN
analyzes only a specific region of the input feature vector, whereas
MRF-CNN covers and analyzes small to large ranges.

The proposed method’s validation classification accuracy and
loss were compared with several CNNs to evaluate its robustness.
Figure 5 displays each iteration’s validation classification rate and
loss for S8. As per the figure, the proposed method exhibits the
most effective classification accuracy and loss in the least iteration.
Therefore, the proposed MRF-CNN method is more efficient in
classifying imagined speech EEG than other neural networks.

Table 3 shows the results of the proposed MRF-CNN
framework and various end-to-end CNN-based deep learning
methods. Unlike the proposed framework, end-to-end CNN-based
deep learning methods use raw EEG signals as input. Table 3
demonstrates that using features as input for deep learning, like

the proposed method, is better than using raw EEG as input for
deep learning. Also, the proposed method showed a statistically
significant difference (p-value < 0.05) from other end-to-end
CNN-based deep learning methods.

As per the classification results, the classification accuracy
is higher than the chance level in all classifiers, indicating the
effectiveness of imagined speech EEG. Therefore, vowel imagery
EEG can be used as the ultimate substitute as an alternative
task for other BCIs.

3.2. Frequency sub-band analysis

Table 4 presents the proposed CNN classification accuracy
for each IMF of NA-MEMD. Similar to the results of previous

TABLE 3 Comparison of the average classification accuracy for all participants of the proposed method with other end-to-end deep learning methods.

Participant Deep
MRF-CNN

EEGNet 8,2
(Lawhern

et al., 2018)

DeepConvNet
(Schirrmeister

et al., 2017)

ShallowConvNet
(Schirrmeister

et al., 2017)

C2CM
(Sakhavi

et al., 2018)

Deep
MRF-CNN
with WPD

S1 79.51 (±3.51) 47.31 (±2.84) 58.23 (±3.27) 45.31 (±4.38) 57.48 (±4.89) 75.25 (±3.65)

S2 64.17 (±5.29) 33.72 (±4.80) 35.84 (±5.32) 28.34 (±3.39) 36.18 (±5.25) 52.39 (±5.49)

S3 70.53 (±4.84) 37.46 (±1.97) 40.00 (±5.18) 22.97 (±3.93) 35.09 (±5.40) 53.46 (±5.91)

S4 74.45 (±3.98) 50.53 (±7.37) 56.20 (±7.46) 48.39 (±4.67) 47.81 (±4.45) 67.74 (±5.04)

S5 80.41 (±6.27) 77.31 (±2.44) 79.93 (±5.86) 63.30 (±4.47) 72.13 (±3.14) 78.65 (±3.49)

S6 73.74 (±3.93) 39.14 (±6.73) 49.42 (±3.42) 40.58 (±2.92) 45.61 (±3.63) 64.84 (±4.89)

S7 72.28 (±4.34) 51.38 (±6.91) 47.77 (±4.56) 43.62 (±4.54) 45.85 (±3.50) 69.40 (±5.16)

S8 76.53 (±4.35) 53.20 (±6.87) 57.60 (±4.76) 47.42 (±5.53) 46.57 (±3.42) 69.34 (±4.20)

S9 66.16 (±5.81) 33.75 (±4.06) 38.21 (±4.19) 29.91 (±2.74) 40.14 (±4.50) 50.19 (±5.03)

Average 73.09 47.09 51.47 41.09 47.43 64.59

The bold values indicate the classification values of the classifier that performed the highest in each subject.

TABLE 4 Average classification accuracy for all participants in each IMFs using MRF-CNN.

IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 IMF 8 IMF 9 All

S1 65.39
(±5.87)

73.65
(±4.23)

67.09
(±5.14)

53.87
(±3.04)

40.14
(±5.72)

40.89
(±2.93)

44.94
(±4.45)

59.56 ( 5.00) 79.51 (±3.51)

S2 50.95
(±4.55)

60.14
(±4.45)

48.13
(±4.77)

44.80
(±4.78)

40.28
(±2.80)

37.46
(±4.64)

38.31
(±3.34)

54.27 (±3.47) 64.17 (±5.29)

S3 49.41
(±4.17)

57.03
(±4.73)

47.71
(±5.83)

42.20
(±5.86)

37.46
(±4.35)

41.69
(±4.53)

44.83
(±7.63)

63.39 (±5.98) 70.53 (±4.84)

S4 58.00
(±4.41)

66.96
(±4.17)

58.63
(±4.39)

42.80
(±4.05)

41.21
(±3.99)

40.36
(±3.69)

44.80
(±3.88)

59.85 (±4.93) 74.45 (±3.98)

S5 63.77
(±6.17)

73.94
(±4.74)

64.85
(±4.94)

44.37
(±7.11)

36.98
(±5.39)

34.48
(±3.52)

41.82
(±4.21)

53.40 (±3.86) 80.41 (±6.27)

S6 58.56
(±5.34)

65.68
(±4.41)

56.83
(±4.49)

43.31
(±4.00)

39.57
(±3.75)

42.16
(±2.86)

40.94
(±4.72)

55.61 (±5.04) 73.74 (±3.93)

S7 63.31
(±3.03)

70.62
(±3.20)

59.38
(±5.49)

44.46
(±4.23)

34.69
(±3.33)

39.23
(±4.85)

39.23
(±3.73)

48.38 (±6.07) 72.28 (±4.34)

S8 68.41
(±3.95)

67.21
(±3.74)

61.69
(±4.49)

45.09
(±4.21)

42.06
(±3.33)

39.44
(±4.32)

42.26
(±3.28)

56.90 (±3.25) 76.53 (±4.35)

S9 48.32
(±5.52)

51.34
(±2.89)

47.57
(±5.09)

43.29
(±5.51)

38.63
(±4.90)

38.83
(±3.33)

41.58
(±3.61)

55.88 (±4.08) 66.16 (±5.81)

Average 58.46 65.17 56.88 44.91 39.00 39.39 42.08 56.36 73.09

The bold values indicate the classification values of the classifier that performed the highest in each subject.
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studies (Min et al., 2016; Kaongoen et al., 2021), the speech imagery
information is primarily contained around the higher frequency
band regions (IMF 2 to IMF 4) and in the lowest frequency
band region (IMF 9) of imagined speech EEG. However, since

the classification accuracy exceeds the chance level in all other
frequency bands, those bands also seem to have information for
classifying speech imagery EEG. Therefore, in Table 4, the higher
frequency band region (IMF 2 to IMF 4) may contain more

FIGURE 6

Confusion matrix of (A) MRF-CNN, (B) SVMrbf, (C) SRF-CNN1, (D) SRF-CNN2, (E) SRF-CNN3, and (F) SRF-CNN4 of participant 7 (S7).
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information to help classify imagined speech EEG than other lower
frequency bands besides IMF 9.

3.3. Confusion matrix

We used a confusion matrix to analyze the sensitivity of each
class to determine which imagined vowel affects the classification
accuracy of classifiers. Figure 6 represents the results of the
confusion matrix of MRF-CNN, four SRF-CNNs, and SVM with
radial basis function kernel of S7. As per the figure, the probability
of misclassifying imagined vowel /e/ as /i/ or vice versa is higher
than other misclassifications in the deep learning approach. In
addition, the probability of misclassifying the imagined vowel /o/
as /u/ or vice versa is higher. Next, MRF-CNN and other classifiers
classify resting-state EEG well. However, unlike SVM, MRF-CNN
does not classify imagined vowels as resting-state EEG, as seen in
the blue box in Figure 6B. Comparing each SRF-CNN classifier
reveals advantages and disadvantages in classifying one or two
imagined vowel EEG in SRF-CNN, as seen in the red boxes and
blue boxes in Figures 6D, E. For instance, SRF-CNN2 classifies
the imagined vowel /a/ more accurately than other SRF-CNNs.
However, MRF-CNN exhibits higher classification accuracy than all
SRF-CNNs.

4. Discussion

In this study, we proposed NA-MEMD and MRF-CNN for
imagined speech EEG-based BCIs.

As deep learning has been developed and improved, it has
been applied to various fields and is widely used in EEG (Altaheri
et al., 2021; Rahman et al., 2021; Aggarwal and Chugh, 2022). In
several previous studies, MRF-CNN performed better classification
of multiple images and signal data than other SRF-CNNs, as shown
by analyzing numerous datasets (Hu et al., 2019; Dai et al., 2020;
Liu et al., 2020). However, no other studies have used NA-MEMD
and MRF-CNN for imagined speech EEG signals.

A previous end-to-end deep learning paper mentioned that
the deeper layer could extract more global and high-level features
(Schirrmeister et al., 2017). For example, the deeper layer can detect
complex visual features such as edges, shapes, and objects from raw
images in image processing. In this study, statistical features of the
decomposed EEG were extracted and used as input to the proposed
deep learning architecture. Tables 1, 3 show that the proposed
method outperforms other signal decomposition and classification
methods. Table 3 shows that the proposed method outperforms
other end-to-end CNN-based deep learning. It means the high-
level features from statistical features have more discriminative
information to classify imagined speech EEG than raw EEG. Also,
Tables 1, 3 demonstrate that machine learning outperforms end-to-
end CNN-based deep learning. It means that the high-level features
from raw EEG did not have as much discriminative information
for imagined speech EEG as the statistical features of the EEG.
Therefore, statistical features are more effective than simply giving
raw EEG as input.

Unlike the MI BCI, which is known to be mainly focused
on the alpha and beta bands, in the imagined speech EEG-
based BCI, research on which frequency band is related to

imagined speech EEG is being actively conducted (Zhu et al.,
2019; Altaheri et al., 2021; Kaongoen et al., 2021; Mini et al.,
2021; Lopez-Bernal et al., 2022). In this study, the proposed
method provided more promising results in the gamma and delta
bands than in other bands. However, since it exhibited a much
higher classification rate than the chance level in all bands, we
concluded that the information related to speech imagination is
included across all brain wave bands. Some previous papers have
reported that most information about speech imagination is in
the delta, beta, and gamma bands of speech imagination EEG
(Kaongoen et al., 2021; Mini et al., 2021). Furthermore, it has
been reported that other bands contain less information related
to speech imagination (Tripathi, 2022). However, when we used
NA-MEMD to decompose brain waves, we found that a certain
amount of information related to speech imagination exists across
all bands and that the gamma and delta bands have the most
information. Furthermore, several ECoG studies have reported
that the high gamma band contains information related to speech
processing (Greenlee et al., 2011; Llorens et al., 2011; Martin
et al., 2016; Panachakel and Ramakrishnan, 2021a). Therefore, the
results of this study showed that EEG has information related to
speech imagination in delta regions and gamma regions, which is
consistent with the results presented in previous imagined speech
processing papers.

Currently, many communication systems that apply various
BCI technologies are being developed for commercialization.
For example, the P300 speller has been most widely studied
for decoding spoken thoughts from EEG but requires long
concentration time and high processing times for good
performance. Another example is MI BCI, which requires a
short concentration and low processing time to get results.
However, it can only decipher a limited number of imagined
movements. Imagined speech-based BCI can overcome all of
the abovementioned drawbacks, which has resulted in many
research studies. However, few studies can multi-classify
imaginary speech EEG, and their results are too difficult to
commercialize. This study improved the imagined speech EEG-
based BCIs in terms of multi-class classification accuracy, and
further studies will be conducted to develop a practical and
generalized BCI system.

5. Conclusion

The primary purpose of this study was to test classification
performances for imagined speech EEG using signal decomposition
methods and deep CNNs. The study results concluded that
combining NA-MEMD as the signal decomposition for EEG
and MRF-CNN is the most effective method for classifying
imagined speech EEG. Furthermore, this study demonstrated
statistically significant differences (p-value < 0.05) between the
proposed method and other signal decomposition and classification
methods. However, the proposed method has limitations in real-
time applications due to too much preprocessing time. Also,
it has not been applied to other BCI applications. In a future
analysis, we will advance the proposed approach for other
BCI application.
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