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Sugarcane productivity is being hampered globally under changing

environmental scenarios like drought and salinity. The highly complex nature

of the plant responses against these stresses is determined by a variety of factors

such as genotype, developmental phase of the plant, progression rate and stress,

intensity, and duration. These factors influence plant responses and can

determine whether mitigation approaches associated with acclimation are

implemented. In this review, we attempt to summarize the effects of drought

and salinity on sugarcane growth, specifically on the plant’s responses at various

levels, viz., physiological, biochemical, and metabolic responses, to these

stresses. Furthermore, mitigation strategies for dealing with these stresses have

been discussed. Despite sugarcane’s complex genomes, conventional breeding

approaches can be utilized in conjunction with molecular breeding and omics

technologies to develop drought- and salinity-tolerant cultivars. The significant

role of plant growth-promoting bacteria in sustaining sugarcane productivity

under drought and salinity cannot be overlooked.

KEYWORDS
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1 Introduction

Globally, sugarcane (Saccharum officinarum) is a commercial

crop with high demand. It is extensively used in the sugar industry

and the production of bioethanol (Vital et al., 2017). Sugarcane is

widely grown in tropical as well as subtropical climatic regions,

covers approximately 24.9 million hectares worldwide, and is

cultivated in nearly 80 countries with a total production of 174

million tons (OECD/FAO, 2019). Sugarcane productivity and

sustainability are both affected by abiotic changes, as are other

crops. Climate change increases crop susceptibility to various

abiotic stresses (e.g., drought, salinity, temperature, and

waterlogging) and biotic stresses (e.g., pests, diseases, and weeds)

in current and future scenarios. The severity of these stresses has

significant economic and ecological repercussions on sugarcane

production systems worldwide. Population growth, which is

increasing continuously, could reach approximately 10 billion by

2050 (Food and Agriculture Organization of the United Nations

[FAO], 2017), and rapid globalization puts pressure on agricultural

land, shifting crop cultivation to marginal and less suitable lands.

The adverse effect of environmental changes also leads to yield

reductions and total crop production. High and low temperatures,

floods, drought, and salinity stresses are major factors that impede

crop yield.

Abiotic stresses have harsh impacts on plant morphological,

anatomical, and physiological growth. Abiotic stresses, in general,

have an impact on stomatal conductance, chlorophyll synthesis, leaf

growth, transpiration, photosynthesis machinery, enzyme activity,

membrane stability, and ultimately crop productivity (Gujjar et al.,

2020). Drought affects nearly 30% of agricultural land globally

(Dinh et al., 2017). Drought or water deficit inhibits physiological

and biochemical processes such as growth, development,

photosynthesis, and respiration, resulting in a loss in total

biomass and juice production (Verma et al., 2019; Gujjar et al.,

2021). According to the Food and Agriculture Organization of the

United Nations (FAO) estimates, drought caused an 80% drop in

global productivity (FAOSTAT 2019). Almost one-third (~33%) of

the world’s arable land is salinized, which reduces production and

yield significantly. In the present scenario, drought (water scarcity)

is a major factor leading to lowering cane productivity and sugar

recovery. Zhang et al. (2015) observed clear damage in the structure

of the chloroplast of sugarcane leaves during drought or water-

deficit conditions.

To cope with adverse environmental situations, plants have

developed a variety of coping methods, including escape, avoidance,

tolerance, or a combination of these. In case of escape, the plant

completes its life cycle before the commencement of an unfavorable

environment. However, in sugarcane, being a long-duration crop,

this mechanism is ineffective. The second mechanism is stress

avoidance, which involves developing the mechanism to endure

normal growth and development under stress that can be achieved

through morphological modification such as reducing leaf width

and length, senescence of old leaves, and stomata closure to reduce

water loss (Gujjar et al., 2020). The physiological response of plants

to cope with stress involves cross-talk of distinct pathways like

signal transduction cascades, and phytohormone transduction
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pathways (Gujjar et al., 2019). As the abscisic acid (ABA)

concentration rises, the efflux of K+ and Ca2+ ions starts, which

accumulates in the guard cells. This leads to the closing of stomata

and prevents loss of water by upregulation of soNCED gene in

sugarcane (Li et al., 2013) and several other ABA-responsive genes

in plants (Gujjar et al., 2014; Gujjar et al., 2020). Salicylic acid (SA)

protects the plant from drought (water deficit) and salinity stresses.

SA is a phenolic compound that regulates plant resistance. It binds

to the SA receptors and induces SA genes via nitric oxide action.

Nitric oxide activates ICS1 gene and the SA pathway (Verma, 2021).

Drought stress condition leads to the increased activity of sucrose-

phosphate synthase (SPS) over adenosine diphosphate (ADP)

glucose pyrophosphorylase in sink tissues, promoting sucrose

synthesis over starch by interfering with ADP glucose

pyrophosphorylase. Higher sucrose synthesis promotes the

biosynthesis of osmoprotectants, which protects plants from

osmotic stress.

Genetically engineered plants with compatible solutes such as

glycine betaine, sorbitol, mannitol, and proline enhance abiotic

stress tolerance (Gujjar et al., 2019; Gupta et al., 2022).

Conventional plant breeding can help to cope with abiotic stress

by developing tolerant lines of a few selected crops specific for

drought, but this technique takes more time and labor, and it is

costly (Ashraf, 2010). Breeding techniques like trait-based selection,

inheritance studies, marker-assisted selection (MAS), genome-wide

association study (GWAS), genetics, and approaches using gene

editing and omics (genomics, proteomics, transcriptomics, and

metabolomics) are better ways for selecting and developing heat-

and drought-tolerant genotypes (Oladosu et al., 2019). The science

of stress biology has progressed extensively to develop tolerant

plants, and integrating conventional breeding with omics

technology will open new avenues for future research. In this

review, we have discussed physiological and biochemical changes

during drought and salt stresses, and mitigating opportunities using

approaches such as genome editing, conventional breeding, and

omics technology.
2 Physiological responses of
sugarcane under drought and
salinity stresses

Initial sensing and response communication of plants

toward both drought and salinity are nearly identical due to the

induction of osmotic stress upon exposure that causes a reduction

in growth and stomatal aperture, and nutritional deficiency

(like K+ and Ca2+). However, in addition to dehydration, plants

experience ionic stress during prolonged salt exposure, which

causes leaf senescence and impairment in photosynthesis leading

to a further negative impact on growth (Vasantha et al., 2017). Root

elongation increases during long-term drought exposure, as

evidenced by the need for plants to access groundwater (Brunner

et al., 2015). However, prolonged exposure to salinity stress leads to

heavier roots that accumulate more chloride. The accumulation of

enormous concentrations of ions, especially Na2+, has negative
frontiersin.org

https://doi.org/10.3389/fpls.2023.1225234
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kumar et al. 10.3389/fpls.2023.1225234
impacts on photosynthetic machinery, resulting in a reduction in

enzyme activities as well as the synthesis of pigment. These stressful

states reduce the rate of carbon assimilation, while the inability of

plants to absorb surplus light leads to enhanced accumulation of

reactive oxygen species (ROS), which consequently results in

oxidative stress. Most plant species have a mechanism for salt

exclusion, which can counteract salt entry into the plant cell by

reducing concentration in the cytoplasm via sequestration into the

vacuole (Khan et al., 2019). Negative effects on photosynthesis and

other physiological activity can be reduced by modifying their

physiological processes.
2.1 Photosynthesis

Photosynthesis is a prime physiological process that can be the

principal target of drought- and salinity-induced imbalance

(Chaves et al., 2009) (Figure 1). A high amount of water is

required in sugarcane during tillering and the grand growth phase

to sustain the physiological activity as well as growth and

development, and in such a way, sugarcane is more vulnerable to

drought stress at this phase of development (Dinh et al., 2017).

Sugarcane, as a C4 crop, has a unique CO2 concentrating system

that gives it an advantage over C3 crops in terms of reduction of

photorespiration and maximization of its water use efficiency

(Ghannoum, 2009; De Souza et al., 2018). Reduced leaf water

potential decreased photosynthetic enzyme activity such as

ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo),

phosphoenolpyruvate carboxylase (PEPC), nicotinamide adenine

dinucleotide phosphate-malic enzyme (NADP-ME), and pyruvate,

phosphate dikinase (PPDK). The decrease in activity was most

pronounced in PPDK (Du et al., 1998). Sugarcane has two distinct
Frontiers in Plant Science 03
modes of C4 metabolism depending on their decarboxylating

enzymes, namely, NADP-ME and phosphoenolpyruvate

carboxykinase (PEPCK), and PEPCK is more prevalent than

NADP-ME (Calsa and Figueira, 2007).

A substantial drop in physiological attributes during drought

stress in both susceptible and tolerant genotypes of sugarcane can

be noticed, while the severity of the adverse effect was pronounced

in susceptible genotypes. Higher biomass accumulation, increased

photosynthetic rate, and antioxidant enzyme activities were

exhibited by tolerant genotypes (Zhang et al., 2020). Physiological

processes and the yield of sugarcane were significantly affected

under drought stress (Silva et al., 2008; Basnayake et al., 2012). The

decline in the photosynthesis rate led to the consequent reduction in

the yield during drought (Zargar et al., 2017). Plants can reduce

their stomatal aperture in response to drought situations, and when

the stress condition persists, impairment in the leaf photochemistry

and carbon metabolism results in negative consequences on

photosynthesis. Reduced stomatal aperture prevents or minimizes

water loss, and this protection system can be considered an adaptive

response toward drought onset (Saradadevi et al., 2017).

Drought stress-induced non-stomatal constraint has been

described as a major obstacle that inhibits the photosynthesis in

sugarcane (Ribeiro et al., 2013), under severe drought, or prolonged

moderate drought conditions in sugarcane production systems

(Basnayake et al., 2015). Under mild water deficiency, changes in

the activity and amount of the RuBisCo were reported at the

transcription level (Zhang et al., 2013). Moreover, ROS

production in the chloroplast under a stress state reduces the

adenosine triphosphate (ATP) production by decreasing the

activity of ATP synthase, consequently lowering the regeneration

capacity of substrate ribulose-1,5-bisphosphate (RuBP). Early onset

of drought stress in sugarcane led to the reduction in the efficiency
FIGURE 1

Consequence of drought and salinity on the photosynthetic performance. Downregulation of enzymatic activity as well as electron transport chain
(ETC) that leads to rupture of membrane, reduced CO2 availability, and senescence of leaf are the events taking place under drought stress. In
contrast, salinity leads to ion toxicity, disruption of membrane, reduction in stomatal conductance, lower PSII quantum yield, and slower electron
transport rate, which will, in turn, reduce the photosynthetic enzyme activity.
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of photosystem (PS)-II by lowering the maximum quantum yield

(Leanasawat et al., 2021). Physiological traits like the maximum

quantum yield of PSII efficiency (Fv/Fm), stomatal conductance,

and net photosynthetic rate have been investigated in sugarcane

during drought stress and recommended for the improvement in

yield under drought (Jangpromma et al., 2010; Cha-um et al., 2012).

Even though plants have complex machinery to adapt under

osmotic and ionic stresses induced by high salt through an osmotic

adjustment with the aid of elevated levels of compatible solute

accumulation, drastic retardation of growth at various stages is

substantiated due to the highly sensitive nature of sugarcane (Plaut

et al., 2000). Reduced photosynthetic efficiency under salt stress

conditions debilitates productivity and quality (Akhtar et al., 2003),

resulting in a reduction in stalk sucrose concentration (Rozeff,

1995). Reduction in the photosynthetic rate in sugarcane under

salinity stress is probably a response against stress in which loss of

moisture is prevented through the partial closure of stomata,

followed by stomatal conductance reduction, reduced

transpiration rate, and, subsequently, limitation in the internal

stomatal CO2 concentration (Sharma et al., 2021). However, non-

stomatal factors such as degradation of chlorophyll and reduction

in photosynthetic enzyme activity could also play a major role

(Vasantha et al., 2010). Additionally, salt stress influences other

components of the photosynthetic machinery, such as chlorophyll

and other accessory pigments, biosynthetic enzymes, and carbon

fixation competency of the RuBisCo (Demetriou et al., 2007). The

susceptibility of light-mediated photosynthetic reactions has been

investigated against salt stress and was found to be extremely high.

Salinity-induced photosynthesis inhibition is somewhat related to

the PSII complex. Reduced PSII activity and a decrease in electron

transport quantum yield alter the pigment–protein complex of

photosynthesis (Demetriou et al., 2007). Reduction in maximum

quantum yield of PSII efficiency (Fv/Fm) in sugarcane under

salinity stress due to lesser uptake of water lowers the ATP

synthase electrochemical potential as well as photo-system-I,

which can further hinder the ATP and NADPH production

through interference in photosynthetic apparatus (Silva et al.,

2018). Variation in the photosynthetic complex parameters relies

on the duration and severity of stress, with plant species being the

main factor.
2.2 Chlorophyll content

The leaf chlorophyll content of the plant plays a significant role

in its photosynthetic capacity. Under salinity or drought conditions,

a reduction in chlorophyll content caused by photooxidation of

photosynthetic pigments and degradation of chlorophyll is

supposed to be a consequence of oxidative stress. Sugarcane is an

isohydric plant, capable of maintaining water potential under

water-deficit conditions (Meinzer and Grantz, 1990), and this

characteristic of the plant helps to use water more efficiently

under mild-to-moderate osmotic stress. However, under severe

stress conditions, the chloroplast structure of plants is affected

due to their chlorophyll content, which leads to a reduction in

photosynthetic rate. Different studies have reported that sugarcane
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chlorophyll concentration decreases in response to osmotic stress

(Tang et al., 2021). Sharma et al. (2021) reported a reduction in

SPAD (soil plant atmosphere device) reading of sugarcane under

salt stress by 56% as compared to their non-stressed counterparts.

Under extreme drought stress conditions, the tolerant sugarcane

varieties had higher SPAD values (Zhang et al., 2020). Reduction in

total chlorophyll content was noticed in both tolerant and

susceptible sugarcane clones exposed to salinity, and the level of

reduction was less in tolerant clones. Additionally, phenolic and

anthocyanin syntheses increased (Wahid and Ghazanfar, 2006).

During salt stress, the chlorophyll content of sugarcane becomes

reduced, and this impacts the plant’s photosynthetic capacity.

Commercial varieties, which have higher chlorophyll content

during salt stress, exhibit higher activity of aminolevulinic acid

synthase (ALA synthase) or lower chlorophyllase (Dhansu et al.,

2022). The interruption in the photosynthetic potential caused by

lower photosynthetic pigments reduces the primary production

efficiency of the cane crop.
2.3 Phytohormonal regulation

The recognition of the stress event initiates cascades of signal

transduction; further interaction with the phytohormones

transduction of signal via pathway takes place (Harrison, 2012).

Moreover, their important role in plant growth endogenous

phytohormone assists in the adaptation of plants to drought and

salt stresses through manipulation of their molecular and

physiological responses (Fahad et al., 2015; Wani et al., 2016). A

diverse group of phytohormones such as ABA, cytokinins (CK), SA,

indole-3-acetic acid (IAA), jasmonic acid (JA), and gibberellins

(GA), biosynthesis, accumulation, and their further distribution are

all influenced under drought and salt stress conditions (Eyidogan

et al., 2012; Gujjar and Supaibulwatana, 2019). Rodrigues et al.

(2011) reported the differential expression of genes associated with

hormone metabolism, stress response, signal transduction, and

photosynthesis under different levels of drought in sugarcane.

Under drought- and salt-induced stress, signal perception triggers

the synthesis of phytohormone, abscisic acid, which plays a

significant role in the stress response. Stress perceived by plants

triggers the ABA synthesis principally in roots. Moreover, synthesis

of ABA can also take place in the leaf cells; further, it can be

translocated throughout the plant and can regulate the

physiological activities such as stomatal aperture, activities of

channels, and upregulation of ABA response-associated genes

(Gujjar et al., 2014; Fahad et al., 2015; Ullah et al., 2018). Li et al.

(2014) suggested that the endogenous synthesis of ABA as well as its

exogenous application in sugarcane imparts drought tolerance

through enhanced expression of its antioxidative system. A steady

decline in the transpiration rate as well as stomatal conductance,

associated with increased ABA content, was observed in sugarcane

during rising drought conditions introduced for up to 9 days (Li

et al., 2016).

Endogenous ABA, as well as exogenous application, regulates

the stomatal closing and opening (Wilkinson and Davies, 2002) via

one of the various signaling pathways (Neill et al., 2008) involving a
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network of alternative intermediate molecules such as secondary

metabolites and mineral ions (An et al., 2016; Li et al., 2016). ABA-

regulated gene in sugarcane, SoNCED, upregulated under drought

stress, which encodes an enzyme 9-cis-epoxy carotenoid

dioxygenase, which commits the rate-limiting steps of ABA

biosynthesis (Li et al., 2013). Bundle sheath cell’s water status

regulation is linked to SoDip22 (sucrose-phosphate synthase)

(Sugiharto et al., 1997). The effect of IAA is extensively accepted

for the invigorations of plant growth and their development (e.g.,

apical dominance, cell elongation, and vascular tissue expansion)

(Fahad et al., 2015). This phytohormone appears to carry out

growth correspondence during drought and salt stresses

(Eyidogan et al., 2012; Iqbal et al., 2014), induce the expression of

genes responsible for the initiation of the root meristem, accelerates

the root branching, and improves stress tolerance in plant. Li et al.

(2016) found an increase in both ABA and IAA contents in

sugarcane in response to drought stress.

Salicylic acid, as a phenolic compound, is generally associated

with pathogen-mediated protein expression and regulation (Miura

and Tada, 2014). Additionally, various reports highlighted the

importance of SA in combating drought and salt stresses and

defending the plant against them (Fahad and Bano, 2012).

Almeida et al. (2013) reported the differential expression of

sucrose-phosphate and trehalose-6-phosphate under drought

stress in sugar cane following the foliar application of SA.
2.4 Source/sink interplay

Carbon assimilation and conversion into the glucose and other

sugars are carried out into the source organs (exporter of

photosynthates, e.g., completely developed leaves), and photo

assimilates are exported to the sink organs (photo accumulation

importers, e.g., stems, root, fruits, and seed) for the growth and

development of plant organ (Yu et al., 2015). During plant growth

phases, communication between organs of source and sink

influences the assimilation of carbohydrates and their

partitioning/allocation, both of which are closely related to

photosynthesis. Reduction in the photosynthetic activity under

drought and salt stress conditions exacerbates the effect on

carbon flow in sink organs (Courtois et al., 2000; Lebon et al.,

2006). Drought and salinity stresses influence phloem loading and

sugar metabolism and have been extensively studied (Pattanagul

and Thitisaksakul, 2008; Lemoine et al., 2013). Reduced

photosynthesis leads to the alteration in carbohydrates at the

source and inconsistency in the translocation pattern between

source and sink levels under drought and salinity, particularly in

sucrose-translocating plants (Pattanagul and Thitisaksakul, 2008).

Furthermore, the reduction in demand caused by stress-induced

growth limitation raises the sugar concentration.

During drought stress, the expression of various genes including

gluconeogenic enzymes fructose-bisphosphate aldolase (Cramer

et al., 2007), soluble sugar phosphorylating enzyme hexokinase

(Whittaker et al., 2001), and enzyme associated with the

biosynthesis of the raffinose family oligosaccharide galactinol

synthase (Taji et al., 2002) enhanced, as exhibited by their
Frontiers in Plant Science 05
abundance at the transcript level in the source leaves.

Enhancement in the activity of sucrose-phosphate synthase over

ADP glucose pyrophosphorylase in sink tissues under drought

stress augmented sucrose synthesis over starch by interfering with

the ADP glucose pyrophosphorylase (Geigenberger et al., 1997).

Maintenance of cell turgidity under drought can be regulated

through a higher content of sugar found in the cytosol, which

lowers the osmotic potential (Razavi et al., 2011). Subsequently, a

decline in photosynthetic activities as well as leaf senescence can be

observed. An increase in plant sugar levels under drought stress is

probably an attempt by plants to balance their metabolism for the

further maintenance of osmotic homeostasis (Giné-Bordonaba and

Terry, 2016). Since sugar concentration acts as a differential sensor

for the process like, leaf development by the route of senescence

may become affected; however, it can be utilized in carbon

mobilization and subsequent reallocation to assist the host plant

in mitigating drought-induced negative effects (Whittaker

et al., 2001).

Irrigation with poor quality water commonly leads to the

salinity stress that initially affects the physiological traits of the

plants as influenced under drought stress, specifically the early

response of the plant, since both the stresses interrupt the water

absorption via the root system through osmotic effects (Navarro

et al., 2008). Moreover, prolonged exposure to particular stress

affects differently, and the transport of sodium into the plant tissues

by the route of the transpirational pull leads to sodium toxicity that

can be considered as an initial response to stress. The involvement

of K+ channels in Na+ recirculation via leaf phloem to roots led to a

decrease in Na+ concentration in leaves (Berthomieu, 2003). The

distinct mechanisms utilized by plants to alleviate salt stress are

either reduction in cytoplasmic salt concentration or curtailed entry

of ions into the plant tissues.
3 Biochemical responses of sugarcane
under drought and salinity stresses

Production of ROS under stress conditions damages

membranes and plant biomolecules that affect physiological

processes. Antioxidant defense system scavenges the ROS

produced in plant cells, which participates in better crop

development, plant redox signaling, and plant–microbe

mutualism (Hasanuzzaman et al., 2020). Plants utilize enzymatic

and non-enzymatic antioxidant defense mechanisms to alleviate the

destruction caused by ROS production. Enzymatic antioxidant

involves catalase (CAT), superoxide dismutase (SOD), peroxidase

(POX), ascorbate peroxidase (APX), lipid peroxidase (LPX),

glutathione peroxidase (GPX), and glutathione reductase (GR).

The non-enzymatic antioxidants are tocopherols, stilbenes,

phenols, ascorbate, glutathione, flavonoids, and carotenoids. In

the last decades, flavonoids have been considered a powerful

antioxidant in plant systems. These enzymatic and non-enzymatic

antioxidant systems and osmolytes quench ROS produced during

drought and salinity stresses (Kumar et al., 2021), thereby defending

cells from oxidative stress, as shown in Figure 2.
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The antioxidant defense mechanism has a significant role to

prevent drought and salinity stresses and promote crop growth

(Gupta et al., 2022). During aerobic metabolism, nearly 1–2% of

oxygen uptake by plants is converted into ROS as a by-product in

cell organelles like mitochondria, the chloroplast, and peroxisomes.

Singlet oxygen, hydroxyl radical, superoxide radical, hydrogen

peroxide, alkoxy radicals, and peroxy radicals are classified as

reactive oxygen species (Miller et al., 2010; Farnese et al., 2016).

Photochemical and electron transport chain reactions mainly

contribute to ROS generation in plant cells. Abiotic stress

conditions, especially drought and salinity, lead to the exponential

hike in ROS production, and antioxidant defense systems are

unable to scavenge the ROS produced, leading to oxidative burst

that damages biomolecules, osmotic balance, and cellular

homeostasis (Maier et al., 2001; Segal and Wilson, 2018).

During the crop growth cycle, plants experience several stresses

and utilize their inherent system to combat those stresses, which can

be referred to as innate tolerance. However, acquired tolerance is

the mechanism that evolved in some plants to overcome these stress

conditions. These phenomena acknowledged the immune response

of plants against stress (Gupta et al., 2022).
3.1 Antioxidant systems

Plants developed complex oxidation–reduction reaction in

which ROS are used as markers to regulate normal and stress-

related biological processes (Mittler et al., 2011). The activation of

the antioxidant defense system is an important chemical process to

oxidative stress with respect to plant adaption. Thus, the positive

regulation at the transcriptional and post-transcriptional levels of

the antioxidant defense system acts as an important marker for

stress such as drought and salinity (Gill and Tuteja, 2010). The

important ROS scavengers in plants are APX, CAT, and GPX. In

comparison to the upregulation of CAT and GPX, the upregulation
Frontiers in Plant Science 06
of APX occurs strongly at the post-transcriptional level. APX is a

marker enzyme for the cytosol, chloroplast, and peroxisomes and is

found in all plant species. Mittler and Zilinskas (Mittler and

Zilinskas, 1994) found higher activity of APX during drought

stress in peas. In Arabidopsis, alx8 mutant (altered expression of

APX2) has increased tolerance toward drought stress (Estavillo

et al., 2011). Transgenic tobacco with overexpressed APX

(peroxisomal/cytosolic) from poplar has increased plant

performance during drought (Rodrigues et al., 2009). Rodrigues

et al. (2009) observed enhanced expression of a peroxidase gene in a

drought-tolerant sugarcane cultivar, and a decrease in peroxidase

activity is considered to be a limiting step to sugarcane ROS

deactivation (Chagas et al., 2008).

CAT is a tetrameric heme-containing enzyme. In peroxisomes,

the reaction of catalase involves the dismutation of H2O2 into H2O

and O2•
−. An isomeric form of catalase (CAT2) is important during

severe drought stress. CAT activation occurs at the post-

transcriptional level. The complex regulation of CAT activity

involves gene expression, translation, and protein turnover when

plants are exposed to severe drought (Sofo et al., 2015). The activities

of APX and CAT control redox levels in cells and may contribute to

the increased capacity of some sugarcane cultivars to decompose

H2O2 under drought conditions (Jain et al., 2015; Sales et al., 2015).

SOD is a class of metalloenzyme. It catalyzes the dismutation of two

molecules of O2•
− into molecular oxygen and H2O2. The higher

activity of SOD isoforms (Mn-SOD, Fe-SOD, Cu, and Zn-SOD)

counteracts O2•
− accumulation in different cell organelles during

drought stress. Transgenic plants that are more drought-tolerant

expressed higher activity of Cu-Zn SOD (Wu et al., 2016). SOD

activity in sugarcane is regulated by water-deficit conditions (Jain

et al., 2015). Moreover, drought-tolerant sugarcane cultivars exhibit

maximum SOD activity under water deficit (Jangpromma et al.,

2012). Different SOD isoforms in sugarcane cultivars with different

expression patterns have a major impact on antioxidant response

during stress conditions (Jain et al., 2015).
FIGURE 2

Defense system of sugarcane to combat and tolerate drought- and salinity-generated ROS and their consequence. ROS, reactive oxygen species.
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However, low-molecular-weight compounds such as

glutathione-S-transferase (GST), thiol peroxidases, and GPX

engage in an antioxidant defense system. Drought increases the

activity of thiol peroxidases such as NADPH-thioredoxin reductase

(NTR), ferredoxin-dependent TRX reductase (FTR), and GSH/

GRX systems. To overcome the drought stress activity of

MDHAR, DHAR, GST, and GR transcripts were also expressed

(Vaseghi et al., 2018). PRX plays a major role during redox signaling

and information transmission in the cell, which might be their

predominant function under drought stress (S.-Z. Zhang et al.,

2006; Thalmann and Santelia, 2017). To protect plant cells from

oxidative damage, non-enzymatic antioxidant molecules can work

in tandem with the enzymatic ROS scavenging system.
3.2 Osmolytes

Plants in a drought environment must integrate stress

signaling and osmoprotective mechanisms. The biotechnological

implication for improving abiotic stress tolerance involves

metabolic pathway engineering for a number of osmolytes such

as glycine betaine, sorbitol, mannitol, and proline (Gujjar et al.,

2018; Gujjar et al., 2019). Transgenic plants engineered with

osmoprotectant molecules have improved resistance to drought

stress, high salinity, and cold stress (Suprasanna et al., 2016; Gupta

et al., 2022). Abiotic stress increases the activity of sucrose

catabolic enzymes such as invertase (INV) and sucrose synthase

(SuSY). Invertase catalyzes sucrose into glucose and fructose,

while sucrose synthase gives uridine diphosphate (UDP)-glucose

and fructose. Trehalose is a non-reducing disaccharide sugar that

acts as an osmolyte and stabilizes membrane lipids (Suprasanna

et al., 2016). Sugars homeostasis is a dynamic process in which

sucrose–starch interconversion occurs as per the cellular

requirement. Starch metabolism and its associated enzymes

perform important roles in alleviating the effects of abiotic stress

in plants (Thalmann and Santelia, 2017). In sugarcane, the

accumulation of osmolytes in drought conditions prevents

damage associated with ROS generation (Guimarães et al.,

2008). Proline is an efficient scavenger of ROS. Furthermore,

proline can function as a compatible osmolyte and molecular

chaperone. During water-deficit conditions, proline is

accumulated in plants mainly due to increased synthesis and

reduced degradation (Das and Roychoudhury, 2014).
4 Breeding for drought and salt
tolerance in sugarcane

Among the different methods of sugarcane breeding, the two

approaches, i.e., traditional breeding methods (involving parental

selection, hybridization, and progeny selection) and molecular

breeding methods, that complement the traditional approaches

using molecular tools are the major approaches.
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4.1 Conventional breeding

In the present climatic change scenario, frequent occurrences of

abiotic stress such as drought and salt stresses in various regions are

major constraints for the sugarcane production system that leads to

a decline in tonnage. Despite recent progress in conventional

breeding as well as transformation technique, the development of

drought- and salt-tolerant sugarcane is still a major challenge. These

limitations are due to the complex sugarcane genome, complicated

plant responses to water-deficit and salinity conditions, and

difficulty in the identification of morpho-physiological traits that

could be utilized during the selection processes for the commercial

production of drought- and salt-tolerant varieties. The parental

selection is very important from the viewpoint of the development

of commercial cultivars and depends on the progeny performance

(Breaux, 1984). The response of clones to various biotic and abiotic

stresses, in addition to cane yield and sucrose content, should be the

main criteria for selecting good parental lines under changing

climatic conditions. Two types of selection approach, i.e.,

individual and family selection, are utilized in sugarcane breeding

programs. Individual selection approach is used when characters

have high heritability, and family selection is used when the

heritability of the family mean is higher than that of a single

plant (Falconer et al., 1996).

Hybridization techniques include biparental crossing and poly

crossing involving two and more than two parents, respectively

(Cox, 2000). Hybridization and selection techniques are mainly

used in sugarcane breeding programs to generate new recombinant

clones with high yield, sugar content, and resistance to stresses.

Generally, the parents for breeding for peninsular zones and north

Indian plain zone are to be selected on the basis of water regimes,

rainfall patterns, and irrigation facilities. As far as yield and sucrose

are concerned, the studies suggest that in sugarcane breeding, more

importance has to be given to the selection of the female lines than

to the male lines (Misra et al., 2020). Drought is a complex trait and

involves multiple dynamic interactions. During breeding for

drought tolerance, selections for traits such as stalk number,

height, diameter, and weight are critical along with the cane

weight. Integration of suitable physiological traits in the selection

program will be valuable in improving the genotypes against

drought and salinity stresses. In the past, traditional breeding

methods have been fruitful in the development of drought-

tolerant cultivars such as Co-87 and Co-263 (Sreenivasan and

Amalraj, 2001). Saccharum spontaneum, Narenga, and Erianthus

serve as donor varieties in drought conditions when used as a parent

for breeding the variety (Wahid and Ghazanfar, 2006; Patade

et al., 2008).

The essential guiding force for adaptive responses to drought

and other stresses is genetic variability. Conventional breeding is

regulated by Mendelian genetics, which means that traits are passed

down from parent to offspring. Plant breeders cross-pollinate

parental lines with desired traits to produce progeny with desired

characteristics. Conventional breeding has primarily been used to
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increase genetic variability in sugarcane in order to improve variety.

During the grand growth phase, cane formation and elongation

occur very actively (Jaiphong et al., 2016), and water stress causes

crop production losses of up to 60% (Basnayake et al., 2012).

Moderate stress, in contrast, has a positive effect on sucrose yield

during the maturity stage. Imposing stress at specific crop stages is

an effective method for screening abiotic stress and recording

observations on physio-biochemical parameters at different crop

intervals. Drought has the greatest impact on complex traits such as

shoot, leaf, and root parameters; however, their genetic control

varies between genotypes. Under water stress, highly exploitable

genetic variation for cane and sugar yield was observed

(Hemaprabha et al., 2006; Meena et al., 2013; Basnayake et al.,

2015; Meena et al., 2020). Through conventional breeding, varieties

that have high yield and high sucrose content and are drought

tolerant are produced.

Imposing stress at a specific crop stage is an effective approach

for screening abiotic stress and recording the observation of physio-

biochemical parameters at various crop intervals. Therefore,

screening for these important parameters under the drought

stress environment is of paramount importance for drought

tolerance breeding. The selection of drought-tolerant genotypes

through an indirect selection of physiological traits can also be

integrated into the breeding program for the improvement of

sugarcane (da Silva et al., 2012; Basnayake et al., 2015).

Physiological traits are used for drought-tolerant genotype

selection. S. spontaneum, Narenga spp., and Erianthus species are

used in the sugarcane breeding program for the incorporation of

drought tolerance in sugarcane (Meena et al., 2020). Alternatively,

drought tolerance can be increased in the plants through exposure

to water stress during the early stage of the life cycle (Marcos et al.,

2018; Leanasawat et al., 2021). For the selection of desired clones,

clones should first enter zonal evaluation trials after those distinct

stages of selection; i.e., ground nursery stage, first clonal stage (C1),

second clonal stage (C2), and pre-zonal varietal trial stage (PZVT)

are used for selection of desired sugarcane clone. For screening

crops for abiotic stresses like drought, waterlogging, and salinity,

these stresses are applied at C2 and PZVT stages to identify plants

that are high yielding and vigorous and perform better in a

particular specific climate.

The screening of drought-tolerant cultivars showing low

heritability and high interactions between genotype and

environment (G × E) is difficult because of the complexity of

traits and genes (Cattivelli et al., 2008). Drought-tolerant lines of

some selected crops were produced through conventional plant

breeding, but this method is time-consuming, labor-intensive, and

costly (Ashraf, 2010). Crop physiology, marker-assisted breeding,

GWAS, gene editing, and omics (genomics, transcriptomics,

proteomics, metabolomics) are all being used to provide

knowledge and tools for plant improvement (Oladosu et al.,

2019). Despite the importance of quantitative trait loci (QTLs)

and GWAS in identifying genomic regions associated with drought-

related traits, genetic variants associated with drought-related traits

are largely unknown (Liu and Qin, 2021). Given this, there is an

urgent need to integrate modern breeding techniques with multi-
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omics platforms and high-throughput phenotyping to vastly

improve our understanding of drought stress response in sugarcane.
4.2 Use of gene pool

Sugarcane parent species have a complex genome that evolved

from a large breeding pool of five closely related genera: Saccharum

species (S. officinarum, S. spontaneum, and Saccharum robustum),

Erianthus species, Miscanthus species, Narenga species, and

Sclerostochya species (Scortecci et al., 2012). Several Saccharum

spp. and related genera, including Erianthus spp., Saccharum

barberi, Saccharum sinense, and S. robustum, are thought to be

good sources for instilling salinity tolerance in commercial cultivars

(Rao and Sreenivasan, 1985). The ploidy level of Saccharum species

ranges from 5× to 16× (Manners et al., 2004). Modern sugarcane

varieties are produced by interspecific hybridization between S.

officinarum and S. spontaneum. The tropical cane, which is the

noble cane S. officinarum, has a thicker stem, higher sugar content,

and basic chromosome number x = 10. S. spontaneum is a wild

species tolerant to biotic and abiotic stresses with basic

chromosome number x = 8 (MaChado et al., 2009; Sica, 2021).

The varied species of these genera can be classified into various gene

pools based on their cross-ability with the cultivated sugarcane. In

the primary gene pool (GP-I), the varied species are grouped, which

can be easily crossed to produce a fertile hybrid. In the secondary

gene pool, the species are crossable with certain difficulties and tend

to be sterile. S. spontaneum, S. barberi, S. sinense, and S. robustum

can be viewed as a secondary gene pool. However, the number of

generations of breeding required for the transfer of traits in varietal

improvement will be more. In the tertiary gene pool, Narenga,

Miscanthus, Erianthus, Sclerostachya, Sorghum, and Zea are

included, and the crossing of these species with cultivated

sugarcane is difficult to achieve and needs the techniques of

embryo rescue and tissue culture (Figure 3). The produced

hybrids will be weak, lethal, or completely sterile (Sica, 2021).
4.3 QTL/candidate gene-based tolerance

Molecular methods are suitable for the development of cultivars

for tolerance to one or more traits at once. In sugarcane, the

Agrobacterium-mediated transformation of Arabidopsis tubes

pyro-phosphatase (AVP-1) was performed to achieve tolerance

against drought and salinity stresses (Kumar et al., 2014). New

breeding and genomic approaches have been used in recent decades

to improve genotypic performance under abiotic stress conditions.

Introgression of genes from wild species and related genera for

abiotic stress tolerance traits in sugarcane is important in the

development of several stress-tolerant varieties. The QTL

mapping work has been performed for the disease resistance

traits, soluble solid content, and yield traits (Balsalobre et al.,

2017); however, to date, there is no report on mapping QTL(s)

related to drought and salinity. The sources of genes/QTLs for

drought and salinity tolerance need to be explored at a greater pace
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than the earlier, already reported species of sources such as wild

relative S. spontaneum, and members of the related genera such as

Narenga spp. and Erianthus spp. (Meena et al., 2020) serve as

valuable resources for the same. The utilization of wild and related

species in the breeding program is further made difficult due to

genome complexity and polyploidy. A successful cross was made to

generate an inter-generic hybrid between Erianthus arundinaceus

and S. spontaneum (Lekshmi et al., 2017).

Some of the hybrids have higher root volume and polyphenol

component, thereby influencing the extent of drought tolerance

(Fukuhara et al., 2013). The transcriptomic analysis of the drought-

tolerant and sensitive genotypes led to the identification of several

differentially expressed genes (DEGs), and it was noted that the

genes such as MYB, E3 ubiquitin ligase, small ubiquitin-related

modifier-protein (SUMO-protein), SIZ2, and aquaporin are

drought-responsive genes and transcription factors (Belesini et al.,

2017). When salt stress is introduced, an osmotic adjustment

mechanism begins to maintain cell turbidity, resulting in slow

growth in stressed plants. Changes in morphology, anatomy,

water relations, photosynthesis, hormones, ion distribution, and

biochemical adaptation may occur depending on genotype,

developmental stage, stress intensity, and duration (Liang et al.,

2018). Identifying QTLs associated with salt tolerance is an

important step toward improving salt-tolerant varieties (Nakhla

et al., 2021) and increasing crop production in saline soils. The

various QTLs associated with salt tolerance have been identified in

cultivated crops such as soybean (Glycine max L. Merr.) (Cho et al.,

2021), maize (Zea mays L.) (Luo et al., 2019), and rice (Oryza sativa

L.) (Singh et al., 2021), but reports on identified QTL(s) in
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sugarcane are still lacking. Understanding the magnitude of the

impact of salinity on sugarcane crop growth and yield, as well as

mapping the salinity stress QTL, should be the primary focus. The

list of candidate genes suitable for the improvement of sugarcane

for tolerance against salinity and drought is presented in Table 1.
5 Genome editing approaches

In crops with complicated genomes like sugarcane, introducing

a desired feature into a commercial elite variety by traditional

breeding is extremely labor-intensive and time-consuming. It

takes 12–15 years for a normal breeding method to produce an

improved variety (Mohan, 2016; Chen et al., 2017). It is also nearly

impossible to introduce several characteristics at a time or to change

the metabolic pathways. However, with the introduction of

transgenic technology, this was made possible to some extent.

With the advent of genome editing (GE) approaches, it may now

be performed with significant success and precision. Genome

editing is a revolutionary technique in which nucleases create

sequence-specific double-strand breaks (DSBs) to insert, remove,

or replace DNA at specified locations in the genome of any

organism. Non-homologous end joining (NHEJ) or homologous

recombination (HR) is used to repair these breaks, resulting in

specific mutations. Drought tolerance can be realized via genome

editing to target drought-sensitive genes as well as negative

regulators of drought tolerance mechanisms in crops. In

sugarcane, ScNsLTP gene was targeted to modify the response of

a novel non-specific lipid transfer protein, thereby catalyzing
FIGURE 3

Classification of Saccharum species gene pool.
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phospholipid response against the abiotic stress (Chen et al., 2017).

There are primarily four different families of genome editing tools

or nucleases: mega nucleases, zinc finger nucleases (ZFNs),

transcription activator-like effector nuclease (TALEN), and
Frontiers in Plant Science 10
clustered regularly interspaced short palindromic repeats

(CRISPR/Cas9).

Zinc finger nucleases were the first endonucleases discovered.

These are based on zinc finger proteins, a type of transcription
TABLE 1 Genes and their function in governing the tolerance against drought and salinity environments.

Trait Gene Function References

Drought and
salinity

Trehalose synthase (TSase) Trehalose accumulation (Zhang et al., 2006)

Drought Ethylene responsive factor (SodERF3) — (Trujillo et al., 2009)

Drought Drought responsive factor (Scdr 1) Signaling cascade (Begcy et al., 2012)

Drought Lipoxygenase (ScLoX) — (Andrade et al., 2014)

Drought and
salinity

Arabidopsis vacuolar pyrophosphatase
(AVP 1)

Increasing vacuolar solute content (Kumar et al., 2014)

Drought and
salinity

Erianthus arundinaceus DREB2 (EaDREB2) Maintenance of relative water content and
photosynthetic rate

(Augustine et al., 2015)

Drought Sugarcane MYB (EaMYB18) Reduced oxidative damage (Raza et al., 2016; Saravanan et al., 2018)

Drought Arabidopsis vacuolar H+-pyrophosphatase
(H + PPase)

— (Raza et al., 2016)

Drought and
salinity

BcZAT12 — (Saravanan et al., 2018)

Drought bet A Glycine betaine production (Aloni et al., 2003; dos Santos and de
Almeida Silva, 2015)

Drought Superoxide dismutase (SOD) ROS scavenging (dos Santos and de Almeida Silva, 2015)

Drought Indole-3-glycerol phosphate synthase (IGS) Auxin-related gene activity (Aloni et al., 2003)

Drought Disulfide isomerase protein (DEF1) — (Vantini et al., 2015)

Drought and
salinity

Late embryogenesis abundance (LEA) Protection of macromolecules (Sakuma et al., 2006)

Drought EaHSP70 Membrane and protein stabilization (Augustine et al., 2015)

Drought Dehydrin proteins (DHNs) Protection of macromolecules (Iskandar et al., 2011)

Drought and
salinity

DEAD-Box Helicase (PDH45) Nucleic acid duplex unwinding (Augustine et al., 2015)

Drought Sucrose non-fermenting1-related protein kinase
2 (SoSnRK2.1)

Regulation of ROS and antioxidants (Phan et al., 2016)

Drought Trehalose synthase gene (TSase) Trehalose accumulation (S.-Z. Zhang et al., 2006)

Drought BAX inhibitor (BI-1) Suppressing endoplasmic reticulum stress-induced
plant cell death

(Ramiro et al., 2016)

Drought Cell wall invertases (ShCWINV) Sucrose homeostasis (Wang et al., 2017)

Drought and
salinity

Glyoxalase (Gly) Methylglyoxal metabolism (Manoj et al., 2019)

Drought a-Expansin 1 (EXPA1) Plant cell wall modification (Narayan et al., 2019)

Drought and
salinity

Sugarcane drought responsive 2 (Scdr2) Reduced oxidative damage (Begcy et al., 2019)

Drought and
salinity

NAC protein (SoNAP) Senescence-associated function (Carrillo-Bermejo et al., 2020)

Drought and
salinity

Mitogen-activated protein kinase (ShMAPK) Signal transduction pathways (Ali et al., 2021)

Drought Saccharum spontaneum (SsDREB) Osmotic and photosynthetic regulation (Li et al., 2021)

Drought Dirigent proteins (ScDIR) Lignin biogenesis (Li et al., 2022)
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factor found in nature, coupled to the endonuclease FokI. A

trinucleotide DNA sequence can be recognized by zinc finger

domains. Longer DNA sequences can thus be recognized by a

series of connected zinc finger domains, resulting in the necessary

on-target specificity. However, zinc finger motifs placed in an array

influence the specificity of neighboring zinc fingers, making the

design and selection of modified zinc finger arrays more difficult

and time-consuming. The final layout’s specificity is difficult to

predict because FokI endonuclease is a dimer, and it only cleaves

double-strand DNA where two ZFNs attach to opposing DNA

strands (Basak et al., 2021). TALENs are bacterial fusion proteins

composed of the TALE protein and the FokI endonuclease. Target

specificity, like in ZFNs, is derived from the protein–DNA

connection (Shan et al., 2013). A single TALE motif identifies one

nucleotide in the case of TALENs, while an array of TALEs can

interact with a longer sequence. Because each TALE domain’s

activity is limited to one nucleotide and does not impact the

binding specificity of surrounding TALEs, TALENs are easier to

create than ZFNs. TALE motifs are linked to FokI endonuclease,

which requires dimerization to cleave DNA, similar to ZFNs. This

necessitates the binding of two distinct TALENs in close proximity

to the target DNA on opposite strands (Shan et al., 2013). Despite

the fact that all three genome editing approaches (ZFN, TALEN,

and CRISPR/Cas) are commonly employed, the CRISPR method

has few advantages.

Unlike other approaches that rely entirely on protein-based

recognition, the CRISPR/Cas system uses fundamental RNA/DNA

hybrids to assess sequence specificity. The protospacer adjacent

motif (PAM) establishes specificity in the guide RNAs’ (gRNAs’)

20-nucleotide sequence, and the Cas9 enzyme cleaves it. The ability

to change multiple genes at the same time, or multiplexing as it is

commonly known, is the second significant benefit of this approach,

which significantly reduces time. Finally, both ZFNs and TALENs

are dimers, and vector creation and plant transformation are

difficult processes, whereas CRISPR is simple and efficient.

CRISPR/Cas9 technology has emerged as a new tool for editing

the sugarcane genome due to its effectiveness and ability to

overcome the transgene-silencing problem. This method can

easily change several useful genes for many important

agronomical traits, even across multiple sites (Kannan et al.,

2018). As the sugarcane plant is a glycophyte, drought and

salinity stresses have a significant impact on its growth and

sucrose content. GE of sugarcane using Arabidopsis vacuolar

pyrophosphatase (AVP1) gene can confer drought and salinity

tolerance into sugarcane by the development of a profuse root

system. An annotated genome sequence is one of the most

important criteria for genome editing because it allows scientists

to build specific gRNAs in silico that can target specific genes with

known or unknown functions (Mohan, 2016).

Drought stress genes and signaling pathways have been better

understood due to the advances in genomics analysis techniques

like next-generation sequencing (NGS), gene editing systems (Shan

et al., 2013), gene silencing (Yin et al., 2014), and overexpression

method (Bortesi and Fischer, 2015). These technologies have the

advantage of producing small sequence libraries for gRNA design.

Sugarcane gRNA design is complicated by the genome’s polyploidy
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and the lack of a complete genome sequence for commercial

variants (Augustine, 2017). To solve this problem, gene

expression patterns obtained from RNA-Seq data can be used to

assess the sequence variations that exist between different allelic

forms. This understanding of the allelic form of sequence diversity

can be used to design precise gRNAs that target all allelic forms of

the gene of interest. The allele-defined genome of S. spontaneum is

also available for use as a reference genome. Dimeric RNA-Guided

FokI Nucleases (RFNs) can also be used to increase genome editing

frequency while minimizing off-target effects (Bortesi and Fischer,

2015). Off-target cleavage in dimeric RFNs is reduced by accurate

spacing, gRNA location, and reducing the possibility of an off-target

site appearing more than once in the genome (Bortesi and

Fischer, 2015).

However, due to the complicated genome, vast genome size, and

extremely polyploid and aneuploid nature, there are still many

hurdles that must be overcome before this technique can be fully

utilized. With a genome size of approximately 10 GB and 8 to 12

homologous gene copies, sugarcane is a classic example of a

complex polyploid crop, which poses various challenges in

genome editing (Shan et al., 2013). Transgene silencing at both

transcription and post-transcriptional levels is a major bottleneck in

sugarcane molecular improvement programs (Birch et al., 2010). To

tackle off-target cleaving issues, customized Cas9 variants can be

used to increase GE efficiency. Overall, despite the fact that

significant obstacles remain, the utilization of various Cas9

variants and other CRISPR-associated nucleases could soon be a

strong tool for enabling successful GE in sugarcane and other

polyploid crops. Genome editing would inevitably increase

researcher’s curiosity in producing new and desirable trait

modifications in crops in the future. In a country where there is a

complete moratorium on trials and uses of genetically modified

crops, this could be a highly effective method to generate new

improved cultivars of sugarcane.
6 Role of omics in acclimation

Recent development in the field of “omics” techniques,

specifically ionomics, transcriptomics, metabolomics, and

proteomics, provide insight into the mechanism adopted by

plants against drought and salinity and are useful in identifying

important genes and QTLs that provide tolerance to drought and

salinity. Omics can be defined as a biotechnological approach

dealing with genomics, proteomics, transcriptomics, or

metabolomics. Various omics technologies have been discussed

briefly considering drought and salinity in the case of sugarcane

under the following subheadings.
6.1 Transcriptomics of sugarcane against
drought and salinity

Transcriptomics involves the study of total mRNA synthesized

by the genome under specific conditions; therefore, it is important

to study transcriptome profiling during different stress conditions.
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Furthermore, alterations in climatic conditions have posed a major

threat to agricultural production, which severely impacts the food

requirement of the population. In case of severe abiotic stress, plants

have developed various kinds of molecular approaches to combat

natural stress conditions, in particular the transcription factors

(TFs), to deal with different abiotic stress in sugarcane and other

crops that can be studied using advanced transcriptomics

technology. The sugarcane plant belongs to the Poaceae family,

which produces sucrose and is greatly used in agro-based

enterprises in different tropical and subtropical regions. To that

end, the sugarcane transcriptome profile under stressed conditions

must be investigated.

The NAC (no apical meristem (NAM), ATAF1/2, Arabidopsis

transcription activation factor 1/2, and cup-shaped cotyledon) proteins

are a class of TFs that are useful in plant developmental activities and

help in providing resistance to various kinds of stresses in different

crops. Recently, Belesini et al. (2017) studied the transcriptomic activity

of two different sugarcane varieties, “SP81-3250” and “RB855453”,

grown under different drought levels with the aid of Illumina

HiScanSQ platforms. They observed the upregulation of several

genes such as ascorbate peroxidase, E3 SUMO-protein ligase SIZ2,

MYB, key enzymes involved in the flavonoid biosynthesis like

coenzyme A ligase, and aquaporins, which are responsible for

drought tolerance. Furthermore, Belesini et al. (2017) identified

various kinds of receptor-like protein kinases (RLKs) and their

elicitation upon onset of drought in drought-sensitive varieties; these

RLKs are a major player in drought sensing, bHLH TFs (basic helix-

loop-helix), and 1-aminocyclopropane-1-carboxylic acid oxidase (ACC

oxidase) generated in ethylene biosynthesis and different unknown

genes. These TFs play crucial roles in abiotic stress resistance (Guo

et al., 2017). However, Pereira-Santana et al. (2017) employed a next-

generation sequencing technique to unravel the transcriptome profile

of the cultivar Mex 69-290 against osmotic stress in Mexico. They

observed that enhancement in the expression of genes is related to

transcriptional regulation, oxide reduction, carbohydrate breakdown,

flavonoids, and distinct kinds of secondary metabolites in the tolerant

cultivar. Additionally, genes related to ABA biosynthesis, water

regulation, and heat stress were also upregulated.
6.2 Proteomics

Proteomics is an advanced study of the proteome that gives

useful information about proteins in plant cells at various stages of

growth under specific climatic conditions; therefore, it is necessary

to study the sugarcane proteome, which helps in determining the

drought-resistance mechanism. Sugiharto et al. (2002) isolated and

identified a drought-inducible gene SoDip22 in a drought-stressed

cultivar of sugarcane by using two-dimensional gel electrophoresis

(2-DE) and reported that SoDip22 functions in drought stress

adaptation in the cells of bundle sheath, which is where ABA-

mediated signaling path is induced. An 18-kDa protein was

extracted and purified, and 2-DE methodology was applied to

identify that protein that was present in leaves of sugarcane

subjected to drought conditions (Jangpromma et al., 2007).

Various proteins useful in the photosynthesis process and
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enzymes associated with anti-oxidative injury were isolated and

characterized by 2-DE as well as liquid chromatography–tandem

mass spectrometry (LC–MS/MS) (Ngamhui et al., 2012). The

overexpression of gene EaDREB2 (dehydration responsive

element-binding 2), which was transferred from E. arundinaceus,

in combination with pea helicase gene PDH45 (pea DNA helicase),

increased drought and salinity tolerance in transgenic sugarcane

(Augustine et al., 2015). To understand the impact of drought on

protein profiling two contrasting cultivars of sugarcane, RB 72910

(resistant) and RB 943365 (susceptible) were grown under water-

stressed conditions for 30 days. The water deficit-associated

proteins were identified by using 2-DE and mass spectrometry.

Several types of proteins related to photosynthesis, signaling

pathways, and regulation processes were either upregulated or

downregulated in RB 72910; alternatively, these proteins were

downregulated in RB 943365.

Khueychai et al. (2015) used 2-DE accompanied by LC–MS/MS

to characterize different types of proteins that were responsive to

drought in two different cultivars: K86-161 (resistant) and B34-164

(susceptible). Their findings demonstrated that gene expression of

fructose bisphosphate aldolase, O2-liberating enhancer proteins,

and SOD increased to a greater extent in various parts of K86-

161; alternatively, these proteins were found in lower quantities in

B34-164 under drought conditions. Furthermore, Salvato et al.

(2019) quantified the protein of drought-stressed sugarcane stalk

nuclei using filter-aided sample preparation (FASP) and LC–MS/

MS techniques. Their result exhibited that most of the 74 exclusive

proteins found in control plants are associated with cell wall

metabolism, indicating that cell wall metabolism is negatively

regulated under drought. Similarly, 37 TFs that were related to

different protein domains, e.g., NAC, C2H2 (Cys2-His2), bZIP

(basic leucine zipper), C3H (Cysteine3Histidine), LIM (LIN-11,

Isl-1, and MEC-3), Myb-related (myeloblastosis viral oncogene

homolog), HSF (heat shock factor), and auxin response factor

(ARF), were characterized. These TFs are known to be present in

nucleus and are synthesized by plant in response to

drought conditions.

Moreover, salinity present in the soil is an important problem

that affects the sugarcane growth and development process. Pacheco

et al. (2013) used 2-DE and LC-MS to analyze the differentially

expressed proteome in sugarcane root against the salinity stress in

different cultivars and concluded that most proteins accumulated in

response to stress are involved in developmental process,

carbohydrate metabolism, ROS pathway, protection of protein,

and membrane steadiness in resistant cultivar after 2 h of salinity

appearance, whereas their presence in a susceptible cultivar was

noted after 72 h of salinity stress.
6.3 Ionomics

Ionomics is the study of trace elements and mineral nutrients in

plant systems. During salinity stress, ion concentrations in different

cells are disturbed, but plants can adapt to drought and salinity

through osmotic adjustment. Various approaches have been

identified in response to highly saline and drought conditions in
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crop plants. Physiochemical changes in buds of sugarcane were

reported in the canes exposed to salinity stress (Rasheed et al.,

2016). Salinity causes overproduction of hydrogen peroxide, high

amount of Cl−and Na+ in sugarcane plant tissue, and decreased

amount of K+ and Ca2+, as well as Ca2+:Na+ and K+:Na+

proportions, and is useful in the production of different osmolytes

in sugarcane plant cells.
6.4 Metabolomics

Metabolomics is an advanced technique used for exclusive

profiling of all metabolites present in plant cells; therefore, it has

been actively used in describing the mechanism of salinity and

drought stresses in sugarcane. In recent reports, salt-tolerant and

salt-sensitive sugarcane varieties were grown under salinity and

drought conditions to identify the various secondary metabolites

involved in salinity tolerance. Accumulation of a high amount of

proline and lower Na+ in leaves of salt-tolerant variety was noticed

(Chiconato et al., 2019). Similarly, enhanced levels of phenolic acid,

anthocyanin content, and flavone content were beneficial in

providing resistance to drought and salinity conditions in

sugarcane plants (Molinari et al., 2007; Ali et al., 2019).

Furthermore, in order to investigate the physiological and

developmental changes in sugarcane-developing buds, which were

subjected to salt stress, Rasheed et al. (2016) undertook an

experiment, according to which salinity increases the production

of hydrogen peroxide, increases the tissue limit of Cl− and Na+,

decreases the K+ and Ca2+, and Ca2+:Na+ and K+:Na+ ratios, and

increases osmolyte synthesis in growing sugarcane buds. Similarly,

Vital et al. (2017) in their metabolomics studies revealed that

drought and salinity stresses led to a reduction in sucrose content

and an increase in the reducing sugar such as glucose and fructose

in different sugarcane cultivars. Sugarcane varieties like RB867515

showed significantly higher glucose content when subjected to

drought stress. Xylose and inositol sugars also increased during

drought and salinity stresses. Moreover, the level of organic acids

increased as compared to the levels of pyruvate and isocitrate, which

sharply decreased during drought conditions. Several amino acids,

which include tryptophan, phenylalanine, tyrosine, leucine, valine,

proline, glutamine, lysine, isoleucine, asparagine, and glycine,

accumulated in different cultivars of sugarcane like RB867515

and RB855536.
7 Soil–plant–microbe interactions
and responses

Drought and salinity result in low soil microbial activity and

poor plant growth. Soil microbes play a crucial role in the soil

during the decomposition of soil organic matter through oxidation,

ammonification, and nitrification. Various studies have revealed

that some beneficial microbes like plant growth-promoting bacteria

(PGPBs) have a positive impact on plant growth promotion under

stress conditions through a series of mechanisms including
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exopolysaccharide (ESP) production, phytohormone production

(like indole-3-acetic acid, cytokinin, abscisic acid, gibberellins,

and ethylene), regulation of nutrient exchange, and influencing

the biosynthesis process of osmoprotectant compounds (e.g., total

soluble sugar (TSS), betaine, trehalose, or proline) (Vargas et al.,

2014; Gupta et al., 2021a). The indirect way of promoting plant

growth by PGPBs is the production of antibiotics, hydrogen

cyanide, siderophores, volatile organic molecules, and ammonia,

which suppress plant pathogens. PGPBs also play a significant role

by modulating molecular pathways, thus inducing the production

of different molecules like late embryogenesis abundant (LEA)

proteins, lipochitooligosaccharides (LCOs), nodulation factors

(NFs), and regulating microbe-associated molecular patterns

(MAMP) as well as activating several salt- and drought-

responsive genes. Plants with induced systemic tolerance may be

influenced by stress-responsive genes mediated by PGPR. In

sugarcane, it has been observed that Gluconacetobacter

diazotrophicus activates genes related to ABA-dependent signaling

(Vargas et al., 2014).
7.1 Plant growth-promoting
bacteria (PGPB)

Production of different osmolytes by microbes protects the

plant from drought stress. Increasing the root–shoot biomass

through PGPB-mediated IAA production may significantly

contribute to coping with drought stress by the plant. Production

of aminocyclopropane-1-carboxylate deaminase (ACCD) by

rhizospheric bacteria suppresses the ethylene signaling pathway to

negatively regulate root drying under water stress conditions. There

is also a report of increased proline content in plant leaves and root

after injection with drought-tolerant bacteria, thus achieving better

plant growth (Yuwono et al., 2005). PGPBs also increase the

availability of some chemicals, which play a role in growth

promotion and provide micronutrients to the host plant.

Production of ESP plays an important role in protection from

desiccation (Vanhaverbeke et al., 2003). Secretion of SA by

microbes acts as a signaling molecule under drought stress, which

triggers genes that act as heat shock proteins (HSPs), antioxidants,

and chaperones and also activates genes synthesizing secondary

metabolites (El-Daim et al., 2019). It is reported that microbes

increase the metabolites like pyruvic acid (PA), thiamine

pyrophosphate, uridine diphosphate, succinic acid, and

dihydroxyacetone, which helps in combatting drought (El-Daim

et al., 2019).

PGPBs can reduce the effects of salt stress through both direct

and indirect mechanisms (M’piga et al., 1997; Gupta et al., 2021b),

and it was reported that PGPBs act against different

phytopathogens by inducing different defense-related enzymes

like POX, chitinase, b-1,3-glucanase (GLU), and phenylalanine

ammonia lyase (PAL). Extracellular polymeric substances (EPSs)

produced by PGPBs bind with positively charged ions such as Na+

and reduce the accessibility of toxic ions (Upadhyay et al., 2011).

EPS around roots increases the water potential, providing a physical

barrier to toxic ions, and improves plant nutrient uptake by plants
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(Dodd and Pérez-Alfocea, 2012; Zulfiqar et al., 2020). At higher salt

concentrations, a greater influx of Na+, Cl−, Ca2+, Mg2+, SO3
2−, or

CO3
2− leads to ion toxicity. PGPBs maintain high K+/Na+ ion ratios

and regulate toxic ion homeostasis. It reduces the accumulation of

ions like Na+ and Cl− in the leaves, increases ion exclusion by the

root system, or modulates the ion transporter expression (Zhang

et al., 2008; Ha-Tran et al., 2021). A plasma membrane protein,

high-affinity K+ transporter (HKT), facilitates Na+ ion transport in

plants, which prevents the over-accumulation of Na+ ion

concentration in shoots (Zhang et al., 2008). Host–microbe

interactions influence the tissue-specific regulation of some genes

like HKT-type genes during salt stress to maintain ion homeostasis.
8 Conclusions

Sugarcane is an economically important crop that serves as a

source of nutrition and energy. Climate change impacts sugarcane

crop yield and productivity. Drought and salinity are the two major

constraints of sugarcane production. Drought and salinity affect the

morphological traits, physiological properties, and enzyme

activities, ultimately reducing crop productivity. The first visible

symptoms of these abiotic stresses are morphological changes such

as leaf rolling, reduced leaf size and number, altered root growth,

and stunted growth. To cope with stress conditions, plants have

evolved various mechanisms such as escape, avoidance, tolerance,

or a combination of these. The diverse gene pools and several wild

relatives of sugarcane have served as donors of the resistant QTLs

against drought and salinity, which can be introgressed during the

development of new cultivars. New techniques such as genome

editing and omics technology are opening up new avenues for

research to understand the mechanism of drought and salinity

stress tolerance. The role of endophytes, and soil–plant–microbe
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interaction is also highly important in sugarcane crop management

against drought and salinity.
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