

Hindman's theorem for sums along the full binary tree, Σ_2^0 -induction and the Pigeonhole principle for trees

Lorenzo Carlucci¹ · Daniele Tavernelli²

Received: 10 June 2020 / Accepted: 27 October 2021 © The Author(s) 2022

Abstract

We formulate a restriction of Hindman's Finite Sums Theorem in which monochromaticity is required only for sums corresponding to rooted finite paths in the full binary tree. We show that the resulting principle is equivalent to Σ_2^0 -induction over RCA₀. The proof uses the equivalence of this Hindman-type theorem with the Pigeonhole Principle for trees TT¹ with an extra condition on the solution tree.

Keywords Reverse mathematics \cdot Hindman's theorem \cdot Pigeonhole Principle \cdot Induction

Mathematics Subject Classification $03D80 \cdot 03B30 \cdot 03F35 \cdot 11B30 \cdot 05D10$

Introduction

Hindman's celebrated Finite Sums Theorem [12] states that however you color the positive integers in finitely many colours the coloring will be constant on an infinite set and on all finite sums of distinct elements from that set. Characterizing the logical and computational strength of Hindman's Finite Sums Theorem is one of the main open problems in Reverse Mathematics since the seminal work of Blass, Hirst and Simpson [1] who proved it to be weakly between ACA₀⁺ (roughly the ω -th Turing Jump, in computability-theoretic terms) and ACA₀ (roughly, the Halting Problem).

Much recent research focused on restrictions of Hindman's Theorem in which only *some* finite sums are required to be monochromatic; see e.g. [3–6,10,11]. Starting

Lorenzo Carlucci lorenzo.carlucci@uniroma1.it
Daniele Tavernelli daniele.tavernelli@moveax.it

¹ Mathematics Department, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy

² moveax s.r.l., Via Sebino 11, 00199 Rome, Italy

from [2], much attention has been paid to restrictions based on the number of terms of monochromatic sums (see [5,10,11])—we call these *quantitative* restrictions. More general forms of restrictions—which we call *structural* restrictions—have been shown to possess interesting logical and computational properties [3–6]. For example, if one requires monochromaticity only for arbitrarily long finite sums of successive elements of an infinite set then one obtains a principle of strength roughly that of Ramsey's Theorem for pairs, see [4].

In this paper we are interested in a new structural restriction of Hindman's Theorem obtained by requiring monochromaticity only for sums selected by finite paths from the root of the full binary tree.

One motivation for investigating this restriction comes from the study of Ramsey's Theorem for trees, introduced by Chubb, Hirst and McNicholl in [8]. As observed by Hirst [16] the Pigeonhole Principle for trees (TT^1) follows from Hindman's Theorem by a simple proof. As Hirst [16] observes, the full strength of Hindman's Theorem is not required to prove TT^1 . The latter is in fact provable from Σ_2^0 -induction ([16], Theorem 1), while Hindman's Theorem is known to imply ACA₀ (see [1]). It is natural to ask whether there is a restriction of Hindman's Theorem that is optimal for proving TT^1 . An inspection of Hirst's proof shows that monochromaticity is needed only for a very restricted subset of all possible finite sums. The subset in question essentially corresponds to finite paths from the root of the full binary tree.

We introduce the corresponding natural restriction of Hindman's Theorem and prove that it is slightly stronger than TT^1 . In fact, our Hindman-type principle is equivalent to Σ_2^0 -induction, while TT^1 was very recently shown to be strictly weaker by Chong et al. [7].

Our proof uses an auxiliary principle consisting of TT^1 with an extra condition on the solution tree. This condition is derived from a corresponding sparsity condition that plays a crucial role in Hindman-type theorems, called *apartness* in [3]. We first show that Hindman's Theorem restricted to sums along finite paths of the full binary tree with the apartness condition on the solution set is equivalent over RCA₀ to TT^1 with a corresponding extra condition on the solution tree. Then we show that the latter form of TT^1 is equivalent to Σ_2^0 -induction, using a characterization of Σ_2^0 -induction due to Hirst [16].

1 Hindman's theorem for binary tree paths

We start by recalling Hindman's Finite Sums Theorem from [12].

Definition 1 Let $k \ge 1$. HT_k is the following principle: For every $c : \mathbf{N} \to k$ there is an infinite set *H* such that for some z < k all finite non-empty sums of elements of *H* have color *z* under *c*. We denote $(\forall k \ge 1)$ HT_k by HT.

In recent literature [3–6,10,11] restrictions of Hindman's Theorem of the following general form have been investigated. Let S be a family of finite subsets of the positive integers. For $k \ge 1$ we denote by HT_k^S the following principle: For all $c : \mathbb{N} \to k$ there exists $H \subseteq \mathbb{N}$ such that $H = \{h_1 < h_2 < h_3 < ...\}$ is infinite and for some i < k

for all $J \in S$, $c(\sum_{j \in J} h_j) = i$. The restriction of interest in the present paper is the one where S corresponds to finite paths from the root of the full binary tree.

Hirst [16] presents a short proof of the so-called Pigeonhole Principle for Trees (TT^1) from Hindman's Theorem in RCA₀. To define the principle TT^1 we need to fix some notation and terminology for trees in RCA₀. We denote by $2^{<N}$ the full binary tree of height ω , identified with the set of finite sequences of 0s and 1s ordered by initial segment (\subseteq). We call subsets of $2^{<N}$ subtrees. A subtree *S* is *isomorphic* to $2^{<N}$ if there exists a bijection $f: 2^{<N} \rightarrow S$ such that for all σ , $\tau \in 2^{<N}$, $\sigma \subseteq \tau$ if and only if $f(\sigma) \subseteq f(\tau)$. In other words, each node in *S* has exactly two children. We denote by $S \sim 2^{<N}$ the fact that *S* is isomorphic to $2^{<N}$.

Definition 2 Let $k \ge 1$. TT_k^1 is the following principle: If $2^{<\mathbf{N}}$ is colored with k colors then there is a subtree S isomorphic to $2^{<\mathbf{N}}$ such that S is monochromatic. We denote $(\forall k \ge 1)\mathsf{TT}_k^1$ by TT^1 .

An inspection of the proof that $\mathsf{RCA}_0 + \mathsf{HT} \vdash \mathsf{TT}^1$ from [16] shows that only a few special sums need to be monochromatic. In general, a family of sums whose inclusion graph is order-isomorphic to the full binary tree is sufficient. To get a concrete Hindman-type principle of the form HT^S we use as S a family of standard labels for finite paths in the full binary tree.

Definition 3 A finite non-empty set *I* of positive integers $i_1 < i_2 < \cdots < i_n$ is a *path* if and only if $i_1 = 1$ and, for all *k* such that $1 < k \le n$, $i_k \in \{2i_{k-1}, 2i_{k-1} + 1\}$. We denote by bin the set of all paths.

We can now formulate our Hindman-type principle for sums along finite paths in $2^{<N}$.

Definition 4 Let $k \ge 1$. $\mathsf{HT}_k^{\mathsf{bin}}$ is the following principle: For every $c : \mathbf{N} \to k$ there is an infinite set $H = \{h_1 < h_2 < h_3 < ...\}$ such that for some z < k, for all $J \in \mathsf{bin}$, $c(\sum_{i \in J} h_i) = z$. We denote $(\forall k \ge 1)\mathsf{HT}_k^{\mathsf{bin}}$ by $\mathsf{HT}^{\mathsf{bin}}$.

To favor an intuitive understanding of the principle HT_k^{bin} let us describe the set bin in a procedural way. Fix the following standard presentation of $2^{<N}$, with extensionby-0 corresponding to right child and extension-by-1 corresponding to left child:

Consider the numbering of nodes determined by a level-by-level left-to-right visit of $2^{<N}$: 1

The set bin collects the finite sets of integers naturally associated as labels to finite paths rooted at the root under the above labeling of nodes. We can enumerate bin by increasing last element as follows:

We denote by path(n) the unique element *S* of bin such that max(S) = n. Note that path(n) is also the *n*th element in the enumeration of bin by increasing last element. The children of path(n) in (bin, \subseteq) are path(2n) and path(2n+1). Note that in RCA₀ it is safe to identify $2^{<N}$ with the set bin ordered by inclusion. These observations should convince the reader that the sums that are required to be monochromatic in HT_k^{bin} correspond to finite paths from the root of the full binary tree. We introduce the following short-hand notation for the sums of interest in the HT_k^{bin} principles:

$$h_n^+ := \sum_{i \in \mathsf{path}(n)} h_i.$$

The principle $\mathsf{HT}^{\mathsf{bin}}$ easily follows from RT^1 in RCA_0 , where RT^1 denotes $(\forall k \ge 1)\mathsf{RT}_k^1$ and RT_k^1 denotes the Infinite Pigeonhole Principle for colorings of **N** in *k* colors.

Lemma 1 $RCA_0 \vdash RT^1 \rightarrow HT^{bin}$.

Proof We sketch the proof of $(\forall k \ge 1)(\mathsf{RT}_k^1 \to \mathsf{HT}_k^{\mathsf{bin}})$. Fix a coloring $c : \mathbf{N} \to k$. By RT_k^1 there exists an infinite homogeneous set of positive integers $\{h_1 < h_2 < ...\}$. First, it is easy to see that we can, if needed, thin out the sequence so as to ensure that the following set is strictly increasing

$$\{h_n - h_{\lfloor \frac{n}{2} \rfloor} : n \in \mathbf{N}\}.$$

Second, it is easy to verify that this set satisfies the homogeneity condition in the definition of HT_k^{bin} .

The above Lemma implies that HT^{bin} cannot prove TT^1 , since the latter is stronger than RT^1 by a result of Corduan, Groszek and Mileti [9].

Corollary 1 $RCA_0 + HT^{bin} \nvDash TT^1$.

Proof By Corollary 3.8 in [9], RT^1 does not imply TT^1 over RCA_0 .

While the set bin essentially contains the type of sums that are used in the proof of TT^1 from HT in [16] (see also the proof of Proposition 1, *infra*), an extra condition is needed for the proof to work. This condition, already implicit in [11,12], is called *apartness* in [5]. To define apartness we need the following notation. If $n = 2^{e_1} + \cdots + 2^{e_m}$, where $e_1 < e_2 < \cdots < e_m$, let $\lambda(n)$ denote e_1 and $\mu(n)$ denote e_m .

Definition 5 (Set Apartness) A set *X* of positive integers satisfies the *apartness condition*, or *is apart*, if for all $n, m \in X$ such that n < m, we have $\mu(n) < \lambda(m)$.

If P is a Hindman-type principle we denote by apP the same principle with the extra requirement that the solution set is apart and we call it "P with apartness". The apartness condition is built-in in the usual equivalent formulation of Hindman's Theorem in terms of finite unions. Most natural restrictions of the Finite Sums Theorem with apartness are computably interreducible with (and RCA₀-equivalent to) corresponding restrictions of the Finite Unions Theorem (see [6]). Yet it is nevertheless interesting to isolate the role of apartness and therefore we distinguish between HT_k^{bin} and $apHT_k^{bin}$. To this extent, as observed in [3,4,6], restricted versions of Hindman's Theorem with apartness should be considered proper restrictions of Hindman's Theorem.

The apartness condition plays a crucial role in the investigation of restricted forms of Hindman's Theorem is illustrated in [3,4,6], suggesting that apartness increases the strength of Hindman-type theorems, or, at least, significantly simplifies proving lower bounds for such principles. The apartness condition also plays a key role in Hirst's proof of TT^1 from Hindman's Theorem. As we will see, a corresponding condition on TT^1 emerges when we look for a reversal. For σ a node in a tree T we denote by parent_{*T*}(σ) the immediate predecessor of σ in *T* and we omit the subscript when clear from context.

Definition 6 Let $S \sim 2^{<\mathbf{N}}$. We call an enumeration $\{\sigma_1, \sigma_2, ...\}$ of S a *level-by-level enumeration* if for each $i \ge 1$ the children of σ_i in S are σ_{2i} and σ_{2i+1} or, equivalently, for each $i \ge 2$, parent_T $(\sigma_i) = \sigma_{\left\lfloor \frac{i}{2} \right\rfloor}$.

We are now ready to define the analogue of the apartness condition for subtrees of $2^{<N}$. We use \sim to denote sequence concatenation.

Definition 7 (Tree Apartness) A subtree $S \subseteq 2^{<\mathbf{N}}$ is *apart* if the following conditions hold:

- 1. $S \sim 2^{<N}$.
- 2. For each $n \in \mathbb{N}$ there is at most one sequence of length n in S.
- 3. The length-increasing enumeration of $S = \{\sigma_1, \sigma_2, ...\}$ is a level-by-level enumeration of *S*.
- 4. For all $i \ge 1$ there exists $\sigma \in 2^{<\mathbb{N}} \setminus \{0\}^{<\mathbb{N}}$ such that

$$\sigma_{i+1} = \mathsf{parent}(\sigma_{i+1}) \frown 0^{|\sigma_i| - |\mathsf{parent}(\sigma_{i+1})|} \frown \sigma_i$$

П

In brief, a full binary tree is apart if each sequence extends its parent with zeros until it joins the length of its predecessor, then it can be extended arbitrarily but with at least a 1.

Remark 1 Requiring at least a 1 in σ in the above definition is a need dictated by a later proof: we will associate increasing numbers to increasing sequences according to the binary representation of numbers (if τ extends σ by zeros, then σ and τ represent the same number). Note that, except for the root and one of its children, the predecessor of a node in an apart tree is never also its parent.

Definition 8 Let $k \ge 1$. We denote by $apTT_k^1$ the principle TT_k^1 with the extra constraint that the monochromatic subtree is apart as in Definition 7. We denote $(\forall k \ge 1)apTT_k^1$ by $apTT^1$.

The next two propositions establish the equivalence of apTT^1 and $\mathsf{apHT}^{\mathsf{bin}}$ over $\mathsf{RCA}_0.$

Proposition 1 $RCA_0 \vdash apHT^{bin} \rightarrow apTT^1$.

Proof We show in RCA₀ that $(\forall k \ge 1)(\mathsf{apHT}_k^{\mathsf{bin}} \to \mathsf{apTT}_k^1)$. The proof is similar to Hirst's proof of TT^1 from Hindman's Finite Unions Theorem [16], yet a different labeling of nodes of $2^{<\mathbb{N}}$ with sums is used here.

Fix $k \in \mathbf{N}$ and $c : 2^{<\mathbf{N}} \to k$. We define a coloring $c' : \mathbf{N} \to k$ of the natural numbers in a very intuitive fashion. Let $seq : \mathbf{N} \to 2^{<\mathbf{N}}$ be the function mapping 0 to the empty sequence and, for each $n \ge 1$, if $n = 2^{e_1} + \cdots + 2^{e_m}$ with $e_1 < e_2 < \cdots < e_m$, then $seq(n) = \sigma_{\{e_1,\dots,e_m\}}$, where if X is a finite subset of \mathbf{N} , $\sigma_X \in 2^{<\mathbf{N}}$ is the shortest binary string representing the characteristic function of X. We set

$$c'(n) := c(seq(n)).$$

By apHT^{bin} there exists an infinite apart set $H = \{h_1 < h_2 < ...\}$ of positive integers such that all sums h_n^+ , for $n \ge 1$, have the same *c'*-color. Let z < k be this color. We define $T_H \subseteq 2^{<\mathbb{N}}$ as the set of τ_n defined as follows, for $n \ge 1$:

$$\tau_n := seq\left(\sum_{j \in \mathsf{path}(n)} h_j\right) = seq(h_n^+).$$

It is easy to prove that T_H is monochromatic for c. By definition of c' and τ_n we have

$$c(\tau_n) = c\left(seq\left(\sum_{j \in \mathsf{path}(n)} h_j\right)\right) = c(seq(h_n^+)) = c'(h_n^+) = z.$$

We then need to show that T_H is an apart subtree (see Definition 7). This is where the apartness condition on H is crucially used. It is easy to verify that, since H is apart, $|seq(h_n^+)| = |seq(h_n)|$. Thus, for any 0 < i < j, $|\tau_i| < |\tau_j|$ as required by tree apartness.

We next show that T_H isomorphic to $2^{<\mathbb{N}}$ (or, equivalently, to (bin, \subseteq)). Since H is apart we have that for any n < m, path $(n) \subset$ path(m) if and only if $\tau_n \subset \tau_m$. In fact, $\tau_n = seq(h_n^+)$ and $\tau_m = seq(h_m^+)$, where

$$h_n^+ = \sum_{j \in \mathsf{path}(n)} h_j$$

. If $path(n) \subset path(m)$, then

$$h_m^+ = \sum_{j \in \mathsf{path}(m)} h_j = \sum_{j \in \mathsf{path}(n)} h_j + \sum_{j \in \mathsf{path}(m) \setminus \mathsf{path}(n)} h_j.$$

Since *H* is apart, $h_m^+ = h_n^+ + b$, for some *b* with $\mu(h_n^+) < \lambda(b)$. From this we easily conclude $\tau_n \subset \tau_m$. For the other direction, let \oplus be the XOR binary operation on binary strings where the shortest binary string is extended by zeros to reach the length of the longest binary string. By apartness, for any h < h' in *H* the position of the last 1 in seq(h) is strictly smaller than the position of the first 1 in seq(h'). Thus, $seq(h_n^+) = \bigoplus_{j \in path(n)} seq(h_j)$ and $seq(h_m^+) = \bigoplus_{j \in path(m)} seq(h_n^+) \subset seq(h_m^+)$ it must necessarily be the case that $path(n) \subset path(m)$.

As for the last property required for tree apartness, note that { $\tau_n : n \in \mathbf{N}$ } is a level-by-level enumeration of T_H because {path $(n) : n \in \mathbf{N}$ } is a level-by-level enumeration of bin, and the isomorphism maps path(n) to τ_n . Using the definition $\tau_n := seq(h_n^+)$ it is easy to check that, for each $i \ge 1$:

$$\tau_{i+1} = \mathsf{parent}(\tau_{i+1}) \frown 0^{|\tau_i| - |\mathsf{parent}(\tau_{i+1})|} \frown \tau,$$

for some τ containing at least a 1.

Proposition 2 $RCA_0 \vdash apTT^1 \rightarrow apHT^{bin}$.

Proof We show in RCA₀ that $(\forall k \ge 1)(\text{apTT}_k^1 \to \text{apHT}_k^{\text{bin}})$. Let $num : 2^{<\mathbb{N}} \to \mathbb{N}$ be the surjective mapping $\sigma \mapsto 2^{e_1} + \cdots + 2^{e_t}$ where $\{e_1, \ldots, e_t\}$ are the positions on which σ has value 1, and all $\sigma \in \{0\}^{<\mathbb{N}}$ are mapped to 0. The empty sequence is mapped to 0. Fix a coloring $c : \mathbb{N} \to k$. Consider the coloring $c' : 2^{<\mathbb{N}} \to k$ defined as follows:

$$c'(\sigma) := c(num(\sigma)).$$

By apT T¹ there is an apart tree *T* homogeneous for *c'*. Let $T = \{\tau_1, \tau_2, ...\}$ be *T* listed in length-increasing order. Since *T* is apart this ordering is a level-by-level ordering. We can furthermore assume w.l.o.g. that $\tau_1 \notin \{0\}^{<\mathbb{N}}$. Let $\Sigma = \{\sigma_1, \sigma_2, ...\}$ where $\sigma_1 := \tau_1$ and, for i > 1, $\sigma_i := 0^{|\tau_{i-1}|} \frown \tau$ where τ is such that $\tau_i = \text{parent}(\tau_i) \frown 0^{|\tau_{i-1}|-|\text{parent}(\tau_i)|} \frown \tau$. We observe that:

- τ_i and σ_i have the same length.
- $\tau_i = parent(\tau_i) \oplus \sigma_i$.
- $\tau_i = \bigoplus_{j \in \mathsf{path}(i)} \sigma_j$.

Let $h_i := num(\sigma_i)$ and consider the set $H_T := \{h_1, h_2, ...\}$. By the tree apartness of *T* and definition of Σ we have that $h_1 < h_2 < ...$, since $|\tau_1| < |\tau_2| < ...$ and $|\tau_i| = |\sigma_i|$ for all $i \ge 1$.

We can prove by (Π_1^{0-}) induction (on the formula $(\forall m < n)(\mu(h_m) < \lambda(h_n)))$ that H_T is apart. For each i > 0, since $\sigma_i = 0^{|\tau_{i-1}|} \frown \tau$, $|\sigma_{i-1}| = |\tau_{i-1}|$ and $h_i = num(\sigma_i)$, we have that $\mu(h_{i-1}) < \lambda(h_i)$ by definition of *num*. Since the apartness condition on integers is transitive, by induction we are done.

Next we prove that H_T satisfies the required monochromaticity condition for c. Let z < k be the color witnessing that T is homogeneous for c'. We show that for all $n \ge 1$, $h_n^+ = \sum_{i \in path(n)} h_i$ has color z. In fact

$$num(\tau_n) = num(\bigoplus_{i \in \mathsf{path}(n)} \sigma_i) = \sum_{i \in \mathsf{path}(n)} num(\sigma_i) = \sum_{i \in \mathsf{path}(n)} h_i = h_n^+.$$

Thus, $c(h_n^+) = c(num(\tau_n)) = c'(\tau_n) = z$.

From Proposition 1 and Proposition 2 we get the following corollary.

Corollary 2 $RCA_0 \vdash apTT^1 \leftrightarrow apHT^{bin}$.

2 Equivalence with Σ_2^0 -induction

We prove that $apHT^{bin}$ is equivalent to Σ_2^0 -induction. To this aim we use the intermediate principle $apTT^1$ and an equivalent of Σ_2^0 -induction from [16], the Eventually Constant Tails principle.

2.1 Upper bound

We adapt the upper bound proof from Lemma 1.1 in [8], taking some extra care to ensure tree-apartness.

Proposition 3 $RCA_0 \vdash apTT_2^1$.

Proof Fix $c: 2^{<N} \to \{\text{red}, \text{blue}\}$. First we observe that there is a recursive procedure FIND_RED that given any $\tau \in 2^{<N}$ returns the shortest $\sigma \in 2^{<N}$ such that $\tau \subseteq \sigma$ and $c(\sigma) = \text{red if any, and otherwise loops. Indeed it is sufficient to iterate level-by-level over the subtree of <math>2^{<N}$ rooted at σ and return the first string that is colored red.

For any $\tau \in 2^{<\mathbf{N}}$ we denote by $sub(\tau)$ the subtree of $2^{<\mathbf{N}}$ rooted at τ . We define a recursive procedure that builds a *c*-monochromatic apart red tree $T = \{\tau_1, \tau_2, ...\}$ in length-increasing order.

– Let τ_1 be the least red node of $2^{<N}$.

- Let τ_2 be the least red node of $sub(\tau_1 \frown 1)$.
- For any $i \ge 3$ let τ_i be the least red node of the following subtree:

$$sub(\tau_{\lfloor \frac{i}{2} \rfloor} \sim 0^{|\tau_{i-1}| - |\tau_{\lfloor \frac{i}{2} \rfloor}|} \sim 1).$$

Note that $\lfloor \frac{i}{2} \rfloor$ is the index of parent_T(τ_i). Our procedure is recursive since it only uses FIND_RED as a sub-procedure. If our procedure defines τ_i for all $i \ge 1$ then $T = \{\tau_1, \tau_2, \ldots\}$ is a level-by-level enumeration of a monochromatic red tree in length-increasing order and T is apart by construction. The procedure ensures that Tis computably enumerable. Since the enumeration is in length-increasing order T is also computable. Now suppose that for some step *i* the procedure FIND_RED loops before it defines τ_{i+1} . To find the least such *i* we need the Π_1^0 -least element principle. This principle can be proved in RCA₀ as it follows from $I \Sigma_1^0$ induction (see Theorem A in [18]). If i = 1 then $sub(\tau_1 \frown 1)$ is a subtree all coloured blue. Similarly if i > 1then $sub(\tau_{\lfloor \frac{i}{2} \rfloor} \sim 0^{|\tau_{i-1}| - |\tau_{\lfloor \frac{i}{2} \rfloor}|} \sim 1)$ is a subtree all coloured blue. In both cases we can apply our procedure (using the blue colour instead of red) on the blue subtree, and this time the procedure won't fail to build a blue apart tree.

Remark 2 In the above proof, the construction can be carried out starting from any string of $2^{<N}$. Indeed the proof actually shows that, given any 2-coloring of $2^{<N}$, for all $\sigma \in 2^{<N}$ either there exists an infinite red apart tree whose strings extend σ or there exists a full binary subtree colored blue whose strings extend σ . This is the real analogue of Lemma 1.1 in [8].

Proposition 4 $RCA_0 + \Sigma_2^0 - IND \vdash apTT^1$.

Proof The proof is modeled after the proof of Theorem 1.2 in [8], using Proposition 3 instead of Lemma 1.1 in [8]. We repeat it here for completeness. Moreover, the idea is just the same as in the proof of Proposition 3 with the only difference that for arbitrary colours we need to operate on the set C defined below whose existence is guaranteed by Σ_2^0 -IND, while for a fixed number of colours, RCA₀ is sufficient. Fix $c: 2^{<N} \rightarrow k$. Consider the set

$$C = \{ j < k : (\exists \sigma) (\forall \tau \supseteq \sigma) (j \le c(\tau)) \}.$$

By bounded Σ_2^0 -comprehension (provable from Σ_2^0 -IND, see [20], p. 72) C exists. C is a non-empty finite set since $0 \in C$ and every $\tilde{j} \in C$ is less than k. Let j be the maximum of C. Let σ witness j. Note that every node extending σ is colored with a color greater than or equal to j. Define a 2-coloring c' of the subtree T rooted at σ as follows: $c'(\tau) := \text{red if } c(\tau) = i, c'(\tau) := \text{blue otherwise. By Remark 2 there}$ either exists a red apart subtree-and in that case we are done-or there exists a full binary subtree T' colored blue. In that case the minimum color used by c to color T' is greater than *j* and belongs to *C*, a contradiction.

From Proposition 3, Proposition 4 and Corollary 2 we get the following corollary. **Corollary 3** $RCA_0 \vdash apHT_2^{bin}$ and $RCA_0 + \Sigma_2^0 - IND \vdash apHT^{bin}$.

2.2 Lower bound

We next show that $apTT^1$ implies Σ_2^0 -induction over RCA₀. In [16] the following principle—called Eventually Constant Tails—is proved equivalent to Σ_2^0 -IND over RCA₀.

Definition 9 (Hirst [16]) ECT(N) is the following principle: For any $c : N \to k$ the following holds:

$$(\exists b)(\forall n \ge b)(\exists m > n)(c(n) = c(m)).$$

Our proof that $apTT^1$ implies ECT(N) uses a non-trivial adaptation of the parity argument inaugurated in the study of the strength of Hindman's Theorem in [1] and simplified in [5]. Note that both these proofs in their original form show an implication to ACA₀ and are designed for 2-colorings. We need a preliminary definition.

Definition 10 Let $\sigma \in 2^{\leq N}$. We call σ a *good sequence* if it cointains at least two 1s with some 0s in-between. For a good sequence σ we define $I(\sigma) \subseteq (\mathbf{N} \setminus \{0\})^{\leq N}$, called the *interval sequence of* σ , to be the set of consecutive intervals of 0-entries of σ , i.e. an interval [i + 1, j - 1] is in $I(\sigma)$ if and only if the following three points are satisfied.

1. i + 1 < j, 2. $\sigma(i) = \sigma(j) = 1$, 3. $\sigma(k) = 0$ for all $k \in [i + 1, j - 1]$.

If σ is not a good sequence we set $I(\sigma) := \emptyset$. The elements of $I(\sigma)$ are called the *intervals of* σ .

We can naturally order $I(\sigma)$ as follows: for $I, J \in I(\sigma)$ we let I < J if $\max(I) < \min(J)$. So we can write $I(\sigma) = \{I_1 < I_2 < \cdots < I_\ell\}$ for some $\ell \ge 1$. If $c : \mathbb{N} \to k$ and $I \subseteq \mathbb{N}$ we denote by c(I) the set $\{c(i) : i \in I\}$.

Definition 11 Let $k \ge 1$ and $c : \mathbb{N} \to k, z < k$, and $\sigma \in 2^{<\mathbb{N}}$ a good sequence. Suppose $I(\sigma) = \{I_1, I_2, \ldots, I_\ell\}$. We define the predicate "*j* is *z*-important in σ ", denoted imp (j, z, σ) , as follows: $2 \le j \le \ell$ and $z \in c(I_{j-1})$ and $z \notin c(I_j)$. If σ is not a good sequence, the predicate is always false.

Theorem 1 $RCA_0 \vdash apTT^1 \rightarrow ECT(\mathbf{N})$.

Proof Fix $c : \mathbf{N} \to k$. Define $c' : 2^{<\mathbf{N}} \to 2^{k \times \{0,1\}}$ as follows:

$$c'(\sigma) := \{ \langle z, \operatorname{card} \{ j : \operatorname{imp}(j, z, \sigma) \} \mod 2 \rangle : z < k \}.$$

Intuitively the color assigned by c' to a sequence σ is the set of ordered pairs (z, p_z) where z < k is a *c*-color and p_z is the parity of the set of indices *j* such that *z* appears as a *c*-color of some element of interval I_{j-1} but not as a *c*-color of some element of the successive interval I_j .

By apTT¹ there exists a color $w \in 2^{k \times \{0,1\}}$ and a *w*-monochromatic apart subtree *T*. Let $T = \{\sigma_1, \sigma_2, ...\}$ be enumerated in length-increasing order. Since *T* is apart, this is also a level-by-level enumeration. Without loss of generality, since *T* is apart, we can assume that all σ_i s are good sequences.

Suppose by way of contradiction that ECT(N) fails for c, i.e.,

$$(\forall b)(\exists n \ge b)(\forall m > n)(c(n) \neq c(m)).$$

For $b = |\sigma_1| + 1$ this gives:

$$(\exists n > |\sigma_1|)(\forall m > n)(c(n) \neq c(m)).$$

Let $j = \min_i |\sigma_i| > n$. Such a j exists since T is infinite. Clearly $j \neq 1$. Consider σ_{j+1} and parent(σ_{j+1}). Since $j \neq 1$ we have that

$$|\mathsf{parent}(\sigma_{i+1})| < |\sigma_i|.$$

By minimality of *j* it must be $|parent(\sigma_{j+1})| \le n$. In particular $parent(\sigma_{j+1})(n)$ is undefined. By tree apartness it must be that $\sigma_{j+1}(n) = 0$. In fact, σ_{j+1} has the form

$$\mathsf{parent}(\sigma_{j+1}) \frown 0^{|\sigma_j| - |\mathsf{parent}(\sigma_{j+1})|} \frown \sigma$$

for some σ , and, by choice of j, $|\sigma_j| > n$. Furthermore if

$$I(parent(\sigma_{i+1})) = \{I_1 < I_2 < \cdots < I_\ell\}$$

then

$$I(\sigma_{i+1}) = \{I_1 < I_2 < \dots < I_{\ell} < I_{\ell+1} < \dots < I_{\ell+r}\}.$$

We can assume w.l.o.g. $r \ge 2$ by taking any extension of σ_{j+1} in T instead of σ_{j+1} if needed. Note that, for any c-color z < k, if $i \in [2, \ell]$ is z-important in parent (σ_{j+1}) then i is also z-important in σ_{j+1} . Clearly $n \in I_{\ell+1}$ and thus by our hypothesis on n, $\ell + 2$ is c(n)-important in σ_{j+1} . On the other hand $\ell + 1$ is not c(n)-important in σ_{j+1} since $n \in I_{\ell+1}$. By homogeneity of T we have $c'(\text{parent}(\sigma_{j+1})) = c'(\sigma_{j+1})$. Then, by definition of c' and a parity argument, there must be at least one w > 2 such that $\ell + w$ is c(n)-important in σ_{j+1} . This implies $c(n) \in c(I_{\ell+w-1})$, contradicting our choice of n.

From Theorem 1 and Corollary 2 we get the following corollary.

Corollary 4 $RCA_0 \vdash apHT^{bin} \Leftrightarrow apTT^1 \Leftrightarrow \Sigma_2^0$ -IND.

3 Conclusion

Inspired by an elegant and simple proof of the Pigeonhole Principle for Trees (TT^{1}) from Hindman's Theorem in [16] we formulated a natural restriction of Hindman's Theorem, HT^{bin}, according to which only sums along finite paths from the root of the full binary tree are required to be monochromatic. The proof of TT^1 from HT in [16] crucially uses a sparsity condition on the solution to Hindman's Theorem. In our setting, this gives a proof in RCA_0 of TT^1 from apHT^{bin}, that is HT^{bin} with the socalled apartness condition on the solution set. We proved that apHT^{bin} is equivalent to Σ_2^0 -IND over RCA₀. To obtain this result we formulated a principle resulting from TT^{1} with an extra structural condition on the solution monochromatic subtree. This condition is modeled on the apartness condition in Hindman's Theorem and we called it (tree) apartness. The corresponding principle is $apTT^{1}$ and we proved it equivalent to apHT^{bin}. As is the case for TT¹, the principle apTT¹ is provable from Σ_2^0 -IND but, perhaps surprisingly, the reverse implication also holds. This should be contrasted with the very recent result by Chong et al. [7] showing that TT_1 doesn't prove Σ_2^0 -IND. Thus the principles TT^1 and $apTT^1$ are in different classes of strength. This means that the apartness condition, that is so crucial in Hindman's Theorem, plays a role also in Ramsey-type principles for trees, boosting the strength of TT^1 to the level of Σ_2^0 -induction. By the equivalence of apTT¹ with apHT^{bin}, this also shows that HT^{bin} and apHT^{bin} are in different classes of strength: while HT^{bin} follows from RT¹, apHT^{bin} is equivalent to Σ_2^0 -IND. This is the first example showing that the apartness condition can strictly increase the strength of restrictions of Hindman-type Finite Sums Theorems with respect to provability in RCA₀. Furthermore apHT^{bin} is a "weak but yet strong" natural restriction of Hindman's Theorem in the sense of [3] which entirely exploits the particular structure of its sums to prove Σ_2^0 -IND. A natural direction for future research is to investigate the relations between Hindman-type theorems and Ramsey-type theorems for trees for colorings of *n*-tuples with n > 1, starting from TT^2 .

Acknowledgements We thank the anonymous referee for his very careful reading and his useful suggestions that significantly improved the presentation of the paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 Blass, A.R., Hirst, J.L., Simpson, S.G.: Logical analysis of some theorems of combinatorics and topological dynamics. In: Logic and combinatorics (Arcata, Calif., 1985), Contemporary Mathematics, vol. 65, pp. 125–156. American Mathematical Society, Providence, RI (1987)

- Blass, A.: Some questions arising from Hindman's Theorem. Scientiae Mathematicae Japonicae 62, 331–334 (2005)
- Carlucci, L.: Weak yet strong restrictions of Hindman's Finite Sums Theorem. Proc. Am. Math. Soc. 146, 819–829 (2018)
- Carlucci, L.: A weak variant of Hindman's theorem stronger than Hilbert's theorem. Arch. Math. Logic 57(3), 381–389 (2018)
- Carlucci, L., Kołodziewczyk, L.A., Lepore, F., Zdanowski, K.: New bounds on restrictions of Hindman's Finite Sums Theorem. In: J. Kari, F. Manea, I. Petre (eds.) Unveiling Dynamics and Complexity, 13th Conference Computability in Europe 2017, Theoretical Computer Science and General Issues, Volume 10307, pp. 210–220. Springer (2017)
- Carlucci, L., Kołodziewczyk, L.A., Lepore, F., Zdanowski, K.: New bounds on restrictions of Hindman's Finite Sums Theorem. Computability 9(2), 139–152 (2020)
- Chong, C.T., Li, W., Wang, W., Yang, Y.: On the strength of Ramsey's Theorem for trees. Adv. Math. 369, 107180 (2020)
- Chubb, J., Hirst, J.L., McNicholl, T.H.: Reverse mathematics, computability, and partitions of trees. J. Symb. Log. 74(1), 201–215 (2009)
- Corduan, J., Groszek, M.J., Mileti, J.R.: Reverse mathematics and Ramsey's property for trees. J. Symb. Log. 75(3), 945–954 (2010)
- Csima, B., Dzhafarov, D., Hirschfeldt, D., Jockusch, C., Solomon, R., Westrick, L.B.: The reverse mathematics of Hindman's Theorem for sums of exactly two elements. Computability 8, 253–263 (2019)
- Dzhafarov, D., Jockusch, C., Solomon, R., Westrick, L.B.: Effectiveness of Hindman's Theorem for bounded sums. In: A. Day, M. Fellows, N. Greenberg, B. Khoussainov, and A. Melnikov (eds.) Proceedings of the International Symposium on Computability and Complexity (in honour of Rod Downey's 60th birthday), Lecture Notes in Computer Science, Volume 10010, pp. 134–142. Springer (2016)
- 12. Hindman, N.: Finite sums from sequences within cells of a partition of N. J. Combin. Theory Ser. A 17, 1–11 (1974)
- Hindman, N., Leader, I., Strauss, D.: Open problems in partition regularity. Comb. Probab. Comput. 12, 571–583 (2003)
- 14. Hirschfeldt, D.R.: Slicing the Truth (On the Computable and Reverse Mathematics of Combinatorial Principles). Lecture Notes Series, Volume 28, Institute for Mathematical Sciences, National University of Singapore (2014)
- 15. Hirst, J.L.: Hilbert vs. Hindman. Archiver Math. Logic, 51(1-2), 123-125 (2012)
- Hirst, J.L.: Disguising induction: proofs of the pigeonhole principle for trees. Foundational adventures, Tributes, vol. 22, pp. 113–123. Coll Publ., London (2014)
- 17. Jockusch, C.G.: Ramsey's theorem and recursion theory. J. Symb. Log. 37, 268–280 (1972)
- 18. Paris, J.B., Kirby, L.A.S.: Σ_n -collection schemas in arithmetic. Logic Colloquium '77 (Proc. Conf., Wrocław, 1977), 199–209 (1978)
- 19. Montalbán, A.: Open questions in Reverse Mathematics. Bull. Symbolic Logic 17(3), 431–454 (2011)
- 20. Simpson, S.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, New York, NY, Association for Symbolic Logic (2009)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.