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Abstract
We formulate a restriction of Hindman’s Finite Sums Theorem in which monochro-
maticity is required only for sums corresponding to rooted finite paths in the full binary
tree. We show that the resulting principle is equivalent to �0

2-induction over RCA0.
The proof uses the equivalence of this Hindman-type theorem with the Pigeonhole
Principle for trees T T1 with an extra condition on the solution tree.
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Introduction

Hindman’s celebrated Finite Sums Theorem [12] states that however you color the
positive integers in finitely many colours the coloring will be constant on an infinite
set and on all finite sums of distinct elements from that set. Characterizing the logical
and computational strength of Hindman’s Finite Sums Theorem is one of the main
open problems in Reverse Mathematics since the seminal work of Blass, Hirst and
Simpson [1] who proved it to be weakly between ACA+

0 (roughly the ω-th Turing
Jump, in computability-theoretic terms) and ACA0 (roughly, the Halting Problem).

Much recent research focused on restrictions of Hindman’s Theorem in which only
some finite sums are required to be monochromatic; see e.g. [3–6,10,11]. Starting
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from [2], much attention has been paid to restrictions based on the number of terms
of monochromatic sums (see [5,10,11])—we call these quantitative restrictions. More
general forms of restrictions—which we call structural restrictions—have been shown
to possess interesting logical and computational properties [3–6]. For example, if one
requires monochromaticity only for arbitrarily long finite sums of successive elements
of an infinite set then one obtains a principle of strength roughly that of Ramsey’s
Theorem for pairs, see [4].

In this paper we are interested in a new structural restriction of Hindman’s Theorem
obtained by requiring monochromaticity only for sums selected by finite paths from
the root of the full binary tree.

One motivation for investigating this restriction comes from the study of Ramsey’s
Theorem for trees, introduced by Chubb, Hirst and McNicholl in [8]. As observed by
Hirst [16] the Pigeonhole Principle for trees (T T1) follows from Hindman’s Theorem
by a simple proof. As Hirst [16] observes, the full strength of Hindman’s Theorem
is not required to prove T T1. The latter is in fact provable from �0

2-induction ([16],
Theorem 1), while Hindman’s Theorem is known to imply ACA0 (see [1]). It is natural
to ask whether there is a restriction of Hindman’s Theorem that is optimal for proving
T T1. An inspection of Hirst’s proof shows that monochromaticity is needed only for
a very restricted subset of all possible finite sums. The subset in question essentially
corresponds to finite paths from the root of the full binary tree.

We introduce the corresponding natural restriction of Hindman’s Theorem and
prove that it is slightly stronger than T T1. In fact, our Hindman-type principle is
equivalent to �0

2-induction, while T T1 was very recently shown to be strictly weaker
by Chong et al. [7].

Our proof uses an auxiliary principle consisting of T T1 with an extra condition on
the solution tree. This condition is derived from a corresponding sparsity condition
that plays a crucial role in Hindman-type theorems, called apartness in [3]. We first
show that Hindman’s Theorem restricted to sums along finite paths of the full binary
tree with the apartness condition on the solution set is equivalent over RCA0 to T T1

with a corresponding extra condition on the solution tree. Then we show that the latter
form of T T1 is equivalent to �0

2-induction, using a characterization of �0
2-induction

due to Hirst [16].

1 Hindman’s theorem for binary tree paths

We start by recalling Hindman’s Finite Sums Theorem from [12].

Definition 1 Let k ≥ 1. HTk is the following principle: For every c : N → k there is
an infinite set H such that for some z < k all finite non-empty sums of elements of H
have color z under c. We denote (∀k ≥ 1)HTk by HT.

In recent literature [3–6,10,11] restrictions of Hindman’s Theorem of the following
general form have been investigated. Let S be a family of finite subsets of the positive
integers. For k ≥ 1 we denote by HTSk the following principle: For all c : N → k there
exists H ⊆ N such that H = {h1 < h2 < h3 < . . . } is infinite and for some i < k
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for all J ∈ S, c(
∑

j∈J h j ) = i . The restriction of interest in the present paper is the
one where S corresponds to finite paths from the root of the full binary tree.

Hirst [16] presents a short proof of the so-called Pigeonhole Principle for Trees
(T T1) from Hindman’s Theorem in RCA0. To define the principle T T1 we need to fix
some notation and terminology for trees in RCA0. We denote by 2<N the full binary
tree of height ω, identified with the set of finite sequences of 0s and 1s ordered by
initial segment (⊆). We call subsets of 2<N subtrees. A subtree S is isomorphic to 2<N

if there exists a bijection f : 2<N → S such that for all σ, τ ∈ 2<N, σ ⊆ τ if and only
if f (σ ) ⊆ f (τ ). In other words, each node in S has exactly two children. We denote
by S ∼ 2<N the fact that S is isomorphic to 2<N.

Definition 2 Let k ≥ 1. T T1
k is the following principle: If 2<N is colored with k colors

then there is a subtree S isomorphic to 2<N such that S is monochromatic . We denote
(∀k ≥ 1)T T1

k by T T1.

An inspection of the proof that RCA0 + HT � T T1 from [16] shows that only
a few special sums need to be monochromatic. In general, a family of sums whose
inclusion graph is order-isomorphic to the full binary tree is sufficient. To get a concrete
Hindman-type principle of the form HTS we use as S a family of standard labels for
finite paths in the full binary tree.

Definition 3 A finite non-empty set I of positive integers i1 < i2 < · · · < in is a path
if and only if i1 = 1 and, for all k such that 1 < k ≤ n, ik ∈ {2ik−1, 2ik−1 + 1}. We
denote by bin the set of all paths.

We can now formulate our Hindman-type principle for sums along finite paths in
2<N.

Definition 4 Let k ≥ 1. HTbin
k is the following principle: For every c : N → k there is

an infinite set H = {h1 < h2 < h3 < . . . } such that for some z < k, for all J ∈ bin,
c(

∑
i∈J hi ) = z. We denote (∀k ≥ 1)HTbin

k by HTbin.

To favor an intuitive understanding of the principle HTbin
k let us describe the set bin

in a procedural way. Fix the following standard presentation of 2<N, with extension-
by-0 corresponding to right child and extension-by-1 corresponding to left child:

∅

1

11

111 110

10

101 100

0

01

011 010

00

001 000

. . . . . . . . .
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Consider the numbering of nodes determined by a level-by-level left-to-right visit of
2<N: 1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

. . . . . . . . .

The set bin collects the finite sets of integers naturally associated as labels to finite
paths rooted at the root under the above labeling of nodes. We can enumerate bin by
increasing last element as follows:

bin = {{1}, {1, 2}, {1, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 6}, {1, 3, 7}, . . . }.

We denote by path(n) the unique element S of bin such that max(S) = n. Note that
path(n) is also the nth element in the enumeration of bin by increasing last element.
The children of path(n) in (bin,⊆) are path(2n) and path(2n+1). Note that in RCA0
it is safe to identify 2<N with the set bin ordered by inclusion. These observations
should convince the reader that the sums that are required to be monochromatic in
HTbin

k correspond to finite paths from the root of the full binary tree. We introduce the
following short-hand notation for the sums of interest in the HTbin

k principles:

h+
n :=

∑

i∈path(n)

hi .

The principle HTbin easily follows from RT1 in RCA0, where RT1 denotes
(∀k ≥ 1)RT1

k and RT1
k denotes the Infinite Pigeonhole Principle for colorings of N

in k colors.

Lemma 1 RCA0 � RT1 → HTbin.

Proof We sketch the proof of (∀k ≥ 1)(RT1
k → HTbin

k ). Fix a coloring c : N → k.
By RT1

k there exists an infinite homogeneous set of positive integers {h1 < h2 < . . . }.
First, it is easy to see that we can, if needed, thin out the sequence so as to ensure that
the following set is strictly increasing

{hn − h
 n
2 � : n ∈ N}.

Second, it is easy to verify that this set satisfies the homogeneity condition in the
definition of HTbin

k .
�

The above Lemma implies that HTbin cannot prove T T1, since the latter is stronger
than RT1 by a result of Corduan, Groszek and Mileti [9].
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Corollary 1 RCA0 + HTbin
� T T1.

Proof By Corollary 3.8 in [9], RT1 does not imply T T1 over RCA0. �
While the set bin essentially contains the type of sums that are used in the proof

of T T1 from HT in [16] (see also the proof of Proposition 1, infra), an extra condition
is needed for the proof to work. This condition, already implicit in [11,12], is called
apartness in [5]. To define apartness we need the following notation. If n = 2e1 +
· · · + 2em , where e1 < e2 < · · · < em , let λ(n) denote e1 and μ(n) denote em .

Definition 5 (Set Apartness) A set X of positive integers satisfies the apartness con-
dition, or is apart, if for all n,m ∈ X such that n < m, we have μ(n) < λ(m).

If P is a Hindman-type principle we denote by apP the same principle with the extra
requirement that the solution set is apart and we call it “Pwith apartness”. The apartness
condition is built-in in the usual equivalent formulation of Hindman’s Theorem in
terms of finite unions. Most natural restrictions of the Finite Sums Theorem with
apartness are computably interreducible with (and RCA0-equivalent to) corresponding
restrictions of the Finite Unions Theorem (see [6]). Yet it is nevertheless interesting to
isolate the role of apartness and therefore we distinguish between HTbin

k and apHTbin
k .

To this extent, as observed in [3,4,6], restricted versions of Hindman’s Theorem with
apartness should be considered proper restrictions of Hindman’s Theorem.

The apartness condition plays a crucial role in the investigation of restricted forms
of Hindman’s Theorem is illustrated in [3,4,6], suggesting that apartness increases the
strength of Hindman-type theorems, or, at least, significantly simplifies proving lower
bounds for such principles. The apartness condition also plays a key role in Hirst’s
proof of T T1 from Hindman’s Theorem. As we will see, a corresponding condition
on T T1 emerges when we look for a reversal. For σ a node in a tree T we denote
by parentT (σ ) the immediate predecessor of σ in T and we omit the subscript when
clear from context.

Definition 6 Let S ∼ 2<N. We call an enumeration {σ1, σ2, . . . } of S a level-by-level
enumeration if for each i ≥ 1 the children of σi in S are σ2i and σ2i+1 or, equivalently,
for each i ≥ 2, parentT (σi ) = σ⌊

i
2

⌋.

We are now ready to define the analogue of the apartness condition for subtrees of
2<N. We use � to denote sequence concatenation.

Definition 7 (Tree Apartness) A subtree S ⊆ 2<N is apart if the following conditions
hold:

1. S ∼ 2<N.
2. For each n ∈ N there is at most one sequence of length n in S.
3. The length-increasing enumeration of S = {σ1, σ2, . . . } is a level-by-level enu-

meration of S.
4. For all i ≥ 1 there exists σ ∈ 2<N \ {0}<N such that

σi+1 = parent(σi+1) � 0|σi |−|parent(σi+1)| � σ.
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In brief, a full binary tree is apart if each sequence extends its parent with zeros until it
joins the length of its predecessor, then it can be extended arbitrarily but with at least
a 1.

Remark 1 Requiring at least a 1 in σ in the above definition is a need dictated by a later
proof: we will associate increasing numbers to increasing sequences according to the
binary representation of numbers (if τ extends σ by zeros, then σ and τ represent the
same number). Note that, except for the root and one of its children, the predecessor
of a node in an apart tree is never also its parent.

Definition 8 Let k ≥ 1. We denote by apT T1
k the principle T T1

k with the extra constraint
that the monochromatic subtree is apart as in Definition 7. We denote (∀k ≥ 1)apT T1

k
by apT T1.

The next two propositions establish the equivalence of apT T1 and apHTbin over
RCA0.

Proposition 1 RCA0 � apHTbin → apT T1.

Proof We show in RCA0 that (∀k ≥ 1)(apHTbin
k → apT T1

k). The proof is similar
to Hirst’s proof of T T1 from Hindman’s Finite Unions Theorem [16], yet a different
labeling of nodes of 2<N with sums is used here.

Fix k ∈ N and c : 2<N → k. We define a coloring c′ : N → k of the natural numbers
in a very intuitive fashion. Let seq : N → 2<N be the function mapping 0 to the empty
sequence and, for each n ≥ 1, if n = 2e1 + · · · + 2em with e1 < e2 < · · · < em ,
then seq(n) = σ{e1,...,em }, where if X is a finite subset of N, σX ∈ 2<N is the shortest
binary string representing the characteristic function of X . We set

c′(n) := c(seq(n)).

By apHTbin there exists an infinite apart set H = {h1 < h2 < . . . } of positive
integers such that all sums h+

n , for n ≥ 1, have the same c′-color. Let z < k be this
color. We define TH ⊆ 2<N as the set of τn defined as follows, for n ≥ 1:

τn := seq

⎛

⎝
∑

j∈path(n)

h j

⎞

⎠ = seq(h+
n ).

It is easy to prove that TH is monochromatic for c. By definition of c′ and τn we
have

c(τn) = c

⎛

⎝seq

⎛

⎝
∑

j∈path(n)

h j

⎞

⎠

⎞

⎠ = c(seq(h+
n )) = c′(h+

n ) = z.

We then need to show that TH is an apart subtree (see Definition 7). This is where
the apartness condition on H is crucially used. It is easy to verify that, since H is
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apart, |seq(h+
n )| = |seq(hn)|. Thus, for any 0 < i < j , |τi | < |τ j | as required by tree

apartness.
We next show that TH isomorphic to 2<N (or, equivalently, to (bin,⊆)). Since H

is apart we have that for any n < m, path(n) ⊂ path(m) if and only if τn ⊂ τm . In
fact, τn = seq(h+

n ) and τm = seq(h+
m), where

h+
n =

∑

j∈path(n)

h j

. If path(n) ⊂ path(m), then

h+
m =

∑

j∈path(m)

h j =
∑

j∈path(n)

h j +
∑

j∈path(m)\path(n)

h j .

Since H is apart, h+
m = h+

n + b, for some b with μ(h+
n ) < λ(b). From this we easily

conclude τn ⊂ τm . For the other direction, let ⊕ be the XOR binary operation on
binary strings where the shortest binary string is extended by zeros to reach the length
of the longest binary string. By apartness, for any h < h′ in H the position of the
last 1 in seq(h) is strictly smaller than the position of the first 1 in seq(h′). Thus,
seq(h+

n ) = ⊕
j∈path(n) seq(h j ) and seq(h+

m) = ⊕
j∈path(m) seq(h j ). If seq(h+

n ) ⊂
seq(h+

m) it must necessarily be the case that path(n) ⊂ path(m).
As for the last property required for tree apartness, note that {τn : n ∈ N} is

a level-by-level enumeration of TH because {path(n) : n ∈ N} is a level-by-level
enumeration of bin, and the isomorphism maps path(n) to τn . Using the definition
τn := seq(h+

n ) it is easy to check that, for each i ≥ 1:

τi+1 = parent(τi+1) � 0|τi |−|parent(τi+1)| � τ,

for some τ containing at least a 1.
�

Proposition 2 RCA0 � apT T1 → apHTbin.

Proof We show in RCA0 that (∀k ≥ 1)(apT T1
k → apHTbin

k ). Let num : 2<N → N
be the surjective mapping σ �→ 2e1 + · · · + 2et where {e1, . . . , et } are the positions
on which σ has value 1, and all σ ∈ {0}<N are mapped to 0. The empty sequence is
mapped to 0. Fix a coloring c : N → k. Consider the coloring c′ : 2<N → k defined
as follows:

c′(σ ) := c(num(σ )).

By apT T1 there is an apart tree T homogeneous for c′. Let T = {τ1, τ2, . . . } be T listed
in length-increasing order. Since T is apart this ordering is a level-by-level ordering.
We can furthermore assume w.l.o.g. that τ1 /∈ {0}<N. Let � = {σ1, σ2, . . . } where
σ1 := τ1 and, for i > 1, σi := 0|τi−1| � τ where τ is such that τi = parent(τi ) �
0|τi−1|−|parent(τi )| � τ . We observe that:
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• τi and σi have the same length.
• τi = parent(τi ) ⊕ σi .
• τi = ⊕

j∈path(i) σ j .

Let hi := num(σi ) and consider the set HT := {h1, h2, . . . }. By the tree apartness
of T and definition of � we have that h1 < h2 < . . . , since |τ1| < |τ2| < . . . and
|τi | = |σi | for all i ≥ 1.

We can prove by (Π0
1 -) induction (on the formula (∀m < n)(μ(hm) < λ(hn))) that

HT is apart. For each i > 0, since σi = 0|τi−1| � τ , |σi−1| = |τi−1| and hi = num(σi ),
we have that μ(hi−1) < λ(hi ) by definition of num. Since the apartness condition on
integers is transitive, by induction we are done.

Next we prove that HT satisfies the required monochromaticity condition for c.
Let z < k be the color witnessing that T is homogeneous for c′. We show that for all
n ≥ 1, h+

n = ∑
i∈path(n) hi has color z. In fact

num(τn) = num(
⊕

i∈path(n)

σi ) =
∑

i∈path(n)

num(σi ) =
∑

i∈path(n)

hi = h+
n .

Thus, c(h+
n ) = c(num(τn)) = c′(τn) = z. �

From Proposition 1 and Proposition 2 we get the following corollary.

Corollary 2 RCA0 � apT T1 ↔ apHTbin.

2 Equivalence with 60
2-induction

We prove that apHTbin is equivalent to �0
2-induction. To this aim we use the inter-

mediate principle apT T1 and an equivalent of �0
2-induction from [16], the Eventually

Constant Tails principle.

2.1 Upper bound

We adapt the upper bound proof from Lemma 1.1 in [8], taking some extra care to
ensure tree-apartness.

Proposition 3 RCA0 � apT T1
2.

Proof Fix c : 2<N → {red,blue}. First we observe that there is a recursive procedure
FIND_RED that given any τ ∈ 2<N returns the shortest σ ∈ 2<N such that τ ⊆ σ and
c(σ ) = red if any, and otherwise loops. Indeed it is sufficient to iterate level-by-level
over the subtree of 2<N rooted at σ and return the first string that is colored red.

For any τ ∈ 2<N we denote by sub(τ ) the subtree of 2<N rooted at τ . We define a
recursive procedure that builds a c-monochromatic apart red tree T = {τ1, τ2, . . . } in
length-increasing order.

– Let τ1 be the least red node of 2<N.
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– Let τ2 be the least red node of sub(τ1 � 1).
– For any i ≥ 3 let τi be the least red node of the following subtree:

sub(τ
 i
2 � � 0

|τi−1|−|τ
 i2 �| � 1).

Note that 
 i
2� is the index of parentT (τi ). Our procedure is recursive since it only

uses FIND_RED as a sub-procedure. If our procedure defines τi for all i ≥ 1 then
T = {τ1, τ2, . . . } is a level-by-level enumeration of a monochromatic red tree in
length-increasing order and T is apart by construction. The procedure ensures that T
is computably enumerable. Since the enumeration is in length-increasing order T is
also computable. Now suppose that for some step i the procedure FIND_RED loops
before it defines τi+1. To find the least such i we need the �0

1-least element principle.
This principle can be proved in RCA0 as it follows from I�0

1 induction (see Theorem
A in [18]). If i = 1 then sub(τ1 � 1) is a subtree all coloured blue. Similarly if i > 1

then sub(τ
 i
2 � � 0

|τi−1|−|τ
 i2 �| � 1) is a subtree all coloured blue. In both cases we

can apply our procedure (using the blue colour instead of red) on the blue subtree,
and this time the procedure won’t fail to build a blue apart tree. �
Remark 2 In the above proof, the construction can be carried out starting from any
string of 2<N. Indeed the proof actually shows that, given any 2-coloring of 2<N, for
all σ ∈ 2<N either there exists an infinite red apart tree whose strings extend σ or
there exists a full binary subtree colored blue whose strings extend σ . This is the real
analogue of Lemma 1.1 in [8].

Proposition 4 RCA0 + �0
2 -IND � apT T1.

Proof The proof is modeled after the proof of Theorem 1.2 in [8], using Proposition 3
instead of Lemma 1.1 in [8]. We repeat it here for completeness. Moreover, the idea is
just the same as in the proof of Proposition 3 with the only difference that for arbitrary
colours we need to operate on the set C defined below whose existence is guaranteed
by �0

2-IND, while for a fixed number of colours, RCA0 is sufficient.
Fix c : 2<N → k. Consider the set

C = { j < k : (∃σ)(∀τ ⊇ σ)( j ≤ c(τ ))}.

By bounded �0
2-comprehension (provable from �0

2-IND, see [20], p. 72) C exists. C
is a non-empty finite set since 0 ∈ C and every j ∈ C is less than k. Let j be the
maximum of C . Let σ witness j . Note that every node extending σ is colored with a
color greater than or equal to j . Define a 2-coloring c′ of the subtree T rooted at σ

as follows: c′(τ ) := red if c(τ ) = j , c′(τ ) := blue otherwise. By Remark 2 there
either exists a red apart subtree—and in that case we are done—or there exists a full
binary subtree T ′ colored blue. In that case the minimum color used by c to color T ′
is greater than j and belongs to C , a contradiction. �

From Proposition 3, Proposition 4 and Corollary 2 we get the following corollary.

Corollary 3 RCA0 � apHTbin
2 and RCA0 + �0

2 -IND � apHTbin.
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2.2 Lower bound

We next show that apT T1 implies �0
2-induction over RCA0. In [16] the following

principle—called Eventually Constant Tails—is proved equivalent to �0
2-IND over

RCA0.

Definition 9 (Hirst [16]) ECT(N) is the following principle: For any c : N → k the
following holds:

(∃b)(∀n ≥ b)(∃m > n)(c(n) = c(m)).

Our proof that apT T1 implies ECT(N) uses a non-trivial adaptation of the parity
argument inaugurated in the study of the strength of Hindman’s Theorem in [1] and
simplified in [5]. Note that both these proofs in their original form show an implication
to ACA0 and are designed for 2-colorings. We need a preliminary definition.

Definition 10 Let σ ∈ 2<N. We call σ a good sequence if it cointains at least two
1s with some 0s in-between. For a good sequence σ we define I(σ ) ⊆ (N \ {0})<N,
called the interval sequence of σ , to be the set of consecutive intervals of 0-entries of
σ , i.e. an interval [i + 1, j − 1] is in I (σ ) if and only if the following three points are
satisfied.

1. i + 1 < j ,
2. σ(i) = σ( j) = 1,
3. σ(k) = 0 for all k ∈ [i + 1, j − 1].

If σ is not a good sequence we set I (σ ) := ∅. The elements of I (σ ) are called the
intervals of σ .

We can naturally order I(σ ) as follows: for I , J ∈ I(σ ) we let I < J if max(I ) <

min(J ). So we can write I(σ ) = {I1 < I2 < · · · < I	} for some 	 ≥ 1. If c : N → k
and I ⊆ N we denote by c(I ) the set {c(i) : i ∈ I }.
Definition 11 Let k ≥ 1 and c : N → k, z < k, and σ ∈ 2<N a good sequence.
Suppose I(σ ) = {I1, I2, . . . , I	}. We define the predicate “ j is z-important in σ”,
denoted imp( j, z, σ ), as follows: 2 ≤ j ≤ 	 and z ∈ c(I j−1) and z /∈ c(I j ). If σ is
not a good sequence, the predicate is always false.

Theorem 1 RCA0 � apT T1 → ECT(N).

Proof Fix c : N → k. Define c′ : 2<N → 2k×{0,1} as follows:

c′(σ ) := {〈z, card{ j : imp( j, z, σ )} mod 2〉 : z < k}.

Intuitively the color assigned by c′ to a sequence σ is the set of ordered pairs (z, pz)
where z < k is a c-color and pz is the parity of the set of indices j such that z appears
as a c-color of some element of interval I j−1 but not as a c-color of some element of
the successive interval I j .
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By apT T1 there exists a color w ∈ 2k×{0,1} and a w-monochromatic apart subtree
T . Let T = {σ1, σ2, . . . } be enumerated in length-increasing order. Since T is apart,
this is also a level-by-level enumeration. Without loss of generality, since T is apart,
we can assume that all σi s are good sequences.

Suppose by way of contradiction that ECT(N) fails for c, i.e.,

(∀b)(∃n ≥ b)(∀m > n)(c(n) �= c(m)).

For b = |σ1| + 1 this gives:

(∃n > |σ1|)(∀m > n)(c(n) �= c(m)).

Let j = mini |σi | > n. Such a j exists since T is infinite. Clearly j �= 1. Consider
σ j+1 and parent(σ j+1). Since j �= 1 we have that

|parent(σ j+1)| < |σ j |.

By minimality of j it must be |parent(σ j+1)| ≤ n. In particular parent(σ j+1)(n) is
undefined. By tree apartness it must be that σ j+1(n) = 0. In fact, σ j+1 has the form

parent(σ j+1) � 0|σ j |−|parent(σ j+1)| � σ

for some σ , and, by choice of j , |σ j | > n. Furthermore if

I(parent(σ j+1)) = {I1 < I2 < · · · < I	}

then

I(σ j+1) = {I1 < I2 < · · · < I	 < I	+1 < · · · < I	+r }.

We can assume w.l.o.g. r ≥ 2 by taking any extension of σ j+1 in T instead of σ j+1 if
needed. Note that, for any c-color z < k, if i ∈ [2, 	] is z-important in parent(σ j+1)

then i is also z-important in σ j+1. Clearly n ∈ I	+1 and thus by our hypothesis on n,
	+ 2 is c(n)-important in σ j+1. On the other hand 	+ 1 is not c(n)-important in σ j+1
since n ∈ I	+1. By homogeneity of T we have c′(parent(σ j+1)) = c′(σ j+1). Then,
by definition of c′ and a parity argument, there must be at least one w > 2 such that
	 + w is c(n)-important in σ j+1. This implies c(n) ∈ c(I	+w−1), contradicting our
choice of n. �

From Theorem 1 and Corollary 2 we get the following corollary.

Corollary 4 RCA0 � apHTbin ↔ apT T1 ↔ �0
2 -IND.
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3 Conclusion

Inspired by an elegant and simple proof of the Pigeonhole Principle for Trees (T T1)
from Hindman’s Theorem in [16] we formulated a natural restriction of Hindman’s
Theorem, HTbin, according to which only sums along finite paths from the root of
the full binary tree are required to be monochromatic. The proof of T T1 from HT in
[16] crucially uses a sparsity condition on the solution to Hindman’s Theorem. In our
setting, this gives a proof in RCA0 of T T1 from apHTbin, that is HTbin with the so-
called apartness condition on the solution set. We proved that apHTbin is equivalent
to �0

2-IND over RCA0. To obtain this result we formulated a principle resulting from
T T1 with an extra structural condition on the solution monochromatic subtree. This
condition is modeled on the apartness condition in Hindman’s Theorem and we called
it (tree) apartness. The corresponding principle is apT T1 and we proved it equivalent
to apHTbin. As is the case for T T1, the principle apT T1 is provable from �0

2-IND but,
perhaps surprisingly, the reverse implication also holds. This should be contrasted with
the very recent result by Chong et al. [7] showing that T T1 doesn’t prove �0

2-IND.
Thus the principles T T1 and apT T1 are in different classes of strength. This means
that the apartness condition, that is so crucial in Hindman’s Theorem, plays a role
also in Ramsey-type principles for trees, boosting the strength of T T1 to the level
of �0

2-induction. By the equivalence of apT T1 with apHTbin, this also shows that
HTbin and apHTbin are in different classes of strength: while HTbin follows from RT1,
apHTbin is equivalent to �0

2-IND. This is the first example showing that the apartness
condition can strictly increase the strength of restrictions of Hindman-type Finite Sums
Theorems with respect to provability in RCA0. Furthermore apHTbin is a “weak but
yet strong” natural restriction of Hindman’s Theorem in the sense of [3] which entirely
exploits the particular structure of its sums to prove �0

2-IND. A natural direction for
future research is to investigate the relations between Hindman-type theorems and
Ramsey-type theorems for trees for colorings of n-tuples with n > 1, starting from
T T2.
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