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Non-Hermitian two-site dimers serve as minimal models in which to explore the interplay of gain and loss in
dynamical systems. In this paper, we experimentally and theoretically investigate the dynamics of non-Hermitian
dimer models with nonreciprocal hoppings between the two sites. We investigate two types of non-Hermitian
couplings; one is when asymmetric hoppings are externally introduced, and the other is when the nonreciprocal
hoppings depend on the population imbalance between the two sites, thus introducing the non-Hermiticity in
a dynamical manner. We engineer the models in our synthetic mechanical setup comprised of two classical
harmonic oscillators coupled by measurement-based feedback. For fixed nonreciprocal hoppings, we observe
that, when the strength of these hoppings is increased, there is an expected transition from a PT -symmetric
regime, where oscillations in the population are stable and bounded, to a PT -broken regime, where the
oscillations are unstable and the population grows/decays exponentially. However, when the non-Hermiticity is
dynamically introduced, we also find a third intermediate regime in which these two behaviors coexist, meaning
that we can tune from stable to unstable population dynamics by simply changing the initial phase difference
between the two sites. As we explain, this behavior can be understood by theoretically exploring the emergent
fixed points of a related dimer model in which the nonreciprocal hoppings depend on the normalized population
imbalance. Our study opens the way for the future exploration of non-Hermitian dynamics and exotic lattice
models in synthetic mechanical networks.

DOI: 10.1103/PhysRevE.107.064211

I. INTRODUCTION

In recent decades, systems described by non-Hermitian
Hamiltonians have become a topic of great interest since
gain and loss can lead to many intriguing effects, including
parity-time (PT ) symmetry and real energy spectra [1–7],
exceptional points [8–11], non-Hermitian geometrical phases
[12–20], and new types of topological phenomena [21–28].
This interest has also been driven by recent experimental
developments leading to non-Hermitian physics being sim-
ulated across a wide range of platforms such as photonics
[5,11,29–32], ultracold gases [33–35], and mechanical meta-
materials [20,36–41].

Within this field, significant effort has been devoted to the
study of so-called “dimer” models, in which two sites are
coupled together in a (non-Hermitian) Hamiltonian that can
be represented generally as a 2×2 matrix. Such models are
useful as they serve as minimal systems in which to under-
stand (often analytically) the effects of non-Hermitian terms
on dynamical behavior [42–45]. Some of the interesting dy-
namical effects that have been investigated in nonlinear dimer
systems include sensitivity to input power [7,46], nonrecipro-
cal dynamics and directed transport [47,48], and confinement

Published by the American Physical Society under the terms of the
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in phase space [49]. Many of the previous works focused on
the dimer models where the non-Hermiticity is introduced
and controlled through on-site loss and gain terms (see, e.g.,
[5–7,42–45,50–52] and references therein), that is, through
the diagonal components in the Hamiltonian.

In this paper, we instead explore dynamics of dimer mod-
els in which the non-Hermitian effects are introduced by
making the hopping between the two sites asymmetric [53].
Such systems are inspired by the Hatano-Nelson (HN) model
[54–56], which is a one-dimensional lattice model with asym-
metric hoppings between the sites exhibiting the so-called
non-Hermitian skin effect [21,28,57]. Such asymmetric, or
nonreciprocal, hoppings are more difficult to experimentally
implement than on-site gain and loss. However, there has
been significant recent progress in realizing such asymmet-
ric hoppings using setups based on optical systems [58–61],
electrical circuits [62–64], and synthetic mechanical meta-
materials [20,65], opening up a possibility to experimentally
study such non-Hermitian models.

In this paper, we engineer non-Hermitian dimer mod-
els by taking advantage of the flexibility of a mechanical
setup consisting of two coupled harmonic oscillators with
measurement-based feedback [65]. As we have previously
demonstrated, this approach can be used to simulate near-
arbitrary mean-field lattice Hamiltonians, with controllable
on-site gain and loss, nonreciprocal couplings, and (exotic)
synthetic nonlinearities among other effects [20,65]. In addi-
tion to its tunability, a key advantage of this setup is that it
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provides full access to the dynamics, allowing us to observe
the evolution of the system in real time.

Here, we exploit this mechanical setup to investigate the
dynamics of HN dimer models. We first discuss the linear
HN dimer in which the asymmetric hopping is externally
fixed [53]. This linear model is mathematically equivalent
to the aforementioned dimer models with on-site gain and
loss, with the result that the trajectories of dynamics in the
PT -symmetric regime show closed stable orbits, while the
behavior in the PT -broken regime is unstable, with the pop-
ulation exponentially exploding or decaying. Building on the
understanding of the linear model, we then explore a nonlinear
version of the Hatano-Nelson dimer in which the asymmetric
coupling is induced by population imbalance between the two
sites. For this model, we again find both a stable regime at
low coupling strengths, in which population oscillations are
bounded, analogous to the PT -symmetric regime described
above, and an unstable regime at high coupling strengths, in
which the population grows/decays, similar to the PT -broken
regime. However, we also find a new regime at intermediate
coupling strengths, where the two types of behavior coexist,
allowing us to tune the population dynamics from a stable
oscillation to an unstable divergence by simply tuning the
initial phase difference between the oscillators. As we discuss,
this behavior can be understood by studying the fixed points of
a variant of the nonlinear HN dimer model, which we call the
instantaneous HN dimer model, in which the nonreciprocal
coupling depends on the normalized population difference
between the two sites as introduced below. Our work lays the
foundation for exploring the dynamics of more exotic lattice
Hamiltonians with non-Hermiticity and mean-field interac-
tions.

The paper is structured as follows: In Sec. II we introduce
and define the models we explore. We introduce the linear HN
dimer model, the nonlinear HN dimer model, and the instan-
taneous HN dimer model that helps elucidate the dynamics of
the original nonlinear HN dimer model. In Sec. III we describe
the experimental approach and setup, and the details and pa-
rameters chosen. In Sec. IV we analyze the linear HN dimer
model. We first analytically study the dynamical behavior of
the model, and then we compare the results with numerically
and experimentally obtained dynamics. In Sec. V we analyze
the dynamical behavior of the instantaneous HN dimer model,
and we discuss the emergence of multiple fixed points and the
structure of the transition between the weakly and strongly
interacting regimes. In Sec. VI we finally study the nonlinear
HN dimer model. We give qualitative explanations of the
phase diagram using results obtained in previous sections, and
we discuss the coexistence of different phases in the dynamics
from both numerical and experimental approaches. Finally, in
Sec. VII we draw conclusions and discuss the outlook for this
work.

II. MODELS

We experimentally realize two types of non-Hermitian
dimer models. The first is the linear Hatano-Nelson (HN)
dimer model, in which Hermiticity is broken by externally
tuneable nonreciprocal couplings between the two sites. The
second is the nonlinear HN dimer model, in which the non-

(a) (b)

FIG. 1. (a) Sketch of the Hatano-Nelson dimer as described in
Eq. (1), where δJ is the hopping asymmetry parameter. (b) Sketch
of the dimer with population-dependent hopping asymmetry as de-
scribed in Eq. (2), where z describes the population imbalance
between the two sites, and g is a control parameter.

reciprocal couplings are instead induced by the population
imbalance between the two sites, and hence evolve dynami-
cally, depending on the interparticle interaction strength. To
obtain an analytical understanding of the nonlinear HN dimer
model, we also theoretically introduce a variant of the non-
linear HN dimer model in which the non-Hermiticity only
depends on the normalized population imbalance between
the two sites; such a model describes the dynamics of the
nonlinear HN dimer model for a short period of time, and thus
we call it an instantaneous HN dimer model. We shall now
introduce the linear, nonlinear, and instantaneous HN dimer
model in turn.

A. Linear Hatano-Nelson dimer model

The linear HN dimer model is a model in which two
sites are coupled by nonreciprocal hopping amplitudes
[28,53,66,67]. By writing the complex-valued wave function
of the two sites as α = (α1, α2)T, the dynamics of the linear
HN dimer is described by

iα̇ =
(

ω − � −J − δJ
−J + δJ ω + �

)
α, (1)

where ω is an overall energy offset, and � determines the on-
site energy difference between the two sites (with h̄ = 1), as
shown in Fig. 1(a). Without loss of generality, from now on we
will consider J , �, and δJ to be non-negative real values. The
coupling between the sites is split into the reciprocal part of
the hopping amplitude −J and the nonreciprocal part ±δJ , the
latter being responsible for breaking Hermiticity. This model
is the two-site version of the famous Hatano-Nelson model
for a one-dimensional chain [54–56] in which all the nearest-
neighbor intersite couplings take the form as in Eq. (1).

As mentioned above, this model is mathematically equiv-
alent to the more commonly studied non-Hermitian dimer
model with reciprocal coupling and on-site gain and loss;
cf., e.g., Refs. [42–45]. To see this, the Hamiltonian [i.e., the
two-by-two matrix in Eq. (1)] can be expressed with Pauli ma-
trices as H=−�σz − J σx − iδJ σy, up to an overall energy
shift. A suitable unitary transformation can bring this into the
form H=√

�2 + J2σx − iδJσz, which describes a reciprocal
hopping of strength

√
�2 + J2 and on-site imaginary terms of

magnitude δJ with opposite signs corresponding to the gain
and loss; the known behavior of this model can therefore be
used to infer that of the linear HN model. We will instead
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analyze the linear HN model directly in Sec. IV in order to
lay the groundwork for the rest of the paper.

B. Nonlinear Hatano-Nelson dimer model

In the linear HN dimer model, the non-Hermiticity was
included via a constant off-diagonal contribution ±δJ . In the
nonlinear HN dimer model, the non-Hermiticity is introduced
dynamically via the population imbalance between the two
sites. The nonlinear HN dimer model is defined by the follow-
ing equation of motion:

iα̇ =
(

ω − � −J − gz
−J + gz ω + �

)
α, (2)

in which the nonreciprocal part of the hopping amplitude is
now set by ±gz, where g is the interaction strength and z ≡
|α1|2 − |α2|2 represents the population imbalance between the
two sites. A sketch of this model is made in Fig. 1(b). As z
depends on the complex wave function, this is no longer a
linear model and so it does not have linear eigenstates and
eigenenergies similar to the linear HN dimer. Understanding
the rich behavior of this model is a goal of the current paper.
Because of the nonlinearity, it is not possible to obtain a good
analytical understanding of the model. To approximately un-
derstand the dynamics of this model for a short period of time,
we introduce the following instantaneous HN dimer model.

C. Instantaneous Hatano-Nelson dimer model

The nonlinearity in the nonlinear HN dimer model was in
the term ±gz in the off-diagonal terms. We can rewrite this
term as ±gn(z/n), where n is the norm of the wave function.
In non-Hermitian models, the norm n generally depends on
time, and so do gn and z/n. However, as we discuss in more
detail in Sec. V, the model

iα̇ =
(

ω − � −J − ḡz/n
−J + ḡz/n ω + �

)
α, (3)

which is obtained by replacing gn in the nonlinear HN dimer
model by ḡ, allows a description of the dynamics without
complication arising from the time dependence of n if ḡ is
taken to be a constant value. Physically, we can view the
model as describing the dynamics of the nonlinear HN dimer
model at a time close to t0 if we set ḡ = gn(t0). We thus call
the model the instantaneous HN dimer model.

Before moving on to describe the dynamical features of
the linear, nonlinear, and instantaneous HN dimer models, we
briefly explain how the models can be experimentally realized
in our system of mechanical oscillators.

III. EXPERIMENTAL SETUP

Our experimental setup is described in detail in Ref. [65],
and it consists of two almost identical oscillators, whose ac-
celeration a(t ) and its numerical derivative, the jerk j(t ) =
da(t )/dt , are measured in real time. These measurements
can be used to produce a real-time feedback force on each
oscillator that allows us to synthetically couple the two os-
cillators. This procedure enables us to effectively generate a
wide variety of two-level tight-binding Hamiltonians. Within
the rotating-wave approximation, the mean-field Schrödinger

FIG. 2. Sketch of the experimental apparatus used for imple-
menting the described models. We perform real-time measurements
of the effective position Xk and momentum Pk variables of our
oscillators (labeled by index k), which are used to compute real-
time feedback forces that are applied magnetically through a
voltage-controlled current. The form of the feedback forces used to
implement a desired Hamiltonian H is given simply by the relation-
ship Fk ∝ −∂H/∂Xk .

equations of motion for a generic tight-binding Hamiltonian
can be mapped onto Newton’s equations for the harmonic
oscillators. Hence, we can engineer a combination of self-
and cross-feedback [65]: the former is responsible for local
on-site terms (e.g., site-dependent potential energy shifts, site-
dependent gain or loss, and on-site nonlinear interactions),
while the latter introduces off-site terms that allow energy to
hop from site to site (e.g., complex hopping, nonreciprocal
coupling, and even density-dependent hopping).

Experimentally, feedback forces are implemented by using
real-time voltage output signals to control the currents through
gradient solenoids surrounding each oscillator. These control
signals result in magnetic forces on the oscillators, each of
which features an embedded dipole magnet. The real-time
voltage measurement signals relating to acceleration and jerk
are normalized to a common scale. Given the simple harmonic
nature of our oscillators, these normalized measurement sig-
nals Xk and Pk , where k is the oscillator index, serve as direct
proxies for the oscillators’ positions and momenta, xk and pk .
As depicted in Fig. 2, a desired Hamiltonian H is implemented
by feeding back on the oscillators with forces that are true to
Hamilton’s equation (d pk/dt = −∂H/∂xk). Hence, feedback
forces are of the form Fk ∝ −∂H/∂Xk . Naturally, site energy
shifts are implemented by forces of the form Fk ∝ Xk , while
gain and loss terms are implemented through feedback of the
form Fk ∝ Pk , and so on [65]. Due to our co-normalization of
the Xk and Pk variables, the relative magnitude of all the linear
terms in our experimentally implemented Hamiltonians is de-
fined simply by the ratio of the applied feedback coefficients.
The absolute calibration of our feedback forces (i.e., how the
control voltage signals generated by our measurement-and-
feedback system relate to the actual mHz-scale terms of the
implemented Hamiltonian) is performed by investigating the
frequency shift of the individual oscillators based on self-
feedback forces (Fk ∝ Xk), as detailed in Ref. [65].
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To simulate the dynamics as in Eq. (1), we introduce a
combination of self-feedback (to cancel natural loss terms
and to shift the site energies) and linear cross-feedback (to
introduce hopping between sites). To capture nonlinear terms,
such as the population-dependent hopping contributions of
Eq. (2), we introduce feedback forces of the form F1(2) ∝
g(X 2

1 + P2
1 − X 2

2 − P2
2 )X2(1)/(X 2

1,i + P2
1,i + X 2

2,i + P2
1,i ), where

Xk,i and Pk,i are the initial values taken by the effective po-
sition and momentum variables. Through this normalization,
these nonlinear terms are governed by the same absolute cali-
bration as the linear terms.

In addition to allowing for implementation of the desired
linear and nonlinear HN dimer models, our control over these
applied forces enables us to set the initial state of the oscilla-
tors for each experiment. Starting with oscillators nominally at
rest, we sinusoidally drive the two oscillators at their common
resonance frequency of ∼3.05 Hz for several seconds. By con-
trolling the relative strength and phase of these two sinusoidal
“initialization” drives, we control the initial amplitudes and
phases of the two oscillators (or correspondingly, the initial
complex-valued wave function α).

IV. LINEAR HN DIMER MODEL

With the experimental setup we just described, we study
the dynamical behavior of the linear HN dimer model. To
understand the dynamics, we employ two descriptions: one
is in the “phase space” of the population imbalance and the
phase difference between the two sites, and the other is the
Bloch sphere representation. Although these dynamics can
already be obtained either by looking at the eigenstates of
the Hamiltonian or through the mathematical equivalence be-
tween the linear HN dimer model and the on-site gain-loss
model mentioned in Sec. II, the description in terms of the
phase space and the Bloch sphere is worth discussing here as
it gives us an intuitive picture for understanding, and will also
lay the groundwork for later sections to understand the dy-
namics of the nonlinear and instantaneous HN dimer models.

A. Dynamical equations for the linear HN dimer

We rewrite here the equation of motion for the linear HN
dimer model, Eq. (1),

i
∂

∂t

(
α1

α2

)
=

(
ω − � −J − δJ
−J + δJ ω + �

)(
α1

α2

)
. (4)

In standard Hermitian quantum mechanics, the overall nor-
malization of the wave function is not an observable, and
we can assume the wave function to be normalized with the
overall phase left as a gauge degree of freedom. However, in
non-Hermitian quantum mechanics, time evolution is nonuni-
tary in general, and the change of norm of the wave function
over time plays an important role, describing phenomena such
as decay and lasing. In our classical experimental setup, all the
information of the wave function, α1 and α2, can in principle
be measured. Following the practice of non-Hermitian quan-
tum mechanics, we consider the norm of the wave function to
be an observable, but we choose to not consider the overall
phase to be significant.

In describing the dynamics of two-site (two-level) systems,
it is both convenient and conventional to recast the dynamical
equations either in terms of “phase-space” dynamics [68] or
in terms of the Bloch vector [43,44]. As we shall use both
pictures interchangeably, we now briefly introduce each in
turn.

In the phase-space picture, we look at the dynamics
in the space of phase difference between two sites, ϕ ≡
arg(α1/α2) ∈ (−π, π ], and the normalized population im-
balance between two sites z̃ ≡ (|α1|2 − |α2|2)/n, where n ≡
|α1|2 + |α2|2 is the total population. For two-site Hermitian
models, the dynamics is fully characterized in the space of
{z̃, ϕ}. In non-Hermitian models, however, the overall norm
of the wave function can change and have significance, so
the full dynamics is characterized in the space of {n, z̃, ϕ}.
Equations of motion for {n, z̃, ϕ} can be obtained from Eq. (1)
in a straightforward manner, and they are

ṅ = −2 δJ n
√

1 − z̃2 sin ϕ, (5)

˙̃z = 2(z̃ δJ − J )
√

1 − z̃2 sin ϕ, (6)

ϕ̇ = −2 � + 2
Jz̃ − δJ√

1 − z̃2
cos ϕ. (7)

We see that the time evolutions of the variables z̃ and ϕ

are closed by themselves and do not depend on the total
population n. As a result, we can consider the dynamics in
the restricted 2D phase space {z̃, ϕ}; the dynamics of n is
separately determined from the information of {z̃, ϕ} [43,44].
Most importantly, when considering the dynamics of {z̃, ϕ},
we do not need to worry about the fact that the total population
n can change in time, and thus we can analyze the dynamics
in {z̃, ϕ} in a way analogous to the Hermitian dimer models.

Secondly, we can alternatively visualize the dynamics by
means of the normalized Bloch vector, s = (sx, sy, sz )T, whose
components are defined as

sx ≡ 1

2 n
(α∗

1α2 + α1α
∗
2 ), (8)

sy ≡ 1

2i n
(α∗

1α2 − α1α
∗
2 ), (9)

sz ≡ 1

2 n
(|α1|2 − |α2|2) = 1

2
z̃, (10)

subject to the condition |s|2 = 1/4, implying that the head
of the Bloch vector always lies on the surface of a sphere
of radius 1/2 called the Bloch sphere [43,44]. As the total
population n also changes, the full dynamics is described by
the four variables {n, sx, sy, sz}. It can then be shown that [53]

ṅ = −4 δJ n sy, (11)

ṡx = 2�sy + 4 δJ sxsy, (12)

ṡy = −2�sx + 2Jsz − δJ + 4 δJ s2
y , (13)

ṡz = −2Jsy + 4 δJ sysz, (14)

where again the time dependence of the Bloch vector
(sx, sy, sz ) does not depend on the total population n, and thus,
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upon considering the dynamics of the Bloch vector (sx, sy, sz ),
we do not need to worry about the time dependence of n.
We note that since a vector (sx, sy, sz ) lies on the surface
of a two-dimensional sphere, the dimension of the space in
which the variables {n, sx, sy, sz} move is three-dimensional,
agreeing with the three-dimensional description in the phase
space {n, z̃, ϕ}. Naturally, the phase-space and the Bloch-
vector equations are fully equivalent, as can be shown by
noting that ϕ = arctan(sy/sx ) and z̃ = 2sz.

B. Dynamics of the linear HN dimer

Linear non-Hermitian dimer models exhibit a PT -
symmetry breaking transition, in which the eigenstates of the
Hamiltonian coalesce at an exceptional point [1,2,69] as the
strength of the non-Hermitian terms is increased. The energy
eigenvalues, E±, of the Hamiltonian are [2,69]

E± = ω ±
√

J2 + �2 − δJ2. (15)

The energies are purely real when J2 + �2 > δJ2, cor-
responding to a weakly non-Hermitian regime called the
PT -symmetric regime. When J2 + �2 = δJ2, the two eigen-
values become degenerate, at which point the eigenvectors
also coalesce, yielding the exceptional point in the parameter
space. When J2 + �2 < δJ2, the energies acquire a nonzero
imaginary part, which is called the PT -broken regime. The
appearance of the imaginary part of eigenenergies indicates
that the norm of the wave function will not be conserved
over time, and the population exponentially grows or de-
cays [28,53,66,67,70]. In the following, we first review the
PT -symmetric region J2 + �2 > δJ2, where the dynamics is
described by oscillation around two fixed points. We then dis-
cuss the PT -broken regime J2 + �2 < δJ2, where the fixed
points turn into a source and sink of dynamics.

1. PT -symmetric regime

In the PT -symmetric regime, J2 + �2 > δJ2, where the
eigenvalues of the Hamiltonian are real, the dynamics con-
sist of Rabi oscillations between the two sites, which can be
seen as closed orbits in phase-space and on the Bloch sphere
[43,44]. The population can also be biased toward one of
the two sites; the emergence of population imbalance comes
from non-Hermiticity, and its mechanism is different from
the self-trapping known in interacting Hermitian Josephson
dimers.

The dynamics can be understood through the fixed points
of motion, which are obtained by setting the time derivative
of the variables to zero. In the non-Hermitian models that we
analyze in this paper, we find it convenient and useful to look
for fixed points of variables other than n, leaving the possibil-
ity for n to change in time. In what follows, when we refer to
fixed points, this refers to fixed points in the parameter space
of either {z̃, ϕ} in the phase-space description or {sx, sy, sz} in
the Bloch-sphere description without including n.

In terms of the Bloch-sphere description, the fixed points
are thus obtained by setting ṡx = ṡy = ṡz = 0 in Eqs. (12),
(13), and (14). Looking at the equation for ṡz = 0, one sees
that the fixed point should satisfy either sy = 0 or sz = J/2δJ .
The latter solution implies sz > 1/2 in the PT -symmetric
region, J2 + �2 > δJ2, which is not compatible with the

condition |s|2 = 1/4 and thus not a valid solution. Therefore,
the only fixed points in the PT -symmetric region satisfy
sy = 0. Solving the other equations ṡx = ṡy = 0, we obtain
two fixed points:⎛

⎝sx

sy

sz

⎞
⎠ = 1

2(J2 + �2)

⎛
⎝−δJ � ± 
 J

0
δJ J ± 
�

⎞
⎠, (16)

where 
 ≡ √
J2 + �2 − δJ2 > 0 in the PT -symmetric

regime.
Equivalently, the fixed points can be expressed in terms of

the phase-space variables by setting ˙̃z = ϕ̇ = 0. We find two
fixed points,(

z̃
ϕ

)
=

{(
δJ J+
�

J2+�2

0 or π

)
,

(
δJ J−
�

J2+�2

π

)}
. (17)

In the first fixed point, we should choose ϕ = 0 when δJ <J
and ϕ = π when δJ >J . This discontinuous change of ϕ may
look odd, but this is due to the fact that when J = δJ , the
first fixed point becomes z̃ = 1, which corresponds to the
north pole in the Bloch-sphere description. As the fixed point
crosses the north pole, the phase angle ϕ changes discontin-
uously from 0 to π . Note that there is no discontinuity in the
Bloch-sphere description.

The dynamics around a fixed point can be understood by
looking at the eigenvalues of the Jacobian matrix, J , of the
fixed point [71–74], which in the phase space {z̃, ϕ} is

J =
(

∂z̃ ˙̃z ∂ϕ
˙̃z

∂z̃ϕ̇ ∂ϕϕ̇

)
. (18)

If the real parts of the two eigenvalues are both zero, the fixed
point acts as a center of motion around which the system
oscillates. If the real parts of the eigenvalues are both posi-
tive, the fixed point is called an unstable fixed point, and the
dynamics flows away from the point. If the real parts of the
eigenvalues are both negative, the fixed point is called a stable
fixed point, and the dynamics sinks into the point. If one of the
eigenvalues has a positive real part and the other eigenvalue
has a negative real part, the fixed point behaves as a saddle
point of dynamics.

The fixed points of Eq. (17) behave as centers for the
dynamics [44,45]. This oscillatory behavior is analogous to
the Rabi oscillation in coherently coupled two-level quantum
systems. Such oscillatory dynamics is confirmed also exper-
imentally, as seen in Fig. 3. Depending on the value of δJ ,
which is the strength of the non-Hermiticity, the value of z̃ at
the fixed points varies, and it can even reach the maximum
value of z̃ = 1. This imbalance of population is a two-site ver-
sion of the non-Hermitian skin effect known in the extended
Hatano-Nelson model with edges, where all the eigenstates
are known to be localized on one edge [54–56].

These dynamical features are both numerically and exper-
imentally confirmed, as described in Fig. 3. The left panel
describes the Hermitian limit (δJ = 0) of the linear HN dimer
model, whereas the central panel is in the PT -symmetric
regime and the right panel is the PT -broken regime. Fixed
points which serve as centers of dynamics are indicated by
blue triangles, whereas the source and sink are indicated by a
green diamond and an orange square, respectively. The roles
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FIG. 3. Numerically and experimentally obtained dynamics of the linear Hatano-Nelson dimer model, with � = 0, and three distinct
values of δJ in both the Bloch-sphere representation (top panels) and the phase-space representation (bottom panels). Different colors of points
represent the different initial conditions, which are highlighted by open circles. Numerical results are in solid lines, whereas experimental data
are plotted with (slightly transparent) points. In the PT -symmetric regime, the fixed points in Eqs. (16) and (17) are centers (blue triangles),
while as soon as the PT -symmetry is broken (panel on the right), one of the points in Eq. (19), or equivalently in Eq. (20), behaves as a source
(unstable point, green diamond) and the other as a drain (stable point, orange square).

of fixed points found in the dynamics obtained from numerical
and experimental means are in accord with what we found
above.

If we insert the fixed points into the equation for n, we see
ṅ = 0, indicating that the total population does not change in
time on the fixed points. This behavior is expected because the
eigenvalues of the Hamiltonian in the PT -symmetric region
are both real. However, if we look at the dynamics around
the fixed points, the total population n changes in time. In
the left panel of Fig. 4, we plot the numerically calculated
dynamics within a region of the 3D phase space of {n, z̃, ϕ}.
In the 3D phase space, the fixed point in the phase space
{z̃, ϕ} corresponds to a line perpendicular to the z̃-ϕ plane.
The variation of the population during dynamical evolution
even in the PT -symmetric region reflects that the eigenstates
are not orthogonal, and their overlap can lead to a change of
population during dynamics.

2. PT -broken regime

Approaching the PT -breaking transition from the PT -
symmetric region corresponds to taking 
 → 0, and the fixed
points of the PT -symmetric region in Eq. (16) merge in this
limit, giving rise to an exceptional point [44,45].

Beyond the PT -breaking transition, J2 + �2 < δJ2, we
enter the PT -broken regime where the eigenvalues of the
Hamiltonian are no longer real. The fixed-point solution with
sy = 0 from the PT -symmetric region is no longer a valid

solution in the PT -broken regime. Instead, there are two fixed
points at ⎛

⎝sx

sy

sz

⎞
⎠ = 1

2 δJ

⎛
⎝ −�

±i 

J

⎞
⎠. (19)

FIG. 4. Numerically calculated phase-space dynamics for the
linear HN dimer model in the space of {n, z̃, ϕ}. Different colors are
for different initial conditions, highlighted with open circles. All the
fixed points are represented as lines perpendicular to the z̃-ϕ plane
as their coordinates are independent of the population, n. Left panel:
in the PT -symmetric case (δJ = 0.5 J and � = 0.01 J), the fixed
points in Eq. (17) (triangles) are centers. Right panel: if the system
is not PT -symmetric (δJ = 2 J and � = 0.01 J), only points in
Eq. (20) are well defined, and they appear in pairs of stable (orange
squares) and unstable (green diamonds) points.
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Equivalently, in the phase-space description, the fixed points
are (

z̃
ϕ

)
=

(
J/δJ

± arccos(−�/
√

δJ2 − J2)

)
. (20)

The fixed point at ϕ < 0 is a stable fixed point acting as
a sink of dynamics, whereas the fixed point at ϕ > 0 is an
unstable fixed point acting as a source [44,45]. In the linear
HN dimer, fixed points are merely the eigenstates of the 2-
by-2 Hamiltonian; the eigenstate corresponding to the stable
fixed point has the eigenvalue whose imaginary part is larger
than the other eigenstate. We can physically understand the
source/sink nature of these fixed points by noting that, starting
from a state that is a superposition of the two eigenstates, the
weight of the eigenstate corresponding to the sink will grow
because of the larger imaginary part. We note that the total
population n at the fixed points is no longer a constant, but
rather grows in time. In this sense, these fixed points are not
fixed points in the full dynamics taking n into account. As we
noted earlier in this paper, we keep this terminology that the
fixed points are points where variables other than n are kept
constant.

V. INSTANTANEOUS HN DIMER MODEL

Now we turn to models with nonlinearities. Unlike the
linear HN dimer model where the fixed points correspond
to the eigenstates of the 2-by-2 Hamiltonian, obtaining the
fixed points of the dynamics of models with nonlinearity is
generally nontrivial. Although the model we experimentally
implement is the nonlinear HN model, this model does not
allow for a simple description in terms of fixed points. How-
ever, as we shall explain, we can obtain the fixed points of
the instantaneous HN model, which also contains nonlinearity
and thus provides a good approximation to understand the
experimentally realized nonlinear HN model. In this section,
we give a theoretical description of the dynamics of the in-
stantaneous HN dimer model, which we will use in later
sections to understand the dynamics of the nonlinear HN
dimer model.

We rewrite here the equation of motion for the instanta-
neous HN dimer model Eq. (3):

iα̇ =
(

ω − � −J − ḡz̃
−J + ḡz̃ ω + �

)
α, (21)

where we used the notation z̃ = z/n we introduced in the
previous section. The equations for the phase-space variables
{n, z̃, ϕ} are

ṅ = −2 ḡn z̃
√

1 − z̃2 sin ϕ, (22)

˙̃z = 2(ḡ z̃2 − J )
√

1 − z̃2 sin ϕ, (23)

ϕ̇ = −2� + 2
J − ḡ√
1 − z̃2

z̃ cos ϕ, (24)

while the equations for the Bloch sphere variables are

ṅ = −8 ḡn sysz, (25)

ṡx = 2�sy + 8 ḡ sxsysz, (26)

ṡy = −2�sx + 2(J − ḡ)sz + 8 ḡ s2
ysz, (27)

ṡz = −2Jsy + 8 ḡ sys2
z . (28)

Just like the linear HN dimer model, time derivatives of the
variables z̃, ϕ, sx, sy, and sz have no n dependence, which
implies that we can consider the dynamics in the phase space
{z̃, ϕ} and on the Bloch sphere {sx, sy, sz} independent from
how n depends on time. Nonetheless, the instantaneous HN
dimer model is not a linear model; indeed the dynamics has
z̃ dependence in the 2-by-2 nonlinear Hamiltonian of Eq. (3).
The situation should be contrasted with what happens for the
nonlinear HN dimer model, whose equations of motions are
Eqs. (40)–(46) in the next section. The nonlinear HN dimer
model has an explicit n dependence in the equations of motion
for z̃, ϕ, sx, sy, and sz, and a closed description in terms of
either {z̃, ϕ} or {sx, sy, sz} is not allowed, making the analysis
more difficult. The dynamics of the instantaneous HN dimer
model we explore in this section serves as the basis to under-
stand the dynamics of the nonlinear HN dimer model in the
next section.

A. Dynamics of the instantaneous HN dimer model

As before, we first look for the fixed points of motion.
Fixed points, as before, are points determined by ˙̃z = ϕ̇ = 0
for the phase-space dynamics and ṡx = ṡy = ṡz = 0 for the
Bloch sphere dynamics, without imposing ṅ = 0. The fixed
points we discuss are, therefore, fixed points in the restricted
space in which we do not look at the time evolution of n.

From the condition ṡz =0, we obtain sy =0 or s2
z =J/(4ḡ).

Let us first examine the case sy = 0. From the other two equa-
tions, ṡx = ṡy = 0, we obtain the following two fixed-point
solutions: ⎛

⎝sx

sy

sz

⎞
⎠ = ± 1

2
√

(J − ḡ)2 + �2

⎛
⎝J − ḡ

0
�

⎞
⎠. (29)

A striking feature of the instantaneous HN dimer model is that
these fixed points are always valid fixed points irrespective of
the values of J , δJ , and �, which is to be contrasted with the
linear HN dimer model where the fixed point sy = 0 was valid
only in the PT -symmetric region. These fixed points in the
phase-space description are(

z̃
ϕ

)
=

{(
� sgn(J−ḡ)√

(J−ḡ)2+�2

0

)
,

(
− � sgn(J−ḡ)√

(J−ḡ)2+�2

π

)}
. (30)

The sign of the fixed points of z̄ depends on sgn(J − ḡ); this
is because when J = ḡ, the fixed point reaches the north pole
in the Bloch sphere description and thus ϕ changes between
0 and π around J = ḡ. Note that there is no discontinuous
change in the Bloch sphere representation.

Now we look for the fixed point sy 	= 0. Combining s2
z =

J/(4ḡ) with ṡx = ṡy = 0, we obtain the following additional
four fixed points:⎛

⎝sx

sy

sz

⎞
⎠ = ± 1

2
√

ḡJ

⎛
⎝−�

0
J

⎞
⎠ ± 1

2
√

ḡ

⎛
⎝ 0√

ḡ − gT

0

⎞
⎠, (31)

064211-7



ENRICO MARTELLO et al. PHYSICAL REVIEW E 107, 064211 (2023)

where the signs of the first and the second terms can be chosen
independently, and we defined

gT ≡ J2 + �2

J
. (32)

These additional fixed points with sy 	= 0 are valid fixed points
only when ḡ − gT > 0. Thus, the instantaneous model be-
haves qualitatively differently depending on whether ḡ < gT

or ḡ > gT, where the former has only two fixed points but the
latter has six fixed points. We will refer to the case ḡ < gT as
the weak interaction regime and ḡ > gT as the strong interac-
tion regime.

These fixed points with sy 	= 0 in the phase-space descrip-
tion have the following expressions:

(
z̃
ϕ

)
=

( ±√
J/ḡ

± arccos
(

∓�√
J (ḡ−J )

))
, (33)

where the sign of z̃ and the sign inside arccos should be chosen
to be opposite, but the sign in front of arccos is independent
of the other signs.

We now consider the weak interaction regime ḡ < gT and
the strong interaction regime ḡ > gT in turn to inspect the
nature of fixed points and dynamics around them.

1. Weak interaction regime

In the weak interaction regime ḡ < gT, the instantaneous
HN dimer model has two fixed points given by Eq. (29). These
fixed points satisfy ṅ = 0, indicating that the total number
does not change in time. Thus, the weak interaction regime
is a direct analog of the PT -symmetric regime in the linear
HN dimer model.

We find that the eigenvalues of the Jacobian of the
two fixed points in the phase-space description are λ± =
±2

√
J (ḡ − gT) for both fixed points. Since ḡ < gT in the weak

interaction regime, λ± are complex-conjugate pairs, indicat-
ing that these fixed points serve as the center of oscillation
in the phase space of {z̄, ϕ}, analogous to the fixed points in
the PT -symmetric regime in the linear HN dimer model. In
Fig. 5, we plot numerically obtained dynamics of the weak
interaction regime. All orbits are closed as expected.

2. Strong interaction regime

The strong interaction regime ḡ > gT of the instantaneous
HN dimer model behaves differently from the PT -broken
regime of the linear HN dimer model. First of all, the two
fixed points present in the weak interaction regime ḡ < gT

remain as fixed points in the strong interaction regime. The
eigenvalues of the Jacobian of these two fixed points are λ± =
±2

√
J (ḡ − gT), which are now both real and have opposite

signs; this indicates that the fixed points now act as saddle
points of dynamics in the {z̃, ϕ} phase space.

In addition to the two fixed points inherited from the weak
interaction regime, there are four additional fixed points in the
strong interaction regime. Calculating the eigenvalues of the
Jacobian of these four fixed points, we can group them into
two categories.

FIG. 5. Numerically obtained dynamics for the instantaneous
HN dimer model in the weak interaction regime ḡ = 0.4J < gT with
� = 0.1 J. The panels on the right show the dynamics on the Bloch
sphere (top) and in the phase space (bottom) for a set of different
initial conditions, as highlighted by the empty markers. The filled
triangles in the bottom right plot represent the two fixed points
which behave as centers. Rabi-like oscillations are clearly seen, as
is the shift of the fixed-point centers away from z̃ = 0, reflecting
the interplay of the nonreciprocal couplings with the on-site energy
difference. The behavior of population in time for each of the initial
conditions highlighted is plotted in the left panels.

Among the four additional fixed points, the eigenvalues of
the Jacobian of the following two fixed points:

(
z̃
ϕ

)
=

( √
J/ḡ

arccos
(

−�√
J (ḡ−J )

))
,

( −√
J/ḡ

− arccos
(

�√
J (ḡ−J )

))
, (34)

are in both cases

λ = 2
√

J (ḡ − gT) and 4
√

J (ḡ − gT), (35)

which are both positive in the strong interaction regime ḡ >

gT. Therefore, these two fixed points are unstable fixed points
which act as sources of dynamics.

On the other hand, the eigenvalues of the Jacobian of the
other two fixed points

(
z̃
ϕ

)
=

( √
J/ḡ

− arccos
(

−�√
J (ḡ−J )

))
,

( −√
J/ḡ

arccos
(

�√
J (ḡ−J )

))
, (36)

are both

λ = −2
√

J (ḡ − gT) and − 4
√

J (ḡ − gT), (37)

which are both negative, indicating that these two fixed points
are stable fixed points that act as sinks of dynamics. This
behavior is confirmed by the numerically obtained dynamics
as plotted in Fig. 6.
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FIG. 6. Numerically obtained dynamics of the instantaneous HN dimer model in the strong interaction regime with ḡ = 1.1 J > gT (a) and
ḡ = 1.4 J (b), both with � = 0.1 J . In each case, we plot the behavior of the population over time (a-I and b-I), the trajectories on the
normalized Bloch sphere (a-II and b-II), and the trajectories in the phase space of {z̃, ϕ} (a-III and b-III). Plots in the phase space and the Bloch
sphere are for different initial conditions (marked with open markers); the evolution of the population over time for each initial condition is
plotted in a-I and b-I using the corresponding marker. The saddle (blue triangles), stable (orange squares), and unstable (green diamonds) fixed
points are highlighted. Note that the trajectories converge towards the stable fixed points, after being slightly bent by the presence of saddle
points. As expected, the population diverges quickly as a stable point is approached.

Calculating the time dependence of the total population at
these four fixed points, we find

ṅ = ±2n
√

J (ḡ − gT), (38)

where the positive (negative) sign corresponds to the two
stable (unstable) fixed points. This indicates that the total
population of the stable fixed points exponentially increases,
whereas that of the unstable fixed points exponentially de-
creases; such behavior is consistent with these stable points
acting as sinks and sources of dynamics.

For all four of these fixed points, the population imbalance
is |z̄| = √

J/ḡ, which indicates that |z̄| → 0 as ḡ → ∞. The
non-Hermitian localization on one of the two sites becomes
smaller and smaller as the interaction ḡ becomes larger, which
is in stark contrast to the self-trapping phenomenon known in
the two-site nonlinear Josephson model where the localization
becomes stronger as the interaction becomes larger.

3. Transition between the weak and strong regimes

We have just seen that, as the interaction ḡ increases and
crosses gT, the number of fixed points changes from two to
six. We now examine this transition.

We first note that such an increase of the number of fixed
points beyond two is not possible with any linear dimer model,
in which the fixed points are determined by (at most) two
eigenstates of the two-by-two Hamiltonian. Therefore, the
appearance of six fixed points in the strong regime is an
intrinsically nonlinear phenomenon.

Approaching the transition point from the weak regime,
each of the two fixed points splits into three as one crosses the

transition point ḡ = gT. During this process, a fixed point on
the weak interaction side, which is a center of dynamics, turns
into three fixed points, which are a saddle point, a stable fixed
point, and an unstable fixed point. This process is consistent
with the Poincaré-Hopf index theorem, as we shall explain. On
a two-dimensional parameter space, such as the phase space
{z̄, ϕ} and the surface of the Bloch sphere, the tangent vectors
of the dynamics define a vector field. Such a vector field can
have singularities, corresponding to the fixed points. For each
of these singularities, a topological index called the Poincaré
index can be defined, which assigns the value of −1 for saddle
points and +1 for centers, stable, and unstable fixed points.
The index theorem states that the sum of the Poincaré in-
dices on the two-dimensional parameter space should be equal
to the Euler characteristics of the parameter space [44,75].
The Euler characteristics of our parameter space, which is
a two-dimensional sphere as evident from the Bloch sphere
description, is +2. In the weak interaction regime, we have
two centers as singularities, and thus the sum of the Poincaré
indices is +2, which is equal to the Euler characteristics as
expected. As one crosses the transition point, a center, which
has the Poincaré index of +1, turns into a saddle point, a stable
point, and an unstable point, whose Poincaré indices are −1,
+1, and +1, respectively, conserving the sum of the Poincaré
indices. Thus the strong interaction regime also satisfies the
index theorem.

VI. NONLINEAR HN DIMER MODEL

With the understanding of the instantaneous HN dimer
model, we can now understand the dynamics of the nonlinear
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HN dimer model, which is the model experimentally imple-
mented.

We rewrite the equations of motion for the nonlinear HN
dimer model Eq. (2),

i
∂

∂t

(
α1

α2

)
=

(
ω − � −J − gz

−J + gz ω + �

)(
α1

α2

)
. (39)

The dynamical equations in the phase space are

ṅ = −2 gn2 z̃
√

1 − z̃2 sin ϕ, (40)

˙̃z = 2 (gn z̃2 − J )
√

1 − z̃2 sin ϕ, (41)

ϕ̇ = −2 � + 2
J − gn√

1 − z̃2
z̃ cos ϕ, (42)

and in terms of the Bloch-sphere variables, the dynamics obey

ṅ = −8gn2 sysz, (43)

ṡx = 2�sy + 8gn sxsysz, (44)

ṡy = −2�sx + 2(J − gn)sz + 8gn s2
ysz, (45)

ṡz = −2Jsy + 8gn sys2
z . (46)

We see that the time dependence of z̃, ϕ, and sx, sy, sz de-
pend explicitly on n, implying that we can no longer use the
two-dimensional phase space {z̃, ϕ} and the surface of the
Bloch sphere {sx, sy, sz} as a parameter space within which the
equations of motion are closed. Instead, we should consider
the time dependence of n together with the other variables to
understand the dynamics. This explicit n dependence in the
equations of motion makes it difficult to analytically approach
the dynamics of the nonlinear HN dimer model when the
interaction is strong. However, as we shall see, the theory
of the instantaneous HN dimer model can provide a good
qualitative understanding of what happens in the nonlinear
HN dimer model.

A. Dynamics of the nonlinear HN dimer model

We first look for fixed points of the dynamics. Since replac-
ing ḡ in the instantaneous HN dimer model by gn recovers the
equations of motion of the nonlinear HN dimer model, the two
fixed points in the weak interaction regime and the six fixed
points in the strong interaction regime of the instantaneous
HN dimer model still satisfy ˙̃z = ϕ̇ = 0 and ṡx = ṡy = ṡz = 0.
However, these points are not truly fixed anymore in the
parameter space because n can depend on time, and the time
dependence of n itself affects the position of the fixed points
in the parameter space.

We first note that the two fixed points satisfying sy = 0
are still fixed in the parameter space even in the nonlin-
ear HN dimer model because they obey ṅ = 0, namely n is
time-independent. The additional four fixed points are not
fixed anymore in the parameter space because n changes in
time. The transition between the weak and strong interaction
regimes is clear in the case of the instantaneous HN dimer
model, given by ḡ = gT. On the other hand, in the case of the
nonlinear HN dimer model, there appears also a distinctive

intermediate interaction regime between the weak and the
strong regimes, as we shall explain now.

In the nonlinear HN dimer model, one measure of the
interaction strength is gn0, where n0 is the total population
at the initial time. Replacing ḡ by gn0, the two fixed points
with sy = 0 of the instantaneous HN dimer model are still
the fixed points in the nonlinear HN dimer model. If gn0 is
small enough compared to gT, the dynamics we found for the
weak interaction regime of the instantaneous HN dimer model
applies also to the nonlinear HN dimer model. However, one
should remember that, although the total population n does not
change in time exactly at the fixed points, the total population
does change during the periodic Rabi oscillation around the
fixed points. This implies that even though the system initially
satisfies gn0 < gT, the total population changes and at some
time t we may enter the regime with gn(t ) > gT at which the
dynamics should be compared to the strong interaction regime
of the instantaneous HN dimer model.

We refer to the regime in which gn(t ) < gT holds for any
time t � 0 as the weak interaction regime of the nonlinear HN
dimer model. In the weak interaction regime, all the dynamics
are described by orbital motion around the two fixed points,
which serve as the centers of dynamics.

We refer to the regime in which both gn(t ) < gT and
gn(t ) > gT happen at some time t � 0 during the evolution
as the intermediate interaction regime. In this intermediate
interaction regime, which is a unique feature of the nonlinear
HN dimer model, there simultaneously exist two types of
orbits: one is a closed orbit similar to the weak interaction
regime, and the other is a diverging orbit, which is reminiscent
of the strong interaction regime of the instantaneous HN dimer
model.

We finally refer to the regime in which gn(t ) > gT holds
for any time t � 0 as the strong interaction regime, where the
dynamics diverges as in the strong interaction regime of the
instantaneous HN dimer model. A crucial difference between
the strong interaction regime of the instantaneous HN dimer
model and the nonlinear dimer model is that, in the latter, the
source and the sink of the dynamics are no longer fixed points
in the space {z̃, ϕ} or {sx, sy, sz} because of the change of the
total population n.

We now examine these three regimes experimentally, and
we compare them to numerical simulations.

B. Experimental results and numerical simulations

Figure 7 shows the dynamics of the nonlinear HN dimer
model, experimentally and numerically obtained, for different
values of gn0. First, panels with gn0 = 0 and gn0 = 0.4 J cor-
respond to the weak interaction regime. We observe Rabi-like
oscillations, similar to the ones found in the linear and in-
stantaneous HN dimer models. Second, the panel with gn0 =
1.1 J corresponds to the strong interaction regime, where the
population of the trajectories diverges over time towards ei-
ther positive or negative population imbalances, depending on
the initial conditions. Finally, in the intermediate interaction
regime at gn0 = 0.7 J the two behaviors coexist, i.e., stable
orbits and unstable trajectories are possible, depending on
the initial conditions used, i.e., the initial phase difference
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FIG. 7. Comparison between the numerical simulation and the experimental results of dynamics of the nonlinear HN dimer model, for � =
0.1J , and four distinct values of gn0 in both the unnormalized Bloch-sphere representation (top panels), in which we plot ns = n(sx, sy, sz )T,
and the phase-space representation (bottom panels). Numerical results are plotted by solid lines, whereas experimental data are plotted with
(slightly transparent) points, and open circles represent the initial conditions. We note that the points can leave the surface of the Bloch sphere
because the distance from the origin reflects the total population n. Three regimes are identified: for zero or small values of g (two panels on the
left), Rabi-like oscillations are observed just like in Fig. 3. In the opposite limit of very strong interactions (rightmost panel), the system tends
towards an asymptotic value of z, either positive or negative. In the intermediate regime, gn0 = 0.7J , the two behaviors coexist, depending on
the initial conditions.

between the two sites. This coexistence of both regimes is the
unique feature of the nonlinear HN dimer model.

We can further see the unique feature of the nonlinear HN
dimer model if we examine the dynamics on the normal-
ized Bloch sphere, as shown in the central panel of Fig. 8.
We observe that the trajectories bend in arcs on the sphere,
before eventually converging towards points on the equator.
This behavior arises because instantaneously the trajectory is

attracted towards the stable fixed points of the instantaneous
HN dimer model for that particular value of gn → ḡ. However,
as n keeps growing, the coordinates of the fixed points in the
instantaneous HN dimer model also keep changing (see, e.g.,
Fig. 6), so that the trajectories appear to effectively “chase
down” the stable points by following these arcs. Indeed, in
the limit that n → ∞, the coordinates on the Bloch sphere of
the stable fixed points in the instantaneous HN dimer model

FIG. 8. Numerical dynamics of the population in the phase space for the nonlinear HN dimer model with g = 0.7 J and � = 0.1 J; initial
conditions are chosen so as to highlight the different behaviors described in the text. The empty markers in the phase-space plot and the Bloch
sphere plot (left and central panel) highlight the initial conditions, while different colors are for trajectories starting from each of the initial
conditions; the change of n over time of each set of initial conditions (right panel, corresponding markers and colors) shows an evident decrease
of population in the neighborhood of the unstable points (green diamonds). As the system evolves, it is then attracted towards the stable points
(orange squares) where n grows exponentially.
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FIG. 9. Plot of slices of the 3D parameter space for the nonlinear HN dimer model when g = 0.7 J and � = 0.1 J. The panels represent
bird’s-eye plots of different slices of constant n values. The centers (blue, up-triangles), saddles (blue, down-triangles), stable (orange squares),
and unstable (green diamonds) points are those of the instantaneous HN dimer model when gn→ ḡ. The arrows represent the vector field
described by Eqs. (40)–(42), while their color is representative of the tilt along the n direction: black indicates tilting in the negative direction,
and red indicates positive tilting.

become ⎛
⎝sx

sy

sz

⎞
⎠ →

⎛
⎝ 0

±1/2
0

⎞
⎠, (47)

corresponding to the points of convergence on the equator
of the normalized Bloch sphere in the experimental model,
e.g., as can be seen in the central panel of Fig. 8. Physically,
this corresponds to the modes changing from being localized
primarily on one of the two sites at small ḡ (and hence small
n), to being an equal superposition of the two sites as ḡ → ∞,
as the nonreciprocal coupling term dominates over all other
terms in the Hamiltonian.

Of particular note in Fig. 8, two trajectories starting close
to each other (black points and red points in the top pan-
els) actually behave very differently: one describes a closed
loop around the center (full blue triangle) and its population
remains finite, although oscillating, whereas the other about
half-way through the loop diverts and ends up in the basin of
attraction of the stable points (full orange squares), where the
population diverges exponentially. As in the strong interaction
case, note that the trajectories are bent in arcs to “follow” the
always changing position of the fixed point in the correspond-
ing instantaneous model.

Another helpful way to visualize this physics is shown in
Fig. 9, where we plot arrows corresponding to the tangent
vectors of dynamics on each point of the three-dimensional
phase space. The panels show the change in behavior of the
fixed points on slices of fixed n: as long as for some time t1,
gn(t1) < gT, the former are centers (left panel), whereas as
soon as for some later time t2 the condition gn(t2) > gT is met,
the latter behave like saddles (see the middle and right panels).

In the intermediate regime, in the case of initial conditions
close to ϕ = 0, the system is pushed by the equations in a
closed orbit around the center (top left panel in Fig. 9) and
the population oscillates, as shown in Fig. 5. If the initial
conditions are not sufficiently close to the fixed point of the

blue up-triangle in the left panel, while moving around the
center, the trajectory ends up close enough to the basin of
repulsion of unstable points (green diamonds) or to the basin
of attraction of the stable points (orange squares).

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated both theoretically and
experimentally the dynamics of two-site models with hopping
asymmetry. In a linear model where the hopping asymmetry
is externally fixed, we experimentally observed the transition
from PT -symmetric to PT -broken regimes as the hopping
asymmetry is increased. While all the orbits are closed in
the PT -symmetric regime, the population diverges in the
PT -broken regime due to the non-Hermiticity from the hop-
ping asymmetry. In a nonlinear model where the hopping
asymmetry is dynamically induced by population imbalance
between the two sites, we experimentally observed three dif-
ferent regimes in behavior, depending on the initial coupling
strength. In the weak and strong regimes, we observe stable
population oscillations and exponential growth/decay of the
population, respectively, similar to the behavior in the linear
model described above. However, in the intermediate regime,
we observe a coexistence of these dynamics, meaning that
we can tune from stable oscillations to divergent behavior
by simply varying the initial phase difference between the
two sites. As we explain, all three different regimes can be
understood by studying the emergent fixed points of a closely
related nonlinear model in which the nonreciprocal hopping
depends on the normalized population imbalance between the
two sites.

In the future, this work will pave the way towards the
further exploration of non-Hermitian dynamics in more exotic
systems. As demonstrated here and in our previous works
[20], this mechanical platform can be used to simulate a wide
variety of lattice models, which would not be easy to realize in
other systems. Going further, it will be interesting to explore,
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for example, the addition of other mean-field nonlinear effects
[76] as well as extensions to larger systems, e.g., such as non-
Hermitian three-site trimer models [77–79] or large lattices
with many sites [80], where the interplay of gain and loss with
artificial gauge fields and topological phenomena can also be
explored [81,82].
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