
University of Huddersfield Repository

Iqbal, Saqib and Allen, Gary

On identifying and representing aspects

Original Citation

Iqbal, Saqib and Allen, Gary (2009) On identifying and representing aspects. In: SERP'09 - The
2009 International Conference on Software Engineering Research and Practice, July 13-16, Las
Vegas.

This version is available at http://eprints.hud.ac.uk/5516/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/57749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On identifying and representing Aspects

Saqib Iqbal, Gary Allen
School of Computing and Engineering,

The University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract - Identification of cross-cutting concerns (Aspects)
in the earliest phases of software development has gained in
popularity over recent years. Many approaches have been
suggested for identifying and representing Aspects in
abstraction and design structures. Since these approaches are
still relatively immature, shortcomings such as overlooking or
not properly locating Aspects have been noted in almost all of
these approaches. This paper discusses some of these methods
and suggested approaches, and provides a constructive
critique on Aspects as Use Cases, View-Point based system of
identifying Aspects, and Use Cases as Concerns. This paper
also suggests a model-oriented approach for identifying and
representing Aspects throughout the development life cycle.

Keywords: Aspect-Oriented Programming (AOP), Aspect
Identification, Aspect Representation, Aspect Modeling

1 Introduction
Many essential system requirements, such as efficiency,

security, fault-tolerance, and synchronization of threads, are
difficult to handle, especially in the implementation of large-
scale systems. The slightest mishandling of any of these
requirements can result in a big problem, or even disaster in
the case of safety critical systems. Such requirements are
rarely limited to one module or unit of a system, rather their
implementation spreads over a set of modules or sub-modules.
Their implementation, therefore, also involves more than one
programming unit. Hence their code is scattered and tangled
across the whole system, and that is why they are known as
cross-cutting (or Aspectual) concerns of the system. The
complex, yet important nature of these Aspects has forced
software engineers to address them separately from the base
program. Aspect-oriented programming (AOP) [5] has been
proposed as a programming paradigm to handle these cross-
cutting concerns. Since its inception, a lot of work has been
carried out on the better implementation of Aspects. There
are plenty of tools and technologies such as AspectJ,
AspectWorkz, and Spring available which implement Aspects
differently according to the requirements and environments.

Aspects are usually handled in the implementation phase.
Their identification usually relies on the strength of domain
knowledge of the implementer. There has been very little
work in identifying Aspects at the earlier stages of software

development. Although some techniques have been proposed,
like the AORE (Aspect-Oriented Requirements Engineering)
model by Rashid et al [1] which builds on View Point Model
[1], and the COSMOS [7] model by S. Sutton which proposes
a technique to capture concerns in the early stages. The
problem with both of these techniques is that they do not
specifically capture cross-cutting concerns; rather they talk
about general concerns of the system. Some of other related
work can be found in [8], [10] and [12]. All these techniques
and models either address modeling of Aspects or identifying
general concerns including non cross-cutting concerns (non
Aspects).

There are some approaches which represent Aspects in Use
Case models. For example, Saiki and Keya propose
generating a use case model for Non functional requirement
(NFR or Aspects) [9]. Araújo and Coutinho proposed
developing a vision document based on a viewpoint-oriented
method to separate Aspects from basic concerns [11], and
Araujo et al. have proposed extensions in UML showing use
cases in the use case model and suggested techniques to
implement Aspects as use cases [2]. In this paper, we have
tried to provide a positive critique on some of these
approaches for identifying and representing Aspects. We have
also suggested a model-oriented approach for handling
Aspects at the earlier stages of software development.

The rest of the paper is organized as follows; Section 2 is
about the background and critical analysis of the
contemporary approaches proposed for identifying and
representing Aspects. Section 3 is on the proposed Aspect
model and its breakdown in UML diagrams and Section 4
gives conclusion of the paper and describes the next step in
research.

2 Background
Since the conception of the term “cross-cutting

concerns”, most of the effort has been put in developing
strategies and tools for their implementation. As a result,
many efficient tools (e.g. AspectJ) have emerged and served
the purpose. Before implementing cross-cutting concerns, the
main goal is to identify them. In [13] the term “Early Aspects”
was introduced for the first time which has now become a de-
facto term for identification of cross-cutting concerns at the
early stages of software development. Many approaches have

been proposed for requirements engineering of early Aspects.
Some of the most prominent ones are:

a) Viewpoint-based approaches with Arcade model [13][1]

b) Goal-oriented approaches [4]

c) Use case- and scenario-based Approaches [3][6][14] and
Aspectual use case driven approaches [21].

d) Multi-dimensional separation of concerns [7] by Cosmos
[15][16]

e) Concern-Oriented Requirements Engineering [17][19]

f) Aspect-Oriented Requirement Engineering for
Component-Based Software Systems [18]

g) Theme/Doc approach [20]

We now discuss three of these approaches, Viewpoint-based,
Use case-based and Concern-Oriented requirement
engineering in detail and analyze their strengths to capture
Aspects.

2.1 Viewpoint-based Approaches with Arcade
Model

Viewpoint-based approaches give a fairly new way of
representing and abstracting requirements. We might also call
them representing requirements on the roles of stakeholders,
which makes pretty good sense because each role’s
perspective and usage is different from that of others.
Capturing the right perspective can result in requirement
satisfaction and ease of use. In [1], requirements have been
presented in PREview-like viewpoints which compose
requirements in XML based notations. Aspects have also been
represented in the same XML notation along with
corresponding viewpoints. The following example, taken from
[1], presents viewpoint-based representation. It demonstrates
an extract of a Portuguese toll collection system in which a
device called gizmo is installed in a car and is activated to pay
tolls as the car passes the toll gate:

This could be considered as well-represented early
Aspects, but we may argue that the identification of Aspects
still depends on the domain knowledge of the requirements
engineer. One still has to look at the user stories and try to
come up with a corresponding concern. This approach doesn’t
propose an automated or procedural way of identifying
Aspects from the crude user requirements. There is always a
probability with such an approach that some of the concerns
are overlooked or may not be considered as concerns at this
level, and if they then creep in later in the development cycle
then the whole purpose of identifying them at the earlier stage
is undermined.

2.2 Use Cases as Concerns

Use cases identify and partition system functionality.
They describe the behavior of the system in response to the
interaction of the user. They provide an easily understandable
abstract model of the system at the earliest phases of analysis
and design. The thing to remember here is that use cases only
show the functionality of the system as performed by
particular users. They do not show how that functionality is
performed internally. In other words, use cases provide high
level, black box view of the system. If we start thinking that
use cases are the only functionality that we have to implement
then we are looking only at the tip of iceberg. Ivor Jacobson
in [6] tries to create a resemblance between Aspects and use
cases. We agree with him that use cases are also concerns of
the system. These are the major functionalities or behavior of
the system, so they can be regarded as the major concerns, but
there are some other concerns which we do not consider at the
point of use case modeling. For instance, let’s take the
example of a Cell phone. Some of the use cases could be
“Call Someone”, “Receive a Call”, “Save a Contact”, etc.
However, there are other important functionalities, such as
Phone Book Management, Energy Management or I/O
Management, that we cannot call use cases because these
functions are performed internally and they are not initiated
by the user of the cell phone.

2.3 Use Cases as Components

Ivor Jacobson in [6] states that implementation of use
cases crosscut the set of components and component-based
techniques fail to achieve use case modularity. A piece of
code of a component may contain code of multiple use cases
which will result in code tangling problem and similarly if we
implement a use case, a set of components will constitute its
implementation which is a crosscutting property.

Pawlak and Younessi also back these assumptions of
Jacobson in [21]. They further propose that methodologies
should be developed which could work only on abstraction,
designing, composition and testing of use cases for
developing the whole system. In this way, they hope to
achieve modular and traceable implementation.

<?xml version="1.0" ?>
<Viewpoint name="ATM">

 <Requirement id="1">
The ATM sends the customer's card

number,account number and gizmo
identifier to the system for activation
and reactivation.

 <Requirement id="1.1">
The ATM is notified if the activation
or reactivation was successful

 <Requirement id="1.1.1">
In case of unsuccessful activation
or reactivation the ATM is notified
of the reasons for failure.

 </Requirement>
 </Requirement>
 </Requirement>
<?xml version="1.0" ?>

<Concern name="Compatibility">
</Viewpoint>

<?xml version="1.0" ?>
<Concern name="Compatibility">
 <Requirement id="1">
 The system must be compatible
 with systems used to:
 <Requirement id="1.1">
 activate and reactivate gizmos;
 </Requirement>
 <Requirement id="1.2">

deal with infraction incidents;
 </Requirement>
 <Requirement id="1.3">

charge for usage.
 </Requirement>
</Requirement>

</Concern>

These assumptions sound very desirable if we look at the
problems of cross-cutting concerns and tangling of code.
However, if we look at the use cases, they tend to have cross-
cutting nature themselves. Most of the use cases depend on
other use cases, which we also show as separate use cases in
inclusions and extensions. These kinds of use cases have
dependency on base use cases. Extension use case can only be
initiated if the base use case does not perform its basic
functionality or performs in an erroneous way. This inter-
dependent nature is not easy to justify in design if we consider
use cases as separate modules. In implementation also, we
will have to have redundant code calling to other use cases if
we implement them as separate components. This will again
go against the basic purpose of component-based
development.

3 Aspect Modeling
In Aspect-Oriented Programming (AOP), we develop a

base program while paying equal attention on the
development of its cross-cutting concerns (Aspects). We have
a number of process models in use for object-oriented
development of a program, such as the sequential model,
iterative model, spiral model etc. When we extend our object-
oriented development to include the development of its cross-
cutting concerns, we need an extended version of the model to
address the controlled flow of development processes.
Aspects need to be developed along with the base
functionality, but with different treatments on every level of
the development life cycle. Figure 1 shows a proposed model
based on this concept of handling Aspects in a process model
approach, representing its role and evolution at every level of
the development cycle.

Figure1. AOSD Model

3.1 Identifying Aspects

There are some Aspects which are considered by default
with every application, such as performance, security, and
fault-tolerance. These Aspects can be pointed out in the
System Requirements Specification (SRS). There are also
application-related Aspects, such as security Aspects for
safety critical systems, fault-tolerance Aspects for systems
which are supposed to be running all the time, and
synchronization Aspects for systems containing multiple
running threads. We can identify these Aspects as candidate
Aspects from requirements of the system during the
requirements engineering phase. Once we have listed some of
the candidate Aspects we can point out those use cases which
may have interaction with these cross-cutting concerns
(Aspects). For example in an ATM system shown in Figure 2,
we can point out that the use case “withdraw cash” will
require involvement of a “logging” Aspect, so we can
highlight this use case to show that its further design and
implementation is going to be affected by the cross-cutting
concerns, and it should be handled differently compared to
other use cases.

Card Holder

login

withdraw cash

view account

personalize settings

Figure 2. Use case diagram of an ATM system

3.2 Representing Aspects

Proceeding further with the highlighted use cases which
have interaction with Aspects, we can now show the
communication (message passing) between objects of the base
program, and objects of the cross-cutting concerns (Aspects).
From the above example, if we draw a sequence diagram of
use case “withdraw cash” with Security and Access Control
Aspects, we can show the interaction between them by
identifying the insertion points of Aspects during the flow of
messages. Figure 3 shows how the sequence diagram for the
“withdraw cash” use case can be extended with the
representation of Aspects and their interaction with the base
program. This kind of representation can help not only in
representing the Aspects but can also help in identifying
characteristics of the Aspects, such as Insertion Points/Join
Points, Extension Points and the Points of Calling (BeforeCall
and AfterCall).

System Requirements
Specification (SRS)

Implementing Base
Classes

Aspects Definitions

Implementing
Aspectual Classes

Candidate Aspects

Representing Aspects in Class
Diagrams

Representing Aspects in
Sequence Diagrams

Use Case Model

weaving

Figure 3. Sequence Diagram of the “withdraw cash” use case
with Aspect representation

Such sequence diagrams show the flow of message passing
which can later help the software engineer to develop the
“advice” definitions of the Aspects. The diagrams also help in
identifying the insertion points of the Aspects within a
module, which will help with the implementation of the joint
points later in the development phase.

 Table 1. Aspect attributes

Sequence Diagram 1

Use Case withdraw cash

Aspect(s) involved logging

Insertion Point(s) checkAccount

Extension Point(s) verify session

Sequence diagrams showing the interaction of Aspects with
base objects in a modular scenario also help us to identify the
relationships between Aspectual classes and Base classes.
This can then be represented in an extended Class Diagram, a
shown in Figure 4.

 Figure 4. Class diagram with Aspectual Classes

4 Conclusion and Future Work
We have discussed some of the current approaches for

identifying and representing Aspects. We have surveyed the
literature related to these approaches and provided a
constructive critique on the more popular ones. We have
presented some of the shortcomings in these approaches,
which we feel do not help in identifying and representing
Aspects as separate but integrated entities of the system.
Finally, we have outlined a proposed Aspect Model which
hierarchically shows how Aspects can be identified and
modeled alongside the base program, from abstraction to
implementation. The emphasis of this model is upon
identifying and representing Aspects at all levels of the system
development life cycle. The model is followed by
identification and representation of Aspects in Use Case
Diagrams, Sequence Diagrams, and Class Diagrams of the
system. In future, we are planning to work on finding out
suitable approaches for identification of Aspects and
developing model composition techniques for Aspect-
Oriented Programming.

5 References

[1] A. Rashid, A. Moreira, and J. Araujo, "Modularization
and Composition of Aspectual Requirements," presented at
2nd International Conference on Aspect Oriented Software
Development (AOSD), Boston, USA, 2003.

[2] J. Araujo, A. Moreira, I. Brito, and A. Rashid, "Aspect-
Oriented Requirements with UML," presented at Workshop
on Aspect-Oriented Modeling with UML (held in conjunction
with the International Conference on Unified Modeling
Language UML 2002), 2002.

[3] I. Jacobson and P.-W. Ng, Aspect-Oriented Software
Development with Use Cases: Addison Wesley Professional,
2005.

[4] Y. Yu, J. C. S. d. P. Leite, and J. Mylopoulos, "From
Goals to Aspects: Discovering Aspects from Requirements
Goal Models," presented at International Conference on
Requirements Engineering, Kyoto, Japan, 2004.

[5] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-Oriented Programming. XEROX PARC
Technical Report, SPL97-008 P9710042. February 1997.

[6] I. Jacobson, "Use Cases and Aspects—Working
Seamlessly Together," Journal of Object Technology, vol. 2,
pp. 7-28, 2003.

[7] S. M. Sutton, "Concerns in a Requirements Model - A
Small Case Study," presented at Early Aspects 2003
Workshop: Aspect-Oriented Requirements Engineering and

user ATM AccountController Account LogginAspect AccessControlAspectCashDispenser

 withdrawCash()

 withdrawCash()

 logActivity()

 authentication() checkBalance()

 giveBalance()

 logActivity()

 authentication()withdraw()

1 updateAcc()
 updateAcc()

Cash

 Cash

ATM

Transaction

Withdraw

Deposit

Setting

Logging <<crosscuts>>

Architecture Design (held with AOSD 2003), Boston, USA,
2003.

[8] M. Katera and S. Katz. Architectural views of Aspects.
In Proceedings of the International Conference on Aspect-
oriented Software Development, pages 1–10, 2003.

[9] M. Saeki and H. Kaiya. Transformation Based Approach
for Weaving Use Case Models in Aspect-Oriented
Requirements Analysis. In The 4th AOSD Modeling With
UML Workshop, Oct. 2003.

[10] X. Wang and Y. Lesperance. Agent-oriented
requirements engineering using congolog and i*. In Submitted
to AOIS-2001, Bi-Conference Workshop at Agents 2001 and
CAiSE’01. 2001.

[11] Araujo, J., Coutinho, P.: Identifying Aspectual use cases
using a viewpoint-oriented requirements method. In: Early
Aspects 2003: Aspect Oriented Requirements Engineering
and Architecture Design, Workshop of the 2nd Intl.
Conference on Aspect-Oriented Software Development,
Boston, MA (2003)

[12] J. Castro, M. Kolp, and J. Mylopoulos, ‘‘towards
requirements-driven information systems engineering: the
TROPOS project,’’ Information Systems, vol. 27, pp. 365–
389, 2002.

[13] A. Rashid, B. Tekinerdo˘gan, A. Moreira, J. Ara´ujo, J.
Gray, J. G. Wijnstra, and P. Clements. Early Aspects:
Aspectoriented requirements engineering and architecture
design. In Workshop at AOSD-2002, 2002.

[14] J. Whittle and J. Araujo, "Scenario Modelling with
Aspects," IEE Proceedings- Software Special Issue, vol. 151,
pp. 157-172, 2004.

[15] S. Sutton and I. Rouvellou, "Modeling of Software
Concerns in Cosmos," in Proceedings. 1st Int' Conf. on
Aspect-Oriented Software Development (AOSD-2002), G.
Kiczales, Ed., 2002, pp. 127-133.

[16] S. M. Sutton and I. Rouvellou, "Concern Modeling for
Aspect-Oriented Software Development," in Aspect-Oriented
Software Development, R. E. Filman, T. Elrad, S. Clarke, and
M. Aksit, Eds.: Addison-Wesley, 2004, pp.479-505

[17] A. Moreira, J. Araujo, and A. Rashid, "Multi-
Dimensional Separation of Concerns in Requirements
Engineering," presented at Requirements Engineering
Conference (RE 05), Paris, France, 2005.

[18] J. Grundy, "Multi-perspective specification, design and
implementation of software components using Aspects,"
International Journal of Software Engineering and Knowledge
Engineering, vol. 20, 2000.

[19] A. Moreira, J. Araujo, and A. Rashid, "A Concern-
Oriented Requirements Engineering Model," presented at
Conference on Advanced Information Systems Engineering
(CAiSE'05), Porto, Portugal, 2005.

[20] E. Baniassad and S. Clarke, "Finding Aspects in
Requirements with Theme/Doc," presented at Workshop on
Early Aspects (held with AOSD 2004), Lancaster, UK, 2004.

[21] Pawlak, R; Younessi, H.; “On Getting Use Cases and
Aspects to Work Together”, in Journal of Object Technology,
vol. 3, no. 1, January-February 2004, pp. 15-26.
http://www.jot.fm/issues/issue_2004_01/column2

