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Abstract—We explore the potentiality of high frequency
impedance measurements with CMOS nano-electrode (NE)
arrays for nano-plastic pollutant particles monitoring in
water. This technology offers benefits as nano-scale resolu-
tion, high parallelization, scalability, label-free single particle
detection, and automatic measurements without operator
intervention. Simple models are proposed for size and con-
centration estimation. The former integrates measurements
of adjacent electrodes and shows uncertainty comparable to
the nominal one with mean prediction error lower than 45%
down to 50 nm radius. The latter accounts for noise in the
definition of the sensing volume. We report a worst case
concentration error lower than a factor 1.7 under stationary
and continuous flow, which demonstrates the potential of this technology for automated measurements.

Index Terms— CMOS nanoelectrode arrays, environmental sensor, high-frequency impedance measurements, label-
free pollutant detection, microplastic, nanoplastic, single particle detection, sub-micrometer particle sizing, water
monitoring.

I. INTRODUCTION

WATER pollution threatens water quality and availability,
both being critical for the health of humans, animals,

and the environment [1]. Besides highly toxic heavy met-
als [2], micro- and nano-plastic pollutants are causing growing
concerns [3], since they have already been found in drinking
water [4], [5] and human blood [6]. Detailed knowledge
of the exposure pathways and toxic effects is still lacking,
particularly for nanoscale pollutants [7], [8], [9], [10], [11].
Consequently, there is a growing need for monitoring systems
that generate real-time quantitative data and alerts of nanopol-
lutant spreading in all contexts, from tap water to freshwa-
ter sources (e.g., river, lake, and sea), and even biological
samples [6].
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The ionic strength of water varies widely depending on the
source and the location on earth, depth, ground composition,
temperature, and nearby human activity [12]. The average
salinity of water can vary from essentially zero in pure water to
0.05% for tap water and freshwater (≈10 mM), 0.05% to 3%
for brackish water, up to 3.5% for seawater (≈500 mM) [12].
In spite of increasing research efforts and the World Health
Organization (WHO) calling for more attention to micro-
and nano-plastic pollution in water [13], neither well-defined
standards on sampling, detection and measurement techniques
have yet been defined [4], [10], [14], [15], nor consensus
has been reached for plastic pollutant nomenclature based on
size [16], [17].

In this context, current analytical technologies for mon-
itoring pollutants in water are mainly based on optical
microscopy and vibrational spectroscopy, which are bulky,
expensive, time-consuming, and require complex sampling
procedures carried out by skilled operators [4], [15]. In par-
ticular, Fourier transform infrared spectroscopy (FT-IR) and
Raman spectroscopy have limitations in detecting particles
smaller than 1 µm diameter [10], [15], thus preventing
their use for nano-plastics monitoring [4], [10], [11], [15].
A shortlist of techniques recently proposed to overcome these
limitations is given in Table I. Systems based on optical
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TABLE I
RECENTLY PUBLISHED MEASUREMENT TECHNIQUES FOR CONTINUOUS POLLUTANTS MONITORING IN WATER

methods [23], [24], [25], radio frequency resonators [26], [27],
and electrochemical impedance spectroscopy (EIS) [28]
(sometimes integrating computer vision technology [29], [30]),
have been published as well. EIS was also proposed for
real-time monitoring of pollutants in graphene filters [31], and
capacitive measurement for particle detection in lubricating
oil [32]. High frequency impedance spectroscopy (HFIS) with
nano-electrodes (NEs) array [33], [34], [35], [36] is a still
largely unexplored (bio)sensing technology, with demonstrated
capability to directly detect by purely electrical means sin-
gle nano-particle (NP) as small as 40 nm diameter on top
of bovine serum albumin immobilization layer [33]. HFIS
offers numerous interesting features, such as the mitigation
of the salinity-dependent sensitivity limits imposed by the
decay of the electrical potential due to ions accumulating
at the electrode-electrolyte interface (Debye screening), and
the inspection of frequency-dependent electrical properties of
analytes for fingerprinting. Moreover, the compatibility with
CMOS technology enables a high degree of miniaturization,
parallel operation at multiple sensing sites and possibly mass
production at low costs. Dimensional scaling of the array
along the progress of Moore’s law points toward label-free
single-particle detection and imaging with better-than-optical
nanoscale resolution [33], [34]. Despite a few recent reports
of impedance measuring systems with electrode arrays [37],
[38], [39], [40], [41], [42], [43], [44], the platform employed
in this work remains one of the best in terms of array and
electrode size, spatial and capacitance resolution, maximum
frequency [33], [45].

This work investigates the potential and challenges of HFIS
with CMOS-based NE arrays for detection of nano-pollutants
in aqueous solutions. In particular, we examine, by experimen-
tal analysis assisted by numerical simulations, the detection of
polystyrene (PS) NPs, which is a common water pollutant [4],
[7], [15], with sub nanoelectrode pitch dimensions dispersed
in phosphate buffer saline (PBS), as well as their size and con-
centration estimation. The chosen medium has a physiological
salt concentration (≈160 mM) matching biological samples,
and comparable to seawater, brackish water, and some types
of freshwater.

In the following, we denote polymeric spheres with diameter
smaller than 1 µm as “nano-plastic” and debris within the

same size limits as NPs in general, in agreement with recent
published reviews [7], [10], [15], [16], [17], [46]. In addition,
although some publications denote “real-time measurements”
the ones that operators perform on site of sampling, we prefer
to name “continuous flow” those measurements without an
operator that could be implemented online at non-zero flow
rate, for instance, along a bypass pipe.

This article proceeds as follows. Section II describes the
experimental setup, the measurements procedure, and the
numerical simulation methods used to assist data interpreta-
tion. Section III reports the results of size and concentration
estimation; Section IV discusses their significance.

II. MATERIALS AND METHODS

A. Experimental Setup
In this work, we use the HFIS NE array sensor chip (see

Fig. 1) extensively described in [33], [34], [35], [36], and
[47]. For the sake of a self-contained paper, we summarize
in the following its key features. The chip integrates 256 ×

256 individually addressable NEs (radius 90 nm, pitch px ×

py = 600 × 720 nm) fabricated with 90 nm low-power CMOS
technology. The calibrated chip provides frequency resolved
256 × 256 pixels images of the capacitance measured at each
electrode in the 1–70 MHz range [33], [36], with potential
extension up to 500 MHz [45]. The sensing information is
derived as the capacitance change caused by the perturbation
of the ac electric field induced by the analyte(s)

1C = Cmean,w/analyte − Cmean,wo/analyte (1)

where Cmean refers to the mean value of 100 samples of the
measured capacitance (as described in [33]). Fig. 2 reports an
example of capacitance signal with the NP detection event and
the resulting 1C map.

In our nomenclature, the term mean refers to the temporal
mean, while average or ave and std refer to the mean and
standard deviation over sample space, respectively (e.g., the
ensamble of NPs or NEs in the array). The 1C of each NE
is mainly related to the analyte’s conductivity and dielectric
permittivity, dimensions, and position with respect to the
electrodes [33], [48], [49].

The HFIS NE array chip is integrated in an experimen-
tal setup (Fig. 1) that includes: 1) the chip’s initialization
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Fig. 1. Picture of the experimental setup. A magnification of the chip
with on top the PDMS seal ring around the NE array is also shown.

and interrogation electronics [field programmable gate array
(FPGA) board by Intel and custom dual layer printed circuit
board (PCB)]; 2) the temperature control system (Peltier cell
model ET-127-10-13-RS by adaptive, proportional–integral–
derivative (PID) temperature controller model PR-59 by
Laird Technologies); 3) the microfluidic chamber confinement
around the NE array (socket by ARIES electronics and a
novel dogbone shaped polydimethylsiloxane (PDMS) ring,
optimized to enhance the probability of analytes passing above
the sensing array); and 4) the microfluidic system (polyether-
ether-ketone (PEEK) tubes by Upchurch Scientific, step-motor
syringe pump model NE-300 by KF-Technology, 10 mL Luer
Lock disposable syringe by Cole Parmer, 1.5 mL safe-lock
tubes by Eppendorf). More information about each sub-system
are given in [33].

B. Numerical Simulation Setup
Numerical simulations of the sensor response to the mea-

sured analytes are based on ENBIOS [50], which self-
consistently solves the Poisson–Boltzmann equation and the
coupled Poisson-Drift-Diffusion equations in steady state
and in the time-harmonic, linear small signal regime (AC),
respectively, for all ion species in the electrolyte [50]. The
capacitance response in the switching regime adopted by the
hardware (1C (s)) is derived from the AC simulations as
described in [33]. The effectiveness of this procedure in accu-
rately reproducing, predicting and supporting interpretation of
the sensor acquisitions has been proven in numerous previous
studies [33], [34], [35], [48], [49], [50], [51]. Fig. 2 defines
the main geometrical and physical parameters used in this
work. The simulation grid is created with Netgen [52] and
extends over a 5 × 5 array of NEs with the same radius and
pitch as the chip, Section II-A. The NP is implemented as
a sphere with radius R and position (dx, dy, dz + R) with
respect the center of the central electrode of the 5 × 5 array
[hereafter denoted as pixel (0, 0), which is, by definition,
the one which gives the higher 1C (see Fig. 2)]. The NP
permittivity (εr,NP) and conductivity (σNP), as well as the
dielectric permittivity and the ion concentrations in the elec-
trolyte, are assigned consistently with experiments, as reported
in Table II.

Fig. 2. Sketch of a spherical NP on the NE array immersed in the
electrolyte, with the definition of the main geometrical parameters (top).
The 5 × 5 sub-array, centered in pixel (0, 0) is highlighted with a
red dashed-line. Capacitance signal from NEs showing the arrival of a
500 nm NP on the sensor surface (bottom left), and resulting 7 × 7 ∆C
map according to (1) (bottom right).

TABLE II
EXPERIMENT/SIMULATION PARAMETERS

C. Experiments and Data Pre-Processing
Polystyrene NPs (PS-NPs) with nominal radii (Rnom) of

50 ± 2.5 nm (Merck KGaA- Sigma-Aldrich, Germany),
275 ± 8 nm, and 500 ± 5 nm (Polysciences Inc, USA),
were used in this work. The PS-NPs are suspended in 15 mL
aqueous solutions of 10%, 2.74%, and 2.66% (w/v) respec-
tively. As stated before, the NPs were analyzed in PBS
1× (NaCl 137 mM + KCl 2.7 mM+ Na2HPO4 10 mM +

KH2PO4 1.8 mM, Merck KGaA- Sigma-Aldrich, Germany).
The procedure to create the NPs-PBS sample is the following.

1) The PBS was filtered with 0.2 µm pores syringe filter
(Puradisc 25 mm, in PES, by Whatman) to remove
possible impurities.

2) Each PS-NPs solution was added to a proper volume of
filtered PBS to obtain lower and comparable nominal
concentrations: 9.5 · 109, 7.86 · 109, and 1.27 · 109

#NP/mL for samples with radius 50, 275, and 500 nm,
respectively.

3) The diluted NPs-PBS sample was filtered with 3 µm
pores syringe filter membrane (Fluoropore, 47 mm,
PTFE, by Millipore) and sonicated (Cole Parmer
CPX-750 Ultrasonic Homogenizer) before and after the
filtering. The NPs size was also measured with dynamic
light scattering (DLS), a common NP size estimation
method [53]. We obtained measured DLS radii 53.8 ± 6,



GOLDONI et al.: TOWARD CONTINUOUS NANO-PLASTIC MONITORING IN WATER 20183

278.3 ± 28, and 500.4 ± 30 nm, essentially confirming
the reported nominal values. Therefore, the nominal
values will be taken as reference below.

Once the sample was prepared, the following measurement
procedure was carried out.

1) The chip’s platform and the temperature control system
were turned on, the chosen measurement conditions
were set (see Table II) and the system was allowed to
reach the thermal steady state.

2) The microfluidic system was flushed with ≈3 mL
isopropyl alcohol (IPA, purchased by Sigma-Aldrich),
filtered with 0.2 µm pores syringe filter, with a flow
rate of 100 µL/min. This procedure cleans the tubes
and the NE array, eliminates air bubbles, and allows us
to eliminate upfront possible fluid leakages.

3) The system was briefly flushed with ≈1 mL of PBS,
to minimize undesired mixing of the NPs sample with
IPA.

4) The NPs-PBS sample is introduced into the
microfluidics.

5) Once the data were collected, the system was flushed
with ≈3 mL of deionized H2O (Sigma-Aldrich,
Germany), filtered with 0.2 µm pores syringe filter, and
≈3 mL of IPA with a flow rate of 200 µL/min for
cleaning.

The ambient temperature was ≈22 ◦C, equal to the temper-
ature controller setpoint; therefore the fluid temperature does
not affect the measurement.

Three experiments were performed for radius and con-
centration estimation, one for each NP. Overall, more than
100 objects were analyzed for each radius. Additionally, five
tests were run with 500 nm radius NPs to estimate concentra-
tion at different dilutions. In particular, starting from nominal
concentration n P = 1.27 · 109 #NP/mL, dilutions of 1:2, 1:5,
1:10, and 1:20 were considered. Experiments were repeated
with the latter samples according to the above procedure.
In order to investigate static and continuous flow conditions,
the flow rate φn was initially set to zero, and then to 10, 100,
10, and again 10 µL/min, each for a time interval Tn ≈ 75 s
for total examined volume Vsample =

∑
n φn · Tn = 158 µL,

equal for each concentration value.
Finally, the data were elaborated according to [33] and

a 5 × 5 1C(i, j) matrix centered on the electrode (0,0) with
maximum response 1C(0, 0) was calculated with (1) after the
object detection procedure. Given the large amount of raw data
generated by the experiments (≈246 MB/min), and the upfront
lack of a robust object detection algorithm, the NPs detection
was only partially automated during the first experiments.
In particular, we applied the MATLAB function findchangepts
on the capacitance signal of each NE to extract the instants
when the measured capacitance significantly changes its mean
value (detection event). Then, we calculated Cmean,w/analyte
and Cmean,wo/analyte from values respectively following and
preceding the particle arrival event. Last, the NPs in the first
experiments (Section III-A) were identified manually to form
a dataset of ≈300 objects (≈100 for each NP size). Once the
radius estimation model was derived, for the concentration

estimation, a simple automated object detection algorithm
for monodisperse solutions (described in Section II-D2) was
used to identify the right objects in the image, count them
and then estimate the NPs concentration, n P,est. In this way
the NPs concentration estimation is not operator-dependent,
and the radius estimation model was also validated on new,
automatically detected sets of particles with respect to the
previously manually selected 300 NPs.

D. Methods for Size and Concentration Estimation
1) Sub-Pitch Radius Estimation: Size estimation for NPs

with dimensions smaller than the pitch of the imaging array
(50–500 nm NP radius and pitch px = 600 nm, py = 720 nm),
poses new challenges with respect to existing water-pollutants
monitoring systems [15] and to previous works on this same
platform but with larger microparticles [33], [35], [48]. Three
aspects can be interdependently taken into consideration: 1) at
high enough frequency, the AC electric field propagated in
the electrolyte by one electrode spreads laterally beyond one
pitch distance [33]; 2) the 1C magnitude is proportional to
the particle volume (thus, to the cube of its radius) [49];
and 3) possible displacement of the NP in the 2-D plane
can result in a significant response of adjacent electrodes.
Since sub-pitch sizes are considered, only a 3 × 3 matrix
is examined, to avoid adding data from electrodes with very
small and noisy response to the NP.

Based on these considerations, we first estimated the particle
offset in x- and y-directions (dx and dy , see Fig. 2) with
respect to the electrode featuring the highest response as
follows:

dx,est =

∑
i, j |1C(i, j)| · i · px∑

i, j |1C(i, j)|
(2)

dy,est =

∑
i, j |1C(i, j)| · j · py∑

i, j |1C(i, j)|
(3)

where (i, j) ∈ [(−1,+1), (−1,+1)], with px = 600 nm and
py = 720 nm. Then we calculated

d(i, j)2
= (dx,est + i · px )

2
+ (dy,est + j · py)

2 (4)

which represents the 3 × 3 matrix of distances of each
first neighbor pixel from the pixel with largest response (i.e.,
the coordinates origin) shifted according to the NP position
(dx,est, dy,est) estimated using (2) and (3). Exploiting symmetry
reasons, we constructed a four elements vector γ (e) by aver-
aging [1C(i, j)d2(i, j)]/C0 over symmetric pixel locations:
e = 1 for (i, j) = (0, 0), e = 2 for (i, j) = (±1, 0), e = 3 for
(i, j) = (0, ±1), and e = 4 for (i, j) = (±1, ±1). Here C0 is
the ensemble average capacitance measured by the chip NEs
in dry air at 50 MHz and T = 22 ◦C. Eventually, we expressed
the estimated particle radius as follows:

Rest =

√∑
e

p(e) · γ (e) (5)

where p(e) is a vector of calibration coefficients, actually taken
all equal in this work. This reduces the model parameters
to only one scalar value p. From a single experiment with
NPs of nominal radius Rnom detecting Ndata objects, the mean
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value R, the uncertainty u R , and the prediction error ϵR were
calculated according to

R =
1

Ndata

Ndata∑
i

Rest,i (6)

u R =

√√√√ 1
Ndata(Ndata − 1)

·

Ndata∑
i

(Rest,i − R)2 (7)

ϵR% =
R − Rnom

Rnom
· 100. (8)

2) Noise-Based Sensing Volume Definition for Concentration
Estimation: The accurate determination of NPs concentration
(n P ) requires to quantify the volume inspected by the measure-
ment system, hereafter called sensing volume, Vsens. This is a
challenging task for sensors based on impedance measurement,
due to the rapid decay of the electric field magnitude induced
by Debye screening, and the hypersensitivity of low frequency
measurements to surface phenomena. In fact, Debye screening
is largely dependent on measurement frequency and ionic
concentration [34]. Since, at first order, the NE capacitance
response 1C is proportional to the squared unperturbed AC
electric field at the particle center location (i.e., the one in
the absence of a particle, denoted E2) [49], we can define the
sensing volume as the region above the array surface where
the squared unperturbed AC electric field is larger than the
threshold value (E2

thr) that corresponds to 1Cthr = 3·σnoise,ave,
where σnoise,ave is the ensemble experimental standard devi-
ation of the electrode capacitance measured in the absence
of analytes. The dominant noise generation mechanism is
electronic, as discussed in [33].

In practice, the following procedure was used to calcu-
late Vsens for each NP radius. First, a statistical analysis
of the capacitance noise from experiments without NPs
was performed. In particular, we verified that: 1) in the
chosen conditions (see Table II), the 1C noise of each
electrode was Gaussian with zero mean and 2) the mea-
sured σnoise(i, j), i.e., the empirical standard deviation of the
1C , was homogeneously distributed over the entire array
((i, j) ∈ [(1, 256), (1, 256)]), i.e., σnoise,std ≪ σnoise,ave,
where σnoise,ave and σnoise,std are the empirical average and
standard deviation of σnoise of the ensemble of all 256 ×

256 electrodes. If these were verified, we assumed that all
electrodes behave the same and the maximum sensing distance
was essentially constant above all electrodes, regardless of i
and j . Second, exploiting the available accurate simulation
setup, we determined the threshold distance dz,thr, such that the
simulated 1C (s)(dz > dz,thr) < 1Cthr, and the corresponding
E2

thr = E2(0, 0, dz,thr + Rnom). The electrolyte region where
zsens(x, y) = dz,thr + Rnom such that for z < zsens(x, y) :

E2(x, y, z) > E2
thr defines a surface in the 3-D space over a

single electrode. Thus, exploiting the generalization verified
in the first step, Vsens is

Vsens =

256∑
i=1

256∑
j=1

∫∫
�

zsens dx dy (9)

where � is the portion of the array corresponding to a single
electrode

� = {(x, y) : x ∈ [−300, 300] nm, y ∈ [−360, 360] nm}.

Note that, for the calculation of Vsens the knowledge of the
salinity of the sample is necessary, for instance by advanced
techniques as those reported in [54] and [55].

Once Vsens was calculated, the NP concentration (n P ) was
estimated according to

n P,est = λ · ζ ·
NP(

Vchamber +
∑

n φn · Tn
) (10)

where NP is the cumulative number of NPs detected in a
given experiment, Vchamber is the volume of the measuring
chamber (Aarray · zmax ≃ 7.1 nL). φn is the flow rate set
for time Tn (as described in Section II-C, for experiments
evaluating continuous measurements

∑
n φn · Tn = 158 µL).

ζ = Vchamber/Vsens is the coefficient that takes into account
the reduction of the volume inspected by the NE array
with respect the total Vchamber. Finally, the correction factor
λ (derived experimentally) reflects the observation that in
continuous flow measurement (i.e., non-zero flow rate) NP did
not scale proportionally to the flowing sample volume. Thus,
λ is taken equal to 1 in case of static measurements, whilst
λ ̸= 1 in continuous flux conditions. NP was computed with
the following procedure: the MATLAB function findchangepts
was used to detect significant variations of mean capacitance
for each electrode, as described before. Afterward, the radius
estimation model described in Section II-D1 was used to filter
non-NP events (noise, local drifts, bubble, impurities, etc. . .)
defined as Rest < 0.5 · Rnom and Rest > 1.2 µm (consistently
with the choice to consider a 3 × 3 array with approximate
size 1.2 × 1.44 µm), Rnom being the nominal radius of the
monodisperse NPs. Finally, the concentration estimation error
was calculated as follows:

ϵn P % =
n P,est − n P,nom

n P,nom
· 100. (11)

III. RESULTS

A. Sub-Pitch Size Estimation
As described in Section II-D1, the unit-less coefficient of the

radius estimation model was calibrated on measurements (300
objects) obtaining p = −434.4, while the average capacitance
in air at 50 MHz and T = 22 ◦C is C0 ≃ 0.40 fF. Fig. 3
shows the predicted nominal radius, whereas Table III reports
model prediction results (R̄ ± u R) and errors (ϵR%) according
to (6)–(8). Further validation of the radius estimation model
is reported in Section III-B, where the model was used to
automate the NPs detection for n P estimation.

B. Concentration Estimation
Fig. 4 (left) shows the probability density function (PDF)

of the σnoise measured for each electrode in four experiments
without analytes, at zero flow rate and conditions reported
in Table II. Each σnoise was calculated from 200 capacitance
measurements per electrode, and the mean value of the noise
is zero. The figure also shows σnoise,ave (red dashed line).
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Fig. 3. Results of radius estimation model according to Section II-D1 for
all NPs (Rest versus Rnom). Aggregate results are reported in Table III.

TABLE III
NOMINAL AND PREDICTED NP RADIUS AND ESTIMATION ERROR

Fig. 4. Distribution of σnoise for all electrodes in four different experi-
ments (φ = 0 µL/min, 22 ◦C, 50 MHz), the resulting ensemble σnoise,ave
is also shown (left). σnoise,ave ± σnoise,std for different flow rate and
temperature values (right).

The resulting value of σnoise,ave is 2.9 aF, with a standard
deviation σnoise,std of 0.7 aF. Fig. 4 (right) shows σnoise,ave ±

σnoise,std for varying flow rates at T = 22 ◦C (top) and for zero
flow rate and varying temperatures (bottom), showing stable
values regardless of the considered environmental conditions.

Following the method described in Section II-D2, dz,thr and
E2

thr were calculated from numerical simulations to determine
Vsens. Fig. 5 (top) shows the simulated 1C (s) as a function
of dz for particles centered on the electrode, as discussed
in Section II-D2. The intersections of the curves with the
3 · σnoise,ave threshold yields dz,thr. Fig. 5 (bottom) shows the
corresponding Vsens in log-scale for different radii.

Fig. 6 (bottom) shows the concentration error under sta-
tionary conditions (φ = 0, λ = 1) according to (11) versus
the nominal radius. The estimated n P is the average over four
Vsens calculations at φ = 0 µL/min and four different instants.
Fig. 6 (top) shows the corresponding radius estimation error
in boxcharts; as discussed in Section II-D2, the radius estima-
tion was part of the automated procedure for NPs detection.

Fig. 5. Simulated capacitance change due to the NP −∆C(s) with dx =

0, dy = 0, as a function of dz (top). Intersection with 3·σnosie,ave is dz,thr.
Vsens calculated according to (9) as a function of the radii considered
(bottom).

Fig. 6. Radius estimation error for each case (top). Concentration
estimation error ϵnP (mean value ± uϵ) as a function of the radius
calculated as (7) in stationary conditions (φ = 0) (bottom).

In agreement with results reported in Section III-A, we observe
that the model overestimates the expected value for 50 nm
NPs, and also has larger spread.

Fig. 7 shows the results of experiments where dilution
was varied, and where continuous measurements (with flux)
were investigated. The unit-less correction factor λ is 1 at
zero flow and 1740 otherwise. The top graph shows the
estimated concentration in this case versus the nominal con-
centration. The middle graph reports the estimated radius for
each concentration value, showing predictions independent of
concentration, as it should be. The bottom graph shows the
concentration estimation error under both steady (φ = 0) and
continuous flow (φ ̸= 0) conditions. While Vsens calculation
enables concentration estimation, further optimization of the
measurement chamber may be necessary to improve the accu-
racy and efficiency of the measurement. In fact, since the NPs
outside Vsens are not detectable by the NE array, the height of
the measuring chamber can be optimized guiding the sample
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Fig. 7. Concentration estimated according to (10) versus nominal
concentration in the case of continuous measurements (top). Radius
estimated in each cases, the mean prediction (R) is also reported
(middle). Concentration estimation wrong symbol (⃝) and continuous
(▲) for different concentration values (bottom).

flow in this region, or the measurement frequency increased
to further reduce Debye screening.

IV. DISCUSSION AND CONCLUSION

As anticipated in the introduction, current water pollutant
monitoring systems suffer several limitations, particularly so
in detecting particles in the nanoscale. This study inves-
tigated the potential of a new monitoring paradigm based
on high-frequency impedance measurement with CMOS NE
arrays for continuous monitoring of nanoparticles in water.
An analytical model for size estimation of NPs with (sub-
pitch) radii smaller than the theoretical resolution of the array
(pitch 600 × 720 nm) has been developed. Compared to
nominal values, the model slightly underestimates larger NP
dimensions (275, 500 nm), while overestimating those with
smaller radii (50 nm). Nevertheless, the worst case mean error
is always lower than 45%. The spread of the estimated radii
(Table III, Fig. 3) is only slightly larger than the nominal one,
and essentially in line with DLS sizing experiments, which
confirmed very low deviations (<7%) from the nominal NP
radii. Possibly, the slightly larger variability in the measured
capacitance may reflect that of the unknown vertical position
of the particle.

We also addressed the challenging goal of estimating the
concentration of PS-NPs in stationary and continuous flow
conditions, as a model system for more general nano-plastic
monitoring in water. Our approach defines the sensing volume
and accounts for it considering the noise associated with the
capacitance measurement of the nanoelectrodes. Promising
results are obtained for all NP concentrations (Figs. 6 and 7)

and for different radii. They demonstrate a worst case estima-
tion error of a factor 1.7.

Notice that all experiments were run in high ionic strength
solutions (PBS ∼160 mM) compared, for instance, to common
tap water. Although Debye screening limitations are mitigated
at the chosen 50 MHz operating frequency, the sensing dis-
tance remains much smaller than the microfluidic chamber
height; therefore, our evaluations may be overpessimistic with
respect to tap water conditions of large interest. We also
point out that the simple analytical models proposed to extract
Rest and n P rely on only two calibration parameters, easily
estimated from two dedicated experiments which is a valu-
able feature in view of low-power Internet of Things (IoT)
applications.

Several aspects deserve more extensive future investigations.
First, the estimation of the nano-plastics surface charge den-
sity, which recent papers suggest to play an important role in
NPs cytotoxicity [10], [56], is definitely in the potential of
the HFIS CMOS NE array, thanks to its spectrally resolved
operating mode and large bandwidth. Second, since capaci-
tance spectroscopy is sensitive to the dielectric permittivitly
and conductivity of the analyte, a potential for NP material
classification of pollutants exists. Common plastic pollutants
(e.g., polystirene, PVC, and PET) have similar εr (in the
2–4 range); discrimination among their responses appears
challenging given the electronic noise floor of current chip
implementations and the variability of the response induced
by the unknown position above the array surface. On the
contrary, discrimination between dielectric and metallic NPs
(and likely materials in between) is possible via inspection
of the measured 1C , whose sign depends on the conduc-
tive versus dielectric nature of the analyte, and is likely
improved by fingerprinting of the capacitance spectra as
shown in [35] and [34]. The explored concentrations interval
is on the high side for common micro and nano pollutants’
concentration in water. Furthermore, aggregates have been
avoided via sonication, but should be part of more extensive
studies beyond the scope of this work. Notwithstanding all
the above considerations, to the best of our knowledge, this
is the only CMOS electronic sensing technology reporting
single nanoparticle detection and size/concentration estimation
in continuous flow with NP radii down to 50 nm to date.
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