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Abstract. With the recent explosion of interest in visual Generative
AI, the field of deepfake detection has gained a lot of attention. In fact,
deepfake detection might be the only measure to counter the potential
proliferation of generated media in support of fake news and its con-
sequences. While many of the available works limit the detection to a
pure and direct classification of fake versus real, this does not translate
well to a real-world scenario. Indeed, malevolent users can easily apply
post-processing techniques to generated content, changing the underlying
distribution of fake data. In this work, we provide an in-depth analysis
of the robustness of a deepfake detection pipeline, considering different
image augmentations, transformations, and other pre-processing steps.
These transformations are only applied in the evaluation phase, thus sim-
ulating a practical situation in which the detector is not trained on all
the possible augmentations that can be used by the attacker. In particu-
lar, we analyze the performance of a k-NN and a linear probe detector on
the COCOFake dataset, using image features extracted from pre-trained
models, like CLIP and DINO. Our results demonstrate that while the
CLIP visual backbone outperforms DINO in deepfake detection with
no augmentation, its performance varies significantly in presence of any
transformation, favoring the robustness of DINO.

Keywords: Deepfake Detection · Self-Supervised Vision Transformers.

1 Introduction

Although the generation of deepfake encompasses results of diverse nature, the
world of fake image forgery has gained a lot of attention, since the breakthrough
of diffusion models [7, 13, 30, 31, 33] in the Generative AI domain. While this
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technological advancement was received enthusiastically by the community, it
has also raised significant concerns regarding its potential impact on various do-
mains, including the realms of human art and privacy. Both these domains are
susceptible to risks due to the ease with which these models generate new con-
tent. Consequently, in light of the ongoing advancements in Generative AI, there
has been a significant shift towards enhancing deepfake detection systems [36,41]
to mitigate the risks posed by the remarkably convincing nature of such content.

The first efforts towards AI-generated content detection were conceived in
the realm of fake face detection, with the release of ad-hoc datasets [18, 32]
and methodologies [11, 19]. However, it should be noted that the significance of
deepfake detection extends beyond fake faces or biometric data, necessitating
the need for broader and more versatile detection methods that can address a
wider range of generative scenarios. Only recently, a limited number of studies [1,
6, 36] have started to investigate deepfake images generated from text-to-image
models [2,30,31,33], thereby enabling the detection of a wider variety of subjects
with respect to biometric data. Although these studies assert high accuracy in
detecting fake images, the resilience and robustness of the proposed methods
have not yet been quantitatively evaluated.

In this manuscript, we freeze the recently proposed Stable Diffusion [31]
model as the text-to-image generator and test two different detection approaches.
In addition, we employ two different feature extractors, namely CLIP [29] and
DINO [4], and evaluate their robustness to a wide variety of image transfor-
mations, at pixel-value and image-structure levels (Fig. 1). To the best of our
knowledge, we are the first to assess the performance variability of real-fake
recognition within such an environment. The experimental results shed light on
the generally more robust performance of self-supervised methods (i.e., DINO)
against transformations in deepfake detection. Indeed, while CLIP achieves bet-
ter performance without augmentation, the behavior of deepfake classifiers across
different transformations is more consistent for DINO compared to CLIP. Sur-
prisingly, CLIP performs similarly to DINO in the recognition of real images.

2 Related Work

Text-to-image generation. Deepfake images can be generated through three
main models which consist of autoregressive approaches [25,26,33,39], generative
adversarial networks (GANs) [12,34,38,42], and diffusion models [7,13,17,37]. In
this work, we narrow down the field of deepfake generation considering the recent
paradigm of text-to-image generation, which consists of generating an image
starting from a textual description. While some GAN-based approaches [20] have
been proposed as a possible solution to text-to-image generation, great results
have been recently obtained with the application of diffusion models [2, 30, 33]
by conditioning the diffusion process on the input textual description.

Recently, latent diffusion models [28,31] have improved the efficiency of stan-
dard diffusion models while maintaining their generation quality, by operating
in a lower dimensional latent space z using a pre-trained variational autoencoder
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(VAE) [9,16]. In particular, during image generation, this approach involves the
diffusion process occurring within the embedding space z, followed by the de-
compression of the resulting image through the VAE decoder. We conduct our
experiments using images generated by the Stable Diffusion model [31], using
both the 1.4 and 2.0 versions. The main differences between them lie in the
backbone used to extract features from texts and images. In fact, Stable Diffu-
sion v1 employs CLIP [31], which is trained on a non-publicly available dataset,
while Stable Diffusion v2 relies on OpenCLIP [14], which is trained on a subset
of LAION-5B [35] dataset. Both Stable Diffusion versions are finetuned on a
filtered subset of LAION-5B to improve aesthetics and avoid explicit contents.

Deepfake detection. The deepfake detection pipeline employed in this study
comprises two consecutive stages: an image feature extractor followed by the
actual detector. As for the first bit, different works have made extensive use
of CLIP features as a starting point for their analysis [1, 24, 36]. In [5], they
introduced an exploratory study of the frequency spectrum of the created im-
ages, thus capturing the impact of the specific generation model on the structure
of the final images. Conversely, in [1], the authors proposed a wider-spectrum
evaluation of the effects of different image feature extractors, presenting results
on CLIP and OpenCLIP. Simultaneously, within the literature on image water-
marking [10], analyses have been conducted to examine the robustness of the
added watermark when the image is subjected to transformations. This type
of analysis has been also conducted in relation to the detection of manipulated
images and videos specifically focused on facial manipulation [22]. We embark
on this path, applying it to the deepfake detection scenario, and studying how
it affects the performance of some detection algorithms and the distribution of
the features in the embedding space.

3 Evaluation Framework

3.1 Dataset

This section provides an overview of the COCOFake dataset [1] used in this
work to perform the analysis on deepfake detection. COCOFake consists of an
extension of the COCO dataset [21], that includes both real and fake images.
Specifically, each real image in COCO is paired with five captions which are
used to generate five fake images through a text-to-image model. The dataset
is divided into training, validation, and test sets following the Karpathy splits,
as used in the captioning literature [15]. Since COCO contains 113,287 training
images and 5,000 validation and test images, COCOFake is composed of 679,722
instances in training, and 30,000 in validation and test.

From a technical standpoint, the production of counterfeit images is achieved
through the utilization of Stable Diffusion [31] version 1.4. Furthermore, CO-
COFake also includes validation and test splits generated with Stable Diffusion
version 2.0 to increase the robustness and generalization of possible analysis.
It is worth mentioning that, all the images of COCOFake are stored in JPEG
format, following the original COCO compression.
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Fig. 1. Visual comparison of image transformations on a sample real image (top left).

3.2 Visual backbones

In our experimental analysis, we employ three different visual backbones, namely
CLIP [29], DINO [4], and DINOv2 [27]. It is worth mentioning that all the
backbones adopt the same Vision Transformer architecture [8], ensuring a fair
comparison between the employed methods.

The primary distinction among the visual backbones is the pre-training
method employed. For instance, the CLIP approach utilizes language supervi-
sion to enforce similarities between visual and textual concepts. This is achieved
by independently processing the image and its textual description using a visual
and a textual backbone and then linearly projecting their representation into a
shared embedding space. CLIP is pre-trained with a contrastive objective that
maximizes the cosine similarity of correct image-text pairs. While CLIP obtains
a semantic coherence [23] that can be useful for deepfake detection, the only
image augmentation that is applied during training consists of a random square
crop from resized images. This could make the visual backbone vulnerable to
adversarial image augmentation.

In contrast to CLIP, DINO eschews the use of textual references, heavily
relying on image augmentations during the pre-training phase. Indeed, DINO
augments the input image through various techniques, including multi-crop [3],
color jittering, Gaussian blur, and solarization. Multi-crop is used to generate
multiple views of the same image, which can be logically divided into local views
with lower resolutions and global views with higher resolutions. The DINO model
is trained by enforcing local-to-global correspondences between different views of
the same image. On the other hand, DINOv2 introduces additional pre-training
objectives compared to DINO, such as randomly masking patches of the lo-
cal views, leaving the model to learn how to reconstruct these patches. Since
both DINO and DINOv2 enforce robustness to image augmentation during pre-
training, we investigate their effectiveness in a deepfake detection pipeline.
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3.3 Deepfake Detection Pipeline

In this section, we present the deepfake detection pipeline that has been utilized
for the analysis conducted in this study. Our pipeline encompasses a feature
extraction phase followed by a detector model. Specifically, the detector model
under investigation includes both a linear probe and a k-nearest neighbor (k-
NN) classifier. The incorporation of different detector models serves the purpose
of assessing distinct aspects. Specifically, the linear probe is engineered to iden-
tify any potential indications of the generation process within the feature space.
Conversely, the k-nearest neighbor approach relies on the distance between ex-
isting features stored during training, thus allowing us to measure the similarity
between real and fake content, in the embedding space.

Feature extraction process. From a technical perspective, the previously
introduced visual backbones are employed as feature extraction models. Indeed,
during the process of feature extraction, each image from the training, validation,
and test sets of COCOFake undergoes processing by the visual backbones CLIP,
DINO, and DINOv2. It is worth mentioning that no image augmentation is
applied during the feature extraction phase.

Formally, each image x ∈ RC×H×W is firstly split into a sequence of squared
patches {xp

i }Ni=1 where C,H,W are respectively channel, height and width, while

xp
i ∈ RP 2C is the i-th image patch of size P ×P . Consecutively, the sequence of

image patches is linearly projected in the embedding dimensionality of the model
D. At this step, a learnable classification token [CLS] ∈ RD is concatenated to
the input sequence. After L self-attention blocks the [CLS] token is saved as
the representation of the image. In addition, and only for the CLIP model, the
[CLS] token is linearly projected into the multi-modal embedding space.

Implementation-wise, the Base version of ViT [8] (i.e., ViT-B) is used for
CLIP, DINO, and DINOv2. In detail, ViT-B includes 85M learnable parame-
ters, a 768 embedding dimensionality D, and L = 12 self-attention blocks. The
considered input image size is C = 3, H = 224, W = 224, while the image patch
size P is 14 for DINOv2 and 16 for CLIP and DINO. Regarding the pre-trained
weights, the open-source ViT-B/16 version (i.e., OpenCLIP [14]), pre-trained
on the LAION-2B dataset [35], is used for CLIP, while the publicly available
ViT-B/16 and ViT-B/14 are used for DINO and DINOv2, respectively.

Linear probe. In the linear probe approach, we use the extracted features to
train a logistic regressor. The goal of the method is to identify a signature,
or imprint, in the extracted features that enable the linear model to distinguish
between real and fake data. The logistic regressor is trained with an ℓ2 objective,
and the loss is weighted to account for the difference in the number of real and
fake samples. Specifically, since the number of fake images in COCOFake is
five times greater than the number of real images, the loss is weighted inversely
proportional to class frequencies. In addition, the LBFGS solver [40] is employed
for training. Results are evaluated with accuracy scores over real and fake data.

k-nearest neighbor (k-NN). The classification task in the k-nearest neighbor
approach is dependent on measuring distances within the visual feature space
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Table 1. Comprehensive summary of essential information regarding the applied trans-
formations to assess the robustness of the different classifiers.

Range Type

Transformation Parameter Min Max Pixel Structure

Equalize - - - ✓ ✗

Center Crop size 64 512 ✗ ✓

Resize size 64 512 ✗ ✓

Random Crop size 64 512 ✗ ✓

Brightness brightness factor 0.5 2.0 ✓ ✗

Contrast contrast factor 0.5 2.0 ✓ ✗

Hue hue factor -0.5 0.5 ✓ ✗

Saturation saturation factor 0.1 3.0 ✓ ✗

Posterize bits 1 8 ✓ ✗

Gaussian Blur kernel size 3 15 ✓ ✗

JPEG Compression quality 10 90 ✓ ✗

SD Compression - - - ✓ ✗

extracted by the utilized backbones. This implies that no further training is
required. Hence, in the validation and test sets, the distances between each
element and the features stored offline from the training split are calculated.
The deepfake classification task is a supervised task, whereby the corresponding
label (real or fake) is known for each feature embedding. So, the accuracy is
determined by applying majority voting on the k-nearest features within the
training feature space.

While the k-NN approach was originally proposed by [24] in a deepfake detec-
tion scenario, it presents notable limitations. Specifically, k-NN is highly sensitive
to missing values or outliers, necessitating extensive coverage in the embedding
space of the visual backbones by the training dataset. Moreover, as the dataset
size increases, the computational cost of calculating distances between a new
image and each existing one escalates significantly, ultimately compromising the
algorithm performance. From an implementation perspective, we take into ac-
count the cosine similarity and the top-1 nearest neighbor to define the k-NN.
Moreover, to manage the unbalanced COCOFake dataset, only a single pair of
real and fake images are considered to compute the visual features in the training
split, thus obtaining balanced real-fake images.

3.4 Image Augmentation

Drawing inspiration from [10, 22], we explore the effectiveness of twelve dis-
tinct image augmentation techniques, detailed in Table 1. This series of trans-
formations depict the potential manipulations of the image, considering image-
structure and pixel-value transforms. As we can notice, each augmentation in-
volves a tunable parameter to control the degree of impact on images. We un-
dertake a detailed analysis of these parameters to assess the robustness of the
classification methods in response to the strength of the transformation. To this
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Table 2. Accuracy performance on the COCOFake test set without any transforma-
tions for Stable Diffusion v1.4 and v2.0, using different classifiers and backbones.

Stable Diffusion v1.4 Stable Diffusion v2.0

Backbone Linear k-NN Linear k-NN

CLIP 99.6 96.7 99.3 94.9
DINO 96.9 91.3 90.5 87.8
DINOv2 96.6 89.0 95.7 84.6

end, we select a range delimited by a minimum and maximum parameter for
each augmentation, aiming to preserve the visual quality of the image in both
cases, thus ensuring the preservation of visual consistency and usability. We as-
sess the results by linearly partitioning the parameter range into five equally
spaced segments. Following this process, we obtain five different image augmen-
tation techniques for each transform with varying strengths. The utilization of
these transformations evaluates the employed classifiers’ accuracy in terms of re-
silience and generalization. A visual example of some of the image augmentation
applied to an image is reported in Fig. 1.

In addition to the conventional augmentation methods, we introduce a novel
technique called Stable Diffusion (SD) compression. This approach involves the
projection of an image x into the latent space z of the Stable Diffusion model by
utilizing the encoder of the autoencoder model [9] implemented within the Stable
Diffusion framework. Following this projection, the image x is reconstructed
using the decoder of the autoencoder. This augmentation technique is exclusively
applied to real images to examine the biases of the detector concerning the lossy
compression inherent in the generation of fake images.

4 Experimental Results

In this section, we analyze the results obtained by employing data augmentation
on real and fake images, while testing different visual backbones.

Deepfake detection of plain images. To evaluate the resilience of the afore-
mentioned methods, a preliminary study is conducted to examine the perfor-
mance of the detection pipeline without any applied transformations.

Based on the findings presented in Table 2, we can notice that the linear
probe classifier exhibits a high classification accuracy, across all the backbones,
with scores of 99.6%, 96.9%, and 96.6%, respectively with CLIP, DINO, and
DINOv2, over the COCOFake test set generated with Stable Diffusion v1.4.
These results validate the hypothesis that linear probes effectively identify the
generator’s imprint, embedded in the image features. Similar behavior is also
highlighted by the k-NN approach, whose objective is not to specifically iden-
tify the imprinting trace. The observed performance strongly suggests that, in
the backbones embedding space, fake images tend to exhibit proximity to one
another and a similar phenomenon may hold true for real images. Specifically,
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Table 3. Comparison of accuracy performance on the COCOFake test set with trans-
forms applied to fake images. The table shows results for linear and k-NN classifiers,
for each backbones.

CLIP DINO DINOv2

Transformation Linear k-NN Linear k-NN Linear k-NN

Equalize 11.9±0.0 87.4±0.0 94.1±0.0 92.5±0.0 89.8±0.0 89.2±0.0

Center Crop 28.3±26.4 85.7±18.4 85.3±15.0 89.9±7.3 87.7±15.7 83.9±10.4

Resize 83.0±8.7 95.5±1.2 94.3±5.2 93.7±0.2 93.8±3.2 89.2±1.1

Random Crop 31.8±25.4 84.1±21.1 85.8±14.0 88.6±9.2 87.5±16.4 83.0±11.6

Brightness 29.1±27.9 88.5±7.9 91.9±4.1 93.3±0.3 95.5±0.8 89.8±0.1

Contrast 31.4±26.2 90.0±5.6 94.8±3.8 93.7±0.4 95.7±0.9 89.8±0.2

Hue 74.2±2.6 93.5±1.6 93.3±3.1 93.4±0.4 95.3±0.5 89.4±0.4

Saturation 56.8±28.6 92.1±6.1 94.1±5.8 93.3±0.7 95.8±3.1 89.7±0.4

Posterize 29.5±37.7 77.2±24.2 89.9±6.9 92.4±1.4 86.1±11.0 87.4±3.5

Gaussian Blur 31.6±33.5 95.8±0.7 88.1±6.7 92.9±0.5 94.0±1.7 89.3±0.3

JPEG Compression 50.3±29.3 95.1±3.0 97.7±2.1 93.8±0.4 96.7±3.0 89.5±0.9

Average 41.6±24.6 89.5±9.0 91.8±6.7 92.5±2.1 92.3±5.6 88.2±2.9

k-NN performs with an accuracy of 96.7%, 91.3%, and 89%, over respectively
CLIP, DINO, and DINOv2.

Moreover, the comparable performance observed on the COCOFake test set
of Stable Diffusion 1.4 and Stable Diffusion v2.0 underscores the classifiers’ ca-
pability to generalize beyond their initial training domain. As a result, further
experiments will solely focus on the test set of Stable Diffusion 1.4. Building
upon these initial results, subsequent experiments extend the analysis to explore
the accuracy patterns when transformations are applied to fake and real images.

Fake data analysis. Presented in Table 3, we encounter a concise overview of
the performance of the deepfake detection pipeline over transformed fake im-
ages. Evidently, the evaluation using the linear probe on the CLIP backbone
demonstrates remarkably low performance. Specifically, CLIP achieves an av-
erage accuracy, among all the transformations, of only 41.6% for fake images,
while DINO and DINOv2 demonstrate higher accuracy of 91.8% and 92.3%, re-
spectively. Furthermore, the average standard deviation of CLIP, which amounts
to 24.6%, highlights the substantial variability in performance across different
transformations. This variability poses a significant threat to the overall ro-
bustness of a CLIP-based deepfake detector. In contrast, DINO and DINOv2
consistently exhibit robustness across a wide range of performed transforma-
tions. In addition, Figure 2 illustrates the trajectory of accuracy outcomes for
the linear probes under varying degrees of strength of image augmentations, as
discussed in Sec. 3.4. It is visually evident that, while DINO and DINOv2 ex-
hibit a tendency to maintain consistent performance levels, CLIP performance is
highly influenced by the intensity of each transformation. For example, a JPEG
compression transformation with 10% quality produces an accuracy of 0.4% over
CLIP linear probe while 95% and 91% for respectively DINO and DINOv2. We
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Fig. 2. The plots showcase the linear probe accuracy using different backbones, namely
CLIP, DINO, and DINOv2, varying the applied transformation. Each subplot il-
lustrates the accuracy of the classifiers under varying degrees of strength in image
augmentations, used to provide insights into the effectiveness of classifiers.

assume that the linear probe trained on CLIP-extracted features may be prone
to overfitting on the distinctive imprint of fake data. This assumption arises
from the observation that the CLIP visual backbone is not trained using exten-
sive data augmentation. Consequently, alterations in the images could modify
the extracted features, thus altering the fake imprint. This would explain the
significant decline in the performance of the linear probe on CLIP. Although the
k-NN outcomes, as shown in Table 3, indicate that CLIP achieves accuracy on
par with DINO and DINOv2, the higher average standard deviation observed in
CLIP highlights the superiority of the latter models.

Real data analysis. Table 4 presents a comprehensive analysis of the perfor-
mance of CLIP, DINO, and DINOv2 evaluated on transformed real images. We
decide to logically cluster results in JPEG Compression, SD Compression, and
Other Transforms to facilitate the analysis. Specifically, we isolate the compres-
sion augmentations, leaving a summary of the others. Regarding the obtained
results, it is noteworthy that the linear probes demonstrate commendable perfor-
mance on the other non-compression-based transforms. However, when subjected
to JPEG compression, the linear probes exhibit lower accuracy. Specifically, the
average accuracy reaches 93.2%, 74.8%, and 58.2% for CLIP, DINO, and DI-
NOv2 respectively. Furthermore, the poorest performance is observed in CLIP
with SD compression, resulting in an accuracy of 44.2%. We hypothesize that
the compression imprints bear a strong resemblance to the fake imprint, thereby
deceiving the linear probe into misclassifying a real image as fake.

A comparable examination can be directly carried out on the feature space
of the visual backbones. Specifically, when considering the embedding space of
CLIP, real images subjected to the SD compression exhibit closer proximity, on
average, to fake images compared to JPEG compression and other transforma-
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Table 4. Accuracy performance on the COCOFake test set with transformations ap-
plied to real images. We report results for linear probe and k-NN classifiers for each
backbones. Transformations are divided into compression based and others, to highlight
the accuracy drop when applying compression-based transformations.

JPEG Compression SD Compression Other Transforms

Backbone Mean Std Mean Std Mean Std

Linear
CLIP 93.2 12.5 44.2 - 99.7 0.5
DINO 74.8 15.2 80.1 - 93.2 6.0
DINOv2 58.2 20.4 54.2 - 91.9 5.5

k-NN
CLIP 87.5 2.7 80.2 - 90.0 5.7
DINO 75.0 3.8 75.2 - 76.0 5.0
DINOv2 80.3 1.8 79.4 - 81.7 2.8

tions. This is additional proof that SD compression has a great influence on the
fake data imprint. In contrast, DINO and DINOv2 are equally subjected to all
transformations, exhibiting an average accuracy in the k-NN analysis of 75.4%
and 80.5%, respectively. It is noteworthy that the limitations inherent to k-NN,
as mentioned in Sec. 3.3, can attenuate its impact on deepfake detection.

5 Conclusion

In conclusion, the growing capacity and utilization of text-to-image models
present a persistent challenge in the detection of artificially generated images.
Our proposal introduces an analysis of the robustness of a set of classifiers,
specifically considering transformations that modify the visual appearance of
the image. The performance of the classifiers is significantly influenced by these
transformations and this study emphasizes the significance of the robustness to
such transformations for deepfake detector classifiers that need to operate in
real-world scenarios.

Acknowledgments This work has partially been supported by the European
Commission under the PNRR-M4C2 (PE00000013) project “FAIR - Future Ar-
tificial Intelligence Research” and by the Horizon Europe project “European
Lighthouse on Safe and Secure AI (ELSA)” (HORIZON-CL4-2021-HUMAN-01-
03), co-funded by the European Union (GA 101070617).

References

1. Amoroso, R., Morelli, D., Cornia, M., Baraldi, L., Del Bimbo, A., Cucchiara, R.:
Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images.
arXiv preprint arXiv:2304.00500 (2023)



Unveiling the Impact of Image Transformations on Deepfake Detection 11

2. Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Kreis, K., Aittala, M., Aila,
T., Laine, S., Catanzaro, B., et al.: eDiff-I: Text-to-Image Diffusion Models with
an Ensemble of Expert Denoisers. arXiv preprint arXiv:2211.01324 (2022)

3. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. NeurIPS (2020)

4. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging Properties in Self-Supervised Vision Transformers. In: ICCV (2021)

5. Corvi, R., Cozzolino, D., Poggi, G., Nagano, K., Verdoliva, L.: Intriguing properties
of synthetic images: from generative adversarial networks to diffusion models. In:
CVPR Workshops (2023)

6. Corvi, R., Cozzolino, D., Zingarini, G., Poggi, G., Nagano, K., Verdoliva, L.: On
the detection of synthetic images generated by diffusion models. In: ICASSP (2023)

7. Dhariwal, P., Nichol, A.: Diffusion Models Beat GANs on Image Synthesis.
NeurIPS (2021)

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In:
ICLR (2021)

9. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image
synthesis. In: CVPR (2021)

10. Fernandez, P., Sablayrolles, A., Furon, T., Jégou, H., Douze, M.: Watermarking
images in self-supervised latent spaces. In: ICASSP (2022)

11. Ganguly, S., Ganguly, A., Mohiuddin, S., Malakar, S., Sarkar, R.: ViXNet: Vision
Transformer with Xception Network for deepfakes based video and image forgery
detection. Expert Systems with Applications 210, 118423 (2022)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative Adversarial Nets. NeurIPS (2014)

13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS
(2020)

14. Ilharco, G., Wortsman, M., Wightman, R., Gordon, C., Carlini, N., Taori, R., Dave,
A., Shankar, V., Namkoong, H., Miller, J., Hajishirzi, H., Farhadi, A., Schmidt,
L.: OpenCLIP (2021). https://doi.org/10.5281/zenodo.5143773

15. Karpathy, A., Li, F.: Deep visual-semantic alignments for generating image de-
scriptions. In: CVPR (2015)

16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

17. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.:
Improved variational inference with inverse autoregressive flow. NeurIPS (2016)

18. Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Advancing high fidelity identity
swapping for forgery detection. In: CVPR (2020)

19. Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., Guo, B.: Face X-Ray for
More General Face Forgery Detection. In: CVPR (2020)

20. Liao, W., Hu, K., Yang, M.Y., Rosenhahn, B.: Text to Image Generation With
Semantic-Spatial Aware GAN. In: CVPR (2022)

21. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common Objects in Context. In: ECCV (2014)

22. Lu, Y., Ebrahimi, T.: Assessment Framework for Deepfake Detection in Real-world
Situations. arXiv preprint arXiv:2304.06125 (2023)

23. Mukhoti, J., Lin, T.Y., Poursaeed, O., Wang, R., Shah, A., Torr, P.H., Lim, S.N.:
Open Vocabulary Semantic Segmentation with Patch Aligned Contrastive Learn-
ing. In: CVPR (2023)



12 F. Cocchi et al.

24. Ojha, U., Li, Y., Lee, Y.J.: Towards Universal Fake Image Detectors that Gener-
alize Across Generative Models. In: CVPR (2023)

25. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.:
Conditional image generation with pixelcnn decoders. NeurIPS (2016)

26. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

27. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fer-
nandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: DINOv2: Learning Robust
Visual Features without Supervision. arXiv preprint arXiv:2304.07193 (2023)

28. Peebles, W., Xie, S.: Scalable Diffusion Models with Transformers. arXiv preprint
arXiv:2212.09748 (2022)

29. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021)

30. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchi-
cal Text-Conditional Image Generation with CLIP Latents. arXiv preprint
arXiv:2204.06125 (2022)

31. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR (2022)

32. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
Forensics++: Learning to Detect Manipulated Facial Images. In: ICCV (2019)

33. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., Salimans, T., Ho, J., Fleet, D.J.,
Norouzi, M.: Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding. NeurIPS (2022)

34. Sauer, A., Karras, T., Laine, S., Geiger, A., Aila, T.: StyleGAN-T: Unlocking
the Power of GANs for Fast Large-Scale Text-to-Image Synthesis. arXiv preprint
arXiv:2301.09515 (2023)

35. Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.W., Wightman, R., Cherti,
M., Coombes, T., Katta, A., Mullis, C., Wortsman, M., Schramowski, P., Kun-
durthy, S.R., Crowson, K., Schmidt, L., Kaczmarczyk, R., Jitsev, J.: LAION-
5B: An open large-scale dataset for training next generation image-text models.
NeurIPS (2022)

36. Sha, Z., Li, Z., Yu, N., Zhang, Y.: DE-FAKE: Detection and Attribution
of Fake Images Generated by Text-to-Image Diffusion Models. arXiv preprint
arXiv:2210.06998 (2022)

37. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: ICML (2015)

38. Tao, M., Bao, B.K., Tang, H., Xu, C.: GALIP: Generative Adversarial CLIPs for
Text-to-Image Synthesis. In: CVPR (2023)

39. Van Den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural
networks. In: ICML (2016)

40. Xiao, Y., Wei, Z., Wang, Z.: A limited memory BFGS-type method for large-scale
unconstrained optimization. Computers & Mathematics with Applications 56(4),
1001–1009 (2008)

41. Yu, N., Skripniuk, V., Abdelnabi, S., Fritz, M.: Artificial Fingerprinting for Gen-
erative Models: Rooting Deepfake Attribution in Training Data. In: ICCV (2021)

42. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-
gan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. In: ICCV (2017)


