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A reinforcement learning model for AI-based 
decision support in skin cancer

Catarina Barata    1,16, Veronica Rotemberg2,16, Noel C. F. Codella3, 
Philipp Tschandl    4, Christoph Rinner    5, Bengu Nisa Akay    6, Zoe Apalla7, 
Giuseppe Argenziano    8, Allan Halpern2, Aimilios Lallas7, Caterina Longo9,10, 
Josep Malvehy11,12, Susana Puig    11,12, Cliff Rosendahl    13, H. Peter Soyer14, 
Iris Zalaudek15 & Harald Kittler    4 

We investigated whether human preferences hold the potential to improve 
diagnostic artificial intelligence (AI)-based decision support using skin 
cancer diagnosis as a use case. We utilized nonuniform rewards and 
penalties based on expert-generated tables, balancing the benefits and 
harms of various diagnostic errors, which were applied using reinforcement 
learning. Compared with supervised learning, the reinforcement learning 
model improved the sensitivity for melanoma from 61.4% to 79.5%  
(95% confidence interval (CI): 73.5–85.6%) and for basal cell carcinoma from 
79.4% to 87.1% (95% CI: 80.3–93.9%). AI overconfidence was also reduced 
while simultaneously maintaining accuracy. Reinforcement learning 
increased the rate of correct diagnoses made by dermatologists by 12.0% 
(95% CI: 8.8–15.1%) and improved the rate of optimal management decisions 
from 57.4% to 65.3% (95% CI: 61.7–68.9%). We further demonstrated that 
the reward-adjusted reinforcement learning model and a threshold-based 
model outperformed naïve supervised learning in various clinical scenarios. 
Our findings suggest the potential for incorporating human preferences into 
image-based diagnostic algorithms.

Compared to clinical experts, artificial intelligence (AI)-based diagnos-
tic methods have demonstrated similar or better accuracy in various 
areas of diagnostic imaging. As a result, AI-based decision-support 
tools are expected to facilitate access to expert-level image-based diag-
nostic accuracy1–6. To ensure the safety and effectiveness of AI-enabled 

medical devices, certain performance quality standards must be met. 
For example, regulations governing cancer diagnosis emphasize 
high sensitivity due to the greater potential harm of overlooking a 
malignancy compared to misclassifying a benign lesion as malignant. 
However, evaluating a diagnostic test based solely on sensitivity is 
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Fig. 1 | Comparison of models and reader study results. a, Expert-generated 
reward table used to train the RL model; rows, ground truth; columns, 
predictions. b,c, Confusion matrix of the SL model (b) and the RL model (c) 
using the same test set (n = 1511). Rows, ground truth; columns, predictions. The 
proportions are normalized by the row-sums (MEL: n = 171; BCC: n = 93; AKIEC: 
n = 43; BKL: n = 217; NV: n = 908; DF: n = 44; VASC: n = 35). d, Boxplot of difference 
in entropy of paired test set predictions (n = 1,511) of the SL model and the RL 
model. Black line, median; boxes, 25th–75th percentiles; whiskers, minimum 
and maximum values, P < 0.0001 (Wilcoxon test). e,f, Results of the reader study 
comparing sensitivities (e) and frequencies of optimal management decisions (f) 
of 89 dermatologists by diagnosis without AI support (−AI), with support by the 
SL model (+SL) and with support by the RL model (+RL). Optimal managements: 

‘excision’ for melanomas and basal cell carcinomas; ‘local therapy’ for actinic 
keratoses/intraepidermal carcinoma; and ‘dismiss’ for nevi, benign keratinocytic 
lesions, dermatofibroma and vascular lesions. Bars, means; whiskers, standard 
error. Sample sizes: MEL(−AI): n = 89; MEL(+SL): n = 78; MEL(+RL): n = 81;  
BCC(−AI): n = 89; BCC(+SL): n = 63; BCC(+RL): n = 68; AKIEC(−AI): n = 89; 
AKIEC(+SL): n = 60; AKIEC(+RL): n = 72; NV(−AI): n = 89; NV(+SL): n = 88; NV(+RL): 
n = 85; BKL(−AI): n = 89; BKL(+SL): n = 65; BKL(+RL): n = 76; DF(−AI): n = 89; 
DF(+SL): n = 71; DF(+RL): n = 61; VASC(−AI): n = 89, VASC(+SL): n = 67; VASC(+RL): 
n = 65. Abbreviations: MEL, melanoma; BCC, basal cell carcinoma; AKIEC, actinic 
keratosis/intraepidermal carcinoma; BKL, benign keratinocytic lesion; NV, 
melanocytic nevus; DF, dermatofibroma; VASC, vascular lesion.
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inadequate as low specificity also poses risks, such as invasive proce-
dures, patient anxiety and waste of healthcare resources. The trade-off 
between these harms differs depending on the type of cancer and is 
further influenced by human preferences, which refers to the personal 
judgments of physicians and patients regarding the relative value of 
potential outcomes within a specific clinical scenario. These prefer-
ences are not usually taken into account in AI training, but at best are 
implemented at more application-level logic through thresholds and 
cost-sensitive learning7–9.

Diagnostic procedures can be viewed as a sequential 
decision-making task in which a management decision is based on the 
likelihood of a potentially harmful diagnosis like cancer. In the field of 
diagnostic imaging, we can think of this as a Markov decision process 
where the initial states are image attributes, the possible actions are 
management strategies and the rewards are determined by the relative 
benefits and harms of diagnostic errors and appropriate and inappro-
priate management decisions. In this way, we can use reinforcement 
learning to find a strategy that maximizes cumulative rewards while 
considering clinician and patient preferences10,11.

To test whether reinforcement learning could be useful to adapt AI 
predictions to human preferences, we used the example of skin cancer 
diagnosis. This domain is challenging for AI because it involves imbal-
anced datasets dominated by benign conditions and represents a mul-
ticlass problem involving more than one type of cancer with different 
trade-offs12. Although less common than other skin cancers, melanoma 
has the highest mortality rate, and overlooking melanoma should carry 
a higher penalty than overlooking other types of skin cancer13.

First, we trained a supervised learning model (SL model) using a 
publicly available training set composed of 10,015 images including 
two types of skin cancer, melanoma and basal cell carcinoma, a pre-
cancerous condition (actinic keratosis/intraepidermal carcinoma) and 
four common benign conditions (nevi, benign keratinocytic lesions, 
dermatofibroma and vascular lesions)14. The model was trained to mini-
mize a class-frequency weighted cross-entropy loss, with the goal to 
maximize average recall. The output of the model predicted multiclass 
probabilities for each of the seven diagnoses. The external validity of 
this model was tested on an independent test set of 1,511 images, where 
the model achieved an average accuracy of 77.8% with a sensitivity of 
61.4% for melanoma (95% CI: 54.1–68.7%) and 79.6% for basal cell car-
cinoma (95% CI: 71.4–87.8%). This result is comparable to the results of 
above-average models obtained in an international competition using 
the same benchmark test set, and better than the results obtained by 
experts3. Although the model has acceptable multiclass accuracy, the 
low sensitivity for melanoma limits its use in clinical practice.

Next, we set up a reinforcement learning model (RL model) with 
deep Q-learning using a one-dimensional vector combining the mul-
ticlass probabilities and the feature vector of the SL model as the 
initial state11. We used a dermatologist-generated reward table in 
which rewards and penalties for correct and incorrect diagnoses 
depend on the type of skin cancer (Fig. 1a). Using the same training 
and test sets, the RL model achieved a significantly higher sensitiv-
ity for melanoma (79.5%, 95% CI: 73.5–85.6%, P < 0.001) and for basal 

cell carcinoma (87.1%, 95% CI: 80.3–93.9%, P < 0.001) compared to 
the baseline SL model while maintaining a high average accuracy of 
79.2% (Fig. 1b,c). This increase in sensitivity for melanoma was mainly 
driven by reclassifying melanomas diagnosed as nevi by the SL model 
(Extended Data Fig. 1a).

We also calculated the Shannon entropy of AI predictions and 
used it as a marker of model uncertainty. We found that the RL model 
increased the entropy of predictions in comparison to the SL model 
(median: 0.30 bits, 25th–75th percentile: 0.04–0.97 bits versus median: 
1.46 bits, 25th–75th percentile: 0.75–1.80 bits, P < 0.001; Fig. 1d). While 
this increase in uncertainty has no decremental effect on average accu-
racy, it reduces the overconfidence of AI predictions when the diagnosis 
is incorrect (median: 1.13 bits, 25th–75th percentile: 0.82–1.49 bits for 
298 cases incorrectly classified by the SL model versus 1.81 bits, 25th–
75th percentile: 0.90–2.32 bits for 333 cases incorrectly classified by 
the RL model, P < 0.001). While the addition of human preferences 
increased the uncertainty of predictions on average, it decreased the 
uncertainty for melanomas if they were correctly predicted by the RL 
model (Fig. 1d and Extended Data Fig. 1b).

Next, we investigated the utility of the RL model for management 
decisions in a human-in-the-loop scenario. We conducted a reader study 
with 89 dermatologists who had to diagnose the same image with and 
without AI support and determine management, choosing between 
four treatment decisions: dismiss, excise, treat locally or monitor. For 
AI support, dermatologists were alternately offered the multiclass 
probabilities of the SL or the RL model. The rate of correct diagno-
ses increased from 68.0% (95% CI: 65.3–70.6%) without AI support to 
75.3% with SL model support (mean difference +7.3%, 95% CI: 4.6–10.2%, 
P < 0.001) and to 79.9% with RL model support (mean difference +12.0%, 
95% CI: 8.8–15.1%, P < 0.001). The readers’ sensitivity for melanoma 
improved from 62.4% (95% CI: 56.3–68.6.0%) without support to 69.4% 
(95% CI: 61.3–77.0%, P < 0.001) with SL model support and to 83.9% (95% 
CI: 77.7–89.0%, P < 0.001) with RL model support. The sensitivity for 
basal cell carcinoma was similarly improved while the sensitivity for 
other diagnoses did not decrease substantially (Fig. 1e). Furthermore, 
management decisions of expert readers improved with AI support 
(Fig. 1f). The proportions of optimal management decisions increased 
from 57.4% (95% CI: 54.2–60.5%) without AI support to 61.7 (95% CI: 58.0–
65.3%, P = 0.03) with SL model support and to 65.3% (95% CI: 61.7–68.9%, 
P < 0.001) with RL model support. This improvement was most pro-
nounced for melanoma (without AI: mean = 70.1%, 95% CI: 64.5–75.7%; 
SL model support: mean = 73.4%, 95% CI: 65.5–81.2%, P = 0.51, and RL 
model support: mean = 86.4%, 95% CI: 81.5–91.4%, P < 0.001).

Finally, we compared the reward-based RL model with a threshold- 
based SL model and a naïve model that simply chooses the optimal 
management strategy according to the top 1 class prediction of the 
SL model. To this end, we created three different clinical scenarios and 
used thresholds and rewards provided by ten experts in the field of skin 
cancer diagnosis (Fig. 2).

For the simplest scenario, we divided the data into a malignant 
(melanoma, basal cell carcinoma, actinic keratosis/intraepidermal 
carcinoma) and a benign class (nevi, vascular lesions, dermatofibroma 

Fig. 2 | Comparison of models in three different scenarios. Top level (binary 
scenario: benign versus malignant): a, Experts’ malignancy probability 
thresholds for decision to excise (n = 10). Lines, median; boxes, 25th–75th 
percentiles; whiskers, values within 1.5 times interquartile range. b, Receiver 
operating characteristic curve derived from the SL model and operating points 
of ten experts using either thresholds (SL model) or rewards (RL model).  
Possible management decisions were ‘dismiss’ or ‘excise’. True and false positive 
rates refer to proportions of malignant and benign lesions that were excised. 
Black triangle, naïve approach (excision if malignant probability > 0.5).  
c, Boxplot comparing TPRs for melanomas applying thresholds (SL model) and 
rewards (RL model) provided by ten experts. Bars, means; whiskers, standard 
deviations (P = 0.11, paired t-test); dashed line, naïve approach. Middle level 

(multiclass scenario, additional therapeutic option): d, Thresholds of ten 
experts for probabilities of actinic keratosis/intraepidermal carcinoma for 
decision to treat locally. Line, median; boxes, 25th–75th percentiles; whiskers, 
values within 1.5 times interquartile range. e, Median rewards per action and 
diagnosis. f–h, Confusion matrices of actions by diagnosis: naïve approach (f), 
threshold-adjusted SL model (g) and RL model (h). Lower level (patient-centered 
approach, 7,375 lesions, 524 patients): i, Thresholds of ten experts for malignancy 
probabilities for decision to dismiss, monitor or excise. j, Median rewards 
per action and diagnosis. k, Number of excisions of benign lesions by patient 
according to model. l, Number of monitored benign lesions by patient according 
to model. m, Management strategies for 55 melanomas according to model.
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and benign keratinocytic lesions) and considered only two treatment 
options, either ‘dismiss’ or ‘excision’. In this scenario, the proportion 
of malignant lesions that were managed by excision represented the 
true positive rate (TPR). As shown in Fig. 2b, the threshold-adjusted 
SL model and the reward-based RL model caused a shift in operating 
points on the receiver operating curve, bringing them closer to regions 
with an increased TPR. While the TPR was 78.2% for the naïve approach, 
it increased to 88.9% (95% CI: 80.9–96.9%) for the threshold-adjusted SL 
model and to 88.0% (95% CI: 83.4–92.5%) for the RL model. As shown in 
Fig. 2c, the TPR for melanoma was 68.4% for the naïve approach, 85.4% 
(95% CI: 74.7–96.0%) for the threshold-adjusted SL model and 82.5% 
(95% CI: 75.7–89.3%) for the RL model. The difference between the two 
models was not significant (P = 0.11).

In a second scenario, we explored all seven diagnoses and added 
local therapy as a treatment option. While excision is the optimal man-
agement for melanoma and most basal cell carcinomas, local therapy 
is optimal for actinic keratosis/intraepidermal carcinoma. For this 
scenario, we used the median values of the expert estimates for both 
rewards and thresholds. We found that the threshold- and reward-based 
model were superior to the naïve model in increasing the frequency of 
the optimal management decision as well as in preventing mismanage-
ment of malignant lesions (Fig. 2c–e and Extended Data Fig. 2). In the 
307 malignant conditions that require treatment, mismanagement 
was at 21.8% in the naïve approach (95% CI: 17.2–26.4%), 13.4% in the RL 
model (95% CI: 9.8–17.7%) and 5.2% in the threshold-adjusted SL model 
(95% CI: 3.0–8.3%, P < 0.0001).

The most complex scenario involved monitoring of high-risk indi-
viduals with multiple nevi. Nevi are not only indicators of melanoma 
risk but also are potential precursors or may have morphologic criteria 
similar to melanoma. Most melanomas detected during monitoring 
are noninvasive, slow-growing lesions that mimic nevi. Short-term 
monitoring of these melanomas, while not optimal, is considered 
acceptable, as reflected in the moderate penalty set by the experts 
for this procedure (Fig. 2j). Because this scenario requires a more 
patient-centered and less lesion-centered decision-making approach, 
we created an RL model in which each episode consisted of all lesion 
images of a single patient to maximize the cumulative reward per 
patient. Here, as before, we used the median values of the expert 
estimates, except for the low-threshold model, for which we used 
the minimum value. In a test set of 7,375 lesions (7,320 benign lesions 
(98.5% nevi) and 55 noninvasive or microinvasive melanomas) from 
524 patients (median: 12 lesions per patient, range: 6–51), the naïve 
approach would remove 9.1% (n = 5) of melanomas, while two patients 
(0.4%) would have >3 benign lesions removed. The threshold approach 
would remove 25.5% (n = 14) of melanomas and >3 benign lesions in 
13 patients (2.4%). As shown in Fig. 2k, lowering the threshold results 
in a high number of patients with >3 excised benign lesions (n = 98, 
18.6%) and with an increase of excised melanomas (49.1%, n = 27). 
The RL model would remove 61.8% (n = 34) and monitor 20% (n = 11) 
of melanomas, outperforming all other models in terms of accept-
able management decisions for these melanomas (Extended Data 
Fig. 3). At the same time, 23 patients (4.4%) would have >3 benign 
lesions removed. A distinctive feature of the RL model would be the 
high number of benign lesions (41.6%, n = 3,045) that are monitored 
(Fig. 2f–h). This strategy aligns with the practices of expert clinicians 
when monitoring high-risk patients, aiming at reducing the number 
of missed melanomas while keeping the number of excisions within 
an acceptable range.

Here, we demonstrate that the integration of human preferences, 
represented as reward tables created by experts, enhances the per-
formance of a pretrained AI decision-support system. Improvement 
is evident in both the system’s standalone performance and its abil-
ity to collaborate effectively with dermatologists. Dermatologists’ 
improvement may be due to the RL model reducing AI overconfidence 
by considering consequences of management decisions. We further 

show that incorporating human preferences improves management 
decisions in complex clinical scenarios. This optimization of medi-
cal decision-making has traditionally been captured by risk–benefit 
analysis, but due to the complexity of this method, individualized 
medical decision-making is not yet attainable15. The current trend 
toward AI-based decision support in medicine presents an opportu-
nity to implement individualized medical decision-making in clinical 
practice. However, this can only happen if the concept of incorporating 
human preferences is also given greater consideration in the develop-
ment of such systems.

Based on our results, we suggest that RL, among other techniques, 
could be a suitable tool for this purpose, although it is not necessarily 
the best solution. A limitation of the RL method is that the model must 
be retrained, whereas other simpler approaches, such as threshold-
ing, can be applied without retraining. As demonstrated in our binary 
scenario, both methods—that is, the threshold method and the RL 
method—will improve management decisions compared to the naïve 
SL model by optimizing operating points on a decision curve. Another 
limitation is that we included only physicians’ but not patients’ prefer-
ences. There is growing emphasis on patient-centered care, where the 
preferences and needs of patients are considered. For future clinical 
applications, we envision physicians and patients collaborating in 
shared medical decision-making to jointly develop reward tables. 
Creating reward tables would provide a secondary benefit of making 
rewards explicit and transparent, enhancing the acceptance of AI 
decision-support tools. Our study focused on management decisions 
related to skin cancer diagnosis. Although the basic concepts can be 
applied to other diagnostic scenarios, those outside diagnostic medi-
cine may require different approaches.

In conclusion, our study shows that incorporating human pref-
erences can improve AI-based diagnostic decision support and that 
such preferences could be considered when developing AI tools for 
clinical practice. RL could be a potential alternative to threshold-based 
methods for creating tailored approaches in complex clinical sce-
narios. However, additional research, including evaluating patient 
and provider satisfaction, is necessary to fully uncover the potential 
of RL in this context.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41591-023-02475-5.
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Methods
Supervised learning and reinforcement learning
For the supervised learning, we fine-tuned a convolutional neural net-
work for classification of seven different categories of the HAM10000 
dataset, as described previously14. For RL, we created a deep Q-learning 
model consisting of a multilayer perceptron that receives as input a 
one-dimensional state vector from the feature vectors and probabilities 
of the supervised model. For the patient-centered scenario, we normal-
ized the input vector to account for the context of multiple lesions (the 
lesion state vector was divided position-wise by the average across all 
lesion vectors of the same patient). Python language (v.3.8) was used 
to conduct all experiments. The RL models were implemented using 
TensorFlow v.2.8, together with a set of packages: NumPy (v.1.20.3), 
Scikit-Learn (v.1.1.2), pandas (v.1.3.4) and OpenAI Gym (v.0.23.1).

The RL models predict the Q-value for each possible action. 
Depending on the RL model, the action space was either selecting a 
diagnosis (seven actions) or selecting a management option, ranging 
from two actions (dismiss or excise) to four actions (dismiss, monitor, 
treat locally and excise), depending on the type of scenario. The RL 
models were trained following Mnih et al.11 using an exploration–exploi-
tation strategy, a replay buffer and a target Q-network with a lower 
update rate to stabilize the training process11. Huber loss was adopted 
as the loss function and the weights of the Q-network were updated 
using the Adam optimizer with a learning rate of 0.025. To improve 
generalization, we added dropout layers with a probability of 0.05. We 
tested different configurations for the Q-network (number and size 
of the hidden layers and combination of the input state), buffer size, 
episode length, update rates for the Q-network and the target model, 
and exploration ε. The best Q-network models consisted of a multilayer 
perceptron with a 256-unit fully connected layer with a ReLu activa-
tion that processes the features of the supervised model, followed 
by the concatenation of its output with the logits. The concatenation 
is fed to the output layer, which has the same units as the number of 
possible actions and a linear activation. The replay buffer size was set 
to 10,000 and the update rates for the Q- and target networks were 
set to 4 and 8,000 iterations, except in the patient-centered model 
where the updates were set to 35 and 5,800 iterations. We also ran 
experiments with several episode lengths, ranging from 250 to 12, 
except in the patient-centered model where the episodes had a vary-
ing length depending on the number of lesions per patient. We found 
that the episode length had a marginal effect on the performance of 
the RL model. In the case of the patient-centered model, we found 
that ordering the lesions according to malignancy probability inside 
the episode led to better performances. Finally, the ε was set to 0.2. 
We also found that modifications to the reward table resulted in only 
minor changes or degradation of results compared to the originally 
designed reward table.

We used the HAM10000 dataset to train all RL models, except in 
the patient-centered scenario1. To track the evolution of the models, we 
split the original HAM10000 set into a single 80/20 partition, of which 
the latter was used as the validation set. Because of the relatively small 
number of patients and the high variability in the number of lesions per 
patient, the patient-centered dataset was used to train and evaluate the 
RL model based on a 20-fold cross-validation strategy.

The reward table for the basic RL model was created in advance in 
consensus by three expert dermatologists (H.K., P.T., V.R.). To compare 
the reward model with the threshold model in different clinical sce-
narios, we asked 12 dermatologists with extensive experience in treat-
ing neoplastic skin lesions to provide us with their reward tables and 
thresholds for each scenario. Because two of the 12 experts provided 
incomplete information (they did not specify thresholds for either the 
binary scenario or the scenario with the additional treatment option), 
we had a total of ten expert assessments available. Treatment decisions 
using the threshold model followed a preference-based hierarchy. The 
model initially determined if the predicted melanoma probability 

exceeded the excision threshold. If not, it considered the overall malig-
nancy probability and then the probabilities of basal cell carcinoma and 
actinic keratosis/intraepidermal carcinoma. The median values of the 
rewards and thresholds were used for the SL model and the RL model, 
respectively. For the low-threshold approach in the patient-centered 
scenario, we used the minimum value rather than the median value of 
the ten thresholds reported by the experts.

Entropy
We calculated the Shannon entropy as a measure of uncertainty in 
the predictions of the machine learning models using the following 
formula, where H is entropy, X is a discrete random variable with pos-
sible probabilities (p) ranging from p1 to pn, and i is an index variable:

H (X) = H (p1,… .,pn) = −
n
∑
i=1

pi log 2pi

Datasets
The publicly available HAM10000 dataset was used to train the SL 
model and the RL model1.

The ISIC 2018 challenge test set was used as an independent test 
set for the reader study and for the external validation of the SL model 
and the RL model3.This set includes 1,511 retrospectively collected 
dermatoscopic images from different sites including Austria (n = 928), 
Australia (n = 267), Turkey (n = 117), New Zealand (n = 87), Sweden 
(n = 92) and Argentina (n = 20) to ensure diversity of skin types. The 
mean age of patients was 50.8 years (s.d.: 17.4 years), and 46.2% of 
patients were female. The ground truth was routine pathology evalu-
ation (n = 786), biology (that is, >1.5 years of sequential dermatoscopic 
imaging without changes; n = 458), expert consensus in inconspicuous 
cases that were not excised or biopsied (n = 260) and in vivo confocal 
images (n = 7). Fewer than ten cases with ambiguous histopathologic 
reports were excluded. For the patient-centered scenario, we used der-
matoscopic images of 7,375 lesions from 524 patients (mean: 51.1 years, 
s.d.: 11.8 years, 46.6% females). Images were collected either at the 
University Department of Dermatology, Medical University of Vienna 
(n = 4,839) or at a dermatology practice in Vienna (n = 2,536). The 
consecutive dataset included 55 melanomas, all of which were either 
noninvasive (in situ) or microinvasive (<0.8 mm invasion thickness, 
tumor stage T1a). Most benign lesions that were selected for monitor-
ing by the treating dermatologists were nevi (n = 7,213). The remaining 
benign lesions were keratinocytic lesions (n = 53), dermatofibromas 
(n = 31), or vascular lesions (n = 20) and other benign lesions (n = 3).

Interaction platform, raters and reader study
We used the web-based platform DermaChallenge, which was devel-
oped at the Medical University of Vienna, as the interface for the reader 
study16.The platform is split into a back end and front end, and both 
are deployed on a stack of standard web technologies (Linux, Apache, 
MariaDB and PHP). The front end is optimized for mobile devices 
(mobile phones and tablets) but can also be used on any other platform 
via a JavaScript-enabled web browser. Readers were recruited by using 
mailing lists and social media posts from the International Society of 
Dermoscopy. To participate in the study, raters had to register with a 
username, a valid email address and a password. In addition, we asked 
for age (age groups spanning 10 years), sex, country and profession. 
The readers’ task was to diagnose the unknown test images first without 
and then with decision support based on either the SL model or the RL 
model. The images were presented in batches of ten selected randomly 
from the test set of 1,511 images. We drew a stratified random sample 
to ensure a predefined class distribution of three nevi, two melanomas 
and one example of each other class. Readers could repeat the survey 
with different batches at their own discretion. The study was online 
from 17th November 17th 2022 to 2nd February 2023. During this time, 
we collected 613 complete tests from 89 dermatologists.
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Statistical analysis
Comparisons of continuous data between groups were performed with 
paired or unpaired t-tests or Wilcoxon signed-rank tests, as appropri-
ate. Chi-square tests or McNemar tests were used for proportions. 
Reported P values are two-sided and a P value < 0.05 was regarded as 
statistically significant. All analyses were performed with R Statistics 
v.4.2.1 (ref. 17) and plots were created with ggplot2 v.3.3.6.

Ethics statement and informed consent
This project was conducted after ethics review by the Ethics Review 
Board of the Medical University of Vienna (Protocol No. 1804/2017, 
Amendment 4th April 2022). When registering, all participants of the 
reader study platform agreed that their data could be used for scientific 
research and were made aware that they could revoke this consent at 
any time. Readers received no compensation for their participation.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The origin of the training set images is reported in the 
dataset-publication of HAM10000 in Nature Scientific Data 14. Train-
ing set images are available from the ISIC Image Archive at https://api.
isic-archive.com/collections/66/ or the Harvard Dataverse at https://
doi.org/10.7910/DVN/DBW86T (ref. 18). Test set images are available 
from the ISIC Image Archive at https://challenge.isic-archive.com/
data/#2018. The ISIC image archive initially featured a test set com-
prising 1,512 images, but for this research, one image known as the 
‘easter egg’ (ISIC_0035068) was excluded. The ground truth of the 
test set images is available from the Harvard Dataverse at https://doi.
org/10.7910/DVN/DBW86T (ref. 18). Anonymous reader data of the test 
set images and the entire image dataset used in the patient-centered 
model can be downloaded from the Harvard Dataverse at https://doi.
org/10.7910/DVN/PWQMQ7 (ref. 19).

Code availability
The code for the supervised learning model is available athttps://
github.com/ptschandl/dermatoscopy_resnet34_nmed_2020. The 
code for the reinforcement learning model is available at https://github.
com/catarina-barata/Skin_RL.
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Extended Data Fig. 1 | Comparison of baseline SL model with RL model. 
a: Alluvial plot of test set (n = 1511); the left block shows the ground truth, the 
middle block shows the results of supervised learning (SL), and the right block 
shows the results of reinforcement learning (RL) based on a reward table created 
by experts; Only alluvials with n > 5 are shown. MEL= melanoma (n = 171),  
BCC= basal cell carcinoma (n = 93), AKIEC= actinic keratosis and intraepidermal 
carcinoma(n = 43), BKL= benign keratinocytic lesion (n = 217), NV= melanocytic 

nevus (n = 908), DF=dermatofibroma (n = 44), VASC= vascular lesion (n = 35).  
b: Boxplots of entropy of correct and incorrect predictions for melanoma 
(n = 171) and melanocytic nevi (n = 908) according to applied model. Black line 
= median, boxes = 25th–75th percentiles, whiskers = values within 1.5 times 
interquartile range; Abbreviations: SL= supervised learning, RL= reinforcement 
learning, dx =ground truth.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Scenario with 7 diagnoses and ‘local therapy’ as an 
additional treatment option. a: Graphical abstract of scenario adding the 
treatment option ‘local therapy’ (for example cryotherapy) for actinic keratosis/
intraepidermal carcinomas. While excision is the optimal management 
for melanoma and most basal cell carcinomas, local therapy is optimal for 
actinic keratosis/intraepidermal carcinoma. We judged local therapy to be a 
harmful treatment for melanomas and suboptimal for basal cell carcinomas 
suitable for surgery (all basal cell carcinomas in the dataset). b: Proportion of 
cases per diagnosis and model that received optimal management (excision 
for melanoma and basal carcinoma, local therapy for actinic keratoses/

intraepidermal carcinoma, and no treatment (‘dismiss’) for all benign diagnoses); 
c: Proportion of cases per diagnosis and model that were mismanaged. 
Mismanagement included all procedures except excision for melanoma and 
basal cell carcinoma, all procedures except excision or local therapy for actinic 
keratoses/intraepidermal carcinoma, and all procedures except ‘dismiss’ for 
all benign conditions (nevus, benign keratinocytic lesions, dermatofibroma, 
and vascular lesions). Abbreviations and sample size: mel= melanoma (n = 171), 
bcc= basal cell carcinoma (n = 93), akiec= actinic keratosis/intraepidermal 
carcinoma(n = 43), bkl= benign keratinocytic lesion (n = 217), nv= nevus (n = 908), 
df=dermatofibroma (n = 44), vasc= vascular lesion (n = 35).
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Extended Data Fig. 3 | Scenario of high-risk patients with multiple nevi. 
a: Graphical abstract of scenario of monitoring of high-risk individuals with 
multiple nevi. Due to the large number of lesions per patient, this scenario 
requires a more patient-centered and less lesion-centered approach. Most 
melanomas detected during monitoring are noninvasive, slow-growing lesions. 
Short-term monitoring of these melanomas, while not optimal, is considered 
acceptable. b: Malignancy probability predictions of the baseline SL model 

according to management predictions of the RL model for benign lesions 
(n = 7320) and melanomas (n = 55). The red dashed horizontal line indicates the 
median value of the melanoma probability selected by 10 experts as threshold for 
excision. The black dashed horizontal line indicates the minimum value. Black 
line = median, boxes = 25th–75th percentiles, whiskers = values within 1.5 times 
the interquartile range.
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