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Abstract
Objectives While chest radiograph (CXR) is the first-line imaging investigation in patients with respiratory symptoms, differ-
entiating COVID-19 from other respiratory infections on CXR remains challenging. We developed and validated an AI system
for COVID-19 detection on presenting CXR.
Methods A deep learning model (RadGenX), trained on 168,850 CXRs, was validated on a large international test set of
presenting CXRs of symptomatic patients from 9 study sites (US, Italy, and Hong Kong SAR) and 2 public datasets from the
US and Europe. Performance was measured by area under the receiver operator characteristic curve (AUC). Bootstrapped
simulations were performed to assess performance across a range of potential COVID-19 disease prevalence values (3.33 to
33.3%). Comparison against international radiologists was performed on an independent test set of 852 cases.
Results RadGenX achieved an AUC of 0.89 on 4-fold cross-validation and an AUC of 0.79 (95%CI 0.78–0.80) on an independent
test cohort of 5,894 patients. Delong’s test showed statistical differences inmodel performance across patients from different regions
(p < 0.01), disease severity (p < 0.001), gender (p < 0.001), and age (p = 0.03). Prevalence simulations showed the negative
predictive value increases from 86.1% at 33.3% prevalence, to greater than 98.5% at any prevalence below 4.5%. Compared with
radiologists, McNemar’s test showed the model has higher sensitivity (p < 0.001) but lower specificity (p < 0.001).
Conclusion An AI model that predicts COVID-19 infection on CXR in symptomatic patients was validated on a large interna-
tional cohort providing valuable context on testing and performance expectations for AI systems that perform COVID-19
prediction on CXR.
Key Points
• An AI model developed using CXRs to detect COVID-19 was validated in a large multi-center cohort of 5,894 patients from 9
prospectively recruited sites and 2 public datasets.

• Differences in AI model performance were seen across region, disease severity, gender, and age.
• Prevalence simulations on the international test set demonstrate the model’s NPV is greater than 98.5% at any prevalence
below 4.5%.
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Introduction

With continued uncertainties surrounding vaccine efficacy
against severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) transmission, waning vaccine efficacy over
time, and SARS-CoV-2 variants, early diagnosis will remain
central to coronavirus disease 2019 (COVID-19) prevention
strategies for the foreseeable future. Timely detection of
COVID-19 among symptomatic patients not only reduces
transmission, but also allows appropriate treatment and pre-
vention of clinical deterioration [1, 2]. While reverse tran-
scription polymerase chain reaction (RT-PCR) testing remains
the gold standard for COVID-19 diagnosis, prolonged test
turnaround times, high test and labor costs, and testing reagent
shortages have hampered access and use of RT-PCR testing
[3, 4]. Indeed, decreasing analytical sensitivity in return for
reduced test turnaround time and increased test accessibility
can be highly effective at limiting COVID-19 transmission
[5]. Accessible, accurate, and cost-effective COVID-19
screening tools are urgently needed so that symptomatic pa-
tients can be better triaged and confirmatory RT-PCR testing
can be preferentially performed in those with a high pre-test
probability of having and being likely to transmit COVID-19.

While computed tomography (CT) imaging has been used
for both COVID-19 detection and disease characterization [6],
it is clinically not indicated for the majority of patients with
mild disease. Furthermore, its high financial costs and relative
low throughput effectively limit its utility to first world na-
tions. Comparatively, a chest radiograph (CXR) is often rou-
tinely obtained for the initial assessment of patients with acute
respiratory symptoms who seek medical care, is cheaper, and
has lower radiation dose, and it is available in clinics world-
wide [7]. Thus, CXR has the potential to be used to aid
COVID-19 detection in symptomatic patients without requir-
ing additional resources. Unfortunately, detecting COVID-19
on CXR is difficult as a significant proportion of patients lack
characteristic CXR findings that can be used to differentiate it
from other respiratory infections [8].

Recent studies have shown that artificial intelligence (AI)
models employing computer vision–based deep neural net-
works can detect and learn COVID-19 features on CXR that
may be nonobvious to radiologists [9–13]. While promising,
many AI models suffer from training dataset bias and poor
generalizability [14]. Moreover with many studies focusing
on detecting COVID-19 from healthy individuals, they do
not address the more clinically relevant question of differen-
tiating COVID-19 from other causes in patients with respira-
tory symptoms; hence, the true performance of these AI
models in a clinically relevant setting remains unknown
[15]. To address these challenges, we conducted a large inter-
national validation study of a COVID-19 CXR AI prediction
model (RadGenX) on symptomatic patients suspected to have
COVID-19 [16, 17].

Methods

This was a retrospective, observational multi-center studywhose
primary objective was to evaluate RadGenX’s performance on
predicting COVID-19 from CXR in symptomatic COVID-19
suspected patients. The overall study design is shown in Fig. 1.

International test set

Independent external testing was performed on a combined co-
hort consisting of CXRs of patients collected from: (1) 9 inde-
pendent sites involving 11 hospitals (hereafter referred as “pri-
vate” study patients) across the United States (US) (N = 4), Italy
(N = 5), and Hong Kong SAR, China (N = 2), AND (2) two
large public databases (hereafter referred as “public” study pa-
tients): one fromEurope and the other from theUS [18, 19]. The
“international test set” consisted of the 9 private study sites plus
1 of the “public” sites (COVID-19-NY-SBU – see below). All
study patients were patients ≥ 18 years old that presented with
respiratory symptoms and underwent CXR and SARS-CoV-2
RT-PCR testing. The study was approved by the Institutional
Review Board of each participating site and followed the guide-
lines outlined in the Checklist for Artificial Intelligence in
Medical Imaging (CLAIM) in the reporting of the study [20].

Private study patients

Per study protocol, private study patients were collected be-
tween February 1, 2020, and July 30, 2020; all study patients
must have had respiratory symptoms, including but not exclu-
sive to cough, dyspnea, or signs and symptoms of a respirato-
ry tract infection. They must have also undergone SARS-
CoV-2 RT-PCR testing with a definitive positive or negative
result; patients who had equivocal or conflicting results were
excluded. Historic negatives could be included by the study
sites, which was defined as pre-COVID-19 era patients who
similarly presented to their respective study site with respira-
tory symptoms prior to August 1, 2019. Only frontal CXRs
were included. Demographic and clinical data (including
symptom severity) of patients at presentation were also col-
lected. Patient symptoms were stratified using the 9-point or-
dinal scale as recommended by the World Health
Organization in COVID-19 studies into 3 categories: (mild =
1–2, moderate = 3–4, and severe = 5–7) [21]. Any patients
with scores of either 0 (asymptomatic/uninfected) or 8 (dead)
were excluded per study protocol.

Public study patients

In addition, a comprehensive search was performed
(December 1, 2021) to identify additional public datasets for
external validation with greater than 500 patients per set meet-
ing similar criteria [22]. Of the publicly available datasets, two
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met these criteria and did not overlap with our training cohort.
COVIDGR contained 852 COVID-19 positive and negative
cases from Granada, Spain [18]. COVID-19-NY-SBU includ-
ed 1,384 COVID-19 positive cases acquired at Stony Brook
University [19]. Cases from the two public datasets similarly
included in (addition to digital CXR images) basic demo-
graphics (i.e., age and gender), definitive COVID-19 status,
and disease severity.

Training RadGenX AI model using a centralized
federated learning system

RadGenX is based on the previously reported RadGen CXR
AI prediction model [16, 17]. This original RadGen model
was then updated using data from private study patients and
2 public SARS-CoV-2 CXR datasets (see supplement).
Conventional computer vision–based medical AI models

Fig. 1 Overall study design
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typically mandate centralization of data which raises concerns
for patient privacy, while classical weight-based federated
models require significant compute and technical resources
not readily available to the vast majority of imaging centers
[23]. In order to (1) allow sites with minimal compute re-
sources or technical knowledge to collaboratively train a
shared AI model, and (2) enable these sites to still maintain
sole custodianship of their patient data, we modified RadGen
into a standalone Windows PC compatible software applica-
tion and enabled privacy-preserving data sharing for model
updating using a modified federated learning approach [24].

Of the 9 study sites, 3 sites contributed 3,650 CXRs of
2,576 patients (43.1% COVID-19 positive) between
February 1, 2020, and July 30, 2020, for model updating
(Table S1) (Fondazione Policlinico Universitario Agostino
Gemelli IRCCS – Università Cattolica del Sacro Cuore
Roma, Fondazione I.R.C.C.S. Policlinico San Matteo and
University of Brescia).

The public datasets used for model updating (accessed
September 15, 2020) consisted of a total of 18,072 CXRs
(11,953 positive and 6,119 negative) from the BIMCIV-
COVID-19 and 252 positive CXRs from the COVID-19-AR
datasets [25, 26].

RadGenX model training and validation

The architectures of both RadGen and RadGenX are based on
SE-ResNeXt-50-32x4d [24]. RadGenX was trained using the
SGD optimizer for 120 epochs, with an initial learning rate of
0.01, decreased by 1/5 at epochs 70, 90, 110 and with norm
gradient clipping of 8.0. Hard negative mining was also per-
formed [23], by applying the partially trained model to the
CheXpert dataset with the top 2,000 CXRs with the highest
probability scores then considered in the loss function [27]. To
offset positive-to-negative case imbalance, we generated 4
separate models with each model separately trained on each
of the 4 non-overlapping data folds.

For model validation, we performed 4-fold cross-validation
with each of the 4 separate models separately trained and
validated on each of the 4 non-overlapping folds. A threshold
based on obtaining 90.0% sensitivity was selected a priori
(based on published guidelines recommended by regulatory
bodies for minimum performance for serological tests for
SARS-CoV-2 detection), which was applied to the aggregated
held out validation sets for each of the 4 models in order to
identify the corresponding cut point [28]. The final model,
RadGenX, consisted of an equally weighted ensemble of the
4 models whose output was a binary prediction (based on
application of the pre-specified cut-point) of SARS-CoV-2
RT-PCR positivity for a given input DICOM frontal CXR.
This model was independently evaluated on the international
test set.

COVID-19 prevalence analysis

While the case-control independent test set allows broad val-
idation of RadGenX, in order to assess the performance of
RadGenX under varying COVID-19 prevalences, we addi-
tionally ran a series of bootstrapped prevalence simulations
leveraging data from the 9 study sites from the international
test set (n = 4,559) across simulated disease prevalences in
step-wise fashion from 3.33% (1:30) to 33.3% (1:2). The per-
formance of RadGenX was reported as the mean prediction
score at each of the simulated prevalence levels, based on a
random sampling from the international test set of 100
COVID-19 positive patients against the corresponding num-
ber of randomly selected COVID-19 negative patients to meet
each prevalence ratio, bootstrapped 10,000 times.

RadGenX versus reader study

In order to better understand differences in performance be-
tween RadGenX and radiologists, we performed a head-to-
head comparison analysis on the COVIDGR dataset [18].
Three radiologists from the US, Italy, and HK, all board-cer-
tified, and each with over 10 years’ experience (KWHC,
DSW, ARL) analyzed all 852 CXRs in the COVIDGR dataset
(Table S2). The readers were given the CXRs in a blinded and
random order which each reader independently reviewed.
Assessment of each CXR image consisted of evaluating the
presence or absence of findings consistent with COVID-19
pneumonia. Reader consensus was created using the majority
vote method for a given image for each of these two tasks.
Their predictions were compared to those of RadGenX and
the individual patient ground truth COVID-19 status.

Statistical analysis

The performances of RadGenX and the radiologists were
evaluated using AUC, sensitivity, and specificity. In subgroup
analysis, odds ratios were calculated and Wilcoxon test was
used to compare subgroups with the overall performance of
RadGenX. In the reader study, interclass correlation coeffi-
cient (ICC, two-way mixed, average score) values and 95%
CI were used to assess inter-rater reliability. ICC values of 0–
0.25, 0.26–0.49, 0.50–0.69, 0.70–0.89, and 0.90–1.00 indicat-
ed little or no reliability, low reliability, moderate reliability,
high reliability, and very high reliability, respectively.
Pearson’s chi-squared tests were employed to compare
RadGenX and radiologists. DeLong test was used to subgroup
model performances. A p value < 0.05 was considered statis-
tically significant. Analyses were performed with the use of R
software, version 3.6.3 (R Foundation for Statistical
Computing).
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Results

RadGenX achieved an area under the curve (AUC) of 0.89
(95% confidence interval [CI] 0.88–0.89) across the 4 indi-
vidual models on 4-fold cross-validation (Fig. 2A). The cor-
responding specificity at the pre-specified cut point selected to
achieve 90% COVID-19 test sensitivity (see “Methods”) was
62.6% (Fig. 2B).

Evaluation of RadGenX on the international test set

Of the 8,380 symptomatic COVID-19 suspected cases curated
by our 9 private studies sites, a combined 2,202 patients were
used for model updating. Of the remaining 6,178 patients,
1,619 did not meet the study eligibility criteria, resulting in a
total of 4,559 patients included in the international test set.
This cohort consisted of 1,336, 1,456, and 1,767 patients from
the US, Italy, and HK, respectively. For each country, the
percentage of RT-PCR positive COVID-19 patients was
28.3%, 42.2%, and 23.8% for the US, Italy, and HK,
respectively.

The NY-SBU dataset, consisting of 1,335/1,384 (100%
COVID-19 positive) (mean age 57.5 [range 18 to 90],
56.5% men) that met inclusion criteria was also included in
the international test set. For subgroup analysis, cases from
NY-SBU was grouped with the private US cohorts. The final
demographics of the international test set are summarized in
Table 1 (Tables S3 & S4).

On this composite independent test set of 5,894 diverse
patients from both the privately and publicly curated

datasets, RadGenX achieved an overall AUC of 0.79
(95% CI 0.78 to 0.80) for detecting RT-PCR-confirmed
COVID-19 on presenting CXR on symptomatic COVID-
19 suspected patients (Fig. 3A). The overall sensitivity and
specificity of the model were 79.1% (95% CI 77.6 to
80.6%) and 60.5% (95% CI 58.8 to 62.2%), respectively.
There was no significant difference in model performance
when comparing RT-PCR negatives versus historical neg-
atives as controls (AUC = 0.80 [95% CI 0.78 to 0.81] vs
0.81 [95% CI 0.80 to 0.83]; p = 0.11).

Reflective of the diverse patient composition, this cohort
was similarly diverse in disease severity, region, age, and
gender. We therefore explored whether these factors affect-
ed model performance. As expected, there were model per-
formance differences as assessed by AUC across disease
severity (0.72 vs 0.81 vs 0.90, for mild, moderate, and
severe disease respectively, p < 0.001 for any combina-
tion), region (0.71 vs 0.85 vs 0.78 for US, Europe, and
Hong Kong respectively, p < 0.01 for any combination),
gender (0.82 vs 0.75 between male and female, p < 0.001),
and age (0.78 vs 0.80 for < 65 and ≥ 65 years, p = 0.03)
(Fig. 3B–E).

While a test’s sensitivity and specificity are fixed, variable
prevalence analysis over 10,000 simulations performed on the
international test set, revealed that the model’s positive pre-
dictive value (PPV) steadily increased from 8.8% at 3.33%
prevalence to 50.5% at 33.3%. Conversely, the negative pre-
dictive value (NPV) increased from 86.1% at 33.3% preva-
lence to greater than 98.5% at any COVID-19 prevalence
below 4.5%.

Fig. 2 AI model performance. A Receiver operator characteristic (ROC) curve of RadGenX AI model from 4-fold cross-validation; B ROC curve of
RadGenX on the merged 4-fold cross-validation
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RadGenX compared to radiologists

The COVIDGR public dataset consisted of 852 patients (50%
COVID-19 positive) and was used as the external test set for
the radiologist-AI comparison study. The radiologists’ agree-
ment overall was high with an interclass correlation (ICC) of
0.81 (95% CI 0.78 to 0.83) for detecting COVID-19. The
overall sensitivity and specificity of the radiologists for detect-
ing COVID-19 on CXR were 51.6% (95% CI 46.9 to 56.4%)
and 99.1% (95% CI 97.6 to 99.6%), respectively. RadGenX
achieved an overall AUC of 0.82 (95% CI 0.79 to 0.85).
Applying the pre-specified cut-point, the sensitivity and spec-
ificity of the model were 82.9% (95% CI 79.0 to 86.1%) and
56.8% (95% CI 52.1 to 61.4%) respectively (Fig. 4).
Radiologists and RadGenX had false positive rates of 1%
(4/426), and 43.2% (184/426), respectively, and false negative
rates of 48.4% (206/426) and 17.1% (73/426), respectively.

Discussion

In summary, we validated the performance of an AI model
in detecting COVID-19 on CXR in patients presenting with
respiratory symptoms in a cohort of 5,894 patients from 3

different continents. The model achieved an AUC of 0.79,
sensitivity of 79.1%, and specificity of 60.5%. The size and
diversity of our test set allowed us to evaluate the model’s
“true” performance across a broad cross section of age
groups, disease conditions, localities, and healthcare sys-
tems, which is particularly relevant among growing con-
cerns of “brittle” AI, model performance overestimations,
and cohort bias [29, 30]. Further, prevalence simulations
demonstrated the model’s performance profile across a
range of potential COVID-19 prevalence levels, revealing
that the model’s NPV steadily increased from 86.1% at
33.3% prevalence, and exceeded 98.5% at any COVID-19
level below 4.5%. Finally, comparison of RadGenX against
radiologists from Asia, the US, and EU, on an independent
set of 852 positive and negative COVID-19 cases, resulted
in an AUC of 0.82, sensitivity of 82.9%, and specificity of
56.8%, compared to a sensitivity and specificity of 51.6%
and 99.1%, respectively, for the radiologists. The scale and
scope of this study provides valuable context and perspec-
tive on realistic performance expectations for AI systems
that perform COVID-19 prediction on CXR and, more
broadly, on the challenges of achieving truly “generaliz-
able” diagnostic AI models, even when the ground truth is
an objective standard such as PCR testing.

Table 1 International test set
patient characteristics Overall COVID-19 positive** COVID-19 negative**

Cases 5,894 2,747 3,147

Age (95%CI), years 61.34 (60.85, 61.82) 57.42 (56.75, 58.1) 64.75 (64.08, 65.43)

18–39 yr 924 (15.7%) 526 (19.1%) 398 (12.6%)

40–49 yr 672 (11.4%) 382 (13.9%) 290 (9.2%)

50–59 yr 970 (16.5%) 536 (19.5%) 434 (13.8%)

60–69 yr 1,159 (19.7%) 550 (20.0%) 609 (19.4%)

70–79 yr 976 (16.6%) 407 (14.8%) 569 (18.1%)

≥ 80 yr 1193 (20.2%) 346 (12.6%) 847 (26.9%)

Sex

Male 3,276 (55.6%) 1,612 (58.7%) 1,664 (52.9%)

Female 2,618 (44.4%) 1,135 (41.3%) 1483 (47.1%)

Region

US 2,671 (45.3%) 1,713 (62.4%) 958 (30.4%)

Europe 1,456 (24.7%) 614 (22.4%) 842 (26.8%)

Hong Kong 1,767 (30.0%) 420 (15.3%) 1,347 (42.8%)

Symptom severity*

Mild 873 (14.8%) 722 (26.3%) 151 (4.8%)

Moderate 2,337 (39.7%) 1,128 (41.1%) 1,209 (38.4%)

Severe 2,684 (45.5%) 897 (32.7%) 1,787 (56.8%)

Percentages within each category are reported with respect to the total number of cases reported for that respective
column (Overall, COVID-19 positive, COVID-19 negative).

*Symptom severity at the time of initial presentation was assessed using a nine-category ordinal scale recom-
mended by the World Health Organization (WHO) [21]. Mild, moderate, and severe symptoms were defined as
patients with an ordinal score of 1–2, 3–4, and 5–7, respectively.

**There are statistical differences (all p < 0.001) across all categories between COVID-19 positive and negative
patients.
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Our international test set consisted of a large and geogra-
phically diverse representation of COVID-19 cases consisting
of cases collected from 10 different institutions across 3 dif-
ferent continents. Unlike many studies that assessed AI model
performance in differentiating symptomatic COVID-19 pa-
tients from normal healthy individuals, we specifically evalu-
ated our model’s ability to differentiate among patients with
respiratory symptoms on their presenting CXR [15]. We be-
lieve this is a more impactful and less well studied task as the
clinically relevant conundrum arises when a symptomatic pa-
tient is first admitted to hospital as indiscriminate COVID-19
mass screening, regardless of technology, has so far shown to
be expensive and of unclear benefit [31]. The more even dis-
tribution of mild, moderate, and severe hospitalized COVID-

19 cases we observed in our COVID-19 positive group com-
pared to the negative group, is likely a reflection of the vari-
ation in country-by-country COVID-19 management strate-
gies witnessed during the early phases of the COVID-19 pan-
demic. For example, a number of countries in Asia initially
pursued a stringent containment policy whereby all PCR pos-
itive cases were hospitalized, regardless of disease severity,
whereas manyUS and European systems tended to hospitalize
only sick COVID positive patients, resulting in a relative en-
richment of mild cases in the COVID-19 positive group
(26.3%) compared to the negative group (4.8%). The resulting
relatively even distribution in disease severity across mild,
moderate, and severe in the positive group, powered by the
large total number of patients studied, fortunately provided a

Fig. 3 RadGenX performance on the international test set. A ROC curve
of RadGenX on the international test set (N = 5,894); AUC = 0.79
(95%CI 0.78–0.81). B RadGenX’s AUC with 95% confidence intervals
(CI) across different regions, disease severity, gender and age;C CXR of
a 60-year old male COVID-19 positive patient with mild symptoms at the
time of diagnosis showingminimal air space opacities in right lower zone
(yellow arrow) that RadGenX correctly predicted as COVID-19 positive.

DA 67-year old male COVID-19 negative patient with severe symptoms
at presentation showing extensive consolidation in both lungs (yellow
arrows) on chest X-ray that RadGenX called COVID-19 negative. E
CXR of a 49-year-old male with mild respiratory symptoms for 2–3
days with a normal appearing chest radiograph that RadGenX correctly
predicted as COVID-19 positive

29European Radiology (2023) 33:23–33



unique opportunity to also more fully understand the impact
of disease severity on model performance as we have high-
lighted in the results.

Given the size and diversity of our international test set, it is
not surprising that differences in performance on subgroup
analysis were observed [32]. Although the model performed
equally well across both the privately curated and public
datasets and the historical cohort and RT-PCR proven cases,
unsurprisingly, significant performance differences were ob-
served between age groups, gender, locality, and disease se-
verity. In addition to providing insights into specific factors
that increase or decrease model performance across this large
study population, this also highlights one of the difficulties
encountered when attempting to train a sufficiently generaliz-
able model that often requires balancing capturing a large
number of diverse cases with patient-specific data which
may be difficult to balance due to patient privacy concerns.
In our specific instance, it remains to be seen whether training
with even larger datasets and more balanced annotated cohorts
would be sufficient to overcome these subgroup differences or
whether these are inherent limitations of the current model, or
of the larger set of diagnostic AI models aiming to be broadly

“generalizable,” or whether it is simply a feature of this par-
ticular disease entity.

An important study limitation is whether the ongoing emer-
gence of SAR-CoV-2 variants will affect the performance of
the current RadGenX model. A number of these variants have
shown increased transmissibility, morbidity, and mortality
[33]. Although initial data suggest that their radiographic ap-
pearance is similar to that of the original strain, it remains
unknown whether these variants will lead to a substantial di-
vergence in radiographic phenotypes. As we have similarly
demonstrated the critical importance of training set diversity
on model generalizability, it will be imperative to continue to
capture CXR data from SAR-CoV-2 variants as COVID-19
infections continue to surge globally. The centralized federat-
ed learning framework we employed thus enables model
updating in a privacy-preserving manner allowing for incor-
poration of new SAR-CoV-2 variant CXR data into future
iterations of our model.

In this study, we used SARS-CoV-2 RT-PCR test results as
the ground truth reference for COVID-19 infection [34].
While the implication is that the performance of our AI model
will never surpass nor replace RT-PCR testing, this is clearly

Fig. 4 RadGenX performance
compared to radiologists.
Receiver operator characteristic
(ROC) curve of RadGenX on the
independent COVIDGR dataset
(n = 852) with the performance of
the 3 board-certified radiologists
from the US, Italy, and Hong
Kong SAR each denoted on the
plot [18]
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not the model’s intent, any more so than low-dose lung CT or
virtual colonoscopy is meant to replace tissue diagnosis; in-
stead, the goal of tools such as RadGenX is to serve as an
adjunct to COVID-19 RT-PCR testing [5]. Tests such as
CXR are more accessible and offer faster turnaround time,
and not only have the potential to improve cost effectiveness
and PCR utilization, but also have been shown to have clear
benefits for infection containment, which is particularly rele-
vant in resource-constrained regions [35].

This is supported by our prevalence analysis where we
interrogated the model in stepwise fashion across a range of
simulated COVID-19 prevalence levels, representing on one
end a “surge” prevalence of 33% as recently seen in Hong
Kong and other nations [36], sequentially down to reported
“endemic” prevalence rates near 3% [37]. Given the model’s
excellent NPV—exceeding 98.5% at any prevalence below
4.5%—a potential application could be as an adjunctive
screening tool to PCR in symptomatic patients during periods
when prevalence nears endemic levels, where a negative test
result could be used to effectively exclude patients from PCR
testing with high confidence, thus reserving PCR testing for
those with higher likelihood to be PCR positive. This could
potentially offer a cost-effective option for COVID-19 testing
in resource-constrained regions. Prospective studies will ulti-
mately be needed to validate its role in such a scenario.

In summary, we have validated an AI model that predicts
COVID-19 status from CXR in symptomatic patients in one
of the largest and most diverse, independent study populations
to date. We also provide modeling analysis to show how the
model performs under a wide range of simulated COVID-19
disease prevalence levels and compare it to radiologists, high-
lighting its potential role as an adjunctive diagnostic tool to
PCR testing with good sensitivity and high NPV, which may
be of utility in resource-constrained regions when COVID-19
levels are endemic. Additionally, implementation of
RadGenX is simple, requiring only digital radiography and a
personal computer—both of which are ubiquitous in medical
clinics worldwide. More broadly, this study provides a set of
parameters and realistic expectations that could be useful for
studying and gauging radiological AI model performance,
which is particularly relevant as an increasing number of AI
models seek broad and general deployment across diagnostic
imaging practices.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08969-z.
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