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Abstract— The 3-D light detection and rangings (LiDARs) are
nowadays used for many applications, the success of which
certainly depends on the processing of the LiDAR output—
the point cloud (PC)—but it also inexorably depends on the
quality of the PC data. In this study, we propose an experimental
method aimed at allowing estimating the errors and deformations
that will statistically affect the LiDAR output—the PC. Taking
advantage of the fact that LiDARs sample the surrounding space
by observing it along divergent lines, hereinafter referred to
as rays, this study proposes a simple method based on the
experimental determination of the ray detection probability—the
probability that a single ray detects the hit object, or a fraction of
it, by adding a point in the PC. All other probabilities of interest
are derived from such a probability. The proposed method
also allows highlighting unexpected errors, such as crosstalk.
As will be shown by the examples given, due to crosstalk, small
objects may be deformed and enlarged on a significantly greater
number of points in the PC. Likewise, objects angularly separated
by an angle greater than the angular resolution declared by
the manufacturer may unexpectedly result in a continuum of
points. Such errors may compromise the ability to perform very
important tasks, such as detection, classification, and tracking of
dynamic and static objects, as well as the partition of the scene
into drivable and non-drivable regions and the path planning
around generic obstacles in 3-D space.

Index Terms— Autonomous driving, classification, detection,
lateral resolution, light detection and ranging (LiDAR), object
detection probability, scene partition.

I. INTRODUCTION

DRIVEN by the objective of autonomous driving, the
automotive sector is pouring huge investments into the

development of increasingly performing, reliable, and eco-
nomical 3-D light detection and ranging (LiDAR) systems.
Such has resulted in a renewed research interest that has led
to several studies on the design, calibration, characterization,
and benchmarking of 3-D LiDAR systems and subsystems,
e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13].
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Basically, for all applications and especially for 3-D objects
perception (detection, classification, and tracking of dynamic
and static objects) and scene segmentation (e.g., partition
the scene into drivable and non-drivable regions), the objects
detection probabilities, as well as the deformations introduced
in the objects representation in the point cloud (PC) and the
lateral resolution, represent aspects of considerable impor-
tance. However, such information is not provided by LiDARs
manufacturers. Actually, manufacturers usually provide the
angular sampling period, often indicating this parameter with
the improper term “angular resolution.” As will be discussed
in more detail in the following sections and shown by the
reported experimental results, using this value as the lateral
resolution can lead to significant errors.

For the lateral resolution analysis, two methods have essen-
tially been proposed [11]: one based on the measurement of
the size of the LiDAR beams at different axial distances [5],
and the other based on the acquisition of the image of cubic
targets and on the subsequent analysis of blurring in the targets
representation in PC [1], [11].

Since LiDARs sample the surrounding space by observ-
ing it along divergent lines, hereinafter referred to as rays,
in this study, we propose a measurement method that, based
on experimental measurements, is capable of estimating the
probability that a specific ray gives rise to a point in the
PC. From the knowledge of this probability, it is possible to
estimate parameters, such as, for example, the minimum cross
section that an object must have for its detection probability
to be higher than a certain threshold value, as well as the
minimum angular distance that must separate two objects,
so that the probability that they are distinguishable in the
PC is higher than a certain value. Furthermore, as will be
described later on, the proposed method also makes it possible
to highlight and quantify all kinds of errors that can afflict
the PC, some of which, such as crosstalk, are potentially
unexpected. To the best of our knowledge, studies aimed
at experimentally estimating such quantities have not been
proposed in the literature to date.

In the following, Section II briefly recalls the operating
principle of 3-D LiDARs and introduces the probabilities
and errors that the proposed method is intended to analyze.
Section III recalls the quantities that contribute to deter-
mining the intensity of the signal received by the LiDAR,
and Section IV describes in detail the proposed method,
describing the required experimental characterizations, the
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proposed statistical analysis, and the intrinsic limits of appli-
cability. To provide an idea of the information that can be
obtained, Section V and the Appendix report some example
results obtained by investigating the LiDAR model MRS 6000
by SICK. Finally, the discussion and conclusions are reported
in Sections VI and VII, respectively.

II. STATEMENT OF THE PROBLEM

The 3-D LiDARs analyze the surrounding environment by
analyzing the echoes that the emitted beams generate after
specular and/or diffuse reflection. Scanning LiDARs steer
one or more collimated laser beams to sequentially scan the
surroundings. The coordinates of the points of the PC are
then determined by the spherical coordinates (azimuth, θ , and
elevation, ϕ) defined by the emitted pulses [6]. Similarly,
in flash LiDARs, the points of the PC are determined by
the “line of sight” of the detectors that compose the photode-
tector array [6]. Hence, regardless of the technology, all 3-D
LiDARs acquire the PC sampling the surrounding in spherical
coordinates [6]

p = (r, θ, ϕ). (1)

The radius, r , of each point of the PC is usually determined
from a time-of-flight (ToF) measurement. Such a ToF mea-
surement can be “direct”—pulse telemeters—or “indirect”—
sine-wave telemeters [14]. In pulsed—direct ToF—LiDARs,
currently, the most used technology for automotive applica-
tions [15], the set of allowed radii is primarily determined
by the time-to-digital converter, which determines the axial
quantization step 1r [6].

Except for some special cases mainly related to the research
field, e.g., [7], [9], basically for all LiDARs currently on
the market, the spatial sampling takes place along predefined
and constant rays, therefore, the set of “admitted values,” the
domain, if finite—only a restricted number of elevation angles,
ϕ, azimuth angles, θ , and radii, r , is allowed. The advent of
solid-state LiDARs and the consequent absence of moving
parts suggest that this will likely continue to represent the
operating condition for most commercial LiDAR systems.

The rest of the discussion will refer to LiDARs for which
sampling occurs along a set of predefined and constant rays.

The nominal “vertical” angular sampling period 1ϕ—the
difference in elevation angle between adjacent points along
the “vertical” direction—is generally improperly indicated by
manufacturers with the term “vertical angular resolution,”
whereas the difference in azimuth angle between adjacent
points along the “horizontal” direction, the nominal “hori-
zontal” angular sampling period 1θ , is generally improperly
referred to as the “horizontal angular resolution.” The angular
sampling periods 1ϕ and 1θ are usually declared by the
manufacturer (generally under the improper term resolution)
and, if not, can be easily estimated by analyzing the PC in
spherical coordinates [6].

Regardless of where the object that created the received
echo is, PC points can only be found along a finite set of
diverging straight lines—the rays—angularly spaced by the
azimuth (1θ) and elevation (1ϕ) angular periods. Every single

Fig. 1. Schematic 2-D representation of the quantization and errors
introduced by 3-D LiDARs. The figure shows the “top view” of how a single
LiDAR channel—fixed elevation angle ϕm—analyzes the environment. The
three vertical dashed-dotted lines represent the “rays,” that is, the optical axes
of the beams sequentially emitted by the LiDAR (scanning LiDARs) or the
lines of sight of the receivers of the same channel (flash LiDARs). Each
of them is spaced 1θ to the adjacent. The dashed “horizontal” semicircles
represent the axial quantization. Each of them constitutes a bin, and its radius
differs 1r from the adjacent. The dots (•), thus, represent the only values that
the points in the PC can assume. The circles (o) represent the points of the
PC—the result of the sampling of the environment by the LiDAR. The bold
solid horizontal semicircles show how the specific object is reconstructed
in the PC. As shown, the object O1 is approximated with point p1 at the
coordinates (rn−1, θn−1, ϕm). Assuming that a point p in the PC represents
an object or a portion of an object having the center in p, “vertical” angular
extension ±1ϕ/2, and “horizontal” angular extension ±1θ/2, the object O1
is, thus, both enlarged (type-1 error, enlargement) and shifted, since its center
does not coincide with p1 (type-3 error, shift). The object O2 affects two rays,
and since it is reconstructed in the PC with points p2 and p3, it is affected by
both enlargement and shift errors, since the p2 p3 center does not coincide with
the O2 center. The O3 object represents the opposite case with respect to the
O2 object since, although it affects two adjacent rays, it is represented by the
LiDAR with only the p4 point (type-2 error, shrinkage). In addition to being
restricted, the O3 object is also shifted (type-3 error, shift). The O4 object is
represented in the PC by points p5, p6, and p7. Such an error (type-4 error,
crosstalk) will be described in more detail in the next sections. If the object
involves several adjacent beams, it is also possible that some of the points
inside the object are missing in the PC. That error is the type-5 error, voids.
Obviously, if all objects were present simultaneously, the O3 and O4 objects
would be masked by the O1 and O2 objects. Also note that, although objects
O1 and O2 are separated by an angle greater than 1θ , they are represented
in the PC by a continuum of dots. Then, the two objects would probably be
classified not as two distinct objects but as a single larger object (to simplify
the representation, the origin of the LiDAR axes has been translated to the
bottom-left corner of the figure).

point is, thus, located along the ray defined by the nominal
optical axis of the beam that generated such an echo (scanning
LiDARs), that is, along the line of sight of the pixel that
received the echo (flash LiDARs) and, at a distance, defined by
the 1r multiple that best approximates the real object distance.
Fig. 1 shows an out-of-scale 2-D representation of how 3-D
LiDARs approximate the surroundings due to quantization.

As recently analyzed by Cattini et al. [6], the main effect of
axial quantization is to sample and then deform the surround-
ing environment on concentric spheres whose radii differ by a
distance determined by the axial quantization 1r . Given the
sampling in spherical coordinates, the axial error is also partly
responsible for blurring in the Cartesian representation of the
edges of sharp objects. Indeed, as shown in Fig. 1, as the
spherical axial coordinate r varies, not only the Cartesian
coordinate z varies, but also, in general, the coordinates
(x, y) vary, since the (θn, ϕm) ray is represented with slightly
divergent (x, y) Cartesian coordinates, thus blurring the object
edges.
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This study focuses on the analysis of the errors and defor-
mations affecting the PC due, on the one hand, to the fact that
LiDARs sample the surrounding space along rays angularly
spaced of 1ϕ and 1θ—the angular quantization. On the other
hand, due to the fact that, as shown by the reported results,
the probability that a ray detects an object can be less than 1,
even if the ray completely intercepts the object, as well as it
can be greater than 0 even if the ray should not nominally
intercept that object. To define the errors in the PC and their
probabilities, it is necessary to define what each point of the
PC represents. Assuming that a point p in the PC represents
an object or a portion of it having the center in p, “vertical”
angular extension ±1ϕ/2, and “horizontal” angular extension
±1θ/2, the angular quantization can give rise to several types
of errors, as shown schematically in Fig. 1.

1) Type-1 Error: Enlargement: Although the object, or a
fraction of it, only partially covers the angular sector of
a specific point on the PC, (that is, it does not fully cover
the ±1ϕ/2 interval and/or the ±1θ/2 interval around
the point), that point is inserted into the PC. Therefore,
in the representation in the PC, the object is enlarged
since its angular extension in the PC is greater than the
angle under, which it is seen by the LiDAR (e.g., objects
O1 and O2 in Fig. 1).

2) Type-2 Error: Shrinkage: Although the object has an
angular extension wider than the angular sampling
period, thus affecting at least more than one point in
the PC, it is represented in the PC with at least one
point less than the affected ones (one less on the right
and/or one less on the left, if considering the horizontal
dimension and/or one less above and/or one less below
if considering the vertical dimension). Therefore, its
angular extent in the PC is smaller than the angle under
which the object is seen by the LiDAR (e.g., object O3 in
Fig. 1).

3) Type-3 Error: Shift: The object is represented in the PC
with a point or a set of points whose center is located
at different angular coordinates to those of the object
center (e.g., objects O1, O2, and O3 in Fig. 1).

As easy to verify, type-1 and -2 errors have a maximum
value less than the angular sampling period for each of the
object sides (overall, horizontal, and vertical type-1 and -2
errors are always less than twice the respective angular sam-
pling period). Furthermore, type-1 and -2 errors generally
imply a type-3 error as well.

In addition to these three errors, a fourth error type may also
occur, probably less predictable by the user. According to the
definition introduced above, a point p in the PC represents
an object or a portion of it, which lies in the angular sector
defined by the rectangular base cone centered on the optical
axis of the ray under analysis, i.e., at the (θn, ϕm) spherical
coordinates, and having “vertical” angular extension ±1ϕ/2,
and “horizontal” angular extension ±1θ/2. Therefore, object
O4 in Fig. 1 should not result in a point along the θn+1 ray and,
least of all, at a point along the θn+2 or θn+3 rays. Nevertheless,
it is important to remember that, when receiving an echo, the
LiDAR adds a point in the PC along the optical axis of the

Fig. 2. Schematic of the type-4 error—crosstalk—in scanning LiDARs.
At the instant tn−1, the LiDAR emits a beam whose optical axis has nominal
azimuth coordinate θn−1. If, at the object, the angular extension of the emitted
beam is greater than the angular sampling period (in the case shown, the
horizontal sampling period 1θ ), the LiDAR can receive an echo even if the
object is not present in the angular sector [θn−1 −1θ/2, θn−1 +1θ/2], thus
adding the point p1 to the PC. At the next instant tn , the scanning LiDAR
emits a beam whose optical axis has nominal azimuth coordinate θn . Since
the object (O) is present in the angular sector [θn − 1θ/2, θn + 1θ/2], the
LiDAR adds point p2 to the PC.

considered ray. Thus, if the (θn, ϕm) ray samples portions of
space also outside the ±1ϕ/2 and ±1θ/2 rectangular base
cone, the PC could report a point along the (θn, ϕm) ray even
if no object is inside the respective (±1ϕ/2,±1θ/2) angular
sector. This type of error is the type-4 error: crosstalk. Note
that, being caused by the fact that LiDAR samples regions
of space outside its nominal cone, crosstalk can occur in all
LiDAR technologies. For example, if, as shown in Fig. 2, in a
scanning LiDAR, the cross section of the beam has an angular
extension wider than the angular sampling period 1θ , the ray
could also reveal an object or portion of it that does not fall
within its nominal rectangular base cone—the O object in
Fig. 2 revealed by the θn−1 ray. The type-4 error can also occur
in flash LiDARs if, due, for example, to optical aberrations or
distortions, adjacent pixels collect the echo coming from the
same object portion.

Note also that, while type-1 and -2 errors may introduce,
on each side of the object, an error, which, by definition,
is lower than the angular sampling period (the object must at
least partially affect the PC point), type-4 error may introduce,
on each object side, an error, which can be greater than
the angular sampling period (type-4 error implies that the
PC reports one or more points that are “external” to the
object). Indeed, as will be shown in Section V, especially at
close ranges, rays at an angular distance greater than twice
the angular sampling period can still detect the object and,
thus, represent it in the PC, hence introducing significant
deformations.

Finally, if the object involves more rays, the “internal”
points of the object image may be missing in the PC
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Fig. 3. Out-of-scale representation of the beam incident on the object. The
cross section of the beam at the object surface (assumed orthogonal to the
optical axis) has a maximum height (dimension along the y-axis) equal to
hB and maximum width (dimension along the x-axis) equal to wB . σ is the
cross-sectional area (projected area) of the beam at the object surface, and
AO is the object area illuminated by the beam (AO ⊂ σ ). w1θ and h1ϕ are
the projections of the angular sampling periods 1θ and 1ϕ on the object
surface. ρO is the object reflectance.

(type-5 error: voids). Such an error will be described in more
detail in Section IV-B.

The proposed measurement method allows quantifying all
these errors both in terms of magnitude and probability as well
as allows estimating the effective cross section of the emitted
beams (scanning LiDARs), that is, the effective projection of
the pixels (flash LiDARs). The impact that such errors and
nonidealities will have in terms of, for example, detection,
classification, and tracking can be quantified only by consid-
ering also the specific algorithms exploited to analyze the PC
data to carry out such operations.

III. THEORETICAL BACKGROUND

The probability that an echo will give rise to a point in the
PC depends on many factors, among which the optical power
of the received echo plays a fundamental role [16], [17].

As shown in Fig. 3, the optical power (radiant flux), 8R ,
of the echo received by the detector area AD after reflection
from the (illuminated) object area AO is given by [18]

8R =

∫
AO

∫
AD

L ·
daO cos γO daD cos γD

l2 (2)

where daO and daD are infinitesimal elements of area on
the target and detector surfaces, respectively. l is the distance
between daO and daD , L is the radiance of the echo at daO ,
and γO and γD are the angles made by the direction of the
flux with respect to the normal to the target and detector
surfaces, respectively. The power reaching the detector, thus,
depends on many factors, among which [16]: the power 8E

of the beam emitted by the LiDAR, the angular divergence
of the beam (scanning LiDARs), that is, the pixel projection
on the object (flash LiDARs), the atmospheric attenuation
ηatm, the object surface reflectance ρO , and the object surface
angular dispersion.

The solution of (2) is generally complex and, often, not even
possible in an exact way, since many of the parameters are only
partially known or unknown. To obtain a model, which, albeit
in an approximate way, allows identifying the main quantities

Fig. 4. Schematic of the emission and collection optics of scanning LiDARs.
The top figure shows the side view in which it is possible to identify the
beam emitted by the LiDAR and the angular field of view (AFoV) of the
detector. The bottom figure shows σ , the cross-sectional area of the beam,
and the detector field of view (FoV) for three r values. Since the emission and
collection optics are not coaxial, at r1, there is no overlap, therefore, regardless
of the object, the reflected echo will not be detected by the LiDAR. At r2, the
overlap is partial; hence, part of the echo will be collected. At r3, the overlap
is complete.

determining the power of the received impulse, it is common
to approximate the beam emitted by the LiDAR as flat-top
and the object surface reflectance as Lambertian. Neglecting
other contributions, such as those due to background radiation
noise or multiple echos, the power impinging on the detector
can be, thus, approximated as follows [17]:

8R = ρO ·
8E

σ
·

1
π

· AO ·
AD

r2 · η 2
atm · ηsys (3)

where, as shown in Fig. 3, ρO is the object reflectance
and σ is the cross-sectional area of the beam at the object
surface (assumed orthogonal to the optical axis of the beam).
In (3), ηatm8E/σ is, thus, the irradiance incident on the object
(flat-top approximation), ηatmρO8E/σ is the exitance of the
radiation reflected by the object, and ηatmρO8E/(σπ) is the
radiance of the radiation reflected by the object (Lambertian
diffuser approximation). Since AO is the illuminated object
area, and AD/r2 is the solid angle under which the detector is
seen from the object (coaxial epi-illumination approximation),
η 2

atmρO8E AO AD/(σπr2) is the total radiant flux (power)
reflected from the object on the detector area. As previously
introduced, ηatm is the (single-pass) atmospheric attenuation,
whereas ηsys is the optical efficiency of the receiver, which
considers various aspects of the measuring system.

Note that, as shown in Fig. 4, to avoid power loss due to the
beam splitter, in scanning LiDARs, the emitted laser beam is
generally not coaxial with the detector’s collection optics. This
is one of the reasons why ηsys typically varies with r , and the
optical power 8R collected by the LiDAR detector does not
simply vary as 1/r2 but can instead give rise to more complex
and even non-monotonous trends.

IV. MATERIALS AND METHODS

To investigate the object detection probability and the per-
formances and errors of the LiDAR under test [instrument
under test (IUT)], we propose to analyze the “ray detection
probability”—the probability that the specific ray adds a point
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in the PC. Such a probability is estimated by varying the posi-
tion of a target object translating it in a direction orthogonal to
that of the optical axis of the beam—along the x- or y-axis. For
simplicity of discussion, the following description will refer
to the analysis of the azimuthal quantization 1θ . The method
can be easily adapted for the analysis of quantization in the
elevation angle, 1ϕ.

As described in more detail in Section IV-C, the pro-
posed procedure, thus, involves translating a target object
and acquiring multiple PCs for each target position. Then,
to perform a statistical analysis of how the PC points are
distributed among the various bins, such a statistical analysis
is the basis of the ray detection probability estimate, which
will be described in Section IV-A, and the object detection
probability and errors analysis, which will be described in
Section IV-B.

Since the PCs are acquired at different instants in time, the
random process associated with the object detection must be
stationary. The conditions required for the applicability of the
proposed method are discussed in Section IV-D.

In the following, Section IV-A describes the data analysis
at the basis of the proposed method, Section IV-B proposes a
method for estimating the magnitude and probability of errors
affecting the PC, and Section IV-C describes in detail the
proposed measurement procedure, also reporting the specific
settings used to obtain the example results that will be shown
in Section V.

Given that, from an operational point of view, the proposed
procedure vaguely resembles the knife-edge method used for
measuring the divergence of a laser beam, and given that,
also, the target object used in the proposed procedure has the
shape of a thin sheet of metal, to avoid ambiguity between
the generic object and the target object used to estimate the
ray detection probability, in the following, the target used to
estimate the ray detection probability will be referred to with
the term “knife.”

A. Estimation of the Empirical Ray Detection Probability

As previously introduced, the proposed procedure analyzes
a single beam/pixel—the (θn, ϕm) ray—of the IUT exploiting
the setup schematically shown in Fig. 5.

The proposed procedure involves fixing the target object (the
knife) at the desired distance, dk , then translating it along the
x-axis in steps equal to δx acquiring, and analyzing n PC PCs
for each knife step. Such an analysis consists in statistically
analyzing how the radii, r , of the point along the (θn, ϕm) ray
are distributed among the various bins—although the PCs are
usually supplied in Cartesian coordinates, LiDARs acquire in
spherical coordinates as discussed in Section II.

The ray detection probability is, thus, investigated by con-
verting the PC into spherical coordinates, hence analyzing a
single ray for each of the acquired PCs. The empirical ray
detection probability is, thus, calculated by calculating the
ratio between the number of times the point along the ray
(θn, ϕm) identifies the knife and nPC—the total number of
PCs acquired for each knife position. In particular, defining
�(θk, i), i ∈ [1, nPC], as the set of all points composing the

Fig. 5. Out-of-scale representation of the measurement setup. The target
object—a thin sheet of painted metal hereinafter referred to as “knife”—is
mounted on a linear translation stage that allows translating it along the x-axis
of the IUT. dk is the distance along the z-axis between the knife and the
origin of the IUT axes, and dbg = dk + doff is the distance of the origin of
the IUT axes from the background being doff the distance between the knife
and the background. The displacement of the knife by a quantity δx along
the x-axis corresponds to a variation of the azimuth angle of the IUT equal
to δθ . To simplify the alignment between the IUT and the knife, as well as to
allow the linear translation stage to be translated along the z-axis to analyze
different dk values, the IUT and the stage are mounted on a rail.

i-th PC acquired by the IUT when the knife edge was at θk ,
the analyzed point was

p(θk, i) = �(θk, i)|(θ = θn, ϕ = ϕm). (4)

Since the θ and ϕ values of p are fixed, only the radius, r , can
change. As introduced in Section III and described in more
detail by Cattini et al. [6], r is a discrete random variable.
Therefore, even when the object is correctly detected, the value
of r is not a deterministic quantity, but a discrete random
variable that can assume the value of the radii of a number
of adjacent axial bins. The proposed statistical analysis, thus,
involves analyzing the number of times that the p point fell
into the set of bins representative of the target object (the
knife)

p(θk, i)|r ∈ [rn − nb ·1r, rn + nb ·1r ] (5)

and when, instead, the p point was relative to the background.
In (5), rn is the value of the radius of the bin that best
approximates the knife distance dk , nb defines the number of
bins that are attributed to the correct detection of the target
object (the knife), and 1r is the axial quantization step of
the IUT. The choice of the value of nb will be discussed in
Section VI.

As described in Section IV-C, the procedure involved ana-
lyzing the PCs obtained by translating the knife along the
x-axis for both increasing and decreasing x values. In the
following, translations in the direction of increasing x will
be referred to as clockwise, while those for decreasing values
will be referred to as counterclockwise. Defining 3+ as the
set of the nPC points

3+(θk) = {p(θk, 1), p(θk, 2), . . . , p(θk, nPC)} (6)

obtained once the knife was translated clockwise and the knife
edge was at θk , the proposed method involves calculating

0+(θk) =
card{3+(θk)|r ∈ [rn − nb ·1r, rn + nb ·1r ]}

card{3+(θk)}

(7)

where card{. . . } is the cardinality and card{3+(θk)} = nPC.
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Fig. 6. Schematic of the proposed method. The procedure involves translating
the knife along the x-axis for both increasing (“clockwise”) and decreasing
(“counterclockwise”) x values (see Fig. 5). For each knife position, nPC
PCs are acquired, and the empirical probabilities 0+(θk) and 0−(θk) are
calculated as the ratio between the number of times the point along the
ray (θn, ϕm) identifies the knife and nPC—(7) and (8). θk is the azimuth
coordinate of the knife edge (right edge for clockwise translation and left
edge for counterclockwise translation), while α is the angular extension of
the knife within the angular interval relative to the observed ray. Note that,
due to crosstalk, α can assume negative values (that is, the ray reveals the knife
before it enters its nominal angular sector). 1θk is the azimuth angle under
which the whole knife is seen by the IUT. From the union of 0+ and 0−,
it is possible to obtain the 0 function as defined in (11). After the definition
of a threshold value 0th, the 0 function allows estimating the effective waist
ωeff, that is, the extension of the region around the optical axis in which the
object entry entails a detection probability greater than or equal to 0th.

In the same way, defining 3−(θk) as the set of all p points
obtained from the nPC measures acquired by translating the
knife counterclockwise, the proposed method involves also
calculating

0−(θk) =
card{3−(θk)|r ∈ [rn − nb ·1r, rn + nb ·1r ]}

card{3−(θk)}
.

(8)

From Figs. 1 and 6, it is easy to observe that 0+(θk) is the
empirical probability that the (θn, ϕm) ray will detect an object
located to the left of the optical axis of the beam and whose
right edge is at (θn −1θ/2 + α). In the same way, 0−(θk) is
the empirical probability the (θn, ϕm) ray will detect an object
located to the right of the optical axis of the beam and whose
left edge is at (θn +1θ/2 − α).

Assuming that the ray detection probability is symmetrical
with respect to the optical axis of the (θn, ϕm) ray, it is possible

to define the mean empirical object detection probability

0̄(α) = [0+(α)+ 0−(α)]/2 (9)

where, as shown in Fig. 6

α =

{
θk − (θn −1θ/2), for clockwise translation
(θn +1θ/2)− θk, for counterclockwise translation

(10)

is the angular extension of the knife within the nominal angular
interval relative to the observed ray. Note that, in the presence
of crosstalk, 0̄(α) can be greater than zero even for negative
α values. As shown in Fig. 6, from the empirical probabilities
0+(θk) and 0−(θk), it is also possible to define the function

0(θk) = min{0+(θk), 0
−(θk)}. (11)

As described in more detail in the following sections, the 0(θk)

function allows, on the one hand, to realize graphs capable
of providing an intuitive representation of the IUT behavior
and, on the other, to define the effective beam waist ωeff.
Note that if ωeff exceeds w1θ (the projections of the angular
sampling periods 1θ—see Fig. 3), the (θn, ϕm) ray overhangs
the adjacent ray; thus, there is crosstalk (error 4). This aspect
will be discussed in greater detail in the next sections.

Equation (11) was also used to define the position of the
knife within the LiDAR reference system—θk . Under the
hypothesis that the ray detection probability is symmetrical
to the optical axis of the (θn, ϕm) ray, θn is at the center of
the 0(θk) curve. Therefore, since the knife distance, dk , and
the translation step amplitude, δx , are known, once the 0 curve
has been constructed, for each of the acquisitions, it is possible
to estimate the knife position in the LiDAR reference system,
θk , imposing that the center of gravity of the curves was in
correspondence of the ray optical axis.

Note that different rays can have different performances,
thus different 0̄(α) and 0(θk) functions. Nevertheless, the pro-
posed procedure can be easily repeated for the characterization
of all rays of interest.

B. Estimation of the Object Detection Probability and Errors

As shown in Fig. 7, an object can extend over several
rays. Thus, depending on parameters such as its distance and
reflectance (Section III), its detection by the LiDAR can occur
with a different number of points in the PC, resulting in one
or more of the errors described in Section II.

As introduced in Section IV-A and discussed in more detail
in Sections IV-C and VI, 0̄(α) represents the ray detection
probability relative to an object having dimensions greater
than or equal to those of the used knife and extending in
the considered ray for an angle α. For internal rays, the
{ j + 1, j + 2, . . . , j + Nθ − 2} in Fig. 7, the object covers
the entire angular sector. Thus, assuming that the vertical
extension of the object is such as to completely cover the
entire [ϕm −1ϕ/2, ϕm +1ϕ/2] angular sector and, assuming,
for simplicity of discussion, that vertical crosstalk is negligible
(note that, in general, 1ϕ ≫ 1θ ), the ray detection probability
relating to an internal ray is equal to

9int(r) = 0̄(1θ, r) (12)
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Fig. 7. Schematic of the object sampling by the LiDAR (single elevation
angle ϕm ). The object dimensions are such to involve Nθ rays. For internal
rays, { j + 1, j + 2, . . . , j + Nθ − 2}, the sectors represented in dark orange
color, the object completely covers the ±1θ/2 range. For the two rays
intersecting the object edges—the outer rays { j, j + Nθ −1} represented in the
figure with the light orange color—the coverage can be partial. If crosstalk
is present, even rays whose nominal cone does not intersect the object, i.e.,
external rays, such as {. . . , j −2, j −1, j + Nθ , j + Nθ +1, . . .}, can still give
rise to a point in the PC. In the figure, the left object edge extends into the
j-ray by an angle α = αl , while the right edge extends into the ( j + Nθ − 1)
ray by an angle α = αr . βl = 1θ − αl , βr = 1θ − αr , and β = βl + βr .

where 0̄(1θ, r) = 0̄(1θ, r, θn, ϕm) is the 0̄ function of the
considered (θn, ϕm) ray for α = 1θ and an object distance r .
Equation (12) neglects the contribution due to the possibility
that the considered ray samples regions of space also for α >
1θ . This occurs when crosstalk is present. However, in the
presence of crosstalk, it is reasonable to assume that already
0̄(1θ) saturates at 1. Hence, neglecting the contribution for
α > 1θ makes it possible to greatly simplify the analytical
treatment without introducing significant errors.

For the two rays intersecting the object edges, the outer rays
{ j, j + Nθ−1} in Fig. 7, the object extends for an angle whose
value depends on the size and distance of the object. An object
seen by the LiDAR under an azimuth angle ξ affects a number
of rays

Nθ (ξ) =

⌊
ξ

1θ

⌋
+ 1 (13)

where ⌊x⌋ is the rounding down (or floor function) of x—the
largest integer less than or equal to x (since the object edge
generally does not coincide with the beginning of the angular
sector of a ray, the rounding down plus 1 allows considering
the case in which the object is an integer multiple of the
sampling period). As shown in Fig. 7, in each of the two
object sides (“outer” rays), the value of α cannot be less than

αMIN(ξ) = 1θ − β = ξ − {[Nθ (ξ)− 1] ·1θ}. (14)

Thus, assuming that the object can be found within the Nθ rays
interval with equal probability (uniform random variable), for
the two rays relative to the object edges (outer rays), the ray
detection probability is equal to

9out(r) =
1

1θ − αMIN
·

∫ 1θ

αMIN

0̄(α, r) dα. (15)

Also, in this case, 0̄(α, r) and, therefore, 9out(r) can be a
function of the considered (θn, ϕm) ray.

For the first of the external rays, that is, the two adjacent
to the outer rays, the edge of the object is at α ∈ [1θ −

αMIN, 0). Thus, assuming again that the object can be found
within the Nθ rays interval with equal probability (uniform
random variable), the ray detection probability for the first of

the external rays (the j −1 and j + Nθ rays in Fig. 7) is equal
to

9ext1(r) =
1

1θ − αMIN
·

∫ 0

−1θ+αMIN

0̄(α, r) dα. (16)

In general, the ray detection probability for the i-th external
ray is equal to

9exti (r) =
1

1θ − αMIN
·

∫
−(i−1)·1θ

−i ·1θ+αMIN

0̄(α, r) dα. (17)

9ext1(r) and 9exti (r) can also be a function of the of the
considered (θn, ϕm) ray.

Given that non-detection and detection are mutually exclu-
sive and exhaustive events, and assuming that the rays
detection probabilities are independent random variables, the
probability that an object is reconstructed with all and only
the rays belonging to a certain set of rays 4 is given by

P4(r) =

 ∏
ray ∈ 4

9(r)

 ·

 ∏
ray /∈ 4

[1 −9(r)]

 (18)

where, depending on whether the ray is internal, outer,
or external, its ray detection probability 9(r) can be calculated
using equations (12), (15), or (17). In the case in which at the
specific distance r the crosstalk is negligible or in the case in
which only interested in the rays belonging to the set 4 and
not also in the other rays composing the PC, it is possible to
omit the second product in (18).

Even omitting the second product, the solution of (18)
can be significantly laborious. In this regard, it is useful
to consider that the objects that are often more difficult to
detect are the “small” ones, that is, those involving a limited
number of adjacent rays. Especially, for adjacent rays, it is
reasonable to assume that the 0̄ functions are extremely
similar, if not identical. Hence, assuming that all the rays
have the same 0̄(α, r) and that such detection probabilities
are independent random variables, it is possible to significantly
simplify the solution. For example, in the case of the validity
of the previous simplifying hypotheses, the probability that
the LiDAR reveals the object representing it in the PC with
at least all the Nθ − 2 internal rays plus the two outer rays is
given by

P1ALL(r) = [9int(r)]Nθ−2
· [9out(r)]2. (19)

If interested not only in the fact that the object is reconstructed
in the PC with all internal and outer points but also that
none of the external points represent the object, the probability
becomes

P1ALL and ONLY(r) = P1ALL(r) ·

∞∏
i=1

[1 −9exti (r)]
2. (20)

The (angular) error (type-1 error, enlargement) made by the
LiDAR in reconstructing the object in case it is represented it
in the PC with all and only the Nθ − 2 internal rays plus the
two outer rays would be equal to

ϵ1ALL and ONLY = Nθ ·1θ − ξ. (21)



7005714 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

Such a type-1 error would also correspond to a type-3 error
(shift, ϵ3ALL ) equal to the difference between the position of
the Nθ rays center and the object center position. Given the
hypothesis that the object can be found within the Nθ rays
with equal probability, the mean value of this error is zero,
while the magnitude of the maximum value is equal to

max{ϵ3ALL} = (1θ − β)/2. (22)

The probability of the most extreme type-2 error (shrink-
age), that is, the one in which none of the internal, outer,
and external rays reveal the object, can be easily calculated as
follows:

P2NONE(r) = [1 −9int(r)]Nθ−2
· [1 −9out(r)]2

·

·

∞∏
i=1

[1 −9exti (r)]
2. (23)

Proceeding in the same way, it is possible to calculate the
probabilities of any other combination and the magnitude of
the related error.

For example, the probability that all internal rays will detect
the object and that neither of the two outer rays will reveal
the object is equal to

P2NoOuter(r) = [9int(r)]Nθ−2
· [1 −9out(r)]2. (24)

Similar to before, if interested in whether none of the external
points also represent the object, the probability becomes

P2NoOuterNoExternal(r) = P2NoOuter(r) ·

∞∏
i=1

[1 −9exti (r)]
2. (25)

The error relative to P2NoOuterNoExternal is

ϵ2NoOuterNoExternal = (Nθ − 2) ·1θ − ξ. (26)

The probability that a crosstalk error occurs (error 4), such
that the LiDAR reveals the object representing it in the PC
with all and only the Nθ rays plus both the two first external
rays, is

P4sides = P1ALL · [9ext1(r)]
2
·

∞∏
i=2

[1 −9exti (r)]
2 (27)

and the respective angular error (type-4 error, crosstalk) made
by the LiDAR is

ϵ4sides = (Nθ + 2) ·1θ − ξ. (28)

Given that error 5 is the lack of one of the points relating
to the internal rays, the probability of the type of error 5 in
which at least 1 of the Nθ − 2 points relating to the internal
rays is missing is equal to

P5AtLeastOne = 1 − [9int(r)]Nθ−2. (29)

Similarly, the probability that one internal ray is missing, while
all the other Nθ − 3 internal rays report a point in the PC, is

P5One = [9int(r)]Nθ−3
· [1 −9int(r)]. (30)

Proceeding in the same way, it is possible to calculate all the
other detection probabilities and related errors.

Fig. 8. Picture of the experimental setup. To avoid potential interference
from the rail, the LiDAR is positioned at a height to the ground (y-axis)
greater than that of the rail. Thus, only the upper part of the knife falls within
the space sampled by the LiDAR (see Fig. 12). To make the knife more
visible, a vertical white line has been added to the figure, and to simplify
the representation, the origin of the LiDAR axes has been translated to the
bottom-right corner of the figure.

C. Measurement Procedure

As previously introduced, the proposed procedure analyzes
a single ray exploiting the setup schematically represent in
Fig. 5 and shown in Fig. 8. The “knife” has to be mounted
on a linear translation stage to finely translate it along the
x-axis of the IUT. Given the possibility of error 4 (crosstalk),
the scanned area must be wider than [θn −1θ/2, θn +1θ/2]

range. As an example, the results reported in Section V were
obtained using a stack of three motorized linear translators
model Z825B by Thorlabs.

To minimize the effect due to any inclination of the knife to
the direction orthogonal to the beam radius, the knife must be
thin—the thickness tk along the z-axis must be much less than
the width along the x-axis. Similarly, given that, for simplicity
of discussion, the description refers to the analysis of the
azimuthal quantization 1θ , the knife must have a dimension
along the y-axis, the height hk , such as to go beyond the
[ϕm − 1ϕ/2, ϕm + 1ϕ/2] interval. In general, the vertical
sampling period, 1ϕ, is significantly larger than the horizontal
sampling period 1θ . Hence, vertical crosstalk is less likely.
Nevertheless, it is convenient to use a knife with a vertical
dimension such as to be seen by the LiDAR under an elevation
angle significantly greater than 1ϕ, for example, 31ϕ.

The choice of the knife width wk—its dimension along the
x-axis—plays a fundamental role and will be discussed in
more detail below.

Once the linear translation stages have been fixed at the
desired working distance dk and waited for the system warm-
up, nPC PCs have to be acquired for each knife edge position.
As previously discussed, the procedure should be repeated by
translating the knife clockwise and counterclockwise. As evi-
dent from Fig. 6, if the clockwise translation is large enough,
the left edge of the knife samples the same positions it
would have sampled during the counterclockwise translation.
Therefore, the clockwise translation can also be used for
the estimate of 0−. The possibility of sampling without
having to disassemble and reassemble the knife allows obvious
advantages in terms of uncertainty in the repositioning and
duration of acquisitions.

Once the scanning at the dk distance is completed, the knife
has to be moved to the next axial distance, and the procedure
has to be repeated.
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As previously introduced, the knife width wk plays a
fundamental role. In theory, just as hk must be such as to
guarantee that it can cover the entire ±1ϕ interval (plus any
vertical crosstalk), wk should also be such as to guarantee
that it can cover the entire angular sector [0,1θ] plus any
horizontal crosstalk—1θk ≥ 1θ (see Fig. 6). Using a knife
of such a width with the possibility of avoiding disassembling
and reassembling it between clockwise and counterclockwise
acquisitions (thus avoiding the associated uncertainty) requires
translation stage/s with a travel that, as the distance of the knife
increases, can become significantly wide.

As reported in Section III, the detection probability
increases as the optical power 8R collected by the detector
increases. Therefore, reducing the knife area generally implies
the risks of reducing the power 8R , hence, the relative ray
detection probability. Nevertheless, the detection probability
cannot exceed the value of 1. Therefore, when the received
power exceeds a certain value, the ray detection probability no
longer increases, as the power 8R increases. In other words,
for each knife position, it is possible to reduce the wk width
until the received power is such as to give rise to a detection
probability of 1.

Assuming that the power collected by the detector increases,
as the object approaches the optical axis of the ray, it would
theoretically be possible to use a knife with a width such as
to be seen by the LiDAR under an azimuth angle

1θk−MIN(r) = α1(r)− α0(r) (31)

where

α0(r) = min{α ∈ [−∞,1θ] | 0̄(α, r) > 0}

α1(r) = min{α ∈ [−∞,1θ] | 0̄(α, r) = 1}. (32)

α0, thus, represents the angle at which the ray begins to detect
the object, and α1−α0 is the minimum object angular extension
that gives rise to a ray detection probability of 100%. Note
that, due to crosstalk, both α0 and α1 can take the negative
values. Moreover, as 0̄(α) is a function of the distance r ,
so are 1θk−MIN, α0, and α1. For some r values, 0̄(α) may
never reach the value of 1. In this case, since the 0̄(α) function
is monotone increasing, α1 is the smallest α value for which
the 0̄(α) function reaches its maximum.

Using a knife of angular dimension 1θk = 1θk−MIN not
only reduces the travel required to the translation stage to
collect both 0+ and 0− without having to disassemble and
reassemble the knife but also allows obtaining more informa-
tion. As described in more detail in Section VI, the angle under
which the IUT sees the knife also defines the minimum angular
dimension of the object for which the proposed method can
provide the full estimate of the ray detection probability and,
therefore, of the object detection probability.

The example results that will be shown in Section V have
been obtained by exploiting a knife composed of a thin sheet of
steel having hk = 400 mm, wk = 10.0 mm, and tk = 0.7 mm.

As described in Section III, the object reflectance plays a
role in the optical collected power and, therefore, in the object
detection. To know the reflectance value of the knife, it was
painted with white paint having known reflectance (ρO = 75%
at the IUT wavelength).

Tests were performed in a controlled environment where
both temperature and lighting were monitored. Moreover,
to avoid the background could affect the results [19], mea-
surements were performed setting dbg > 100 m (see Fig. 5).

D. Conditions Required for the Applicability of the
Proposed Method

As previously introduced, since the various PCs are acquired
at different instants in time, the random process associated
with the object detection must be stationary. It is, therefore,
necessary to evaluate both the warm-up and the stability “over
time” of the measuring system. Moreover, for the proposed
method to be applicable, for each knife position, it is necessary
to be able to acquire nPC PCs under the repeatability condition
of measurement. It is, therefore, necessary that the IUT is
stable also in space; that is, each of the sets of acquired PCs
must analyze exactly always the same set of elevation and
azimuth angles—the same spherical coordinates θ and ϕ. Such
a condition is intrinsically guaranteed in flash LiDARs (as
the observation directions are defined by the detector array),
and it is generally substantially guaranteed also for scanning
LiDARs based on MEMS and optical phase arrays (OPAs)
technologies. For spinning LiDARs, such must be verified.
If the LiDAR does not always sample along the same azimuth
and/or elevation angles, the ray detection probability could still
be estimated by selecting and analyzing only the PCs contain-
ing the ray of interest—(θn, ϕm). However, if the LiDAR does
not always sample along the same angles, the estimation of
the probabilities and errors reported in Section IV-B would
become more complex.

To verify the space-time stability of the IUT, we, thus,
propose to follow the procedure previously described by
Cattini et al. [6]. Therefore, to acquire PCs with a sampling
period equal to that with which the PCs used to estimate
the ray detection probability are obtained and for a time
long enough to reasonably cover both the warm-up and
the time needed to perform knife-edge measurements—it is
necessary to obtain an estimate of the temporal stability for
a period of no less than to warm-up plus the time required
to perform knife-edge measurements. Then, it is necessary
to verify that the azimuth and elevation angles observed
by the IUT remain constant. Such can be performed by
simply analyzing the PCs in spherical coordinates. If it is
confirmed that the IUT always samples the same nominal
spherical coordinates θ and ϕ, it is possible to proceed to
the temporal stability analysis. As described in more detail
by Cattini et al. [6], such can be performed by statistically
analyzing how the points distributed in the various bins as
time t changed and, in particular, to analyze it with movable
time windows having a width equal to nPC multiplied by the
number of knife positions that are analyzed for each knife
distance dk .

V. EXAMPLE RESULTS

To provide an idea of the results that can be obtained by
exploiting the proposed method, this section contains examples
acquired by investigating the LiDAR model MRS 6000 by
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Fig. 9. 0 functions obtained from three adjacent rays—θn−1, θn , and θn+1—at
a knife distance r = 2 m. The vertical dashed lines represent the angular
sectors of width ±1θ/2, and the dashed-dotted lines represent the optical
axes of the rays.

Fig. 10. 0mean function as a function of the object distance r . The oblique
dashed lines represent the angular sectors of width ±1θ/2 centered on the
ray optical axes.

SICK. Since the proposed method focuses on the experimental
determination of the ray detection probability, the reported
examples will focus on this aspect and on the type of error
that is probably the most unexpected, i.e., the crosstalk.

Fig. 9 shows an example of the 0 functions for three
adjacent rays—θn−1, θn , and θn+1.

To provide a summary representation of the results obtained,
Fig. 10 shows the 0mean function as a function of the object
distance r . The 0mean(χ, r) function was calculated as the
mean of the three adjacent rays

0mean(χ, r) =
1
3

n+1∑
i=n−1

0θi (χ, r) (33)

where χ is the distance along the x-axis from the ray optical
axis (the dashed-dotted lines in Fig. 9), and 0θi (χ, r) is the
0 function relative to the θi ray. Fig. 11 shows the respective
experimental standard deviation of the mean

σ0(χ, r) =

√√√√ 1
3 · 2

n+1∑
i=n−1

[0θi (χ, r)− 0mean(χ, r)]2. (34)

As expected from Fig. 9, at the distance r = 2 m, the
experimental standard deviation of the mean, σ0 , is equal
to zero for many χ values. In fact, as can be seen from
Fig. 9, at the r = 2 m distance, all three functions 0 remain
substantially equal to 1 for χ ∈ [−5.5, 5.5] mm. All the
0 functions obtained from the θn−1, θn , and θn+1 rays are
reported in the Appendix.

Fig. 11. Experimental standard deviation of the mean, σ0(χ), as a function
of the object distance r . The oblique dashed lines represent the angular sectors
of width ±1θ/2 centered on the ray optical axes.

Fig. 12. PC obtained by positioning a thin object (width approximately
3.5 mm) at a distance of 2 m from the LiDAR. The object was painted using
the same paint used to cover the knife. Although the object is seen by the
LiDAR under an azimuth angle less than the azimuth sampling period 1θ ,
the object is reconstructed in the PC with four adjacent points confirming the
crosstalk, thus confirming what was predicted by Figs. 9 and 10. Note that,
since the LiDAR samples the environment on concentric spheres whose radii
differ by 1r , if the points of the PC are at different radial distances (different
bins), the same elevation angle ϕm gives rise to slightly different y values.

As previously shown in Fig. 6, once defined the detec-
tion probability of interest—the threshold value 0th—Fig. 10
allows estimating the effective waist ωeff as the distance to
the object changes. For example, the value of ωeff obtained
by imposing 0th = 0.2 represents the extension of the region
around the optical axis in which the object entry entails a
detection probability greater than or equal to 20%. According
to (3), the ωeff varies with the object distance. Due to ηsys, the
observed trend is not monotonous.

From Figs. 9 and 10, it is evident the presence of crosstalk
for an object distance of about 2 m.

As an example, Fig. 12 shows the PC obtained by posi-
tioning, at a distance of 2 m, a thin object (width approx.
3.5 mm) painted using the same paint used to cover the knife.
As expected from Figs. 9 and 10, although the object is seen
by the LiDAR under an azimuth angle less than the azimuth
sampling period 1θ , the object is reconstructed in the PC with
four adjacent points confirming the crosstalk. Thus, an object
whose size is about 3.5 mm is represented in the PC with a
width of about 18.5 mm, that is, more than five times wider.

VI. DISCUSSION

For simplicity of discussion, the description of the proposed
method referred to the analysis of the azimuthal quantization
1θ . The method can be easily adapted for the analysis of



CATTINI et al.: METHOD FOR ESTIMATING OBJECT DETECTION PROBABILITY, LATERAL RESOLUTION, AND ERRORS 7005714

quantization in the elevation angle, 1ϕ. Nevertheless, whether
analyzing the effect of the azimuthal quantization or that
relating to the elevation angle, at present, the proposed method
requires a minimum object size along the direction defined by
the other spherical angle. Therefore, in the case of analyzing
the effect of quantization in the azimuthal angle, the proposed
analysis is based on the hypothesis that the object has a
vertical extension, such as to cover the entire angular sector of
amplitude 1ϕ (plus any vertical crosstalk). Indeed, in ground-
based applications, objects often have vertical development;
thus, the smallest size is typically the width. Nevertheless,
the proposed method can be easily adapted to analyze the
effect of vertical quantization (in this second case, the object
would be translated along the y-axis and should cover the
entire angular sector ±1θ/2 plus any horizontal crosstalk).
Finally, using a knife, which, in addition to being translated
in the horizontal direction, is also raised, it would be possible
to obtain an estimate, albeit approximate, of the joint effect of
the horizontal and vertical quantizations.

It is important to notice that the obtained results are based on
the hypothesis that a point p in the PC represents an object or
portion of an object having the center in p, “vertical” angular
extension ±1ϕ/2, and “horizontal” angular extension ±1θ/2.
Such a partition of the 3-D image into rectangular base cones
serves only to define what the points of the PC represent,
thus serving as a starting point for the definition of the errors.
As shown by the reported results, in general, this partition does
not fully coincide with the spatial sampling actually performed
by LiDAR. Indeed, due to phenomena, such as the divergence
of the beam and possible aberrations of the collection optics,
as well as due to the discrimination threshold of the detector,
the actual spatial region within which the ray samples the
surrounding space may be greater than or even smaller than
the nominal rectangular base cone giving rise, on the one
hand, to phenomena, such as crosstalk, and on the other, the
missed detection of the object. A different definition of what
point p represents would lead to a redefinition of the related
errors. Nevertheless, the procedure proposed in Section IV-B
for estimating the errors is simple, and it would, therefore,
be quite simple to adapt it to a different definition.

As described in Section IV-C, 0̄(α) represents the proba-
bility of detecting an object having dimensions greater than
or equal to those of the used knife and extending in the
considered ray for an angle α. Since 0̄ is a function bounded
above, it is, thus, theoretically possible to use a knife seen by
the LiDAR under an angle 1θk−MIN(r) ≤ 1θk . If 1θk < 1θ ,
0̄ not only represents the probability of detecting an object
extending from one of the ray edges by an angle α but also
the probability of detecting an object of angular amplitude 1θk

whose center is at an angular distance from the axis optical
equal to

(1θ − 2α −1θk)/2. (35)

If the object of interest is seen by the LiDAR under an angle
lower than the value of 1θk used for its characterization, the
estimate provided by 0̄ is valid only as long as α ≤ 1θk ,
while it can be an overestimate when α exceeds such a value.

The proposed method also allows obtaining an estimate
of the LiDAR lateral resolution. Indeed, it is statistically
unlikely that the LiDAR distinguishes two objects [of angular
dimension greater than or equal to 1θk−MIN(r)] that are
angularly separated by an angle less than or equal to

ψ(r) = max{[1θ − α1(r)], [1θ − 2α1(r)]} (36)

where, as defined in (32), α1 is the minimum value of α for
which 0̄(α) = 1. Indeed, objects separated by an angular
distance less than ψ(r) statistically give rise to a continuum
of points in the PC. Note that, as shown in Figs. 9 and 10,
α1 can be significantly less than 0, and therefore, ψ can be
significantly greater than the “resolution” (1θ) declared by
the manufacturer.

Driven by market demands of 3-D LiDARs for 3-D object
perception and scene segmentation, LiDAR manufacturers
are nowadays proposing measuring systems that claim better
and better resolutions day by day. Especially, for LiDAR in
scanning technology, this clashes with the intrinsic nonide-
alities of the measurement principle, thus potentially leading
to significant crosstalk. Indeed, the race to an ever-smaller
angular sampling period can cause the beam emitted by the
LiDAR to be wider than the solid angle defined angular
sampling periods (see Fig. 3). This can lead to significant
crosstalk. Small objects that should have given rise to a few
points in the PC can, thus, be deformed and enlarged on a
significantly greater number of points, as shown in Fig. 12.
Likewise, objects angularly separated by an angle greater than
the sampling angle can unexpectedly result in a continuum of
points in the PC—see (36). Such errors may compromise the
effective ability of the system to perform very important tasks,
such as detection, classification, and tracking.

Note, however, that the proposed method has the sole
objective of allowing obtaining a statistical estimate of the
errors that will affect the LiDAR output—the PC. The impact
that such errors could generate in the subsequent processing
system in terms of, for example, detection, classification,
and tracking, depends inexorably on the specific algorithms
exploited by the processing system. For example, focusing on
a single channel and assuming that only one point is sufficient
to detect the object, its object detection probability is equal to
1 − P2NONE . Similarly, as discussed above, if two objects are
separated by an angle less than ψ(r), they will statistically give
rise to a continuum of points in the PC. Thus, it is reasonable
to assume that the algorithm used for the classification will
identify the two objects as a single object. Based on what
the specific classification algorithm used to distinguish two
objects requires, it is possible to estimate the probability of
this event by proceeding in a similar way to what was done
in Section IV-B.

It is also important to note that the obtained estimates
depend on factors such as the object reflectance and the
uncertainty admitted in the estimate of the axial coordinate.
Therefore, on the one hand, a knife with a reflectance as
similar as possible to that of the object of interest must be used
(the example results shown in Section V have been obtained
using a knife with ρO = 0.75). On the other hand, the nb value
must be appropriately chosen. Indeed, the product nb · 1r
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Fig. 13. 0 functions of the θn−1, θn , and θn+1 rays as a function of the
angular distance from the ray optical axis obtained at r = 2 m distance.
The dashed lines represent the angular sectors of width ±1θ/2 centered on
the ray optical axis.

in (7) and (8) defines the maximum uncertainty allowed in
the radial coordinate estimation. Note that, as introduced in
Section II and described in more detail by Cattini et al. [6],
even when the object is correctly detected, the value of r is
not a deterministic quantity but a discrete random variable that
can assume the value of the radii of several adjacent axial bins.
Therefore, the probability obtained by setting nb = 0 is not the
simple estimate of the probability that the object is detected
but the estimate of the probability that it is detected at the
“exact” axial distance. Thus, when interested in the detection
probability, it may be convenient to set a value of nb greater
than 0. The upper limit is given by the maximum axial error
accepted by the detection, classification, or tracking algorithms
used to analyze the PC. In this regard, given that, as introduced
above, the axial error is partly responsible for blurring in the
Cartesian representation of the edges of sharp objects, in the
presence of significant axial errors, it could be more effective
to analyze the PCs in spherical coordinates.

The example results shown in Section V have been obtained
setting nb = 3—1r ≈ 6 cm [6]. Based on the results reported
by Cattini et al. [6], nb = 3 reasonably allows removing the
contribution due to the axial error from the estimate of the
detection probability.

VII. CONCLUSION

Currently, the main applications of 3-D LiDARs are object
perception and scene segmentation. The success of such
operations depends on the processing of the LiDAR output
but also inexorably depends on the quality of the PC. This
study proposes a simple experimental method for estimating
the “quality” of the PC in terms of errors and deformations.
The starting point of the proposed analysis is the determi-
nation of the ray detection probability—the probability that
the ray will report a point in the PC. As described in more
detail in Section III, such a probability depends on various
factors, including the power and the divergence of the emitted
beam/s, the emission and collection optics, the efficiency of the
receiver, and the algorithms implemented by the LiDAR for the
detection of echoes. Most of this information is not provided
by LiDARs manufacturers; thus, mathematical modeling is
essentially impossible.

On the contrary, being the proposed method an experimental
method, it does not require assumptions or simplifications

Fig. 14. 0 functions of the θn−1, θn , and θn+1 rays as a function of the
angular distance from the ray optical axis obtained at r = 2.5 m distance.
The dashed lines represent the angular sectors of width ±1θ/2 centered on
the ray optical axis.

Fig. 15. 0 functions of the θn−1, θn , and θn+1 rays as a function of the
angular distance from the ray optical axis obtained at r = 3 m distance.
The dashed lines represent the angular sectors of width ±1θ/2 centered on
the ray optical axis.

Fig. 16. 0 functions of the θn−1, θn , and θn+1 rays as a function of the
angular distance from the ray optical axis obtained at r = 3.5 m distance.
The dashed lines represent the angular sectors of width ±1θ/2 centered on
the ray optical axis.

regarding the physics of the device and, therefore, regard-
ing aspects, such as the divergence of the beams and the
aberrations of the optics. Thus, the proposed method can
be exploited for analyzing any LiDAR, regardless of its
construction technology.

From the knowledge of the ray detection probability, all
the other probabilities of interest are estimated supposing
the rays have the same statistical properties and are statis-
tically independent—independent and identically distributed
random variables. Such a hypothesis can be easily verified
experimentally.

The reported results were obtained by carrying out the anal-
ysis in optimal conditions, i.e., for example, with a low level
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Fig. 17. 0 functions of the θn−1, θn , and θn+1 rays as a function of the
angular distance from the ray optical axis obtained at r = 4 m distance.
The dashed lines represent the angular sectors of width ±1θ/2 centered on
the ray optical axis.

Fig. 18. 0 functions of the θn−1, θn , and θn+1 rays as a function of the
angular distance from the ray optical axis obtained at r = 4.5 m distance.
The dashed lines represent the angular sectors of width ±1θ/2 centered on
the ray optical axis.

Fig. 19. 0 functions of the θn−1, θn , and θn+1 rays as a function of the
angular distance from the ray optical axis obtained at r = 5 m distance.
The dashed lines represent the angular sectors of width ±1θ/2 centered on
the ray optical axis.

of background radiation noise and substantially in the absence
of multiple echos. Therefore, they reasonably represent an
estimate of the best obtainable detection probabilities. If inter-
ested in the performances obtainable in specific conditions of
background radiation noise or multiple echos, it would be
possible to investigate the specific detection probability that
would be obtained in such conditions by acting on the ambient
lighting and the distance doff described in Fig. 5.

The possibility that the proposed method offers to estimate
the ray detection probability and all the other probabilities and
errors deriving from it is of significant interest in multiple
applications. In particular, the proposed method can be useful
to determine if a specific LiDAR can detect the objects of

interest with adequate probability, thus allowing the bench-
marking between different LiDAR systems.

Furthermore, by providing an estimate of the deformations
and errors that will statistically affect the PC, it also allows
the comparison and development of different PC process-
ing algorithms. Indeed, as previously described, the success
of subsequent operations, such as detection, classification,
and tracking, depends inexorably on the specific algorithms
exploited for the PC data processing. Thus, by providing an
estimate of the errors and their probability of occurrence, the
proposed method also allows the development or selection
of the most suitable processing algorithms to operate in the
presence of such errors.

In addition, it can also allow the optimization of LiDAR
positioning. Indeed, if, for example, it turns out that some
rays have a better 0̄ function, it would be possible to orient
the LiDAR in such a way as to maximize the probability that
these rays will intercept the objects of interest.

APPENDIX
0 FUNCTIONS RECORDED AT VARIOUS DISTANCES

Figs. 13–19 show the 0 functions obtained from θn−1, θn ,
and θn+1 rays as the knife distance r and the angular distance
from the optical axis of the ray vary. As expected from Fig. 11,
the 0 functions related to the three rays are similar to each
other supporting the hypothesis that, at least in the case of
adjacent beams, the ray detection probabilities are independent
and identically distributed random variables.
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