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In this issue, Nguyen et al.1 describe the application of a 
promising approach of computer-assisted high-dimensional 
immunophenotype analysis – commonly known as com-
putational flow cytometry (CFC) – for the assessment of 
minimal/measurable residual disease (MRD) in chronic 
lymphocytic leukaemia (CLL) patients. This study shows 
that such artificial intelligence (AI)-supported MRD diag-
nostics can be highly accurate and reproducible, as well as 
readily implementable in the routine workflow, compared 
with gold standard MRD expert analysis, using conventional 
manual gating procedures. Over the last decades, MRD erad-
ication has progressively been recognized as a valuable prog-
nostic factor, associated with improved clinical outcomes in 
virtually-all haematological malignancies, including CLL.2 
Recently, with the advent of effective ‘fixed-duration’ first-
line treatments for CLL patients,3,4 the undetectable MRD 
status (<10−4) and different MRD kinetics (i.e. time to MRD 
conversion, to MRD doubling and to 10−2 MRD thresh-
old) have emerged as pivotal parameters for therapeutic 
decision-making, mainly when choosing either to continue 
or to withdraw treatments in high-risk CLL patients.5 In this 
clinical setting, the CFC method here reported can provide 
an impressive tool to perform consistent immunopheno-
typic identification, accurate quantification and insightful 

sub-classification of rare CLL clones, with potential benefit 
for the patients.1

From a methodological point of view, multiparametric 
flow cytometry (MFC) has essentially been nearer to ‘old-
fashioned cytomorphology’,6 rather than to molecular and 
genomic techniques, mainly because both classic micros-
copy and flow cytometry typically depend on individual op-
erator's expert analysis of some discrete information (either 
optical or digital, respectively), about phenotypic features 
of normal and pathological cells. However, in the last years, 
advanced AI-based systems – coming from the research to 
routine clinical applications – have started to change this 
notion, by providing an unprecedented opportunity to au-
tomatically elaborate large amounts of multidimensional 
immunophenotypic data, acquired by last-generation high-
throughput (≥8-colour) flow instruments (now commonly 
available for haematological diagnostics). At the core of this 
AI innovation, by applying machine learning models with 
specific clustering algorithms to wide cytofluorimetric data-
sets, new predictive models are independently generated, 
being directly learned from the acquired data, with no or 
minimal human interventions. Operatively, such computa-
tional tools can build a detailed reference map of the ‘im-
munophenotypic landscape’ (derived from multiparametric 
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profiling of surface antigens' expression at single-cell level), 
which is then exploited to provide a consistent measurement 
of distinct cell populations, detectable in the diagnostic 
samples. By comparison, standard MFC analysis is actually 
based on a single operator's manual immunological gating 
on sequential bidimensional plots; thus, it is intrinsically 
burdened by the dependence on time-consuming expert 
analysis, with well-known reproducibility problems (par-
tially addressable by standardization of technical procedures 
and gating protocols) (Figure 1).

In this view, it is likely that AI-driven flow cytometry di-
agnostics may constitute a pivotal advance in this field, as 
providing a reliable and feasible, comprehensive (multidi-
mensional) immunological analysis of the whole immuno-
phenotypic dataset, with some evident advantages, and few 
limitations.7 Basically, CFC clinical applications appear 
largely automatable (traditional gating process may still 
serve for additional expert validation), time-efficient (with 
an average run time of few seconds/minutes per sample), re-
producible and potentially harmonizable across laboratories. 
In addition, CFC can help to extend our clinico-biological 
knowledge about relevant disease immunophenotypes, pos-
sibly endowed with prognostic significance, in different hae-
matological malignancies. As a reasonable drawback, the 
implementation of sophisticated CFC methods in routine 
haematology laboratories could raise an issue about general 
feasibility. However, it seems the case that, while the com-
putational development of new CFC algorithms typically 

requires the specific expertise of computational biologists 
– called to team up with flow cytometrists and clinical hae-
matologists – eventually, the ultimate routine implementa-
tions of CFC analysis should be much more ‘user-friendly’, 
possibly well supported by software dedicated to end-users.

Of course, to date, CFC methods still need to be validated 
in large multicentric studies, and the clinical use of such AI-
based systems should properly be regulated and harmonized 
by shared recommendations among worldwide laboratories, 
aiming to provide reliable and transparent diagnostic tools. 
So far, different machine learning models have successfully 
been applied to elaborate flow cytometric data, either by 
using unsupervised methods (e.g. FlowSOM in the setting of 
AML diagnosis),8 or with supervised/semi-supervised tech-
niques (e.g. deep neural network for CLL MRD detection).9 
In their work, Nguyen and colleagues1 developed and tested 
an original application of FlowSOM for the assessment of 
CLL MRD in peripheral blood and bone marrow samples, 
compared with standard (human) expert analysis. By using 
training datasets, this unsupervised hierarchical clustering 
method generated a self-organizing map (SOM) with sev-
eral nodes, outlining the full immunophenotypic landscape 
of normal and pathologic B-cell populations. Then, the ref-
erence SOM was used to automatedly detect MRD cells in 
three large validation cohorts of CLL patients.1

Flow cytometry experts and clinical haematologists 
are now called to become familiar with general concepts 
of computational analysis applied to routine diagnostics, 

F I G U R E  1   Evolution of immunophenotypic data analysis (2D plots, top; MST, bottom left; t-SNE, bottom right; all graphs from Nguyen et al.1). 
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to correctly set up such novel diagnostic methodologies 
in the laboratory workflow, as well as to guide the devel-
opment of this expanding area of AI-driven clinical re-
search. Of note, automated clustering systems, combined 
with n-dimensional immunophenotyping techniques, 
may allow to disclose new putative cell subpopulations, 
at high-resolution level (beyond 1 cell out of 104). Some of 
these novel phenotypic subtypes may be associated with 
unknown biological significance, which, in turn, could 
display a prognostic value in specific disease settings. 
For instance, in the work by Nguyen et al.,1 several atyp-
ical disease subtypes (named from CLL-1 to CLL-5) have 
been identified, potentially waiting for further clinico-
biological investigations.

In perspectives, AI-based methods clearly offer the most 
effective way to elaborate and usefully interpret the large-
scale datasets provided by the latest diagnostic technologies, 
in different fields of haematological diagnostics.10 In addi-
tion to flow cytometry, also when applied to NGS data, neu-
ral networks and other machine learning algorithms have 
yielded new insights on tumor heterogeneity and clinico-bi-
ological classifications. Similarly, modern cytomorphology 
is evolving towards an AI-assisted ‘digital microscopy’, al-
lowing automated pattern recognition and classification of 
acquired cell images. New opportunities and new challenges, 
including procedural and ethical caveats, are coming with 
the diffusion of AI-driven diagnostic methods in haematol-
ogy, paving the way towards highly personalized therapeutic 
management of haematological patients.
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