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Abstract

This article contains a comprehensive tutorial on classification by means of Soft Independent Mod-

elling of Class Analogy (SIMCA). Such a tutorial was conceived in an attempt to offer pragmatic

guidelines for a sensible and correct utilisation of this tool as well as answers to three basic ques-

tions: “why employing SIMCA?”, “when employing SIMCA?” and “how employing/not employing

SIMCA?”. With this purpose in mind, the following points are here addressed: i) the mathematical

and statistical fundamentals of the SIMCA approach are presented; ii) distinct variants of the orig-

inal SIMCA algorithm are thoroughly described and compared in two different case-studies; iii) a

flowchart outlining how to fine-tune the parameters of a SIMCA model for achieving an optimal

performance is provided; iv) figures of merit and graphical tools for SIMCA model assessment

are illustrated and v) computational details and rational suggestions about SIMCA model valida-

tion are given. Moreover, a novel Matlab toolbox, which encompasses routines and functions for

running and contrasting all the aforementioned SIMCA versions is also made available.
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1. Introduction

Classification problems are ubiquitous in analytical chemistry. Food product authentication

and quality assessment [1–5], pharmaceutical counterfeit detection [6–9] and forensic trace char-

acterisation [10–12] are just few scenarios in which practitioners may utilise statistical and ma-

chine learning approaches in order to distinguish objects based on the specific types of data

recorded for them. In spite of their intrinsic methodological diversity, though, in chemometrics,

such approaches are frequently categorised in two broad families: those performing discrimina-

tion and those based on the principles of the so-called class modelling (CM) [13]. The difference

between these two groups of strategies can be easily visualised through the following example (see

also Figure 1 for a graphical illustration): suppose one has collected a given number of samples

(for instance, blood extracts) belonging to two particular classes (being withdrawn from healthy

and diseased patients) and has measured for them the values of two characteristic variables (e.g.,

chemical or physical parameters) with the goal of discerning such classes. If one represents these

Figure 1. Schematic representation of the operating principle of A) a discriminant and B) a CM technique in an

illustrative example involving two classes of samples (blue dots and red squares). The former defines a global frontier

(blue-red dashed line) partitioning the multivariate space of the registered variables into as many subregions as the

number of categories represented in the training set and always assigns an object (sample) to one and only one of

them. The latter independently estimates a contour for each individual class under study (blue and red dashed line-

ellipses), delimiting a specific area where specimens belonging to it are more likely to be found. Notice that empty

dots and squares (as well as the black star) denote hypothetical test samples, i.e. samples not taken into account

when defining the classification boundaries/rules. Here, the observation lying on the upper left part of the two plots

(highlighted by an arrow) would be recognised as member of the red square category by a discriminant approach, but

would be rejected by both the independent class models one could possibly construct - this is the reason why such an

observation is graphically displayed using two distinct symbols in A) and B).

two groups of specimens in a bivariate plot as the ones in Figures 1a and 1b, statistical classifi-

cation translates into trying to define boundaries or frontiers within the graphed space dividing as

efficiently as possible the two clusters of blue and red points. To do this, discriminant methods

strictly partition the space of the measured variables into as many subregions as the number of
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categories of objects in the training set and, therefore, always assign each data point to one and

only one class (that within whose boundaries it falls). Conversely, CM approaches (also known

as one-class classifiers) independently define a frontier for each individual category under study,

enclosing a specific region of the variable (hyper-)space where specimens belonging to it are more

likely to be found. As a consequence, if more than one class is modelled, samples can be recog-

nised as members of none, one, or multiple modelled categories, which makes the application of

this family of methodologies well-suited when the investigated categories are expected to consti-

tute only a part of those that could be potentially encountered and explored.

Among the various existing CM techniques, the first ever appeared in literature and probably the

most popular and widespread in chemometrics is Soft Independent Modelling of Class Analogy

(SIMCA), originally developed by Svante Wold in 1976 [14, 15]. The words defining its acronym

accurately summarise its main features and characteristics:

• soft indicates that the method is fully data-driven and no a priori assumption on the distri-

bution of the collected data is made;

• independent means that every class of objects under study is treated individually and sepa-

rately, contrarily to how a standard discrimination strategy would operate;

• modelling of class analogy implies that SIMCA focuses on the similarities among the sam-

ples belonging to the individually investigated category rather than on the differences that

would allow distinguishing it from the others, once again in contrast to how discriminant

techniques operate.

More specifically, regarding this last point, SIMCA assumes that the systematic information as-

sociated to these similarities can be captured by a Principal Component (PC) representation (of

appropriate dimensionality) of the data collected for the individually modelled class and that the

assessment of whether new observations belong to the modelled class can be carried out according

to statistical measures/indices estimated based on such a reduced PC representation.

As recently discrimination seems to be very frequently overused and, unfortunately, misused,

while the benefits of methods like SIMCA are quite often underestimated or overlooked [16, 17],
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this tutorial has been conceived to shed better light on three fundamental aspects: why to em-

ploy SIMCA, when to employ SIMCA and how to/not to employ SIMCA. Concretely, the main

idea behind it is to provide potential users with an extensive survey of the operating principles

of SIMCA, the visualisation tools one can resort to for effectively reporting outcomes resulting

from its utilisation, the circumstances in which coping with classification problems by means of

SIMCA would be ideal in the light of the specific objectives the data analysis phase aims at and

the pros and cons that SIMCA can exhibit over standard discrimination methods depending on the

particular scenario one could face. For all these purposes and considering the motivations of this

work, the paper features the following structure:

• Section 2 is devoted to the description of the SIMCA algorithm and of all its existing compu-

tational variants. Specific attention will be paid to the various ways of setting SIMCA-based

classification rules, which is actually the principal distinctive attribute of all such variants. In

addition, a short historical introduction of how this technique evolved and improved across

the years is also given;

• Section 3 includes the illustration of two case-studies where all the aforementioned variants

of SIMCA were applied so as to highlight possible similarities and/or diverging behaviours

among them. In this regard, it has to be noticed that a novel Matlab (MathWorks, Inc.,

Natick, United States of America) toolbox, which encompasses routines and functions for all

these different SIMCA versions and that automatically carries out performance comparisons

among them, was made available to the interested readers and can be found at https:

//github.com/RomeChemometrics/Simca;

• Section 4 discusses the implications of using SIMCA as well as the advantages and disad-

vantages they may show over discriminant strategies in an attempt to ease the understanding

of when and why SIMCA might be more suitable than discrimination;

• Section 5 holds final concluding remarks.

4

Jo
urn

al 
Pre-

pro
of



2. The principles of SIMCA modelling

Building and assessing a SIMCA classification model encompasses 4 main steps, which will

be thoroughly described in the following subsections:

1. class-wise data decomposition by Principal Component Analysis (PCA [18, 19]);

2. decision or assignment rule definition;

3. SIMCA model parameter optimisation;

4. SIMCA model validation.

2.1. Class-wise PCA data decomposition

Imagine that a series of J-dimensional measurement vectors (for example, spectra or chro-

matograms) has been collected for a set of N samples belonging to a single class or category (e.g.,

N blood specimens from healthy individuals) and piled into a matrix, say X (of size N × J), sensi-

bly preprocessed or pretreated (for instance, mean-centred or auto-scaled). The first computational

step SIMCA carries out is the decomposition of X according to the well-known PCA bilinear ap-

proximation, which can be executed by means of algorithms like Singular Value Decomposition

(SVD [20]) or Non-linear Iterative PArtial Least Squares (NIPALS [21, 22]) and presents the fol-

lowing model structure:

X = TPT + E (1)

where T (N × A), P (J × A) and E (N × J) are the scores, loadings and residuals arrays resulting

from the factorisation of X, while A identifies the number of computed PCs. These PCs (encoded

in the columns of P) define what is commonly known as a class subspace, typical of the individual

category considered. As intuition would suggest, the higher the distance of an observation to this

subspace, the higher the probability that the respective sample does not belong to the particular

class under study. In SIMCA, two distance metrics are frequently exploited to evaluate whether

a new object is member of the investigated category or not: the squared Euclidean distance from

its corresponding measurement vector to its projection onto the aforementioned class subspace

(also known as Orthogonal Distance, OD) and the squared Mahalanobis distance between this

projection and the origin of the PC subspace (also known as Score Distance, S D). Denoting such
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a measurement vector as xT
new (1 × J), the OD and S D values associated to it can be estimated

based on the following equations:

ODnew =
∥∥∥∥xT

new

(
I − PPT

)∥∥∥∥2
(2)

S Dnew = xnewPΛ−1PTxT
new (3)

with I (J × J) being an identity matrix, Λ (A × A) being equal to TTT
N−1 and ∥ ∥2 symbolising the

2-norm. The way this assessment is specifically conducted will be detailed in the next section.

Finally, it is important to notice that in case multiple classes of samples are coped with all the

procedure described here needs to be iterated for every one of them.

2.2. SIMCA decision/classification rule definition

Once the collected data have been decomposed as described before, a criterion needs to be

established to decide whether new measurement vectors fit the class subspace or not, i.e., to deter-

mine whether incoming samples are either accepted or rejected by the model of the investigated

category and, thus, can be considered as its members or as outliers. For this purpose, the values

of ODnew and S Dnew (or of some arithmetic combinations of them) are generally compared with

characteristic thresholds - corresponding to a user-specified confidence level, (1 − α) - estimated

either theoretically (i.e., by assuming specific statistical distributions for both OD and S D) or em-

pirically/heuristically from X. In other words, as already stressed in Section 1, SIMCA delimits

a volume or case within the space of the J original variables where samples from the category

at hand are more likely to be located. Subsequently, if xnew is found to fall inside this case, the

new object is accepted as a member of the corresponding category (see Figure 2 for a schematic

representation). The way the boundaries of such a case are marked out determines the SIMCA

decision or classification rule and actually connotes the main distinctive feature of the 5 algorith-

mic variants of this methodology discussed here [23]: the original SIMCA formulation by Wold

[14, 15], Simple SIMCA (Sim-SIMCA [24]), Alternative SIMCA (Alt-SIMCA [25]), Combined

Index SIMCA (CI-SIMCA [26, 27]) and Data Driven SIMCA (DD-SIMCA [28, 29]).
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Figure 2. Schematic representation of the operating principle of SIMCA. A dataset containing the values of three

distinct variables (x, y and z) measured for a set of 17 samples (grey dots) belonging to the same class of objects

is subjected to a PCA decomposition which yields two different principal components (PC1 and PC2). Based on

the estimates of OD and S D calculated for these samples or by assuming specific statistical distributions for both

distance indices, a subregion of the three-dimensional space of the original variables recorded where specimens from

the modelled category are more likely to be located is delimited. In A), a new observation (green dot) is found to fall

inside this subregion of space and the corresponding object is assigned to such a category. On the other hand, in B),

the new observation (red dot) falls outside it and the corresponding object is not assigned to the class under study and

rejected as an outlier. Notice that here the outlying observation exhibits abnormal values of both OD and S D.

2.2.1. Original SIMCA

For classification purposes, the original implementation of SIMCA [14] only focuses on the

orthogonal distance of a new object from the class model subspace, slightly redefined with respect

to Equation 3 and expressed as:

snew =

√
ODnew

J − A
(4)

More specifically, it carries out a Fisher’s F test with an appropriate number of degrees of free-

dom to compare such a value with the average distance from the same subspace of the training

observations estimated as:

s =

√∑N
n=1

∑J
j=1

e2
n j

J−A
N

N−A−1

N
(5)

where en j denotes the (n, j)-th element of E. A new specimen is, therefore, accepted by the cate-

gory under study if:

s2
new ≤ s2F−1 (α, J − A, (J − A) (N − A − 1)) (6)

with F−1 (α, J − A, (J − A) (N − A − 1)) being the (1 − α) quantile of the Fisher’s F distribution

with J − A and (J − A) (N − A − 1) degrees of freedom. This first formulation of SIMCA was

almost immediately amended to incorporate also a measure of distance within the class subspace

[15] (see [30–32] for further details). Nonetheless, both these SIMCA formulations are seldom

exploited nowadays although they can be found available in several software suites, not always
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under the name “SIMCA”i. For this reason, they will be excluded from the performance assessment

studies and the comparisons that will follow this section of the article.

2.2.2. Simple SIMCA (Sim-SIMCA)

In Sim-SIMCA [24], a new specimen is accepted by the modelled class if the following two

conditions are simultaneously fulfilled:

ODnew ≤ ODcrit (7)

S Dnew ≤ S Dcrit (8)

ODcrit and S Dcrit denote critical values for OD and S D, respectively. A comprehensive survey on

how such critical values can be calculated is provided in Section 2.2.6.

2.2.3. Alternative SIMCA (Alt-SIMCA)

In Alt-SIMCA [25], ODnew and S Dnew are combined in a single statistical index known as

reduced distance and expressed as:

dnew =

√(
ODnew

ODcrit

)2

+

(
S Dnew

S Dcrit

)2

(9)

A new object is accepted by the category under study if and only if:

dnew ≤
√

2 (10)

The two terms summed under the square root in Equation 9, in fact, equal 1 when ODnew = ODcrit

and S Dnew = S Dcrit, that is to say when both statistics assume values identical to their corre-

sponding decision thresholds. Nevertheless, it is worth noticing that this particular classification

iThe original formulation of SIMCA (renamed to “PCA-Class") is implemented in the software SIMCA© de-

veloped and commercialised by Sartorius AG (Göttingen, Germany). It is also included in the packages Aspen

Unscrambler™ (Aspen Technology, Inc., Bedford, United States of America) and PARVUS [33, 34]. It is worth

stressing that, in SIMCA©, the default distance metric on which the class membership assessment is based is called

DModXPS+ and that, in Aspen Unscrambler™, the decision rule is slightly different from the one initially proposed

by Wold.
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rule may yield a certain flexibility when it comes to assessing the class membership of observa-

tions falling close to the class boundaries: such observations, indeed, might exhibit, e.g., values of

S Dnew exceeding S Dcrit and be anyway recognised as member of the investigated category in case

ODnew ≪ ODcrit.

2.2.4. Combined Index SIMCA (CI-SIMCA)

Compared to Alt-SIMCA, CI-SIMCA [26, 27] fuses differently ODnew and S Dnew:

cnew =
ODnew

ODcrit
+

S Dnew

S Dcrit
(11)

The rationale behind this combined index lies in the fact that OD and S D are already quadratic

distance metrics, thus, one does not need to square them again before their summation [26, 27]. In

this case, a new sample is accepted by the investigated class if:

cnew ≤ ccrit (12)

Here, ccrit represents the critical value of the c statistic estimated as:

ccrit = gχ−2 (α, h) (13)

where χ−2 (α, h) denotes the (1 − α) quantile of the χ2 distribution with h degrees of freedom. The

parameters g and h are defined as:

g =

A
S D2

crit
+ θ2

OD2
crit

A
S Dcrit
+ θ1

ODcrit

(14)

h =

(
A

S Dcrit
+ θ1

ODcrit

)2

A
S D2

crit
+ θ2

OD2
crit

(15)

with:

θl =

rank(X)∑
a=A+1

λl
a (16)

and λa being the a-th eigenvalue resulting from the PCA factorisation of X.
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2.2.5. Data Driven SIMCA (DD-SIMCA)

In DD-SIMCA [28, 29], a weighted sum of ODnew and S Dnew (also known as full distance) is

calculated as:

fnew = LOD
ODnew

OD0
+ LS D

S Dnew

S D0
(17)

with LOD =
2OD2

0
s2

OD
, LS D =

2S D2
0

s2
S D

and OD0/S D0 and s2
OD/s

2
S D being the mean and the variance of the

OD/S D values computed for the objects belonging to the training set, X - alternatively, especially

in the presence of outliers in X, robust estimators of central tendency and variation can also be

resorted to. A specimen is, therefore, assigned to the modelled class if:

fnew ≤ fcrit (18)

where fcrit denotes a f -statistic threshold estimated as:

fcrit = χ
−2 (α, LOD + LS D) (19)

2.2.6. OD and S D threshold value estimation

Since the very first version of SIMCA was developed, several have been the criteria proposed to

estimate ODcrit and S Dcrit. Here, a comprehensive description of the different options documented

in literature and implemented in the Matlab code released together with this article is provided.

For OD, such an estimation can be carried out:

• calculating the (1 − α) percentile of the OD values observed for the training observations.

This is a non-parametric approach particularly effective in cases where the sample size, N,

is relatively large;

• based on Box’s theory [35, 36] as:

ODcrit = gBχ
−2 (α, hB) (20)

where:

gB =
θ2
θ1

(21)

and

hB =
θ21
θ2

(22)
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while θl has the same meaning as in Equation 16;

• according to the approximation suggested by Jackson and Mudholkar [37]:

ODcrit = θ1

1 +
c−1 (α)

√
2θ2h2

0

θ1
+
θ2h0 (h0 − 1)

θ21


1

h0

(23)

with:

h0 = 1 −
2θ1θ3
3θ22

(24)

and c−1 (α) being the deviate corresponding to the upper (1 − α) quantile of the normal

distribution with zero-mean and unit-variance;

• as reported in [28, 29, 36]:

ODcrit =
s2

OD

2OD0
χ−2 (α, LOD) (25)

For S D, the estimation can instead be performed:

• computing non-parametrically the (1 − α) percentile of the S D values observed for the train-

ing observations;

• based on the definition of the Fisher’s F distribution [38] as:

S Dcrit =
A

(
N2 − 1

)
N (N − A)

F−1 (α, A,N − A) (26)

• according to an approximation, originally proposed by Massart in the context of SIMCA

[39, 40], assuming that N is high enough for the data-driven estimation of both sample

mean and covariance to be exact:

S Dcrit =
A (N − 1)
(N − A)

F−1 (α, A,N − A) (27)

• calculating the (1 − α) quantile of the χ2 distribution with A degrees of freedom [35];

• as in [28, 29]:

S Dcrit =
s2

S D

2S D0
χ−2 (α, LS D) (28)

Mind that, in DD-SIMCA, ODcrit and S Dcrit are retrieved exclusively as in Equations 25 and 28.
11
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2.3. SIMCA model parameter optimisation

One of the most critical aspects when tackling class modelling problems by means of SIMCA

is the adjustment of the SIMCA class model itself, namely the optimisation of its complexity, A.

Varying the number of PCs extracted from X, indeed, can significantly affect the performance

of this method. Generally speaking, two alternative approaches exist for carrying out such an

adjustment operation, which are commonly defined as rigorous and compliant, respectively [41].

The former, in strict line with the philosophy that originally inspired SIMCA and many other

related techniques, exploits only objects belonging to the modelled category so as to guarantee

that the actual confidence level corresponds to the one imposed a priori by the operator, (1 − α).

For this purpose, the observations of the training set are classified according to the specific decision

rule chosen and A is determined as the highest dimensionality yielding the value of classification

sensitivity closest to 1 − α. Sensitivity is also known as true positive rate, measures how well

target class samples are recognised as such and is commonly expressed as:

sensitivity =
TP

TP + FN
(29)

where TP and FN stand for True Positives (the amount of objects correctly identified as members

of the category under study) and False Negatives (the amount of objects mistakenly identified as

non-members of the category under study), respectively.

On the other hand, when a compliant strategy is adopted, A is set utilising both target and non-

target category observations and trying to find the best compromise between classification sensi-

tivity and specificity. Specificity, also called true negative rate, represents how many non-target

class samples are rejected by the model constructed for the investigated category and is calculated

as:

specificity =
TN

TN + FP
(30)

with TN and FP standing for True Negatives (the amount of objects correctly identified as non-

members of the category under study) and False Positives (the amount of objects mistakenly iden-

tified as members of the category under study), respectively. In other words, a compliant approach

would usually aim at optimising the classification efficiency yielded by a SIMCA model, which is
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equal to the geometric mean of classification sensitivity and specificity:

efficiency =
√

sensitivity × specificity (31)

It is worth noticing that, in order to avoid data overfitting, sensitivity, specificity and/or efficiency

values should not be computed based on the OD and S D distance indices directly resulting from

the full factorisation of X (training phase), but rather applying appropriate resampling methodolo-

gies like cross-validation [42, 43] or bootstrapping [44, 45]. Recent studies have highlighted that

any of such methodologies is capable of providing accurate estimates of A, especially when N is

large [17, 46].

Concerning compliant parameter tuning, it should be mentioned that a novel approach for the

simultaneous adjustment of A and α has lately been proposed in an attempt to render SIMCA

classification models more robust in the presence of abnormally high within-category variability

and/or strong category overlaps [47]. In similar scenarios, in fact, confidence levels fixed a priori

may not be adequate solutions to adopt. This approach relies on the principles of Receiver Oper-

ating Characteristic (ROC) curves [48, 49] that display the TP rate vs the (1 − TN) rate returned

by a binary classifier as α varies. In a nutshell, the complexity of the class model is selected as the

number of PCs maximising the area under the ROC curve (a statistic reflecting the general classi-

fication quality) obtained through a generic cross-validatory procedure, while α is taken so as to

minimise the Euclidean distance to its top-left corner which, also here, begets the best compromise

between classification sensitivity and specificity.

2.4. SIMCA model validation

Last but not least, as for any type of prediction or discrimination models, SIMCA ones need to

undergo a proper validation step prior to their full implementation in a laboratory or in industry. To

this end, external observations - i.e., data items not taken into account during the training phase (so

as to reduce the risk of drawing overoptimistic conclusions), but for which the class membership

is known - are required in order to assess the validity, the reliability, the generalisability and

the robustness of the SIMCA models constructed. Operationally, validation implies evaluating -

according to the same figures of merit described in Section 2.3 - the performance of such models
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on these external observations that, in principle, should reflect as close as possible the distribution

of future incoming objects and be representative of all potential sources of expected variability

(e.g., manufacturing campaign, measurement experimental conditions, etc.). If, as it is common

in most real-world scenarios, an additional dataset with similar characteristics (a so-called test

set) cannot be collected due to particular limitations hampering further sampling procedures, all

the available recordings could be split into two blocks to be utilised for calibration and validation

tasks, respectively. Given, though, the specific features such blocks should exhibit (they should

span the largest possible amount of overall data variation), random splitting schemes may result

in suboptimal outcomes. Targeted selection approaches should instead be adopted: examples are

the Kennard-Stone [50] and the Duplex [51, 52] algorithms or techniques based on the principles

of D-optimal design of experiments [53, 54].

3. Two illustrative case-studies: the beer and the cell datasets

To give an example of its working principle and of the way the results returned by its applica-

tion can be reported and visualised, SIMCA was here utilised to process two real-world datasets

chosen so as to mimic a scenario of reduced sample size and a scenario of large sample size. The

former consists of 20 near-infrared (NIR) spectral profiles of an Italian variety of craft beer, “Birra

Reale”, and 40 of other non-craft beers primarily registered for authentication purposes [55]. The

latter contains the measures of 52 light intensity and shape descriptors (rectangularity, convexity,

etc.) extracted from phase-contrast microscopy images of 3035 bacterial cells of 5 diverse mor-

phological classes (deformed: 693 instances, long: 564 instances, normal: 893 instances, round:

498 instances, and small: 387 instances) and originally collected to monitor the possible onset

of distinctive structural alterations of the cellular membrane under the effect of an antimicrobial

drug [56]. More in detail, the SIMCA variants described in Sections 2.2.2, 2.2.3, 2.2.4 and 2.2.5

coupled to all the possible combinations of OD and S D threshold value estimation approaches

(see Section 2.2.6) and both SIMCA model optimisation strategies (rigorous and compliant - see

Section 2.3) were tested and compared for modelling all the categories of specimens under study

in the two different cases. For a more comprehensive assessment of the performance of the tested
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methodologies, a repeated double cross-validation procedure encompassing the following 4 com-

putational steps was employed:

1. the available data were randomly partitioned into a training and a test set carrying 70% and

30% of the total amount of objects belonging to every individual category considered;

2. for each of these categories, the training set was further iteratively divided into two separate

blocks of measurements according to a venetian blind cross-validation splitting scheme. The

first was used to calibrate a SIMCA model of a certain dimensionality and to calculate the

corresponding OD and S D critical limits; the second together with the entire ensemble of

training observations of the other (non-target) classes were projected onto its subspace for

an estimation of the classification sensitivity and specificity it could yield, respectively. This

so-called internal loop was run for a number of principal components ranging from 1 to 10

and until all the target-category training specimens were left out from the first data block at

least once;

3. SIMCA model complexity was tuned according to either the rigorous or the compliant cri-

terion discussed in Section 2.3;

4. the class membership of the samples of the test set was predicted via the final optimised

SIMCA model.

Such a procedure was replicated 300 times so as to retrieve empirical distributions for the sensi-

tivity, specificity and efficiency values obtained in external validation.

Prior to conducting any modelling operation, the beer spectra were preliminarily corrected by

means of the Standard Normal Variate (SNV [57]) transform and afterwards mean-centred, while,

given their heterogeneous nature, the morphological descriptors of the cell dataset were auto-

scaled.

3.1. SIMCA model performance assessment

The performance of the trained SIMCA models was evaluated based on the figures of merit

described in Section 2.3 estimated in external validation, i.e. when assessing the class membership

of the objects belonging to the 300 test sets generated iteratively all along the progression of the
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Figure 3. Beer dataset - “Birra Reale” class model - Overall classification sensitivity yielded in external validation

by all the tested variants of SIMCA. Panel A) refers to Sim-SIMCA. Panel B) refers to Alt-SIMCA. Panel C) refers

to CI-SIMCA. Panel D) refers to DD-SIMCA. The represented confidence intervals are delimited by the 2.5-th and

97.5-th percentile of the empirical distribution of the corresponding figures of merit retrieved through the repeated

double-cross validation strategy described in Section 3. Bar colour-coding - for A), B) and C) - and x-axis labels

relate to the approaches used for estimating the threshold values for OD and S D, respectively.

Figure 4. Beer dataset - “Birra Reale” class model - Overall classification specificity yielded in external validation

by all the tested variants of SIMCA. Panel A) refers to Sim-SIMCA. Panel B) refers to Alt-SIMCA. Panel C) refers

to CI-SIMCA. Panel D) refers to DD-SIMCA. The represented confidence intervals are delimited by the 2.5-th and

97.5-th percentile of the empirical distribution of the corresponding figures of merit retrieved through the repeated

double-cross validation strategy described in Section 3. Bar colour-coding - for A), B) and C) - and x-axis labels

relate to the approaches used for estimating the threshold values for OD and S D, respectively.

Figure 5. Beer dataset - “Birra Reale” class model - Overall classification efficiency yielded in external validation

by all the tested variants of SIMCA. Panel A) refers to Sim-SIMCA. Panel B) refers to Alt-SIMCA. Panel C) refers

to CI-SIMCA. Panel D) refers to DD-SIMCA. The represented confidence intervals are delimited by the 2.5-th and

97.5-th percentile of the empirical distribution of the corresponding figures of merit retrieved through the repeated

double-cross validation strategy described in Section 3. Bar colour-coding - for A), B) and C) - and x-axis labels

relate to the approaches used for estimating the threshold values for OD and S D, respectively.

Figure 6. Cell dataset - Normal cell class model - Overall classification sensitivity yielded in external validation by

all the tested variants of SIMCA. Panel A) refers to Sim-SIMCA. Panel B) refers to Alt-SIMCA. Panel C) refers

to CI-SIMCA. Panel D) refers to DD-SIMCA. The represented confidence intervals are delimited by the 2.5-th and

97.5-th percentile of the empirical distribution of the corresponding figures of merit retrieved through the repeated

double-cross validation strategy described in Section 3. Bar colour-coding - for A), B) and C) - and x-axis labels

relate to the approaches used for estimating the threshold values for OD and S D, respectively.
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algorithmic procedure. Figures 3-8 summarise the outcomes for only one of the categories of

samples underlying each dataset at hand (for the sake of brevity and simplicity): the “Birra Reale”

and the normal cell category, respectively. Clearly, the differences among approaches become

more pronounced if a lower sample size is handled. Overall, it can be said that in this particular

case compliant parameter optimisation approaches permitted to achieve higher efficiency values by

targeting a more balanced compromise between classification sensitivity and specificity. This was

mainly made possible, though, by the fact that the non-target classes taken into account during the

SIMCA model adjustment phase were exactly the same as those from which the non-target class

observations of the test set were drawn. If such a condition does not hold and a poor matching

exists between these two groups of non-target categories, a compliant technique may lead to an

undesired bias and result to be suboptimal [17, 58]. In addition, within rigorous and compliant

tuning methodologies, small performance variations could be observed except for Sim-SIMCA

and Alt-SIMCA which led to the largest discrepancy between sensitivity and specificity when

the critical threshold for OD was estimated based on Box’s theory or through the approximation

suggested by Jackson and Mudholkar. On the other hand, discrepancies are less significant when

a larger amount of observations is coped with. This is somehow expected if one thinks that, in

such a contingency, i) the similarity among the statistical distributions which both OD and S D are

assumed to follow may increase (see, for example, [59]) and ii) parametric and non-parametric

estimates of ODcrit and S Dcrit might converge.

3.2. Result representation

The most immediate and direct way to display the outcomes resulting from the application

of a SIMCA classification model is to depict the estimates of OD and S D or their combination

(depending on the adopted decision rule) together with their respective critical thresholds corre-

sponding to the confidence level set in the specific case-study at hand. An example of such a

representation is provided in Figure 9. Notice that for Sim-SIMCA, since OD and S D are not

mathematically fused into an individual statistical index as in all the other SIMCA variants de-

scribed in this article, a chart of the maximum values between OD
ODcrit

and S D
S Dcrit

- max
{

OD
ODcrit
, S D

S Dcrit

}
-

can alternatively be utilised for assessing whether a sample can be considered a member or not of
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Figure 7. Cell dataset - Normal cell class model - Overall classification specificity yielded in external validation by

all the tested variants of SIMCA. Panel A) refers to Sim-SIMCA. Panel B) refers to Alt-SIMCA. Panel C) refers

to CI-SIMCA. Panel D) refers to DD-SIMCA. The represented confidence intervals are delimited by the 2.5-th and

97.5-th percentile of the empirical distribution of the corresponding figures of merit retrieved through the repeated

double-cross validation strategy described in Section 3. Bar colour-coding - for A), B) and C) - and x-axis labels

relate to the approaches used for estimating the threshold values for OD and S D, respectively.

Figure 8. Cell dataset - Normal cell class model - Overall classification efficiency yielded in external validation by

all the tested variants of SIMCA. Panel A) refers to Sim-SIMCA. Panel B) refers to Alt-SIMCA. Panel C) refers

to CI-SIMCA. Panel D) refers to DD-SIMCA. The represented confidence intervals are delimited by the 2.5-th and

97.5-th percentile of the empirical distribution of the corresponding figures of merit retrieved through the repeated

double-cross validation strategy described in Section 3. Bar colour-coding - for A), B) and C) - and x-axis labels

relate to the approaches used for estimating the threshold values for OD and S D, respectively.

Figure 9. Cell dataset - Normal cell class model - A) OD, B) S D and C) max
{

OD
ODcrit
, S D

S Dcrit

}
charts returned by Sim-

SIMCA for the external test set samples. D) d, E) c and F) f charts yielded by Alt-SIMCA, CI-SIMCA and DD-

SIMCA, respectively, for the external test set samples. The dashed lines denote the decision thresholds corresponding

to each one of these distance metrics. In Sim-SIMCA, an object is rejected as an outlier if for it either OD or S D is

found to be larger than its associated decision threshold estimated as detailed in Section 2.2.6. Alternatively, an object

is rejected as an outlier if max
{

OD
ODcrit
, S D

S Dcrit

}
is found to be larger than 1. In Alt-SIMCA, CI-SIMCA and DD-SIMCA,

an object is rejected as an outlier if for it d, c or f is found to be larger than its associated decision threshold estimated

as detailed in Sections 2.2.3, 2.2.4 and 2.2.5. Results are displayed only for the models leading to the highest overall

classification efficiency. Axes were rescaled for an enhanced visualisation.

Figure 9. Continuation.
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the category of interest: only those objects exhibiting max
{

OD
ODcrit
, S D

S Dcrit

}
larger than 1 are rejected

as outliers.

When multiple target classes are simultaneously investigated, in order to determine the degree of

potential confusion between any pair of them, bivariate extensions of Figures 9C, 9D and 9E the

so-called Coomans plots [60], can be constructed. For a given set of specimens, a Coomans

plot (see, for instance, Figure 10) shows the values of the joint distances d (for Alt-SIMCA), c

(for CI-SIMCA) or f (for DD-SIMCA) from two distinct class model subspaces simultaneously.

According to the illustration in Figure 10, it is clear that:

• a sample is deemed belonging only to the first category under study if the symbol associated

to it falls in the bottom-right area of the graph;

• a sample is deemed belonging only to the second category under study if the symbol asso-

ciated to it falls in the top-left area of the graph;

• a sample is deemed belonging to none of the two categories under study if the symbol

associated to it falls in the top-right area of the graph;

• a sample is deemed belonging to both the categories under study if the symbol associated to

it falls in the bottom-left area of the graph;

It goes without saying that for the same reason highlighted before, a Coomans plot for Sim-SIMCA

needs to be built using the maxima between OD
ODcrit

and S D
S Dcrit

.

An additional strategy (rather frequently exploited in literature) for the visualisation of the results

yielded by a one-class SIMCA modelling approach implies displaying, either in linear or logarith-

mic scale, the values of the ratios OD
ODcrit

and S D
S Dcrit

(or OD
OD0

and S D
S D0

when DD-SIMCA is concerned)

for a certain group of observations (see, e.g., Figure 11). Based on a similar graph, all the sym-

bols found to be located within the acceptance subregion (bottom-left) relate to objects recognised

as member of the explored category and vice versa. This acceptance subregion is delimited by a

frontier that is estimated differently depending on the SIMCA variant resorted to:

• in Sim-SIMCA, the acceptance subregion is a square with unit-length sides;
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Figure 10. Cell dataset - Normal cell class model vs small cell class model - Coomans plots (in logarithmic scale)

yielded by A) Sim-SIMCA, B) Alt-SIMCA, C) CI-SIMCA and D) DD-SIMCA for the external test set samples. The

dashed lines denote the decision thresholds corresponding to the max
{

OD
ODcrit
, S D

S Dcrit

}
, d, c and f statistics, respectively.

Notice that every graph is partitioned into four distinct subregions and that i) a specimen is deemed belonging only to

the normal cell class if the symbol associated to it falls in the bottom-right one, ii) a specimen is deemed belonging

only to the small cell class if the symbol associated to it falls in the top-left one; iii) a specimen is deemed belonging

to none of the two categories under study if the symbol associated to it falls in the top-right one, and iv) a specimen is

deemed belonging to both the categories under study if the symbol associated to it falls in the bottom-left one. Results

are displayed for models adjusted as those Figure 9 refers to. Axes were rescaled for an enhanced visualisation.

Figure 10. Continuation.

Figure 11. Cell dataset - Normal cell class model - OD
ODcrit

vs S D
S Dcrit

plot yielded by A) Sim-SIMCA, B) Alt-SIMCA and

C) CI-SIMCA for the external test set samples. D) OD
OD0

vs S D
S D0

plot returned by DD-SIMCA for the external test set

samples. Notice that a sample is rejected as an outlier if the symbol associated to it falls outside the acceptance area

delimited by the dashed lines (whose geometry and extension depend on the specific classification rule adopted - see

Section 3.2 for further details). Results are displayed only for the models Figure 9 refers to. Axes were rescaled for

an enhanced visualisation.

Figure 11. Continuation.
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• in Alt-SIMCA, the frontier of the acceptance subregion is the circular arc satisfying the

relation: √(
OD

ODcrit

)2

+

(
S D

S Dcrit

)2

=
√

2 (32)

which defines a curved line;

• in CI-SIMCA, the acceptance subregion frontier is defined as the geometrical locus of all

points satisfying the relation:

OD
ODcrit

+
S D

S Dcrit
= ccrit = gχ−2 (α, h) (33)

which defines a straight line;

• in DD-SIMCA, the acceptance subregion frontier is defined as the geometrical locus of all

points satisfying the relation:

LOD
OD
OD0

+ LS D
S D
S D0

= fcrit = χ
−2 (α, LOD + LS D) (34)

which also defines a straight line.

As a concluding remark, it is worth stressing here that all the graphical tools employed in this

section enable the assessment of what is also known as the local specificity of a SIMCA class

model, i.e. its specificity with respect to particular individual non-target categories.

4. Discussion

This article was conceived in an attempt to provide practitioners with pragmatic guidelines

for a sensible and correct utilisation of SIMCA as well as with answers to four basic questions:

why performing CM by means of SIMCA? In which circumstances is SIMCA a suitable option

for tackling classification tasks? How applying SIMCA in a classification scenario? How not

applying SIMCA in a classification scenario?
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4.1. Why applying SIMCA?

As already stressed in Section 1, SIMCA and, more generally, CM approaches are grounded

on an operating principle that renders them unique with respect to standard and better-established

discrimination techniques. CM relies, in fact, on the training of individual models for each class

of samples under study (with the possibility of modelling even a single class, if needed), which

enables the definition of boundaries or frontiers for these categories whose nature technically only

depends on the features of the objects strictly belonging to them. As a result, new incoming

specimens can be recognised not only as members of one class or another, but also as confused,

i.e., likely to belong to two or more classes, or as not coming from any of the modelled categories.

In other words, rather than setting a classification problem in a discriminant way as “is a specimen

coming from class A, class B or class C?”, CM translates it into “is a specimen coming from class A

or not/class B or not/class C or not?” [61, 62]. And this yields several benefits in many application

scenarios that will be briefly discussed in the next subsection. Additionally and more concretely,

SIMCA guarantees a further advantage over alternative CM strategies originally developed in the

machine learning domain (for example, One-Class Support Vector Machines - OC-SVM [63, 64]):

being a white box latent variable-based methodology, it theoretically ensures full interpretability

of the systematic patterns of data variability characteristic of the modelled categories.

4.2. When applying SIMCA?

SIMCA constitutes an ideal solution for addressing and solving classification problems when

the interest is focused only on one or few categories of objects. Food [65, 66] and pharmaceutical

authentication [67, 68] as well as industrial process monitoring [69] are just some of the poten-

tial scenarios where attention is paid solely to single classes of specimens, i.e. added-value or

high-quality products and in-control time periods, respectively. Furthermore, readers can easily

envision that, in similar circumstances, it is also particularly complicated to plan sampling cam-

paigns for the collection of measurement observations representative of all the possible categories

one could actually observe in reality (e.g., all possible adulterated versions of a drug, all possible

manufacturing faults, etc.). And in such situations, as also underlined in Section 1, the application

of a discriminant approach might lead to an unavoidable bias since each object under study will
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always be assigned to one of the classes taken into account during the model training phase even

if they represent only a reduced ensemble of those from which such an object can ideally originate

[70]. This is the main reason why Rodionova et al. have recently stated that discriminant analysis

is an inappropriate method of authentication [16] and can be replaced by a rational utilisation of

SIMCA.

4.3. How applying SIMCA?

In this article, 4 variants of the original SIMCA algorithm proposed by Wold in 1976 were

thoroughly described. All these variants share the same modelling principle (a class-wise PCA de-

composition of the data at hand), but are based on distinct decision rules when it comes to assigning

an object to the investigated category/categories or not. In Section 3.1, it was basically shown that

such decision rules yield virtually indistinguishable outcomes when the sample size of the training

set for the modelled category/categories is relatively high (as when the cell dataset was analysed)

and that an appropriate tuning of the SIMCA model dimensionality together with a sensible choice

of the OD and S D reference distributions can significantly enhance the classification performance

while reducing the differences they may exhibit when such a sample size decreases: it can be said,

for example, that when the beer spectra were processed, compliant adjustment approaches resulted

in relatively higher percentages of classification efficiency especially when ODcrit was estimated

according to Equations 20 and 23 and when Alt-SIMCA and CI-SIMCA were concerned. Such an

improvement, instead, was found to be less pronounced for Sim-SIMCA. Anyway, regardless of

the specific conclusions that can be drawn in these two particular case-studies, interested readers

are provided with a fully functional Matlab code capable of running all the aforementioned vari-

ants of SIMCA and by which possibly carrying out comprehensive comparative studies in diverse

case-studies typical of their own domain of expertise.

4.4. How not applying SIMCA?

As should already be clear to the reader at this point of the article, typical CM problems call

for the collection and analysis of samples of one or more well-known and well-defined categories

of interest and (possibly) samples belonging to a plethora of ill-represented classes that do not
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necessarily constitute all the others from which specimens can originate. This strictly implies

that often such sets of available non-target class objects only span a reduced portion of the vari-

ability which all those to be potentially assessed in the future may actually exhibit. It has also

been highlighted that, in similar circumstances, discriminant approaches will not be capable of

returning optimal classification outcomes. Furthermore, even if operational attempts are made in

order to enhance sample representativeness and cover a larger amount of sources of sample vari-

ability and/or a higher number of sample categories, discrimination models might easily become

overparametrised, i.e., too complex and less robust when it comes to characterising new incoming

observations.

Nonetheless, although resorting to discriminant techniques in CM scenarios seems to be one of

the most frequent mistakes users commit, another practice that is common among chemometri-

cians and analytical chemists and that in certain cases can be procedurally questionable relates to

the utilisation of CM strategies like SIMCA for tackling discrimination tasks: indeed, notwith-

standing that this practice may offer a complementary perspective on the investigated issues, by

forcing, for example, SIMCA to assign each single specimen under study to only one or at least

one of the considered classes (according, e.g., to a minimum reduced distance or combined index

criterion) one might risk to literally denature its essence and significantly jeopardise its flexibility.

Conversely, a widespread misunderstanding to be absolutely avoided in situations where SIMCA

and, thus, CM are concerned is gathering the ill-represented classes mentioned before into an in-

dividual one and, afterwards, model it as a whole. In such a way, in fact, a severe bias could

be induced in the obtained outcomes which could conceivably lead to draw skewed and distorted

conclusions. It should now also be evident how many times, rather than blindly choosing the

classification method yielding the best predictive performance, it is more critical and important to

select the most pertinent one (and apply it in the most pertinent fashion) for answering the specific

scientific questions at hand.

5. Conclusions and perspectives

SIMCA is a statistical classification approach into which nowadays new life seems to have

been breathed. Its inherent capability of coping with multivariate datasets together with its robust-
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ness against the potential unbalancedness affecting the size of the different categories of samples

investigated - deriving from the fact that each one of them can be treated separately and inde-

pendently - has lately attracted much attention from scientists of disparate fields of interest. This

tutorial was basically developed for this particular reason and with in mind the specific aim of

easing the access of non-expert users to such a tool. Yet, the job of chemometricians in this regard

is far from being definitely finished. Novel research lines, indeed, can be easily envisioned in the

context of SIMCA: just to mention a few, extending the SIMCA algorithm for the analysis of non-

linear data structures (based, e.g., on the principle of kernel transformations [71]) may constitute

an intriguing and challenging subject of study, while advanced tools for the visualisation of the

importance or relevance of the recorded variables in SIMCA models still need to be designed and

implemented [72]. Concerning this aspect, it must be noticed that, in [15], Wold and Sjöström

had already defined measures for the discriminant and modelling power of a variable, but both

these measures have to be somehow adapted for being possibly exploited in the framework of the

most recent SIMCA variants. Alternatively, graphical representations such as the well-established

contributions plots [73] could be resorted to, but, to the best of the authors’ knowledge, they are

not readily suitable for dealing with joint distance indices like d, c or f .

It is worth noticing, in addition, that some of the different SIMCA versions described in Section

2 (namely, the original one, Alt-SIMCA and DD-SIMCA) have been already adapted to handle

multi-way arrays [31, 32] through a modification of their computational procedure that replaces

the PCA decomposition step with a Parallel Factor Analysis (PARAFAC [74–76]) or Tucker3 [77–

79] factorisation. Such multi-way SIMCA approaches will be soon made available in the Matlab

toolbox provided together with this tutorial, which, hopefully, will serve as an inspiration also for

further advances in this sense.
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Appendix

In order to help the reader find the needle in the haystack of all the SIMCA variants described

here, Table 1 contains a list of the most popular commercial and non-commercial software tools

and computational packages - currently available and developed prior to the one provided together

with this tutorial - that enable SIMCA modelling as well as details on the particular SIMCA version

they incorporate.
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Highlights 

 

• A tutorial on Soft Independent Modelling of Class Analogy 

(SIMCA) 

 

• Practical guidelines about why, when and how/how not employing 

SIMCA 

 

• A comparison among four distinct variants of the original SIMCA 

algorithm 

 

• A flowchart on how to fine-tune SIMCA model parameters 

 

• Rational suggestions about SIMCA model assessment and 

validation 
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