This is the peer reviewd version of the followng article:

Hierarchical Traffic Management of Multi-AGV Systems With Deadlock Prevention Applied to Industrial
Environments / Pratissoli, F; Brugioni, R; Battilani, N; Sabattini, L. - In: IEEE TRANSACTIONS ON
AUTOMATION SCIENCE AND ENGINEERING. - ISSN 1545-5955. - (2023), pp. 1-15.
[10.1109/TASE.2023.3276233]

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

note finali coverpage

15/11/2023 01:38

(Article begins on next page)

Hierarchical Traffic Management of Multi-AGV
Systems with Deadlock Prevention Applied to
Industrial Environments

Federico Pratissoli', Riccardo Brugioni', Nicola Battilani?, Lorenzo Sabattini'

Abstract—This paper concerns the coordination and the traffic
management of a group of Automated Guided Vehicles (AGVs)
moving in a real industrial scenario, such as an automated factory
or warehouse. The proposed methodology is based on a three-
layer control architecture, which is described as follows: 1) the
Top Layer (or Topological Layer) allows to model the traffic
of vehicles among the different areas of the environment; 2)
the Middle Layer allows the path planner to compute a traffic
sensitive path for each vehicle; 3) the Bottom Layer (or Roadmap
Layer) defines the final routes to be followed by each vehicle and
coordinates the AGVs over time. In the paper we describe the
coordination strategy we propose, which is executed once the
routes are computed and has the aim to prevent congestions,
collisions and deadlocks. The coordination algorithm exploits a
novel deadlock prevention approach based on time-expanded
graphs. Moreover, the presented control architecture aims at
grounding theoretical methods to an industrial application by
facing the typical practical issues such as graphs difficul-
ties (load/unload locations, weak connections, ...), a predefined
roadmap (constrained by the plant layout), vehicles errors,
dynamical obstacles, etc. In this paper we propose a flexible and
robust methodology for multi-AGVs traffic-aware management.
Moreover, we propose a coordination algorithm, which does not
rely on ad hoc assumptions or rules, to prevent collisions and
deadlocks and to deal with delays or vehicle motion errors.

Note to Practitioners—This paper concerns the coordination
and the traffic management of a group of Automated Guided
Vehicles (AGVs) moving in a real industrial scenario, such as an
automated factory or warehouse. The proposed methodology is
based on a three-layer control architecture, which is described
as follows: 1) the Top Layer (or Topological Layer) allows
to model the traffic of vehicles among the different areas of
the environment; 2) the Middle Layer allows the path planner
to compute a traffic sensitive path for each vehicle; 3) the
Bottom Layer (or Roadmap Layer) defines the final routes to
be followed by each vehicle and coordinates the AGVs over
time. In the paper we describe the coordination strategy we
propose, which is executed once the routes are computed and
has the aim to prevent congestions, collisions and deadlocks. The
coordination algorithm exploits a novel deadlock prevention ap-
proach based on time-expanded graphs. Moreover, the presented
control architecture aims at grounding theoretical methods to an
industrial application by facing the typical practical issues such
as graphs difficulties (load/unload locations, weak connections,

1 Department of Sciences and Methods for Engineering (DISMI), Univer-
sity of Modena and Reggio Emilia, Italy {federico.pratissoli,
lorenzo.sabattini}@unimore.it,
brugioniriccardo@gmail.com,

2 Industria Tecnologica Italiana S.r.I (IT-I), Reggio Emilia, Italy
nicola.battilani@it-i.it

This paper describes the results found during the research project in
collaboration with Proxaut s.r.1.

This work was supported by the COLLABORATION Project through the
Italian Ministry of Foreign Affairs and International Cooperation.

Fig. 1: The figure shows the factory structure (red, green, and
black drawings) and the plant graph G of our use case, which is
elicited by a real application. In particular, red nodes indicate
load or unload locations, while red nodes indicate transit areas.

...), a predefined roadmap (constrained by the plant layout),
vehicles errors, dynamical obstacles, etc. In this paper we propose
a flexible and robust methodology for multi-AGVs traffic-aware
management. Moreover, we propose a coordination algorithm,
which does not rely on ad hoc assumptions or rules, to prevent
collisions and deadlocks and to deal with delays or vehicle motion
errors.

Index Terms—Multi-robot system, Automated factory, Mobile
robotics, Software, Traffic management, Deadlock

I. INTRODUCTION

Automated warehouses and automated factories are spread-
ing as the solution to the increasing demand and the Au-
tomated Guided Vehicle (AGV) systems are consequently
gaining popularity and relevance. AGVs increase efficiency,
flexibility, and reduce costs by helping to automate a manu-
facturing facility or warehouse [[1]. As such, several strategies
have been developed to deal with major issues in automated
warehouses, such as traffic management or safety and perfor-
mance guarantees [2]. Along these lines, motion coordination
of a high number of vehicles has become a widely studied
research topic in the field of multi-robot systems [3].

Different strategies have been deepened to increase global
performance indices such as efficiency, safety, scalability, or
robustness to failures [4]. Two approaches can be mainly found
in literature: centralized and decentralized approaches. The
former strategy is able to find the optimal solution for the

multi-robot system planning and control problem [5]. Thus,
centralized approaches show generally better performances
when compared to decentralized ones [6]. However, the prob-
lem complexity — and hence computational costs — quickly
becomes impractical while increasing the number of robots
over a few tens [7]]. Moreover, centralized control methods
are usually classified as coupled or decoupled. Coupled meth-
ods [[1] control the whole system exploiting classical single-
vehicle motion planning control methods. The task is to find
a path for each agent in the group, from a start to a goal
position, which avoids collisions between agents. Two robots
are in a collision if they are located in the same position
at the same time. This Multi-Agent Path Finding problem
(MAPF) [8] can be solved for example exploiting the well-
known Conflict-Based Search (CBS) optimal algorithm [9],
a typical coupled approach. These approaches generally find
optimal solutions, at the cost of a high computational effort
and limited scalability. Decoupled methods [10], [11]], [12]
simplify the vehicles coordination and control problem by
dividing it into two main phases: path planning and motion co-
ordination. Decoupled control algorithms are generally much
faster than coupled ones, however, they may find sub-optimal
solutions and they are prone to generating deadlocks.

In decentralized approaches [11l], [13], [14], each robot
communicates with its neighboring ones to estimate the global
performance of the system and to make local control deci-
sions [[15]. Decentralized methodologies are computationally
less demanding than centralized ones. The computation for the
multi-robot system coordination is shared among the agents,
making the system easily scalable to large scenarios [16].
However, these methodologies present some disadvantages:
they generally find a sub-optimal solution to the coordination
problem and, especially, they may fail in finding a solution
and a feasible path for every agent in the system due to
deadlocks [17], [18]. Moreover, the complexity may still be
high in terms of exchanged messages or message size.

For these reasons, although relevant studies have been
proposed to manage the coordination of automated vehicles
exploiting decentralized approaches, the traffic and coordina-
tion of AGVs in industrial scenarios is generally managed
by a centralized supervisor. In other words, there exists a
central computational unit that manages all the information
coming from the environment and the vehicles to optimally
coordinate the vehicles. Moreover, decoupled approaches are
preferable to coupled ones, since these generally require
a significant amount of computational effort, are generally
more vulnerable to failures and are hardly scalable to large
teams of robots [19]. The management of a fleet of AGVs
includes dealing with a multi-robot path planning problem:
in decoupled control strategies this is generally decomposed
into modules to reduce the complexity [20]. A hierarchical
architecture control strategy can be exploited to solve planning
and coordination problems for large-scale infrastructures [17].
Every robot is coordinated along its planned path to its goal
in order to avoid conflicts and dissolve deadlocks.

Typically, in modern automatic warehouses and factories
the movements and trajectories of the automatic vehicles are
defined by the roadmap, which consists of a set of predefined

virtual paths, as illustrated in [21]. The roadmap depends
on the plant structure and has a relevant role in the traffic
management of the AGVs affecting the performance of the
control system. Thus, typically, in industrial applications, once
a path has been computed, it is assigned to every AGV and
their coordination is managed over the plant following a set
of traffic rules manually defined during the installation of the
system [22]]. This approach requires a lot of personnel working
during the AGV system deployment in the plant and when
variations are required in the system, since all the exceptions
have to be manually managed. The work illustrated in [23],
[24] describes the coordination diagrams, which are tools used
for representing the possible collisions among the vehicles,
useful to handle the coordination of the AGVs limiting the
use of manual traffic rules. Several methodologies have been
proposed for the definition of a roadmap, typically based on
random sampling techniques [25]], [26] or using probabilistic
methods [27]. Another strategy is proposed by [28] which
is more focused on the roadmap definition for industrial
scenarios. These works aim to find a solution for the automatic
generation of the roadmap, building the framework for traffic
management of the AGVs upon such solution. Thus, the
roadmap is defined to help the coordination of vehicles in
the warehouse or factory. However, this approach excludes
the majority of the industrial scenarios where the roadmap
is provided a priori and represents then a constraint for the
traffic manager: e.g. the coordination strategy proposed in [28]]
can not be applied in these industrial scenarios. Moreover, the
mentioned methods are designed for managing robots in static,
dedicated environments and cease to work if key assumptions
on the infrastructure or on the fleet are dropped, as typically
happens in industrial applications [29].

In this paper, we present a centralized and decoupled control
strategy to efficiently coordinate the movements of a fleet of
automated vehicles in a real industrial scenario. The proposed
approach allows us to build a control system scalable to large
fleets of vehicles and able to efficiently deal with the issues and
performance requirements typical of an industrial application.
This study is built upon the work presented in [30]], where
preliminary results were introduced on a hierarchical approach
and methodology to design a flexible traffic manager able
to coordinate a fleet of real AGVs in an industrial scenario.
The control strategy exploits a multiple layer approach, which
allows to simplify path planning computation, model the
traffic and coordinate the vehicles on the planned routes.
The proposed control architecture is built upon a predefined
and fixed roadmap of the plant. In fact the structure and
organization of an automated warehouse or factory is usually
designed to optimize and simplify the coordination of multiple
AGVs in the plant. The presented work considers the common
case where the AGV system has to be deployed in an existing
and structured plant, where the roadmap of the plant is given
and cannot be modified. The proposed methodology aims
to introduce a flexible and an efficient system able to deal
with non-idealities and issues introduced typically by a real
and industrial implementation of the roadmap, such as the
presence of locations where AGVs are required to perform
loading/unloading operations (red nodes in Fig. [I| and Fig. [3)),

lack of redundancy or bidirectional single vehicle corridors.
The proposed strategy, as stated in [30]], aims to be robust
to the issues that usually affect industrial scenarios, such as
dynamic obstacles and communication errors [31]]. While the
overall architecture was only presented in [30] in a preliminary
form, in this paper we propose the full coordination strategy,
including a detailed description of the coordination method im-
plemented on the lowest layer of the hierarchical architecture,
which aims to avoid the collisions among the AGVs, which
are moving on the precomputed routes. The coordination
algorithm, described in Section [VI} exploits the prediction of
future locations of the AGVs to solve the future conflicts.
Furthermore, deadlock issues were not considered in [30]: in
this paper we present a deadlock prevention algorithm, which
exploits the time expanded graphs [32].

Deadlock situations arise when a group of tasks becomes
interlocked in such a way that they cannot be completed. The
authors in [33]] theorize the general conditions sufficient to
generate a deadlock situation. The most relevant one for a
multi AGV system defines that a deadlock state is generated
by a circular chain of tasks, such that each task holds the
resources needed by the next task in the chain. Different
approaches were studied to prevent deadlock occurrence in
a multitasking system for various scenarios [34], [33]]. In a
multi vehicle system scenario, the authors expressed the traffic
deadlock in terms of graphs and show how a circuit (directed
loop) in the generated graph is a necessary and sufficient
condition for a deadlock.

In this paper, we propose a methodology based on time
expanded graphs to deal with traffic deadlocks for every time
step in the trajectory followed by the AGVs. The proposed
methodology has been integrated into the control software of
real industrial plants, in collaboration with Proxaut s.r.l.: this
allowed us to validate the proposed methodology in a real use
case. In this work, we describe the experiments we conducted
in one automated factory and we compare the performance
of the developed software with the company’s one usually
implemented on its plants.

The rest of the paper is organized as follows. Section
aims at providing the reader with the main background notions
that will be used in this paper. Section |I1I| gives an overview
and a brief description of the control architecture proposed in
this paper. Section [[V|describes in detail the proposed multi-
layer architecture, the role of the layers in the coordination
and planning and their interconnections. Section [V| focuses
on the proposed path planning strategies adopted to consider
the traffic status in the path computation. In Section
we describe the whole traffic manager algorithm, the AGVs
coordination methodology and the proposed deadlock preven-
tion policy. Finally, Section reports the simulations and
the experiments conducted on the real industrial plant and
Section [VIII] deals with the conclusion and future works.

II. ALGEBRAIC GRAPH THEORY

In this section, we recall some notions on graph theory that
will be used in the paper to model interconnections in our
multi-layered architecture. The reader is referred to [35] for
additional details.

Let G = (N, &) be a directed graph characterized by a set
N(G) of vertices or nodes and a set £(G) C N (G) x N(G) of
edges. Given an edge (i, j) € £, then the node j is a neighbor
of 7. Let K be a subgraph of G, then K is a graph where the
node set V' (K) is a subset of A'(G) and the edge set £(K)
is a subset of £(G). A path is a finite sequence of edges that
joins a sequence of nodes, which are all distinct. In a path of
length L, the nodes can be listed as {ni,ng,...,nr}, such
that the edges are (n;,mn;41), where i =1,2,... L — 1.

Let G be a directed and connected graph, then at least one
path exists between each pair of nodes in N (G). Moreover, G
is a strongly connected graph if, for any pair of nodes u, v in
N(G), a directed path can be defined from u to v and from v
to u. Contrariwise, G is a weakly connected graph if, for any
pair of nodes u,v in N'(G), a directed path exists from u to
v, but not necessarily from v to u.

Given a directed graph G, we assume each edge in £(G)
is associated with a positive weight. Thus, given two nodes
u,v € N(G), the minimum cost path from u to v can be
computed by using standard graph search algorithms (e.g.,
Dijkstra, A*, DFS — see [36], [37] for details). In this paper,
we exploit the graph to represent the predefined feasible routes
to be followed by vehicles in the plant. In this sense, the graph
nodes N (G) represent the reachable locations in the plant
and the edges £(G) model the available roads between two
nodes. Accordingly, the edge weight can be arbitrarily defined
to quantify relevant information: in this paper, we will use the
weights to quantify the expected travel time. Standard graph
search algorithms are used to compute the path from a start
to a goal location in the plant minimizing the travel time.

Moreover, let us introduce the time-expanded approach [3§]]
which constructs the time-expanded digraph in which every
node corresponds to a specific time event and edges between
nodes represent the connections between the two events. Every
node of the time-expanded graph consists of a static graph,
hence a time-expanded graph can be considered as a sequence
of static graphs (see Fig. [2). Let G¢(t) be a directed time-
expanded graph. We have that G,(t) = {G(1),G(2),...,G(:)},
where G(i) is a snapshot of G; at time ¢ = 7 and is denoted
by G(i) = (£(4),N'(7)). In the proposed control strategy, we
exploit the time expanded graph to represent the precedences
and the result of the negotiation between vehicles following
the execution of the coordination algorithm. Each node of the
graph represents an automated vehicle in a particular instant
of time and the directed edges between the nodes represent
the result of the negotiation determined by the coordination
diagram (see Sec. [VI-A). The utility of the time expanded
graph is to represent the precedences and the negotiation over
time. Hence, for example, in Figure @, at the instant of time
t = 4 the AGV represented by node A has to wait for the
AGYV (C, and similarly, the AGV D has to wait for the AGV
B.

III. SYSTEM OVERVIEW

The system proposed in this paper is composed of (i) a
multi-layer architecture to model the environment, and (ii)
a traffic-aware coordination and path planning strategy. The

©— @
E——~@—>

—
I
o
—
]
—

t=4

Fig. 2: An example of directed time expanded graph used in
the proposed coordination strategy. The graph considered in
figure is composed by four nodes: A, B, C, D. The graph is
considered over time and the edge set £(G(i)) at time ¢ = 4
can be different from the edge set £(G(i+1)) at time ¢t = i+1.

main objective is to coordinate a large number of AGVs in
an industrial environment, preventing traffic congestion. The
control approach is centralized to meet the performances and
the efficiency required by an industrial application, hence the
trajectories are optimally computed for every vehicle with a
global knowledge over the industrial plant. Furthermore, the
control architecture is decoupled in the path planning and in
the coordination strategy to reduce the computational cost and
make the system easily scalable. The multi-layer architecture,
pictorially represented in Fig. [3] will be detailed in Section [[V]

To model the traffic evolution quantitatively, we divide
the environment into three layers: (i) the Top Layer (or
Topological Layer), responsible for traffic management; (ii)
the Middle Layer, responsible for the path planning of the
AGVs; (iii) the Bottom Layer (or Roadmap Layer), containing
all possible vehicle routes and handling the fleet coordination.
The roadmap models all the possible trajectories the vehicles
can follow and all the locations the vehicles can occupy in the
plant. Hence, the roadmap model consists in a graph where
the nodes represent the locations sampled in the plant. The
accurate tracking of the AGV over the roadmap is guaranteed
by the high number of points (the graph nodes) that sample
the feasible trajectories. A trajectory is, indeed, modeled as a
sequence of connected nodes.

Hereafter, the term “path” refers to a generic sequence of
nodes computed by the planner over a graph, while “route”
refers to the specific sequence of nodes computed over the
roadmap, which is necessary to determine the trajectories to
be followed by the vehicles. Upon the computation of the route
and trajectory for each vehicle, it is possible to determine the
location of the vehicles over time, since they move with a
known velocity profile. As a result, it is possible to predict
the future location of the vehicles and take action to prevent
congestion and deadlocks.

The path planning and coordination strategy, detailed in

Topological Layer - graph V

Middle Layer - graph W
~GD (G

= H
T

Fig. 3: Overview of the proposed multi-layer architecture. The
figure shows a portion of the three graphs, one for each layer,
of the studied use case, from the bottom: the roadmap layer,
the middle layer, the topological layer. On the roadmap layer
the red nodes indicate the load or unload locations in the
factory, while the white nodes indicate the transit locations.
The blue dotted lines show the different plant areas, divided
by topology, each one assigned to a sector S.

Section [V| exploits information from the three layers, to define
an optimal and feasible route for each AGV. In detail, the
Top Layer is based on a discretization of the environment in
topological areas (intersections, load/unload areas, congestion
risk areas, etc.) and provides quantitative information about
the current AGVs traffic in each of them. Each AGV’s path
planning consists of two main steps. A path is computed
over the Middle Layer, which models the actual connections
among the areas of the Topological Layer and knows the traffic
information of these areas. Subsequently, the computed path
is exploited to plan the actual feasible route of the AGVs
over the Bottom Layer, where the trajectories are built over
time and conflicts among the AGVs are avoided by means of
coordination.

Given a route, the trajectory following problem is the
problem of computing a kynodynamically feasible temporal
profile of the vehicle control inputs to move the robot along the
given route. This problem is beyond the scope of this paper and
will not be addressed. Thus, we assume each AGV is equipped
with an on-board control algorithm capable of ensuring safety
(i.e. [39], [40Q]) and accurate trajectory tracking (i.e. [41], [42]).

Once the route is computed from the path planner in the
Bottom Layer, the AGVs have to be coordinated on the
respective paths to prevent collisions and deadlocks. A col-

lision between two AGVs occurs when they occupy the same
location at the same time. The purpose of the coordination
is to modify the time the vehicle reaches the conflicting
locations. In this paper we propose a coordination strategy
based on a future prediction of the AGVs trajectories able to
solve future conflicting situation and prevent congestions or
deadlocks. Deadlock situations arise when a group of vehicles
becomes interlocked in such a way that they cannot complete
their tasks. The coordination between AGVs is represented
exploiting precedence graphs, where the nodes are the AGVs
and the edges represent the precedences between them. This
information is extended over time through the time expanded
graph where every layer coincides with a precedence graph at
definite time step. Avoiding cyclic loop inside the graph we
prevent deadlocks [33]].

We assume that the coordination strategy runs on a central
elaboration unit, communicating with the AGVs. In particular,
the central control process periodically sends a command to
the AGV, which contains the future steps of the route the
vehicle has to follow and the time the vehicle has to wait
in a node (location) that the traffic manager has set to manage
congestions and deadlocks. Moreover, we assume each on-
board low-level control of the vehicle can deal with com-
munication non-idealities, such as packet loss or transmission
delays. Hence, communication issues are assumed non-critical
for the low-level control. However, it may occur that the
AGYV is not able to execute a given command because of
communication issues, robot hardware issues or safety issues.
Since all these issues bring to a stop/slowdown of the vehicle,
they can be equally treated by the central control traffic
manager as unexpected execution errors on the interested
vehicle. Therefore, the proposed control strategy needs to be
robust to the delays introduced on the AGV motion by these
errors (in the video attached we show some of the experiments
conducted).

IV. MULTI-LAYER ARCHITECTURE

We here detail the proposed multi-layer architecture by
describing all layers, their interconnections and how they are
used for coordination and traffic management.

A. Roadmap Layer (Bottom Layer)

The roadmap of the plant represents all the possible routes
the AGV can follow and the locations the AGV can cross in
the environment. The Bottom Layer provides a modeling of
the roadmap through a graph.

This layer is responsible for the planning of the route to be
followed by the AGV. The plant graph G is then introduced to
abstract the description of the roadmap: the set of nodes N'(G)
represents the locations in the plant the vehicles can reach,
and the set of edges £(G) represents the feasible trajectories
connecting those locations. Thus, let p;, p; be two locations in
the plant, associated with nodes 4,5 € N (G). Then, the edge
(i,7) exists in E(G) if there exists a kinematically feasible
route from p; to p;. Each edge in £(G) is weighted by the
distance between the two corresponding nodes and it also
contains the average time required by the vehicle to travel

this distance. Therefore, the planned route traveled by the
vehicle and modeled as a sequence of nodes in N(G) is
able to describe the vehicle’s motion over time. Therefore, the
planned route traveled by the vehicles, which is represented as
a sequence of nodes in N (G), serves as an effective means of
describing the vehicle’s motion over time. The traffic manager
planner computes the route over the graph G that not only
minimizes the time required by the vehicle to reach its goal,
but also minimizes the traffic congestion in certain areas of the
plant. This traffic sensitive path planning is performed thanks
to the topological layer.

In this paper we consider a common industrial scenario in
which the AGV system has to be deployed in an already
existing plant. The roadmap, hence, is fixed and can not
be changed to optimize the traffic management of vehicles
as in [28]]. The plant graph, built upon the roadmap, is
consequently treated as a constraint for the modeling, planning
and the design of the control architecture.

A representative example of a roadmap of a middle-size
plant is depicted in Fig. we will hereafter refer to this
example as a use case for the proposed system.

B. Topological Layer (Top Layer)

The Top Layer is the most abstract layer, and considers
the topological representation of the factory or warehouse
as a set of sectors. Sectors correspond to plant areas, such
as intersections, corridors, load or unload areas, relevant
for traffic management. In particular, each sector S can be
distinguished from the others according to either topological,
geometrical or logistical characteristics or other particular
constraints.

The set of interconnected sectors defines a directed graph
V, referred to as the Sectors Graph. Each node S € N (V)
represents a sector and is defined as follows. Let N (Gg) be
the subset of nodes in NV (G) located inside the sector S, where
G is the plant graph and N(G) the respective set of nodes
(see Section [[V-A). Thus, we have that Gg is a subgraph of G
and £(Gs) C £(G). We also assume that all nodes in N(G)
cannot lay on the boundary of two sectors in V, i.e., for each
ue N(G),ue N(S;))Au ¢ N(S;) < S; =5,.Itis worth
noting that the subgraph Gg is not necessarily connected.

Let every edge in £(V) be the connection between two
sectors. Let S1, 52 € N (V) be two sectors, then an edge in
the plant graph G that connects a node in Gg, with a node in
Gg, implies that an edge in £(V) exists to connect S; with
Sa.

We remark that the main role of the Sectors Graph is to
model the traffic of vehicles in the plant and, through the
subsector graph (which will be defined in See section [V-C),
to define a traffic-sensitive path planner (i.e., to avoid conges-
tions.)

Each plant area defined by the respective sector can manage
a maximum number of AGVs without occurring in traffic
issues and congestions. This number is the capacity of the
sector. In the proposed approach the sector’s capacity is set
by the user considering the plant area dimension, its topology
and the presence of escape ways for vehicles in case of high

>®
S»0—0

Fig. 4: A full representation of the sector graph V used to
model the traffic in our use case, which is elicited by a real
industrial application.

traffic situations. A sector is labeled as congested if it contains
more vehicles than its capacity.

The Sectors Graph of the considered use case is shown
in Fig. @] Every node of the graph V keeps the information
about the respective sector capacity. The weight of the edge
that connects the sector ¢ with the sector j is computed at time
t as:

wiyj () = Tj(t) + Diyj Q)
where T} is the traffic weight for the specific sector j defined
as follow:

N, (t)

T;(t) = K &=~o
K-C;

if C; > Nj
. 2
otherwise

where N;(t) is the number of AGVs within the sector j at
time ¢, C; is the capacity of the sector j, D;,; is the Euclidean
distance computed between the centers of the two sectors ¢ and
j, which is proportional to the travel time given the constant
velocity of the AGV, and K is a static gain. Therefore, the
path planner has the possibility to compute the optimal path
that not only minimizes the distance to the destination but
also takes into account the traffic situation and the potential

for congestion (see Sec. [[V-C).

Partitioning the environment in sectors is a critical opera-
tion, that requires human intervention. In particular, human
operators are required to provide the boundaries between
different sectors and each sector capacity since both are
application dependent. Conversely, the set A/(V) can be
automatically computed, e.g., using the Voronoi partitioning
proposed in [12]. The sector is individuated to isolate a
particular area in the plant, such as intersections, corridors or
load/unload locations or parking locations. Once the sectors
have been defined, it is then necessary to tune each sector
capacity based on the specific characteristics of the respective
plant area.

C. Middle Layer

The Middle Layer has a similar definition to that of the
Topological Layer and it allows to have a traffic sensitive path
planner by exploiting the information stored in the Sectors
Graph V thorough the parameter in (2). Over this layer, the
controller integrates the traffic information collected on the
Top Layer with the aim to obtain the routes, defined on the
Roadmap Layer, to be followed by the AGVs. In particular, as
shown in Fig. 3] each sector in the sectors graph V' corresponds
to one or more subsectors on the Middle Layer. Thus, similarly
to V on the Top Layer, we define the subsector graph VW, in
which each node is a subsector (that will be defined hereafter)
and each edge is a connection between two subsectors.

The subsector graph is exploited by the controller to define
a feasible route on the roadmap that minimizes the traffic
of vehicles modeled by the sector graph. Finally, the planner
generates from the path on the subsector graph W the optimal
route on the plant graph G.

As described in [30] a subsector consists in a subset of
the roadmap nodes belonging to a sector. In particular, Let
S € N(V) be a sector, and Gg the respective subgraph, then
N (Ggs) is the set of nodes on the plant graph that belongs to
the sector S, such that N'(Gg) € NV(G). Thus, let Us € N (W)
be a subsector and Gy, the respective subgraph: then, N (Gus)
is the set of nodes in the plant graph that belong to subsector
Ug, such that N'(Gyg) € N(G). Finally, we have that Ug is
a subsector of S if N(Gys) C N(Gs).

The subsectors are determined from the sectors graph. We
consider two neighboring sectors Sj and Si, and Gg, and
Gs, the respective subgraphs. Let the node n; € N (Gg,), if
a path exists that connects ny to one node in N'(Gs,), then
ny is connected to sector Sj. Thus, a subsector Ug of Sj
can be defined as the set nodes in A (Gg,) that are connected
to the same neighboring sectors. Moreover, let Ug,,Ug, be
two subsectors over W. Let Ug, belonging to .S; and gUSi be
the subgraph of G associated with S;, i € {1,2}. Then, an
edge from Ug, to Ug, exists in £(WV) if there exists a path
over G connecting two nodes (u,v) € N(Gus,) x N(Gus,)-
The edge from Us, to Ug, is weighted according to (I), as
for the edge from S; to S5. The weight on the edge that
connects two subsectors belonging to the same sector is zero.
Depending on the subgraph connectivity defined within the
sector, in the extreme cases, a subsector can coincide with a
single roadmap node or with the whole sectors it belongs to.
Each sector contains at least one subsector. Moreover, let Gy
be a subgraph of the plant graph G, defined by a subsector
Us € W, whose node set is given by N(Gy,), then Gy, is at
least weakly connected by definition.

For further information about the subsector division and
why this is necessary the reader is referred to [30]].

V. PATH PLANNING

In this section, we describe the proposed strategy based on
the hierarchical architecture for the multi-AGV path planning.
The method builds upon the architecture presented in Sec-
tion |[V|and consists of exploiting all the information provided
by the layers to obtain a traffic sensible route planning

and replanning strategy robust to errors and uncertainties
introduced by a real scenario.

A. Path Planning

We assume that each AGV is assigned to a mission, which
involves moving from a start location v, € N (G) to a goal
location v, € N(G)]

Let S, Sy € N(V) and Us,,Us, € N (W) be the subsec-
tors and sectors containing the start and goal, respectively.
Thus, a path is computed on W that connects subsectors
Us, and Us,. The traffic status, which characterizes every
sector S € N(V), is monitored and modeled on the Top
Layer over the sectors graph and, at each time t is shared
with the respective subsectors Ug in W. Thus, the traffic
weight is the same for all the subsectors belonging to the
same sector, and is the one computed on the Top Layer for
the respective sector according to (2). Finally, the edges in
E(W), similarly to the edges in £(V), are weighted according
to (). Therefore, the path planner aims to optimize the balance
between the distance, and the time, needed for the AGV to
reach its destination and the level of traffic and the likelihood
of congestion in certain areas of the plant.

Finally, the path, represented as a sequence of subsectors, is
transformed by the planner into a corresponding route on the
roadmap, represented as a sequence of nodes. The roadmap
layer contains the information required to model the vehicles’
trajectories over time. The route, composed of a sequence of
sampled locations within the plant, describes the amount of
time necessary for the vehicle to traverse each section of the
road as defined by an edge on the plant graph. Therefore,
as the average velocity of the AGVs is assumed to be known
and constant, given a planned path, it is possible to predict the
vehicles’ locations over time, as well as the evolution of the
traffic within each sector and, ultimately, throughout the entire
plant. At every time step, the path for each AGV is replanned
and the traffic status is updated consequently. Thus, the optimal
solution found by the planner is the best compromise between
the traffic conditions and minimal path to the goal.

The planner in the Middle Layer computes the optimal
path my = {Uy,...,U,} on graph W, which aims for each
AGYV to avoid congested areas minimizing the time required
to reach the goal. The path planning algorithm is based on the
Dijkstra’s algorithm [36] on VW, with edge weights defined
as in @]) In other words, to exploit the traffic modeling, the
properties of each sector are inherited by all its subsectors.

Finally, the path 7y computed over W becomes a constraint
for the route mg computed over the roadmap and plant graph
G. Hence, the route mg is planned over a portion of the
plant graph G, which consists in a subgraph of G constituted
by only the nodes in N (mw), where N (mw) C N(G) is
the union of the sets of nodes belonging to every subsector
in myy. The route planning consists in searching a feasible
path from v, to v, on the defined portion of plant graph
exploiting the Dijkstra’s algorithm. It is worth noting that,
since the subgraph of G computed on N (U;) is guaranteed

'Mission assignment is interesting yet beyond the scope of this paper. The
interested reader is referred, e.g., to [43] for previous studies on the topic.

to be at least weakly connected, a route can always be found.
Each AGV’s path is dynamically replanned in order to face
variations in the traffic status and occurrence of unpredictable
events (e.g., the AGV slows down or stops due to the presence
of human operators). Each time a path is recomputed, the
traffic status is updated to include the last information about
the current (and future) locations of the AGVs. The more
frequent is the path replanning, the more robust is the traffic
coordination, since a frequent path replanning allows a robust
traffic coordination with respect to dynamic obstacles, traffic
congestion, or tracking/communication errors.

The proposed planning and replanning strategy is summa-
rized in Algorithm |I{ and consists in the following steps:

i) The optimal path 7y from the start subsector to the goal
subsector is computed/updated over VW (Algorithm [I}
line 2). The path planner minimizes a combination of
the traveled distance, and hence the expected travel time,
and the currently known traffic cost.

ii) The path expressed as a sequence of subsectors 7y
corresponds to a sequence of sectors 7y, which are the
sectors that will be crossed by the AGV following the
planned path. Thus, the number of vehicles inside each
sector can be monitored and a model of the traffic status
over time can be easily generated. The sector graph V
weights are updated according to (I)) following the traffic
status changes (Algorithm |1} lines 3 and 4).

iii) The traffic information held by the sector graph V is
inherited by the subsector graph W. Hence, the weights
of the set £(W) are updated according to the new traffic
information (Algorithm [T} line 5).

Algorithm 1: Traffic modeling and path planning

1 if state /= goal then

2 mw « dijkstra(V);

3 T <« update_traffic_status(myy);
4 V <« update_weights (V,T);

5 W < update_weights WV, V);
6 end

VI. THE TRAFFIC MANAGER

The centralized and decoupled controller requires an ef-
ficient coordination strategy in order to prevent collisions
inside the paths computed previously by the planner. Thus, a
proper coordination algorithm together with the described path
planning algorithm complete the traffic manager proposed in
this paper. Inter-agent collisions are then avoided by exploiting
the coordination strategy described in this section, which is
inspired by the coordination diagram approach described
by [23]. The proposed strategy aims to an efficient negotiation
between colliding vehicles to manage the traffic and prevent
deadlocks. The main traffic manager loop is resumed in
Algorithm 2] where the coordination process is executed in
line 18. A mission is assigned to an AGV only when idle.
Each mission involves achieving a loading location, loading
a cargo, moving to the unloading location and unloading the

150
0
200 250

100 g

a0
Fig. 5: Visualization of coordination over time of 8 AGVs in
the use case plant. The figure provides a visualization of the
coordination of 8 AGVs evolved over time in the use case
plant considered. On the plane XY the figure shows the node
coordinates (the location) in the plant, while, on the Z axis the
figure shows the time at which a node is crossed. Different
colors indicates different vehicles, i.e. red is for AGV with
number 1, blue is for AGV with number 6, etc. It is worth
noting that the lines, as sequences of colored nodes, never
cross, since the simultaneous presence of two (or more) AGVs
on the same node at the same time never takes place. This
means that the coordination has been carried on properly and
there are no collisions in the AGV trajectories.

cargo. If the AGV has no more missions to be assigned, it
is automatically sent to the battery charge location. At every
time step, the AGVs positions are updated since the AGV
location is frequently monitored in order to deal with delays
in the trajectory following. Every time period 7' the path of
each vehicle is computed again and the weights in the sector
and subsector graphs are updated according to the new traffic
status. The smaller is the time period 7', the more frequent is
the path computation and the traffic update in the execution of
the traffic manager algorithm. The path planning is followed
by the coordination algorithm (Algorithm [2] line 18) to deal
with collisions and deadlocks. Every time the coordination
algorithm is executed the vehicles motion over time is changed
in order to face conflicts and, hence, the traffic status has to
be updated accordingly (Algorithm [2] line 19).

The higher is the value of 7, the lower are both the
computational effort and the robustness to dynamical obstacles
or vehicle errors. Low values of 7" imply frequent optimal
paths computation and traffic status updates, which makes the
control more responsive to unpredictable events and traffic
congestions.

A. AGVs Coordination on the Roadmap Layer

The path planner computes the route that optimizes the
balance between the vehicles traveled distance, and hence the
traveled time, and the level of traffic over the sectors and the
plant. The path planner provides the necessary information to
consider the evolution of the trajectory over time. Therefore,
once the paths are computed for each AGV, we need to
verify that no collision occurs during the vehicle’s trajectory

Algorithm 2: Traffic management

1 Compute_initial_traffic_and_paths();
2 t < current_time;

3 T <+ time step update;

4 while true do

5 update_AGVs_positions();

6 if current_time >t + T then

7 foreach AGV do

8 startnode < current_position;
9 if goalnode then

10 update_path(Algorithm ;
1 TG < Tw,

12 else

13 goalnode + assign_new_mission();
14 update_path(Algorithm ;
15 TG < Tw,

16 end

17 end

18 coordination_AGVs(Algorithm ;
19 update_traffic();

20 t < current time;

21 end
22 end

Algorithm 3: AGVs coordination

1 H < time horizon window;
2 t < current time;

3 collision_fr

ee < false;

4 while not collision_free do

5 foreach ¢ in H do
6 foreach AGV do
7 collision_free, conflicting_ AGVs <«
get_conflicts(t,AGV);
8 if not collision_free then
9 AGV_winner, AGV_losers <
negotiation(t, conflicting_AGV5s);
10 AGV_winner, AGV_losers < dead-
lock_policy(t, AGV_winner,AGV_losers);
11 solve_conflict(t,
AGV_winner,AGV_losers);
12 end
13 end
14 end
15 end

following. We say that there is a conflict (or a collision)
whenever two or more AGVs are required to occupy the
same node/edge at the same time. Conflicts are detected while
assuming the current paths are traversed with the robot’s
nominal velocity profile (e.g., minimum time) and accurate
tracking.

More in details, neglecting for the moment delays or
execution errors, and assuming a nominal trajectory profile,
we are able to precisely predict the location of each AGV
over a predefined time horizon H. Therefore, conflicts and
congestions can be predicted and prevented by sequencing the
robot access through the shared resource according to priorities
and negotiation. It is worth noting that the vehicles stops
or slowdowns are decided by the coordination strategy and,
hence, the trajectory model over time and the prediction of the
vehicles locations is updated accordingly. This computation
over time on the future locations traveled by the vehicles
implies longer execution time but ensures conflict prevention.

It should be noted that each AGV possesses the capa-
bility to accurately determine its own location within the
environment, and is known to frequently transmit updates
concerning its location, status, and any potential errors to the
central computational unit. To ensure accurate and efficient
operation, the location of each vehicle is constantly measured
and monitored, in order to promptly identify any execution
errors that may cause delays in the trajectory following and
requiring an update in the prediction of the AGVs’ locations
over H. The potential delay of the vehicle on the followed
trajectory is subsequently incorporated into the time model of
the vehicle and into the coordination strategy to account for
any execution errors, thus enabling a reliable prediction of the
robot’s location. This is crucial for managing future conflicts
between the AGVs and preventing deadlocks and congestion.

The selection of the parameter H plays a crucial role
to determine how large the prediction time window is, the
computational cost and the effectiveness of the coordination al-
gorithm. It follows that as the value of H increases, the system
exhibits greater robustness against deadlock and congestion,
as there is a larger temporal margin for preventing potential
conflicts. However, the higher is the value of H, the higher will
be the computational burden of the coordination algorithm.
The selection of the parameter H is contingent with the
structure of the factory, and, as such, the layout of the plant. In
particular, the time horizon has to be chosen sufficiently large
to allow the coordination strategy to anticipate and manage
the vehicles movements in the longest dead-end present in
the plant. Inadequate choice of H will result in suboptimal
performance and may lead to vehicles being stuck in a dead-
end. Furthermore, it should be noted that the value of H cannot
be selected arbitrarily large due to the computational cost
associated with the coordination algorithm and thus, a trade-
off must be found between the desired performance of the
algorithm and the computational resources that are available.

The result of a correct traffic management and, hence, of
a correct coordination of AGVs over time can be visualized
in Fig. E], where the locations (or nodes on G) at every time
step of each AGVs are plotted. The figure shows how the
routes of the AGVs, distinguished with different colors, do not

intersect each other when extended in a prediction over time.
This means the vehicles are able to reach the final destination
without occurring into conflicts and congestions.

Algorithm 4: Negotiation

1 AGV_winner < None;

2 AGV_losers + None;

3 AGV_winner,AGV_losers =
motion_error(conflicting_AGVs);

4 if (AGV_winner is None) OR (AGV _losers is None)
then

AGV_winner,AGV_losers =

path_obstruction(conflicting_AGVs, T);

¢ end
7 if (AGV_winner is None) OR (AGV _losers is None)
then
AGV_winner,AGV_losers =
time_to_conflict(conflicting_AGVs);

9 end
10 return AGV_winner,AGV_losers

The coordination strategy of the AGVs is resumed in
Algorithm [3] and can be divided in 4 main phases:

1) conflict identification: the localization in time and space
of a conflict between a group of AGVs, i.e. AGVs
occupying the same area at the same time. The time
horizon H defines how far in time a conflict can be
detected and possibly prevented. H is lower-bounded
by the topology of the plant, since it has to be chosen
wide enough to avoid two AGVs stuck in a bidirectional
single vehicle corridor. Every future time steps, hence,
has to be checked for possible collisions (Algorithm [3]
line 4).

ii) negotiation: once we know which are the AGVs in con-
flict and at which time step the collision will happen, we
have to define a policy to assign the precedence on the
motion to the vehicles. The negotiation to define which
AGYV has to wait to solve the conflict is based on simple
rules. These rules consider the mission priority, if the
AGYV has to free an intersection, if the vehicle is stopped
due to an internal error and the time required to reach
the collision spot. The proposed algorithm incorporates
a mechanism to assess with simple rules the status of
vehicles regarding their execution and movement. If a
vehicle is determined to be stopped due to an execution
error, it is deemed as the most probable loser and
would have to wait for other vehicles to complete their
motion (line 3, algorithm). Additionally, the algorithm
assesses the potential path obstruction between vehicles
in the portion of the route considered within the time
window T. The vehicle that obstructs the path of another
vehicle is considered as the most probable winner and is
selected to clear the passage in order to prevent further
obstructions (line 5, algorithm). Finally a simple FIFO
policy is chosen to end the negotiation, which means
that the first vehicle that reaches the collision spot is
the negotiation winner, and other AGVs involved in the

collision wait for their motion (line 8, algorithm E[)
Hence, at the end of the negotiation there will be
a winning AGV and (possibly multiple) loser AGVs
(Algorithm E], line 9). Those rules can be chosen to
minimize or maximize a performance index by solving
an optimization problem online but, for this specific
case, we consider some very basic simple rules, since
the efficiency of the solution of the negotiation algorithm
is checked by the deadlock prevention policy which
guarantees the coordination of the vehicles.

iii) deadlock prevention: the use of simple rules for the
negotiation policy could lead to the generation of
deadlocks. Hence, the proposed coordination strategy is
embedded with an effective deadlock prevention policy
(DPP), which has the aim to identify and prevent dead-
locks before they occur. The DPP we propose, described
in details in the following section, extends the concept
of precedence graph used in multitasking systems by
introducing a temporal variable that is necessary and
efficient for identifying and preventing deadlocks in
time.

iv) solve conflict: the conflict is ready to be solved once
the conflicting time step is found and the loser(s) and
winning AGVs are defined. The list of commands to
be send to the loser(s) is modified to make the AGV(s)
waiting for a time length sufficiently large to solve the
collision. The process is repeated to check for other
collisions and solve them until no more collisions are
found in the time window H.

B. Deadlock prevention policy

The implementation of a deadlock prevention policy is an
essential strategy for maximizing the possibilities of finding an
optimal solution in the coordination of AGVs. The negotiation
process for resolving conflicts is commonly based on a set of
straightforward rules and can potentially result in deadlock
situations that cannot be resolved.

We can identify two types of deadlock scenarios: cyclic
deadlocks and acyclic deadlocks, that differ in the nature of the
resource locked between the processes involved [44]]. Cyclic
deadlocks represent a category of deadlock in which the re-
sources that are locked in place exhibit a circular dependency.
This is characterized by the existence of a chain of processes,
each of which possesses a resource that is being sought by the
subsequent process within the chain. Acyclic deadlocks, on
the other hand, are a type of deadlock in which the resource
dependency forms a tree or a directed acyclic graph (DAG)
structure. Hence there are no circular dependencies and each
process holds a resource that is not required by any other
process in the chain. It is worth noting that in our scenario,
acyclic deadlocks are generally generated by a vehicle that
is halted as a result of an error, which subsequently locks
the resource in question, which in this case is the moving
space. Therefore, the coordination strategy lacks the capability
to address this issue, and the traffic manager must take steps
to update the trajectories of the vehicles in order to limit the
congestions until the error is resolved. Finally, second level

deadlocks or nested deadlocks are acyclic phenomena typically
generated by a cyclic deadlock. In fact, the vehicle that locks
resources and generates a tree dependency structure is halted
in a cyclic chain of locked resources. Therefore, by preventing
the emergence of cyclic deadlocks, it is also possible to prevent
the occurrence of nested deadlocks. In the presented control
architecture we propose a deadlock prevention policy based on
time expanded graphs. The result of the negotiation process,
for every future conflict found in the time window H, sets
which are the AGVs that have to stop (the losers) and the
ones that have to move (the winners) in order to solve the
future collision. The set of precedences between the conflicting
AGVs in a particular time step ¢ can be represented by a
graph. In the proposed approach we exploit the time expanded
graph in order to represent the set of precedences between
conflicting AGVs in the whole time window H. The analysis
of this graph of precedences becomes useful when dealing
with deadlocks, since these are caused by cyclical precedences
in the time window H [33]]. Hence, having an acyclic time
expanded graph representing the precedences ensures that the
computed trajectories in H are deadlock free.

The time step ¢ at which the collision is predicted to happen
is denoted as tcon fiic¢- In order to solve the conflict, the AGV
that has lost the negotiation has to be stopped or slowed down
a time window before the collision time in order to allow the
winning AGV to cross. This time window is denoted as ¢ 4¢;tq,
and the time step ¢ at which the AGV is stopped is denoted
as twast, SO that tyair + tdeita = teonfiict- Every time the
future trajectory to be followed by the AGV is changed to
solve a collision, the prediction of the AGV motion has to be
updated accordingly introducing the delay caused by the stop
or slowdown of the vehicle.

The negotiation process brings to a set of possible solutions
to solve the collisions in the time horizon H, and the deadlock
prevention process is responsible in finding the deadlock free
solutions. The time expanded graph is generated over the
set of precedences in the time window H obtained from the
negotiation process. Every graph node indicates the AGV ID
and every edge represents a precedence, with a winner AGV
and a loser AGV: for each incoming (outgoing) edge the AGV
is a winner (loser) for the respective precedence.

For every collision detected in the predicted trajectory, the
time expanded graph is built iteratively, every precedence edge
is added step by step from the f.op fiic¢ until the 44, when
the conflict is solved. For example, Fig. [6|shows a coordination
between 3 AGVs: AGV 1 and AGV 2 have a conflict predicted
at time t = t4 and, to avoid the collision with sufficient
space, AGV 1 has to wait 3 time steps before at time ¢ = ¢;.
Similarly, AGV 2 and AGV 3 have a conflict at time ¢ = t5,
where the AGV 2 is stopped 2 seconds before at time ¢ = t3.
Hence, at time ¢ = ¢4, and ¢t = t¢3 we have two conflict
situations which have been solved with AGV 1 stopped for
AGV 2 and AGV 2 stopped for AGV 3.

After every negotiation at every time step the time expanded
graph of precedences is updated and analyzed in order to
ensure that the new edges introduced do not bring to a
deadlock scenario. This is the case shown in Fig. [/} where
the conflict between AGV 1 and AGV 3 at time t = tg could

Tixe

tg 1 2 ' ?' ’ /:‘
t7 1 2 (3)
.
te 1 2 (3)
N

ts 1 2 |3) Teonflict(2,3)

ts | Teonflict(1,2) | 1 2 (3) [AT(Z3)
A /——\ /_\;/7_\\‘

t3 1 2 (3) Twait(2,3)

AT(1,2
(’) /_\ TN
tp 1 2 (3)
¥ /—\ TN
t1 | Twait¢r,2) [1 2 3
to 1 2 (3)

Fig. 6: A representation through the time expanded graphs
of the precedences defined to coordinate three AGVs. Every
layer corresponds to the graph representing the precedences,
as result of the vehicles coordination, at a particular time step.
For example, at time t4 the coordination is managed by making
the AGV 1 waiting for the AGV 2 and the AGV 2 waiting for
the AGV 3.

generate a loop cycle in the graph and, hence, a deadlock. The
negotiation process gives the solution in which the AGV 3 is
either a loser or a winner. In the first scenario, a loop cycle
would occur at time t = t4 generating a deadlock between
the AGVs 1, 2 and 3. Exploiting the information stored in the
time expanded graph, we can exclude the first scenario from
the possible solutions and make the AGV 3 a winner adding
an edge from node 1 to node 3.

Every time a new conflict is found in the predicted tra-
jectories of the AGVs, the time expanded graph is updated
accordingly and every layer is checked to be acyclic to prevent
the occurrence of deadlocks. Hence, if a cycle is detected,
the found solution from the negotiation is not admissible and
another one is evaluated.

VII. IMPLEMENTATION

The proposed architecture was implemented, for valida-
tion and evaluation, on an industrial use case, exploiting
the NetworkX library [45] in Python language. This library
provides the tools to easily manage the graphs. The graphs are
strongly related to the layout of the infrastructure (warehouse
or factory) and are computed offline once the feasible routes in
the plant are defined. Thus, the planner in the traffic manager
does not see any change in the structure and connectivity of

Time

tg 1 2 (3) Teonflict(1,3)
_//Y‘ — A
t7 1 2 (3)
—~ AT(1,3)
tg 1 2 (3)
/\——"
TN
ts 1 2 { 3)Tconflict(2,3)
—
t4 | Teonflict(1,2) | 1 2 (3) |AT(2,3) Twait(2,3)
ts 1 2 (3) Twait(2,3)
AT(L2) — -
t 1 2 (3)
tt | Twait(1,2) | 1 2 3
to 1 2 (3)

Fig. 7: A representation through the time expanded graphs
of the precedences defined to coordinate three AGVs. Every
layer corresponds to the graph representing the precedences,
as result of the vehicles coordination, at a particular time step.
The time expanded graph helped to preventing a cyclic set of
precedences and hence a deadlock at time ¢4. The coordination
is managed by making the AGV 1 waiting for the AGV 3 and
not vice versa to prevent a deadlock scenario between the three
vehicles.

these graphs. However, the path computation is sensible to the
changes in terms of attributes and weights linked with nodes
and edges, which follow the changes in the traffic status. We
remark that the route of each AGV is processed as a sequence
of connected nodes. Every node occupied by an AGV means a
location in the plant occupied by the vehicle. All the directions
the AGV can follow from its location (node) are represented
by the edges outgoing from the respective node.

The proposed control architecture makes the multi-AGV
system able to deal with unexpected events, such as dynamic
obstacles or vehicles errors, that change the expected traffic
scenario. A frequent path re-planning and traffic status up-
dating is the key to allow the vehicles to avoid unforeseen
congested areas due to dynamic objects. Thus, the coordi-
nation algorithm is frequently executed to keep reactive the
coordination of vehicles over the planned routes.

A software library has been developed to model the AGV
motion over the time steps. Since the average of the AGV
velocity is constant and known, the time required to travel
every edge in the roadmap is known. Hence, the planned
route, which consists in a list of adjacent nodes over the plant
graph, can be projected over time. The coordination algorithm
manages the vehicle possible conflicts stopping or slowing it
down in free collision nodes, so that the time the AGV takes
to reach the conflicting node is modified. Moreover, every
time an unexpected event occurs, the schedule of the AGVs

changes and an execution of the control algorithm is necessary
to update the model of the AGVs motion over time. A frequent
execution of the control algorithm is computationally demand-
ing, but makes the systems able to compensate the delays
introduced by vehicles alarms, obstacles or communication
errors.

A. Computational Complexity

Coupled approaches typically have a time complexity that
grows with the size of the configuration space, which grows
exponentially with the number of robots and plant dimen-
sion [46]. The computational effort of the proposed software
is mainly defined by two components: the path planning and
the coordination of vehicles. The complexity of the algorithm
to coordinate the AGVs preventing conflicts and deadlocks
is analyzed below. The path computation is lightened by
the hierarchical architecture, specially in large environments
and complex and high redundancy roadmaps: the Dijkstra’s
algorithm is modified to compute a path mg over the plant
graph G constrained to be contained into the subgraph of G
defined by my, see Section The path 7y is computed
exploiting the Dijkstra’s algorithm over the graph of subsectors
W.

The computational efficiency of the proposed multi-layer
path planning architecture is compared with the conventional
approach, in which the Dijkstra search algorithm is applied
directly on the roadmap graph(see Figure [§). In the con-
ducted test, executed on a average laptop with Intel core i7-
10510U and NVIDIA Geforce MX230, a range of graphs
with varying dimensions and complexities were considered.
The time needed to complete the path planning computation
for 8 AGVs between two of the most distant nodes in the
graph was analyzed using both the standard approach and
the proposed multi-layer architecture. The results, depicted in
Figure[8] demonstrate that as the dimension and complexity of
the graph increase, the difference in computation time between
the standard and proposed approach becomes increasingly
pronounced. It is noteworthy that a low computational time for
path planning is crucial for the effectiveness of the replanning
feature in the proposed control strategy.

The computational effort incurred by the coordination algo-
rithm, which includes the deadlock prevention policy, must
also be taken into consideration. Analyzing Algorithm [3]
similarly to [47]], it consists in two main inherited loops over
the number of AGVs N and over the time steps ¢ in the
time window H. The processes inside these loops are mainly
independent from H and N and require a constant amount of
resources to be executed. The deadlock prevention algorithm
requires a relevant computational effort. In order to determine
the computational effort we consider the worst case scenario
for the iterative generation of the time expanded graph: this is
constituted by H + 1 layers, each one containing /N nodes. In
the worst case, we suppose all the AGVs are in collision for the
whole time window H. Thus, once an AGV winner is chosen,
every layer of the time expanded graph has to be updated with
all the edges representing the precedences between the AGVs.
The computational complexity of the deadlock prevention

0.35 4 —®— Standard approach
Hierarchical approach

0.30 A

0.25 A

0.20 1

0.15 A

Computation time (sec)

0.10 A

0.05 -

0.00 1

4000 6000 8000 10000

Number of nodes

2000

Fig. 8: The figure illustrates the computational benefits of
a decoupled approach as compared to a standard coupled
approach in terms of the path planning computation. The graph
displays the computation time in seconds required to calculate
the path for 8 AGVs in a roadmap with varying size between
two of the most distant nodes in the graph. The discrepancy in
computation time becomes more pronounced as the dimension
and complexity of the graph increases.

algorithm becomes O(NH). Since this process is executed
inside Algorithm [3] the computational complexity of the whole
coordination strategy becomes O(N2H?)

The deadlock prevention algorithm computational cost has
been tested in some simulations since its high expected
computational demanding. Starting from a set of precomputed
paths from a set of critical mission previously chosen for the
test, we evaluated the number of iterations required to end
properly the coordination. The tests were executed varying
the number of AGVs from 2 to 8. The results are shown in
Fig.[9)and indicates that the average and the maximum number
or iterations are well below the maximum theoretical values
estimated previously. In fact, as a result of the efficient plan-
ning and traffic modeling described in Section |V| only a part
of the AGVs operating in the system needs to be coordinated
in order to prevent deadlocks, and therefore the worst-case
scenario previously theorized is efficiently prevented.

We notify that the time required to complete the traffic
manager computation is, typically, in the range of few seconds.
In particular, the computation time has to be inferior to
the time period 7', where T determines how frequently the
control algorithm is executed and, hence, how frequently the
path planning algorithm and the coordination algorithm are
executed (see Algorithm [2).

Finally, we conducted an evaluation of the efficiency in
the traffic management and coordination of a variable fleet
of AGVs in the considered industrial use case. We studied
a comparison between the time the AGV is ideally required
to reach its goal (i.e. without stops due to traffic, obstacles,
ecc.) and the actual time, tested in simulations, with delays
introduced by the vehicle coordination. In particular, we
compute the management efficiency as the ratio between
the time the vehicle is effectively moving and the overall

8000 1 g Experimented average result 778

~e~ Experimented max result
—e— Theoretical max evaluation
7000

6000

5000

4000

3000

Iteration number

2000

1000

o b o e het:) 3. 9

4 5
AGV number

Fig. 9: The figure shows an evaluation of the deadlock
prevention policy algorithm computational cost. We compared
the theoretical exponential computational cost with the one
tested with several simulations. The orange and blue line show
respectively the highest and the average number of iterations
tested from simulations. The green line shows the theoretical
expected number of iteration in the worst computational
scenario.

~e— Average Efficiency
~e~ Minumum Efficiency

e 20 299 0.001

D985

Efficiency
°
@

°

0.6

05

4 5
AGV number

Fig. 10: The figure shows an evaluation of the efficiency in
the traffic management and vehicles coordination. The results
were obtained by a series of simulations conducted on the
industrial use case scenario. The efficiency parameter aims to
determine how much time is wasted due to the coordination.
The blue line shows the average efficiency seen in several
tests. The orange line shows the worsts values obtained from
some tests. It is worth noting how the efficiency only slightly
decreases, increasing the number of AGVs.

time required to complete the task, i.e. the combination of
the moving time and the waiting time of the vehicle: n =
Toving/ (Tmoving + Twaiting). Figure shows the results
about the efficiency n from the tests conducted with up to 8
AGVs. The efficiency decreases with a large fleet of AGVs,
since the traffic management and the vehicles coordination
increase in complexity and congestions are more likely to
happen.

Fig. 11: A photo taken during the experiments conducted in
the automated factory. The 4 AGVs are coordinating in a load
and unload cargo area.

B. Experimental validation

The software developed on the proposed control architecture
has been initially tested on a simulation environment provided
by Proxaut s.r.l., which emulates the nominal activity of a
working day in the automated factory. Moreover, the simulator
allows to test unexpected events that normally occur during
the factory operation, such as alarms, vehicle errors, commu-
nication errors and delays introduced by operators. Finally,
the software has been implemented and validated on a real
industrial environment in collaboration with the company, see
Fig. [[1] The critical parameters that require careful selection
to optimize the performance of the software for a specific
application are the time horizon H and update frequency 7'
of the traffic manager. These parameters are chosen based on
the dimensions and layout of the plant under consideration.
For the considered use case, a time horizon of 100 seconds
was selected, as the longest dead-end in the plant takes
approximately 80 seconds to be traversed by the AGV. The
computational complexity of the traffic manager algorithm is
within the range of 7 seconds of execution, and thus, a time
frequency of 10 seconds was selected, which is confirmed
through multiple simulations.

In the nominal operation, the software manages 8 AGVs
over the provided plant. The video attached in the supple-
mentary material shows some of the tests conducted in the
automated factory. The performance of the control architecture
proposed in this paper has been compared to the commercial
software developed by the company. The company’s software
implements a traffic coordination of the AGVs based on
manually synthesized traffic rules, which are compared among
all the AGVs at every iteration. Given the path for each AGV,
that is a sequence of nodes, each iteration consists in assigning
the following node to each AGV. Moreover, this software does
not consider the traffic status, and does not allow replanning
the path: hence, the shortest path is assigned to each AGV.
At each iteration, future conflicts are detected as intersections
among the planned paths. Such conflicts are solved imposing
stops to one or more AGVs. The AGVs to be stopped are
defined by means of a greedy algorithm, computing all the
possible combinations. Since such computation is performed
at each iteration, the computational cost is very large, which
makes it difficult to manage the traffic in large factories, as
the considered use case.

—— company's system
300 proposed system
—— proposed system (6 AGVs)
Z
S 250
@
)]
é 200
3
E 150
£
S 100
o
50
0
0 100 200 300 400 500

simulation time (min)

Fig. 12: The figure shows the number of missions completed
over time by the fleet of AGVs. The blue line indicates the
company’s software performance at full potential, while the
orange one indicates the proposed software performance at
full potential. The proposed software managed to coordinate
8 vehicles simultaneously. The company’s software managed
to coordinate 6 vehicles simultaneously. The green line shows
the performance of the proposed software when constrained
to move only 6 AGVs simultaneously.

The developed software, based on the architecture proposed
in this paper, has been installed at the automated factory
managing the traffic of the fleet of 8§ AGVs.

In order to compare the two systems, a set of critical
missions has been chosen and repeated over time. A mission
consists in a load and unload task the AGV has to accomplish.
Every mission chosen for the experiment has very distant
load and unload positions, in order to generate long paths.
However, all the load positions are close to each other, in
order to generate high traffic scenarios (the same holds for
the unload positions). Figure [12] shows the number of mission
completed over time. A mission is considered completed when
the AGV has accomplished both loading and unloading tasks.
The performance difference, which was evaluated in terms
of total number of mission completed per hour, is evident:
with a set of critical missions, the proposed system was
able to complete more than 340 missions in 8 hours of
simulation, while the company’s system was able to complete
approximately 130 missions in the same amount of time. In
fact, the company’s software, under a critical set of missions,
is able to coordinate no more than 6 AGVs, leaving 2 vehicles
parked. In order to perform a fair comparison, the proposed
system was tested in the same conditions, leaving 2 AGVs
parked, and approximately 250 missions were accomplished
in the same amount of time.

The attached video shows some of the experiments con-
ducted to test and validate the software based on the proposed
control strategy. Firstly, several simulations were executed
to test the reliability and the robustness of the control
software. Subsequently, the developed architecture has been
implemented in the industrial use case environment, to manage
the traffic and coordinate the movements of a fleet of AGVs.
Various traffic scenarios and congestions were faced during

the experiments. Moreover, the control software was tested
to deal with unexpected events that cause the vehicle to stop
affecting the traffic and the coordination. These events are
typically static or dynamic obstacles, vehicles alarms or errors.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper we present a novel methodology for the
coordination and the traffic management of a fleet of AGVs
deployed in a real industrial environment. The proposed multi-
layer control architecture has the aim to improve the efficiency,
the robustness and the flexibility of the global system. The
control strategy consists in two main parts: a hierarchical path
planning approach and a coordination strategy able to deal
with collisions, deadlocks and vehicles errors.

The methodology proposed aims at the realization of a con-
trol software implementable on the majority of the industrial
layouts and able to deal with the non idealities of a real
implementation. Unlike what is usually found in literature,
no assumptions are made on the roadmap and the presence of
dynamical obstacles or execution errors has been considered.
A novel hierarchical approach based on a sector and subsector
division of the plant has been introduced to better model the
traffic evolution and to design a traffic sensitive path planner.
We propose a coordination strategy which is not based on
predefined ad hoc rules able to manage the vehicles over time
avoiding collisions and congestions. Moreover, the coordina-
tion methodology exploits a novel approach to recognize and
deal with deadlocks based on time expanded graphs. Finally,
the whole control architecture is robust to unpredictable events
(typical of a real industrial implementation), such as dynamical
obstacles, vehicles delays, communications errors.

The validity of the developed software is supported by
different simulations and, especially, by tests executed in
a real automated factory. The results show the hierarchical
planner and traffic manager performs better compared to
the company’s control software based on common planning
algorithms and predefined traffic rules. Moreover, the proposed
strategy was able to cope with high traffic situations and
unpredictable events, such as dynamic obstacles or alarms,
during the experiments conducted in the real environment.

No assumption was made on homogeneity of the AGVs:
while evaluation has been performed using homogeneous
AGVs only, the proposed coordination strategy can be easily
adapted to deal with heterogeneous AGVs. This can be
achieved, for instance, opportunely tuning the weights of the
graph.

The sector definition proposed in this paper requires a
human operator assistance to differentiate the plant areas, such
as intersections, corridors, load/unload positions, etc. Current
work aims at developing a reliable method to automatically
define the different plant areas and automatically generate the
sectors clustering the roadmap nodes.

REFERENCES

[1] H. Andreasson, A. Bouguerra, M. Cirillo, D. N. Dimitrov, D. Driankov,
L. Karlsson, A. J. Lilienthal, F. Pecora, J. P. Saarinen, A. Sherikov et al.,
“Autonomous transport vehicles: Where we are and what is missing,”
IEEE Robotics & Automation Magazine, vol. 22, no. 1, pp. 64-75, 2015.

[2]

[3]

[4]

[5]

[6]

[7]

[8

[t}

[9]

(10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

F. Oleari, M. Magnani, D. Ronzoni, and L. Sabattini, “Industrial
agvs: Toward a pervasive diffusion in modern factory warehouses,”
in 2014 IEEE 10th International Conference on Intelligent Computer
Communication and Processing (ICCP), 2014, pp. 233-238.

L. E. Parker, “Path planning and motion coordination in multiple mobile
robot teams,” Encyclopedia of complexity and system science, pp. 5783—
5800, 2009.

Y. Zhang and H. Mehrjerdi, “A survey on multiple unmanned vehicles
formation control and coordination: Normal and fault situations,” in 2013
International conference on unmanned aircraft systems (ICUAS). 1EEE,
2013, pp. 1087-1096.

S. M. LaValle and S. A. Hutchinson, “Optimal motion planning
for multiple robots having independent goals,” IEEE Transactions on
Robotics and Automation, vol. 14, no. 6, pp. 912-925, 1998.

A. Camara, D. Silva, P. Henriques Abreu, and E. Oliveira, “Comparing
a centralized and decentralized multi-agent approaches to air traffic
control,” 10 2014.

T. Siméon, S. Leroy, and J.-P. Lauumond, “Path coordination for multi-
ple mobile robots: A resolution-complete algorithm,” IEEE Transactions
on Robotics and Automation, vol. 18, no. 1, pp. 4249, 2002.

R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker,
J. Li, D. Atzmon, L. Cohen, T. S. Kumar et al., “Multi-agent pathfinding:
Definitions, variants, and benchmarks,” in Twelfth Annual Symposium on
Combinatorial Search, 2019.

G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40-66, 2015.

R. Olmi, “Traffic management of automated guided vehicles in flexible
manufacturing systems,” 2011.

I. Draganjac, D. Mikli¢, Z. Kovaci¢, G. Vasiljevi¢, and S. Bogdan,
“Decentralized control of multi-agv systems in autonomous warehousing
applications,” IEEE Transactions on Automation Science and Engineer-
ing, vol. 13, no. 4, pp. 1433-1447, 2016.

L. Sabattini, V. Digani, C. Secchi, and C. Fantuzzi, “Hierarchical
coordination strategy for multi-agv systems based on dynamic geodesic
environment partitioning,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea,
oct. 2016.

C. Wei, K. V. Hindriks, and C. M. Jonker, “Multi-robot cooperative
pathfinding: A decentralized approach,” in International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent
Systems. Springer, 2014, pp. 21-31.

D. Herrero-Perez and H. Martinez-Barbera, “Decentralized coordination
of automated guided vehicles,” in Proceedings of the 7th international
Jjoint conference on Autonomous agents and multiagent systems-Volume
3, 2008, pp. 1195-1198.

P. Yang, R. A. Freeman, and K. M. Lynch, “Multi-agent coordination by
decentralized estimation and control,” IEEE Transactions on Automatic
Control, vol. 53, no. 11, pp. 2480-2496, 2008.

L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,” IEEE
Transactions on Robotics, vol. 23, no. 6, pp. 1170-1183, 2007.

W. Zhang, M. Kamgarpour, D. Sun, and C. J. Tomlin, “A hierarchical
flight planning framework for air traffic management,” Proceedings of
the IEEE, vol. 100, no. 1, pp. 179-194, 2011.

M. Jager and B. Nebel, “Decentralized collision avoidance, deadlock
detection, and deadlock resolution for multiple mobile robots,” in
Proceedings 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Expanding the Societal Role of Robotics in the
the Next Millennium (Cat. No. 01CH37180), vol. 3. 1EEE, 2001, pp.
1213-1219.

R. Luna and K. E. Bekris, “Efficient and complete centralized multi-
robot path planning,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2011, pp. 3268-3275.

Y. Guo and L. E. Parker, “A distributed and optimal motion planning ap-
proach for multiple mobile robots,” in Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 02CH37292),
vol. 3. IEEE, 2002, pp. 2612-2619.

I. F. Vis, “Survey of research in the design and control of automated
guided vehicle systems,” European Journal of Operational Research,
vol. 170, no. 3, pp. 677-709, 2006.

V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Towards decen-
tralized coordination of multi robot systems in industrial environments:
A hierarchical traffic control strategy,” in 2013 IEEE 9th International
Conference on Intelligent Computer Communication and Processing
(ICCP). 1EEE, 2013, pp. 209-215.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]
[34]
[35]
[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R. Olmi, C. Secchi, and C. Fantuzzi, “Coordination of industrial agvs,”
International Journal of Vehicle Autonomous Systems, vol. 9, no. 1-2,
pp. 5-25, 2011.

——, “Coordination of multiple agvs in an industrial application,”
in 2008 IEEE International Conference on Robotics and Automation.
IEEE, 2008, pp. 1916-1921.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ‘“Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566-580, 1996.

J. P. Van Den Berg, D. Nieuwenhuisen, L. Jaillet, and M. H. Overmars,
“Creating robust roadmaps for motion planning in changing envi-
ronments,” in 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 1EEE, 2005, pp. 1053-1059.

R. Geraerts and M. H. Overmars, “A comparative study of probabilistic
roadmap planners,” in Algorithmic Foundations of Robotics V. Springer,
2004, pp. 43-57.

V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Ensemble coordi-
nation approach in multi-agv systems applied to industrial warehouses,”
IEEE Transactions on Automation Science and Engineering, vol. 12,
no. 3, pp. 922-934, 2015.

A. MANNUCCI, “Intra-logistics with integrated automatic deployment:
from one to multi-mobile robot systems,” 2020.

F. Pratissoli, N. Battilani, C. Fantuzzi, and L. Sabattini, “Hierarchical and
flexible traffic management of multi-agv systems applied to industrial
environments,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). 1IEEE, 2021, pp. 10009-10015.

A. Mannucci, L. Pallottino, and F. Pecora, “Provably safe multi-
robot coordination with unreliable communication,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3232-3239, 2019.

Y. Wang, Y. Yuan, Y. Ma, and G. Wang, “Time-dependent graphs: Def-
initions, applications, and algorithms,” Data Science and Engineering,
vol. 4, no. 4, pp. 352-366, 2019.

E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM
Computing Surveys (CSUR), vol. 3, no. 2, pp. 67-78, 1971.

J. W. Havender, “Avoiding deadlock in multitasking systems,” IBM
Systems Journal, vol. 7, no. 2, pp. 74-84, 1968.

C. Godsil and G. Royle, “Algebraic graph theory,” Graduate text in
mathematics, Springer, New York, 2001.

E. W. Dijkstra et al., /A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

S. Bandi and D. Thalmann, “Path finding for human motion in virtual
environments,” Computational Geometry, vol. 15, no. 1-3, pp. 103-127,
2000.

F. Schulz, D. Wagner, and K. Weihe, “Dijkstra’s algorithm on-line:
An empirical case study from public railroad transport,” Journal of
Experimental Algorithmics (JEA), vol. 5, pp. 12—es, 2000.

R. V. Bostelman, T. H. Hong, and R. Madhavan, “Towards agv safety and
navigation advancement obstacle detection using a tof range camera,”
in ICAR’05. Proceedings., 12th International Conference on Advanced
Robotics, 2005. 1EEE, 2005, pp. 460—467.

M. Boehning, “Improving safety and efficiency of agvs at warehouse
black spots,” in 2014 IEEE 10th International Conference on Intelligent
Computer Communication and Processing (ICCP). 1EEE, 2014, pp.
245-249.

D. Chen, Z. Shi, P. Yuan, T. Wang, Y. Liu, M. Lin, and Z. Li, “Trajectory
tracking control method and experiment of agv,” in 2016 IEEE 14th
International Workshop on Advanced Motion Control (AMC). 1EEE,
2016, pp. 24-29.

P. S. Pratama, A. V. Gulakari, Y. D. Setiawan, D. H. Kim, H. K.
Kim, and S. B. Kim, “Trajectory tracking and fault detection algorithm
for automatic guided vehicle based on multiple positioning modules,”
International Journal of Control, Automation and Systems, vol. 14, no. 2,
pp. 400410, 2016.

L. Sabattini, V. Digani, M. Lucchi, C. Secchi, and C. Fantuzzi, “Mission
assignment for multi-vehicle systems in industrial environments,” in
Proceedings of the IFAC Symposium on Robot Control (SYROCO),
Salvador, Brazil, aug. 2015.

T. Shimomura and K. Ikeda, “Two types of deadlock detection:
cyclic and acyclic,” in Intelligent Systems for Science and Information.
Springer, 2014, pp. 233-259.

A. Hagberg, D. Schult, and P. Swart, “Networkx: Python software for
the analysis of networks,” Mathematical Modeling and Analysis, Los
Alamos National Laboratory, 2005.

M. Peasgood, C. M. Clark, and J. McPhee, “A complete and scalable
strategy for coordinating multiple robots within roadmaps,” IEEE Trans-
actions on Robotics, vol. 24, no. 2, pp. 283-292, 2008.

[47] S. MohaimenianPour, M. Behbooei, and S. S. Ghidary, “Adaptive multi-
agent path planning with dynamic heuristic,” in Intelligent Autonomous
Systems 13. Springer, 2016, pp. 591-603.

Federico Pratissoli received the B.S. and M.S.
degree in mechatronic engineering and the Ph.D.
degree in Industrial Innovation Engineering from
the University of Modena and Reggio Emilia, Italy,
in 2016, 2018 and 2023 respectively. In 2018 was
Visiting Student at Sheffield University, Sheffield,
UK. He has been a Visiting Researcher with the
University of Cambridge, Cambridge, UK. His main
research interests include multi-robot systems, UAV
systems, coordination and path planning, multi-AGV
industrial systems, distributed control and multi-

Riccardo Brugioni received the B.Sc. and M.Sc.
degrees in mechatronic engineering from the Univer-
sity of Modena and Reggio Emilia, Italy, in 2018 and
2021, respectively. He has been working, as Chassis
Controls Engineer, in Silk Sports Car Company since
2021. His main research interests include multi-AGV
industrial systems, integrated active chassis controls
and sensorless controls for IPM motors.

Nicola Battilani received B.Sc., M.Sc. in mecha-
tronic engineer and the Ph.D. degree in Industrial
Innovation Engineering from the University of Mod-
ena and Reggio Emilia, Italy, in 2011, 2014 and
2017 respectively. He was a research scientist with
Lagadic team at Inria Rennes Bretagne Atlantique,
Rennes, France, in 2016. His research topics include
mobile autonomous robots, machine vision, human
robot collaboration, human machine interface and
industrial systems.

Lorenzo Sabattini received the B.Sc. and M.Sc.
degrees in mechatronic engineering from the Univer-
sity of Modena and Reggio Emilia, Italy, in 2005 and
2007, respectively, and the Ph.D. degree in control
systems and operational research from the University
of Bologna, Italy, in 2012. In 2010, he has been a
Visiting Researcher with the University of Maryland
| at College Park, College Park, MD, USA. He has
been an Associate Professor with the Department of
i Sciences and Methods for Engineering, University of
Modena and Reggio Emilia, since 2018. His main
research interests include multirobot systems, decentralized estimation and
control, and mobile robotics. He has been a Founding Co-Chair of the IEEE
RAS Technical Committee on Multi-Robot Systems, and has served as the
corresponding co-chair from 2014 to 2021. He has been serving as Associate
Editor for IEEE Robotics and Automation Letters from 2015 to 2018, and for
IEEE Robotics and Automation Magazine from 2017 to 2019. He is currently
serving as Editor for the IEEE ICRA and IEEE/RSJ IROS conferences, and
as Associate Editor for the International Journal of Robotics Research (IJRR)

»\'fn

S

