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Heart failure (HF) represents a leading cause for hospitaliza-
tion in older patients [1]. Furthermore, its presence associ-
ates with a poorer clinical outcome, particularly when placed 
within a specific context of disease clustering [2].

Identification of risk factors and predisposing conditions 
for hospital readmission may be crucial, to prevent further 
hospitalization [3]. This should hopefully help in the per-
sonalization of disease management, allowing to focalize 
the implementation of preventive strategies on individuals 
at high risk for readmission.

A number of tools have been described in the literature 
on this regard. Different statistical approaches have been 
proposed, where the contribution of individual variables has 
been estimated with the aid of linear predictors or logistic 
regression.

Machine learning (ML) methods represent an innovative 
and interesting model. The possibility to incorporate a larger 
number of variables and to analyze nonlinear effects of vari-
ables allows for a better predictive power, when compared to 
conventional statistical techniques. Such approach has been 
validated, among others, in the prediction of adverse out-
comes (mortality or hospitalization) in patients with heart 
failure with preserved ejection fraction [4].

In this issue of the Journal, a report by Polo Friz and 
coworkers explores the possible use of ML for predicting 
30 day readmission after heart failure hospitalization [5]. 
The study, retrospective, has been run on a large cohort of 

patients older than age 65 (mean age 81), therefore highly 
representative of the population that we encounter every day 
in our Internal Medicine or Geriatrics wards.

The ML models were built taking into account a large set 
of clinical and biochemical data, most of which easily col-
lectable from administrative databases.

Nearly 13% of the patients experienced a readmission in 
the 30 days following discharge, with no significant gender 
difference.

With the adoption of ML models for the prediction of 
subsequent hospitalization, ROC curves with an AUC of 
nearly 0.80 were obtained; such models apparently provided 
a better performance when compared with previously vali-
dated models, such as the LACE index. Analysis of the nega-
tive and positive predictive values likewise showed quite 
satisfactory results.

Interestingly, age was not statistically different in readmit-
ted vs non-readmitted patients. This finding underlines the 
concept that chronological age in itself is a poor prognostic 
determinant. Furthermore, the present findings are consistent 
with the evidence obtained in younger population and this, 
once again, seems to suggest a relatively limited role of age 
per se in this context.

A deeper insight in the impact of individual variables of 
the dataset (SHAP analysis) showed that an increased risk 
of 30 day readmission was associated with of the number 
of previous hospitalizations and with the comorbidity bur-
den; these parameters have been largely demonstrated to be 
predictors of adverse outcomes and they have often been 
included in the main scores of frailty [6].

Comorbidity is frequently, even if not invariably, asso-
ciated with frailty; such combination indeed represents a 
relevant hallmark in the clinical picture of HF. It would be 
interesting to directly evaluate frailty in the population of 
Polo Friz’s work; to do this, other areas, which have not 
been included in this study, should be investigated, such 
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as physical functioning and cognition, which represent a 
part of the complex definition of frailty.

Table 1 shows some of the clinical characteristics of 
the patients with or without HF in the cohort of REPOSI 
(REgistro POliterapie Società Italiana di Medicina 
Interna), a multicenter study collecting data from a large 
population of patients hospitalized in Internal Medicine or 
Geriatrics wards [2, 7].

As it can be seen, markers of dependence (here 
expressed by the Barthel index) and multimorbidity 
(CIRS-Comorbidity and CIRS-Severity) are significantly 
higher in HF patients. Furthermore, the cognitive profile 
(assessed using the SBT as a screening tool) is shifted 
toward more severe degrees of impairment in HF patients. 
Thus, HF patients appear to be older but, most impor-
tantly, more complex and with a more severe impairment 
of autonomy and cognition. The findings confirm previous 
evidence on the risk of readmission for all diseases [8].

Looking at these profiles, therefore, the use of sophis-
ticated techniques taking into account different aspects 
of complexity, such as ML, may be expected to provide 
valuable information for the prediction of negative out-
comes, in hospitalized older patients with HF. ML may be 
considered as complementary to other approaches aimed 

to characterize the different pattern of patient complexity 
and multimorbility, such as cluster analysis [2, 7].

Theoretically, the use of ML in heart disease patients 
might be extended to outpatients as well.

In a population of subjects attending a Cardiologic Geri-
atrics clinic, 358 patients out of 1704 (21.0%) had a clinical 
diagnosis of HF; among these, 29.2% were in NYHA stage 
3 and 4.1% were in NYHA stage 4; that is, one third of them 
presented an advanced stage of the disease (Mussi C, Ber-
tolotti M, unpublished data). This proportion appears to be 
rather high, when we consider that it refers to subjects with 
a relatively good degree of autonomy.

It appears absolutely reasonable that, particularly in the 
latter strata of HF patients, the adoption of ML strategies 
might help to identify the patients at higher risk of subse-
quent hospitalization for HF worsening. A predictive role 
for frailty assessment with regards to adverse outcomes in 
outpatients with HF has already been suggested [9].

The integration with telehealth/telemedicine devices 
might support such approach.

Proper prognostic stratification and subsequent identifica-
tion of older patients at high risk of hospitalization/re-hos-
pitalization, provided by ML or analogous methodologies, 
might prove helpful in the perspective of a “personalized” 
approach, allowing a more oriented allocation of resources. 

Table 1   Age/gender distribution and clinical features of a population of older hospitalized patients of the REPOSI cohort from 2010 to 2019 [2, 
7]

*Chi-square for categorical variables; Wilcoxon test for continuous variables

Variable Population without HF 
N = 5755 (81.7%)

N Obs Patients with HF
N = 1290 (18.3%)

N Obs P*

Gender 5753 1290
 Male 2832 (49.2) 616 (47.7)  < 0.0001
 Female 2921 (50.8) 674 (52.2)

Age—median (IQR) 5755 1290
 65–74 1784 (31.0) 237 (18.4)  < 0.0001
 75–84 2515 (43.7) 554 (42.9)
  ≥ 85 1456 (25.3) 499 (38.7)

Barthel 4496 1009
 Total Dependence (%) (< 25) 385 (8.6) 105 (10.4)  < 0.0001
 Severe Dependence (%) (25–49) 277 (6.2) 130 (12.9)
 Moderate Dependence (%) (50–74) 577 (12.8) 198 (19.6)
 Mild Dependence (%) (75–90) 819 (18.2) 254 (25.2)
 No Dependence (%) (91–100) 2438 (54.2) 322 (31.9)

CIRS (Comorbidity)—median (IQR) 3 (1–4) 5755 4.0 (2.0–5.0) 1290  < 0.0001
CIRS (Severity)—median (IQR) 1.6 (1.4–1.8) 1.8 (1.6–2.0) 1290  < 0.0001
SBT 5027 1093
 Normal (0–4) 2131 (42.4) 339 (31.0)  < 0.0001
 Possible Cognitive Impairment (5–9) 895 (17.8) 208 (19.0)
 Moderate Cognitive Impairment (10–19) 1425 (28.4) 396 (36.2)
 Severe Cognitive Impairment (20–28) 576 (11.5) 150 (13.7)
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In this context, the consideration of complexity and the eval-
uation of vulnerability and/or frailty in its heterogeneous 
manifestations is crucial.
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