
 Eindhoven University of Technology

MASTER

Solving the Master Surgery Scheduling Problem to improve waiting list management at the
cardiothoracic surgery department of the MUMC+

van der Sande, Luka A.

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a13f4822-b1c3-4e59-80ff-87d4280516c9


Department of Industrial Engineering & Innovation Sciences
Operations, Planning, Accounting & Control (OPAC) group

Solving the Master Surgery Scheduling Problem to improve
waiting list management at the cardiothoracic surgery

department of the MUMC+

Master thesis

Luka Annemarie van der Sande - 1237207

Supervisors:

dr. ir. N.P. Dellaert, TU/e

dr. P.M.E. van Gorp, TU/e

ir. Charles Debats EngD, MUMC+

Eindhoven, April 18, 2023



Abstract

The tactical level of surgery planning is concerned with the allocation of operating time to surgical groups,
which is represented in a Master Surgery Schedule (MSS). The optimization problem related to this
schedule is called the Master Surgery Scheduling Problem (MSSP). Most papers in the literature emphasize
the importance of resource utilization in the MSSP, whereas only a limited number of studies have been
identified that consider waiting list characteristics as well. The addition of waiting list characteristics in the
MSSP has become more important since the COVID-19 pandemic has disrupted the supply and demand of
healthcare. Accordingly, we propose an optimization-simulation approach that enhances a previous model
with waiting list characteristics. The new and previous models were compared in various demand and
supply scenarios. The numerical study was based on hospital data of the Maastricht University Medical
Centre+ (MUMC+). The results of this study indicate that adjusting the target patient throughput
based on the waiting list length and flexible resource capacity leads to fewer required resources and more
patients being planned within their urgency term. Additionally, a dynamic MSS results in fewer tardy
patients compared to a constant MSS. Therefore, we recommend that future research and practices in this
field incorporate waiting list characteristics into the MSSP to improve waiting list management of elective
surgeries.

Keywords: Master Surgery Schedule; Waiting list; Optimization; Simulation; Tactical planning;
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1 Introduction

The importance of managing hospital services is increasing because of the interests of many stakeholders
involved. These interests include, among others, cost reduction, resource utilization, patient throughput
and waiting time (Razali et al., 2022). Managing the major unit of the hospital, the operating theatre
(OT) is hard due to these sometimes conflicting interests. The OT is a combination of multiple operating
rooms (OR). The research on this topic is called operating room planning and scheduling and consists of
three planning levels, which are strategic, tactical, and operational planning. On the strategic level, the
number and type of surgeries and the number of resources over a longer time period are determined. On
the tactical level, the allocation of resources to surgical groups over a month or quartile is regulated. On
the operational level, individual patients are assigned to specific resources. The various planning levels
use one another as input (Zhu, Fan, Yang, Pei, & Pardalos, 2019). This paper focuses on the tactical
planning level, which includes the Master Surgery Scheduling Problem (MSSP). The MSSP aims to assign
operating time to surgical groups.

Optimization of the MSSP is essential to comply with the stakeholders’ interests, and in accordance with
the quadruple aim (Bodenheimer & Sinsky, 2014), we discuss those interests. Firstly, ensuring acceptable
waiting times is important for improving the health of the population since long waiting times result in
decreased quality of life and increased mortality rates (Nehme, Puchkova, & Parlikad, 2022). Secondly,
enhancing the patient experience of care is considered in this paper by examining patient opinions instead
of assuming a preference for short waiting times. Thirdly, we aim to reduce costs by optimizing resource
utilization and capacity allocation. Improving the MSS of the OT has the potential for significant cost
reductions as the OT expenditures are estimated to be 40 percent of the hospital revenue (Abdelrasol,
Harraz, & Eltawil, 2014). Finally, we intend to improve the work life of surgeons by designing a cyclical
schedule and the possibility to restrict surgery days and to improve the working conditions of nurses by
smoothing bed occupancy.

Recent articles on the optimization of the MSSP frequently focus on patient throughput, costs, and the
utilization of resources. In contrast, only a limited amount of papers could be identified that also took the
waiting list or waiting time into account when solving the MSSP. The literature presents various ways to
address the MSSP while considering waiting list characteristics.
The first differentiation is based on the solution approach. Oliveira, Visintin, Santos, and Marques

(2021) and other papers on this topic proposed an optimization-simulation approach to evaluate the
effects of the master surgery schedule (MSS) on the waiting list. Dellaert, Cayiroglu, and Jeunet (2016)
used a complex power method to calculate the steady-state probabilities of the waiting list length as a
result of the MSS. Their research did not consider the waiting list during the optimization of the MSS,
only during the evaluation. Other papers have proposed optimization models that include waiting list
characteristics to solve the MSSP but did not incorporate a simulation or other waiting list evaluation
methods (Aringhieri, Duma, Landa, & Mancini, 2022; Makboul, Kharraja, Abbassi, & Alaoui, 2022).

Another categorization between research papers is based on the resources involved. Various researchers
included both the OT and up-and-downstream resources, such as the intensive care unit (ICU), medium
care unit (MCU) and post anaesthesia care unit (PACU) in contrast to Agnetis et al. (2012), who only
included the OT. Vanberkel et al. (2011) claimed that downstream resources should be considered when
optimizing the MSS because of the sensitivity of those resources related to the OT.
A third distinction is based on patient characteristics in terms of homogeneity of the procedure and

urgency. Patient categories can be formed based on resource usage, urgency level, or surgical speciality.
Adan, Bekkers, Dellaert, Vissers, and Yu (2009) distinguished patients based on the surgery duration
and the length of stay (LOS) in the ICU. Tànfani and Testi (2010) classified patients on LOS, ward type,
priority, and urgency-related groups (URG).

Furthermore, a distinction within these patient categories can be made between emergency and elective
patients. Some papers did consider both groups and others only the elective patients. The approach in
dealing with emergency patients also varies. The paper of Tànfani and Testi (2010) took the emergency
patients into account by assuming that the hospital had additional ORs dedicated to emergency patients.
In contradiction with the assumption that a special OT is reserved for emergency patients, Bovim,
Christiansen, Gullhav, Range, and Hellemo (2020) solved the MSSP considering both elective and
emergency patients. Some operating rooms were only dedicated to elective patients and some were flexible.
Agnetis et al. (2012) and other researchers reserved extra capacity for emergency patients.

Finally, various methods for dealing with uncertainty have been proposed in the literature on the MSSP.
Most papers include uncertainty in some of their variables. Dellaert et al. (2016) used a probabilistic
length of stay (LOS) in the IC and MC. Banditori, Cappanera, and Visintin (2013) randomly generated
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surgery durations. Van Oostrum et al. (2008) assumed a lognormal distribution for surgery durations.
Some other papers took uncertainty into account in the research method. For example, Makboul et al.
(2022) used robust optimization to deal with uncertainty in surgery duration and IC bed availability.

Our paper aims to improve waiting list management by providing a new approach to the MSSP to
improve the practicality of the problem for hospitals. Therefore, we propose an optimization-simulation
approach to test various scenarios. In this approach, the OT, IC, and MC utilization are included.
Uncertainty is incorporated in the LOS in the IC and MC. Furthermore, whereas the MSSP only considers
the planning of elective patients, capacity is reserved for emergency patients. Patients are grouped by
procedure, resource needs, and surgeon attributes.

We applied this approach to the cardiothoracic surgery department (CTC) of the Maastricht University
Medical Centre (MUMC+) by performing a numerical study. The MUMC+ is the largest and only
academic hospital in the south of the Netherlands with around 700 beds, 20 active ORs, and 22 thousand
admissions per year (Maastricht UMC+, 2022). During the COVID-19 pandemic, the waiting list for
cardiothoracic surgery at the MUMC+ increased by around 50 percent compared to the pre-pandemic
situation. As a result, waiting times increased and patients had to wait longer than their urgency term,
which may cause a decrease in health. The impact of the pandemic was not only experienced by the
MUMC+ but was observed worldwide. The COVID-19 pandemic resulted in an increase in waiting list
lengths for elective surgeries worldwide because of the allocation of scarce resources to COVID-19 patients,
thereby reducing the capacity for elective surgery patients (Nehme et al., 2022). The MUMC+ has
successfully reduced the waiting list of the CTC department to a pre-pandemic level. However, treating
patients within their urgency term is sometimes still challenging and should therefore be considered in the
MSSP.

The contribution of this paper to the literature is threefold.
Firstly, this paper enhances the literature on the MSSP by incorporating waiting list characteristics in

solving and analysing the MSSP. Only a limited amount of papers could be identified that incorporate
this important aspect.
Secondly, as suggested by Testi and Tànfani (2009), we performed a demand and supply analysis by

testing the models with various numerical scenarios. In these scenarios, we compare our model with the
model of Adan et al. (2009), which only focuses on resource utilization. Furthermore, a simulation was
built that compares the situation of frequent optimization of the MSS based on the proposed model with
a constant MSS that was based on a steady-state waiting list.
Finally, we have captured the effects of surgical staff availability on the model outcomes as suggested

by Oliveira et al. (2021).

The rest of this paper is structured as follows: Chapter 2 describes the research methods used and the
design of a numerical study. The computational results are shown in Chapter 3. In Chapter 4, the results,
limitations, and practical implications are discussed. Finally, Chapter 5 provides the conclusion.

2 Method

We used multiple research methods to combine waiting list management with the MSSP. This chapter
elaborates on these methods, which are an optimization model, a Markov model, a simulation model, and
a numerical study. The optimization model is an adjusted version of the mixed integer linear programming
(MILP) model of Adan et al. (2009) and designs an MSS. The MSS could then be evaluated by describing
the waiting list as a Markov model or by using a simulation model. A Markov model assumes that demand
is stationary, meaning that it does not change over time. However, this assumption was not valid for the
past years since the COVID-19 pandemic caused a global disruption in healthcare. Therefore, a simulation
model was used in addition to the Markov model. The simulation model was used to compare the new
optimization model with the MILP of Adan et al. (2009) and the MSS that resulted from the Markov
model in a numerical study.

2.1 Optimization model

We propose a mixed-integer programming (MIP) optimization model to solve the MSSP. The optimization
model aims to develop an MSS to create sufficient slots for patients from a patient category c ∈ N in
recurring cycles of length T while reserving capacity for emergency patients and ensuring high utilization
of the resources without wasting capacity. Each patient category c has its own resource characteristics,
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which are the operation duration oc, pre-operative days at the MC poc, and a LOS distribution for the
MC and IC Lic,c,j and Lmc,c,j . Equation 1 and 2 describe how the probability that a patient is still at
the IC or MC j days after surgery can be calculated.

pIC,c,j = P (LIC,c > j) (1)

pMC,c,j = P (LIC,c + LMC,c > j | LIC,c ≤ j) (2)

The decision variables Xc,t and Yc,t in this model intend to determine an MSS for the number of target
and non-target patients for each patient category per day t. These decision variables are included in the
objective function with the aim of approximating the input variables Rc and Ec. Penalty costs PCC

are attached to planning fewer target patients than Rc and a bonus factor BFc is provided to planning
non-target patients of Ec. The category differentiation is based on the surgical procedure and resource
requirements, whereas the differentiation between target and non-target patients is based on urgency.

The target patients, denoted by Rc, are the patients who should be planned within the cycle length T
based on their urgency and current waiting time. These target patients include patients who are on the
waiting list and have a due date within the planning cycle when the new planning is created, as well as
the expected urgent patients who are not yet on the waiting list. Urgent patients are patients who can
wait for at most two weeks.

The variable Ec represents the additional patients on the waiting list, who can wait longer than the time
horizon but can be planned if possible. This group represents the non-target patients. The non-target
patients refer to those patients who are on the waiting list and have a due date outside the planning cycle
when the new planning is created plus the number of expected elective patients who are not yet on the
waiting list. Elective patients can wait for at most 12 weeks. Elective patients become target patients
when the due date is within the planning cycle.

Table 1: Input parameters and variables

Input parameters

T Cycle length in days

N Number of patient categories

RS Resource set = OT, IC, MC

Rc Target patient throughput of category c

Ec Additional number of patients on the waiting list of patient category c, i.e. non-target patients

Cr,t Maximum capacity of resource r on day d

TR Target utilization rate to reserve capacity for emergency patients

oc Operation duration of a patient of category c in hours

poc Number of pre-operative days at the MC unit of a patient of category c

pIC,c,j Probability that a patient of category c is at the IC j days after surgery, j = 0, 1, 2, ..., Lmax
IC

LIC,c,j Probability that a patient of category c stays at the IC for j days, j = 0, 1, 2, ..., Lmax
IC

Lmax
IC Maximum length of stay in the IC over all categories

pMC,c,j Probability that a patient of category c is at the MC j days after surgery, j = 0, 1, 2, ..., Lmax
MC+IC

LMC,c,j Probability that a patient of category c stays at the MC for j days, j = 0, 1, 2, ..., Lmax
MC

Lmax
MC Maximum length of stay in the MC over all categories

Wr Relative weight of resource r

PCc Penalty costs of a target patient of category c

BFc Bonus factor for a non-target patient of category c

Variables

Xc,t Number of target patients of category c planned on day d

Yc,t Number of non-target patients of category c planned on day d

OUr,t Over-utilization of resource r on day d

BCr, d Booked capacity of resource r on day d

Ur,t Target utilization of resource r on day d

3



The MSS results in the resource utilization of resource r in the resource set R, which consists of the
OT, IC, and MC. Each resource has a maximum capacity, denoted by Cr,t. We can choose to allocate a
part of this capacity to another surgical specialism during the planning cycle. The capacity dedicated to
our specialism is called the booked capacity BCr,t. The resource utilization cannot exceed this booked
capacity.
The booked capacity is partially reserved for emergency patients. We want to reserve capacity for

emergency patients as they are the main reason for surgery cancellations at the MUMC+. The results
from a focus group discussion demonstrated that most elective patients prefer the certainty of their surgery
date over waiting time. Appendix C further elaborates on this focus group.
The other part of the booked capacity is aimed at the planning of urgent and elective patients and

is called target utilization. The target utilization is the proportion TR of the booked capacity. The
utilization can exceed the target capacity, but this over-utilization OUr,t is penalized by the weight Wr

because non-emergency patients use the reserved capacity for emergency patients. All variables are shown
in Table 1. The remaining part of this section further describes the optimization model by outlining the
objective and constraints.

2.1.1 Objective

The objective of this optimization model, as shown in Equation 3, is to (1) minimize the over-utilization
of the resources, (2) minimize the booked capacity, (3) minimize the number of penalized patients for
not being planned, and (4) maximize the number of extra patients planned. The hospital can determine
the resource weights Wr, penalty costs PCc, and bonus factors BFC according to their priorities and
preferences. These values can be adjusted easily if priorities change.

Minimize
∑
r∈RS

T∑
t=1

(
Wr ·OUr,t +BCr,t

)
+

N∑
c=1

(
PCc

(
Rc −

T∑
t=1

Xc,t

)+−BFc

T∑
t=0

Yc,t

)
(3)

2.1.2 Throughput constraints

The sum of the target and non-target patients planned cannot exceed the number of target patient
throughput (Equation 4) and the additional number of patients on the waiting list (Equation 5), respectively.
Non-target patients of a category c can only be planned if all target patients are already planned, as
described in Equation 6.

T∑
t=1

Xc,t ≤ Rc c = 1, ..., N (4)

T∑
t=1

Yc,t ≤ Ec c = 1, ..., N (5)

T∑
t=1

Yc,t ≤
( T∑

t=1

(Xc,t + Yc,t)−Rc

)+

c = 1, ..., N (6)

Xc,t ≥ 0, Yc,t ≥ 0, Xc,t, Yc,t ∈ Z

2.1.3 Resource utilization constraints

The resource utilization constraints are defined to calculate the over-utilization of each resource in the
resource set. The utilization of the OT (Equation 7) is defined as a multiplication of the operation duration
times the number of planned patients, both target and non-target. The surgery duration depends on
the patient category and is defined as a deterministic parameter. Probabilistic values would not make a
difference since this results in an expected value. Furthermore, variations in the actual surgery duration
would not change the number of patients that can be planned in advance, only the realised utilization of
the OT.

The utilization of the IC and MC are defined as expected utilization, which is similar to the definition in
the MILP of Adan et al. (2009). The probabilistic constraints deal with uncertainty by multiplying the
planned patients with a probability of length of stay. This gives a more accurate representation of the
stochastic use of these resources.
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The utilization of the IC is defined as the sum of patients that had surgery before and are therefore
still in the IC. The probabilistic constraint takes into account that there is a certain probability that the
patient is still in the IC j days after the surgery, which is represented by PIC,c,j .
The utilization of the MC is defined similarly but also takes into account the pre-operative days and

the number of days after surgery that the patient occupies an IC bed. The over-utilization is calculated
by taking the positive part of the difference between the utilization and the target utilization for each day
in the time horizon. As we consider cyclical planning, patients whose surgery took place j days before the
start of the cycle, still occupy a bed in the current cycle. This is taken into account in constraints 8 and 9.
The subscript t in Xc,t and Yc,t should be subtracted from T if the value becomes zero or negative: so
day 0 is the same as day T, day -1 is the same as T-1 and so on.

OUOT,t =

( N∑
c=1

oc ∗ (Xc,t + Yc,t)− UOT,d

)+

t = 1, ..., T (7)

OUIC,t =

( N∑
c=1

Lmax
IC∑
j=0

pIC,c,j ∗ (Xc,d−j + Yc,d−j)− UIC,d

)+

t = 1, ..., T (8)

OUMC,t =

( N∑
c=1

poc∑
s=1

(Xc,d+s + Yc,d+s) +

N∑
c=1

Lmax
MC∑
j=0

pMC,c,j(Xc,d−j + Yc,d−j)− UMC,d

)+

t = 1, ..., T (9)

2.1.4 Capacity constraints

The target utilization is defined in Equation 10 as the booked capacity times the target utilization rate
TR. The over-utilization plus the target utilization cannot exceed the booked capacity (Equation 11).
The booked capacity cannot exceed the maximum capacity (Equation 12) and should be an integer since
only whole beds are possible. Furthermore, the booked capacity should remain constant on week and
weekend days during the time horizon, which is achieved by Equations 13 and 14.

Ur,t = TR ∗BCr,t r ∈ RS, t = 1, ...., T (10)

Ur,t +OUr,t ≤ BCr,t r ∈ RS, t = 1, ..., T (11)

BCr,t ≤ Cr,t r ∈ RS, t = 1, ..., T (12)

BCr,t = BCr,t′ t ∈ weekdays t′ = t+ 1, ..., T ∈ weekdays (13)

BCr,t = BCr,t′ t ∈ weekenddays t′ = t′ + 1, ..., T ∈ weekenddays (14)

BCr,t ∈ Z

2.2 Markov model

The second research method used in this paper is a Markov model. This model aims to evaluate the effects
of an MSS on the waiting list length by modelling the waiting list as a Markov chain. In this model, each
state is represented by the number of patients of category c on the waiting list and stationary demand
is assumed. The state transitions occur based on daily arrivals and the planning of patients. The MSS
affects the removal of patients from the waiting list and therefore this method can be used to assess the
performance of the MSS. A queue length distribution can be found by adopting the power method to
reach a steady-state waiting list length as introduced by Dellaert et al. (2016).

The queue length distributions result from steady-state probabilities and are used to determine whether,
in the long run, the capacity is enough to cover the average demand and how many patient slots are
required to reach the steady state. We used iterative vector calculations for every patient category
separately. Each calculation results in a vector of the probabilities of a specific queue length. Two
calculation steps were performed for each day.
The first step corresponds with the patients who are planned according to the MSS and are therefore

removed from the waiting list. During the second step of the day, new patients arrive and consequently,
the waiting list increases. The arrivals are assumed to follow a Poisson distribution with rate λc. The
tactical plan is repeated every T days and the waiting list length probabilities are calculated repeatedly
to reach the steady state probabilities of the waiting list length. The two steps are represented in the
waiting list vectors WBS

c,d , which is the waiting list before the surgeries are planned, and WNS
c,d , which is
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the waiting list vector after the surgeries are planned. Equations 15 and 16 refer to the vector calculations.
i and j represent the index of the number of patients on the waiting list.

WLBS
c,d =

[
QBS

c,d (0) QBS
c,d (1) QBS

c,d (2) ... QBS
c,d (i) ... QBS

c,d (I)
]

QNS
c,d (j) =


Xc,d+L∑
i=0

QBS
c,d (i) if j = 0

QBS
c,d (j +Xc,d+L), if j > 0

(15)

QBS
c,d (i) =



i∑
j=0

QNS
c,d−1(j) ∗ Pc(i− j)) if i < WLmax

i∑
j=0

(
QNS

c,d−1(j) ∗ (1−
i−j−1∑
a=0

Pc(a))

)
if i = WLmax

(16)

Repeatedly calculating the waiting list vector eventually leads to a steady state probability for every
category and day within the time horizon. The expected waiting list length per day and category can
be calculated with equation 17. The average waiting list length per category over the time horizon is
calculated by adding up all the expected waiting list lengths divided by the time horizon, as shown in
Equation 18.

E[WLLc,d] =

I∑
i=0

QBS
c,d (i) ∗ i (17)

E[Lc] =

∑T
d=1 E[WLXc,d]

T
(18)

Little’s law (Equation 19) is used to calculate the average waiting time of each patient category. Little’s
law claims that under steady-state conditions, the average number of patients in the system L equals the
arrival rate λ multiplied by the average waiting time in the system W . The average time in the system is
defined as the time in the queue plus the service time (Little & Graves, 2008). Rewriting this formula
implies that the expected waiting time per patient category can be calculated by dividing the expected
waiting list length by the arrival rate, as displayed in Equation 20. Another implication of Little’s law is
to define a target waiting list length if the arrival rate and target waiting time are known. The target
waiting list length for which patients are planned within their urgency term is calculated by multiplying
the arrival rate by their urgency term, which is shown in Equation 21.

L = λ ∗W (19)

E[WTc] = E[Lc]/λc (20)

TL = λc ∗ TWTc (21)

2.2.1 Algorithm

Algorithm 1 (see Appendix D) was used to design an MSS that ensures sufficient waiting time based on
the steady-state probabilities within the maximal capacity. Therefore, the algorithm starts with an initial
target number of patients to plan for each category. This number is defined by the average daily arrival
rate multiplied by the cycle length, which is then rounded down to the nearest integer value. Therefore,
the algorithm starts with a number of slots that is certainly too low to reach a steady-state waiting list
length.
In each iteration, a new MSS is optimized according to the optimization model. Subsequently, we

determine whether the capacity is sufficient and whether the average waiting list length is below the target
waiting list length. If there is sufficient capacity, one patient is added to the target patient throughput Rc

of each category for which the average waiting list length is longer than the target waiting list length. The
iterations stop when there is either not enough capacity to plan more patients or if the average waiting
list length is sufficient for each patient category.
Furthermore, the resource utilization that follows from the schedule shows the required capacity and

the optimized MSS shows how to plan these patients accordingly.
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2.3 Simulation model

We introduce the next research method, the simulation model, to perform a demand and supply analysis.
The assumption of stationary demand for the Markov model was not valid for the past years, since the
COVID-19 pandemic caused a global disruption of care. A simulation model is considered to be a more
realistic approach for predicting the performance of an MSS in a non-stationary situation compared to the
Markov modelling approach. The simulation model is used to evaluate the proposed optimization model,
compare it with other models, and test the effects of seasonality. The combination of the optimization
and simulation model is called an optimization-simulation approach and is visualized in Figure 2.

This section explains the solution approach by introducing additional variables, which are shown in Table
2, and by outlining how the optimization-simulation model works.

We start by describing the additional variables for the simulation model. Firstly, the simulation model
introduces two types of waiting lists, which are denoted by WLX and WLY .

WLX is the “must-do” waiting list and this list should be empty at the end of the planning cycle
because the patients on this list should be planned within the planning cycle. The urgent patients who
arrive within the planning cycle are added to this waiting list. Operational surgery scheduling should
ensure that these patients are scheduled on time. This tactical simulation model only keeps track of the
length of the waiting list and the cancelled surgery slots.
WLY is the “can-do” waiting list and patients from this list can be planned for surgery, but should not

necessarily be planned. Elective patients who arrive during the planning cycle are added to this waiting
list because their surgery can be planned in the next planning cycle.
The simulation model uses an optimized MSS for a certain optimization period, which is denoted by

T . This optimized schedule is then repeated Q times since hospitals prefer repetition in their schedule
and the computational time for the optimization is less. After a time period of T times Q (TQ) days a
new planning cycle starts, for which a new MSS is optimized. The number of planning cycles within the
simulation is denoted by H and indexed by h. These indexes are useful for changing demand rates and
capacity throughout the year. An overview of these time indicators is shown in Figure 1. The number of
repetitions Q should be chosen such that the urgency term of the elective patients is within TQ. The red
bars indicate the moments where a new MSS is generated. Other variables are the daily arrival rates of
both the urgent and elective patients, which are λx and λy, respectively.

Figure 1: Time indicators simulation model

Initialization
The next step is to describe how the optimization-simulation approach works. To determine the performance
of our optimization model, we simulate future demand arrivals and check the performance measures for
the simulated demand. After TQ days, we recalculate the MSS based on the simulated queues. All the
patients on the waiting list start on the must-do waiting list WLXc because all patients should be planned
within TQ. The can-do waiting list WLYc starts at zero.

The optimization model requires a target throughput and additional patients. The target throughput
Rc equals the must-do waiting list divided by the number of repetitions Q plus the number of expected
urgent patient arrivals during T . The waiting list is divided by Q since the patients should be planned
within a time period of TQ and the MSS is optimized for a time period of length T . The new Ec is the
number of expected arrivals of elective patients during T . The numbers are rounded up to the next integer.
The determination of the target patient throughput and the additional number of patients occurs every
planning cycle of length TQ. Based on these variables an MSS schedule is optimized, which is the first
step in the approach. The simulation model then consists of two steps during each simulation day, which
are patient planning and patient arrival.
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Figure 2: Optimization-simulation approach

8



Patient planning
The first step in the simulation is to check whether patients are planned according to the schedule and
remove them from the waiting list. If no surgeries are planned, both waiting lists remain the same. When
surgeries are planned, the must-do waiting list is decreased first with the planned patients. If there are
not enough patients on the must-do waiting list, the patients are removed from the can-do waiting list. In
case the number of planned surgery slots exceeds the number of patients on both waiting lists, surgery
slots are cancelled and both waiting lists become empty. The number of cancellations is recorded in the
simulation.

Patient arrival
The second step in the simulation is the arrival of new patients. In accordance with Dellaert et al. (2016),
we assume a daily Poisson arrival distribution to generate multiple simulations easily. Furthermore, the
Poisson distribution was tested in a goodness-of-fit test. The outcomes indicate that a Poisson arrival
distribution holds for most patient categories. The urgent arrivals are added to the must-do waiting list
and the elective arrivals are added to the can-do waiting list. This continues until the end of the planning
cycle is reached. Then the number of tardy patients is determined by counting each patient still on the
must-do waiting list. There are often some tardy patients since urgent patients can still arrive at the end
of the cycle on the must-do waiting list, leaving limited time to plan them.
The new target patient throughput is determined at the end of every planning cycle of length TQ by

adding up the must-do and can-do waiting list and the number of expected urgent patients for the next
TQ days. These patients should be planned within a time period of TQ. However, the input variable in
the optimization model for the required number of patients, denoted by Rc, is this number divided by Q,
since the MSS is optimized for a time period of length T . The new Ec is the number of expected arrivals
of elective patients during T . The determination of the target patient throughput and the additional
number of patients occurs every planning cycle of length TQ.
The must-do waiting list now equals the previous must-do waiting list plus the can-do waiting list

because those patients should be planned in the next planning cycle. The can-do waiting list becomes
equal to zero.
Then a new MSS is optimized and this cycle repeats itself until the end of the simulation. This

simulation model keeps track of the waiting list length, number of cancelled slots and tardy patients per
cycle. Furthermore, when surgery slots are cancelled, the planned utilization of the resources is adjusted
downwards, which is called the expected utilization.

Table 2: Simulation variables

Variables Description

d Index of time in days

T Length of optimization period in days

Q Number of repetitions of optimized schedule

H Number of planning cycles

h Index of the planning cycle

WLXc must-do waiting list of category c

WLYc can-do waiting list of category c

Rc Target patient throughput

Ec Additional patients

λxh,c Daily arrival rate of urgent patients of category c during h

λyh,c Daily arrival rate of elective patients of category c during h

2.4 Numerical study

The models are tested in a numerical study utilizing input data collected from the cardiothoracic surgery
(CTC) department of the Maastricht University Medical Centre (MUMC+). The input data related to
patient category features are based on surgical data recorded from 2021 and capacity data is based on past
experiences. Individual patients are organized into patient categories based on resource utilization and
procedure type in accordance with cardiothoracic surgeons. Each patient category c has its own resource
characteristics, which are the operation duration oc, pre-operative days at the MC poc (Table 3), and a
LOS distribution for the MC and IC Lic,c,j and Lmc,c,j (Appendix A). Furthermore, the penalty costs
and the bonus factors for each category are stated in Table 3. Finally, the number of patients currently on
the waiting list is represented as the start waiting list in Table 3. Table 4 shows the maximum resource
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capacity and the weights for the over-utilization of resources. The patient and resource weights are chosen
by trial and error.
The optimization model is evaluated within the simulation for an optimization period of 28 days

(T = 28 days), which was repeated three times (Q = 3) and resulted in a planning cycle of 84 days. This
planning cycle is chosen because the capacity allocation and surgeon availability is known three months in
advance and the urgency term of elective patients of the CTC department is assumed to be 12 weeks.
Four planning cycles are used to include seasonal demand throughout the year, so the number of planning
cycles H was set to four. The daily arrival rates are displayed in Appendix B for both urgent and elective
patients. We use the total arrival rate for the determination of the queue length distribution in the Markov
model. Based on historical data the target rate is set at 85% since 15% of the patients in the data are
emergency patients.

We test numerous scenarios to show the practicability of the model for hospitals. The model as presented
in section 2.1 is compared to the model of Adan et al. (2009). In the remaining part of this paper, “new
model” refers to the model as presented in this paper and “previous model” relates to the model of Adan
et al. (2009), and “steady-state model” refers to the MSS resulting from the methodology presented in
Section 2.2. The variable Ec is not used in the previous model as it does not take extra patients into
account. The required patients Rc in the previous model are similar to the new model.

Table 3: Parameters per patient category

Category index c Category name O IC PO MC PC BF Start waiting list

1 CABG 4 1 1 4 120 12 21

2 AVR 4 2 1 5 120 12 14

3 CABG + AVR 4 2 1 6 120 12 5

4 TAVI 1.5 0 0 3 45 4.5 10

5 Mitral valve 4 2 1 6 150 15 0

6 Mitral valve complex 5 3 1 6 150 15 10

7 Minimally invasive surgical ablation 5 1 1 5 150 15 9

8 Aortic / other surgery 5 2 1 8 150 15 3

9 Aortic/ other surgery complex 8 3 1 8 240 24 1

10 MIDCAB 3 1 1 3 90 9 15

11 Minimally invasive mitral valve 5 2 1 6 150 15 11

12 Other small cardiac surgery 2 0 0 3 80 8 4

13 Lung surgery 2 1 1 9 80 8 2

14 Lung surgery complex 3 0 1 7 90 9 3

15 Thymus / oncological 3 0 1 3 90 9 21

Table 4: Maximum resource capacity and resource weights
OT IC MC

Monday 16 6 20

Tuesday 16 6 20

Wednesday 16 6 20

Thursday 16 6 20

Friday 16 6 20

Saturday 0 6 20

Sunday 0 6 20

Wr 10 10 7

Scenario 1: Base case
In the first scenario, the new model is compared with the previous model and the steady state model in
the optimization-simulation approach. The new and previous model are compared in the optimization-
simulation approach for a year. A new MSS is optimized every planning cycle by both models and the
outcomes were compared.

For the comparison with the steady-state model, a constant MSS is designed first based on the algorithm
as described in Section 2.2. Then the simulation is used to analyze the difference between the constant
MSS and the dynamic MSS. The dynamic MSS is optimized for every planning cycle of 12 weeks and the
simulation length for this comparison is 20 years.
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Scenario 2: Including planning restrictions
The second scenario aims to demonstrate the impact of the current tactical plan and corresponding surgical
staff availability of the hospital on resource utilization and waiting list development. Two versions of the
current planning practice are tested. Scenario 2a includes the tactical schedule of the hospital, which is
shown in Table 5 and scenario 2b only contains restrictions that resulted from the tactical schedule. Table
6 shows the categories that can be planned on each day following from Table 5.

Table 5: Current tactical schedule scenario 2a

Monday Tuesday Wednesday Thursday Friday

≥ 2 of category 13,14,15 ≥ 2 of category 1,2,3,5,6,8 ≥ 2 of category 1,2,3,5,6,8 ≥ 5 of category 4 / 1 of category 5,6 ≥ 2 of category 10

≥ 1 of category 7 ≥ 0 of category 13,14 ≥ 1 of category 11 ≥ 1 of category 11 ≥ 1 of category 7,8,9

≥ 0 of category 1,2, 12,13 ≥ 1 of category 7,8,9 ≥ 1 of category 1,2,3,5,6,8,12,13 ≥ 0 of category 1,2,3,8,12 ≥ 0 of category 1,2,3,8,12

≥ 0 of category 1,2,3,8,12

Table 6: Plan options scenario 2b

Monday Tuesday Wednesday Thursday Friday

1 x x x x x

2 x x x x x

3 x x x x

4 x

5 x x x

6 x x x

7 x x x

8 x x x x

9 x x

10 x

11 x x

12 x x x x x

13 x x x

14 x x

15 x

Scenario 3: The beginning of the pandemic
The third scenario is based on the start of the pandemic. In this scenario, fewer resources are available
from the second up to and including the fourth period of the year because of the allocation of hospital
beds and anaesthesia personnel to COVID-19 patients. The maximum resource capacity for the second
up to and including the fourth period is displayed in Table 7. The start waiting list is estimated as the
arrival rate multiplied by a waiting time of six weeks and is displayed in Table 8.

Table 7: Maximum resource capacity scenario 3

OT IC MC

Monday 8 3 10

Tuesday 8 3 10

Wednesday 8 3 10

Thursday 8 3 10

Friday 8 3 10

Saturday 0 3 10

Sunday 0 3 10

Table 8: Start waiting list scenario 3

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Start waiting list 48 10 2 20 1 4 2 4 2 9 4 3 7 8 7
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Scenario 4: During the pandemic
The fourth scenario is based on 2021 which was during the COVID-19 pandemic. At the beginning of that
year, the waiting list length was higher than usual (Table 9) and more capacity (Table 10) was available
because the hospital had to catch up with the backlog of surgeries.

Table 9: Start waiting list scenario 4

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Start waiting list 56 26 8 45 4 8 10 14 4 29 18 3 2 4 10

Table 10: Maximum resource capacity scenario 4

OT IC MC

Monday 20 9 20

Tuesday 20 9 20

Wednesday 20 9 20

Thursday 20 9 20

Friday 20 9 20

Saturday 0 9 20

Sunday 0 9 20

Scenario 5: Misjudged weights
The fifth scenario is almost similar to the base case scenario. However, the weights are misjudged and
not adjusted based on trial and error. The settings of these weights are displayed in Table 11. Medium
implies that the weights are chosen similarly to the first scenario. The low patient weights are set equal to
the surgery duration and low over-utilization weights are all equal to one.

Table 11: Weights in scenario 5

Over-utilization Capacity Patient weights

5a Medium Medium Low

5b Low Medium Medium

5c Medium Zero Medium

5d Medium Medium High variation

3 Computational results

Many results were generated from each of the scenarios. In the first scenario, we compared the MSS
from the steady-state model with the new optimization-simulation approach, which showed that frequent
optimization provides better results and that the assumption of stationary demand is not valid. Therefore,
the optimization-simulation approach was applied to the other scenarios.
Five simulation runs were generated for each scenario. For each of these runs, a new arrival sample

was drawn from the Poisson distribution. These distributions were similar for both models. Within these
simulations, four optimizations took place, one for each planning cycle. One simulation is similar to
the approach as described in Figure 2, the new model is described in Section 2.1, the previous model is
adopted from Adan et al. (2009), and the scenarios are described in Section 2.4.

Gurobi was used as an optimization tool, which transformed the new model into a Mixed Integer Linear
Programming (MILP) model. Each optimization was given a maximal computational time of ten minutes
because of the large computational time for the whole simulation. A computational time of ten minutes
for one optimization model results in a run time of over 3 hours per scenario and model. Both models
were not always able to solve the problem to optimality within 10 minutes. The optimality gaps ranged
from 0-4.8%. Running the optimization models with more computational time would probably only lead
to a small improvement in the objective, a shift of only a few patients in the schedule, and minimal
implications for resource utilization and waiting list outcomes.

The results of the optimization-simulation approach are summarized in Appendix E and Appendix F. The
results in the tables show the average values of five simulation runs per model and scenario.
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Appendix E shows the results related to the resource utilizations, which are the average utilization
percentage and the required capacity. The average utilization percentage is defined as the expected
utilization, which is the planned utilization adjusted downwards to the cancelled slots, divided by the
target utilization over the planning cycle. The required capacity is also shown because the new model is
able to adjust the target utilization downwards and the previous model is not. The required capacity is
defined as the maximum utilization of OT hours, IC beds, and MC beds. A deviation is made between
week and weekend days since no surgeries are performed during the weekends and this affects the utilization
of the other resources.
Appendix F displays the results related to the waiting lists, which are the cancellations of surgery

slots, the number of tardy patients and average waiting list lengths. These were calculated per patient
category but are conveniently displayed as the average, maximum, and sum over the fifteen patient
categories.

The remaining part of this chapter highlights the main findings of each scenario and discusses them in
more detail. The graphs shown were made for each planning cycle, scenario and model but only the most
meaningful ones are presented in this chapter.

3.1 Scenario 1: Base case

In this first scenario, two comparisons were made. Firstly, we present the comparison between the previous
model and the new model by using the optimization-simulation approach. Secondly, we provide the results
of the second comparison, which compares a dynamic and constant MSS. The MSS was designed based on
sufficient steady-state probabilities of the waiting list length.

3.1.1 Comparison between the previous and new optimization model

The results first comparison, between the previous model of Adan et al. (2009) and the new optimization
model, are shown in Table 12. These numbers are the average values over five simulation runs and four
planning cycles. The new model resulted in fewer tardy patients, fewer cancelled slots, less required
resource capacity, and a higher utilization compared to the target. The required resource capacity is
the maximum expected utilization during the planning cycle. The results in Appendix E show that the
required resource capacity was similar for both models in the first planning cycle. The demand and supply
matched better in the first cycle compared to the other cycles where the booked capacity in the new
model was adjusted downwards.

Table 12: Comparison between the new and previous optimization model in scenario 1

Previous model New model

Total # of tardy patients 33 23

Total # of cancelled slots 62 60

Required OT hours 14.5 11.75

Required IC beds weekdays 5 3.75

Required MC beds weekdays 16.5 13.75

% of target OT utilization 0.71 0.88

% of target IC utilization weekdays 0.60 0.67

% of target MC utilization weekdays 0.67 0.87

We will explain these numbers in more detail. The number of tardy patients was counted at the end of
every planning cycle, which is the number of patients who are still on the must-do waiting list at the end
of the cycle. There are often some tardy patients since urgent patients can still arrive at the end of the
cycle on the must-do waiting list, leaving limited time to plan them. This affected the outcomes of both
models equally since demand arrivals were similar for both optimization models. The results show an
average of 33 tardy patients for the previous model and only 23 tardy patients for the new model.

Figure 3 provides an example of the results of one simulation run for patient category 14. We observe four
tardy patients in the outcomes of the previous model since at the end of the second and third planning
cycle two patients remain on the must-do waiting list, whereas only two tardy patients resulted from the
new model.
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Figure 3: Waiting list results scenario 1 of patient category 14

A smaller difference is observed in the number of cancelled slots. Slots are cancelled when patient
categories are planned, but the waiting list is empty. These were tracked in the simulation each day and
the planned utilization is then adjusted downwards to the expected utilization. On average 62 cancelled
slots resulted from the previous model, whereas only 60 cancelled slots resulted from the new model.

Figure 4 explains the differences between both models in required capacity and percentage of target
utilization. This figure displays the results of both optimization models for the first scenario in the fourth
planning cycle. The new model is able to adjust the capacity downwards by reserving only the booked
capacity and adjusting the target utilization accordingly. Therefore, the utilization is levelled over the
planning cycle and fewer OT hours are required. The utilization in the new model did not exceed 10
OT hours, whereas the previous model required 14 OT hours on some days. Furthermore, the expected
utilization, which is the planned utilization adjusted downwards when surgeries are cancelled, was closer to
the target utilization. Similar outcomes were observed for the other resources and planning cycles.

Figure 4: OT utilization scenario 1 cycle 4

3.1.2 Comparison between dynamic and constant MSS

The second comparison in this scenario is between the constant MSS as designed with the steady-state
algorithm and a dynamic MSS. Firstly, the algorithm was applied with a maximum capacity of 16 OT
hours, 6 IC beds, and 20 MC beds to design an MSS. However, the results showed that reaching sufficient
waiting time was impossible with this maximum capacity. Therefore, the maximum capacity was increased
to 20 OT hours, 9 IC beds, and 20 MC beds, as shown in scenario 4. Since the optimization model
is able to adjust the booked capacity downwards, the algorithm determined how much capacity was
required.

The algorithm was stopped after the fourth iteration because sufficient waiting time was reached for all
categories. The fourth iteration reached an optimality gap of 2.4% after 600 seconds. The reason to
stop the algorithm implies that the input capacity was enough to fulfil the average demand. The results
indicate that 17 OT hours, 6 IC and 20 MC beds would be sufficient to plan patients within their urgency
term of 12 weeks and still reserve 15% of the capacity for emergency patients.
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Figure 5: Steady-state utilization

The resource utilization of the first and final iteration are shown in Figure 5. The booked capacity
increased because more slots are required to ensure sufficient waiting time.

In each iteration, the steady-state probabilities for the waiting list length were calculated. Figure 6 shows
the average waiting list length for patient category 2 for the first and fourth iterations. The target waiting
time of 84 days and an average arrival rate of 0.17 patients per day indicate a target waiting list length of
around 14 patients.

In iteration 1 the steady-state waiting list length as a result of the optimized schedule was almost 100
patients for category 2, which is much higher than the target. Therefore, in the next iteration, an extra
patient was added to the patient throughput target.

In the final iteration, the average waiting list length became steady and was below the target, which led
to a sufficiently low waiting time. The line is not a small straight line because the average waiting list
length fluctuates throughout the optimization period based on the schedule. This analysis was conducted
for each patient category.
Results from the final iteration are displayed in Table 13. The table shows the average daily arrival rate
of a combination of urgent and elective patients, the average waiting list length that results from the
optimization model and steady-state calculations, the average waiting time according to Equation 20, and
the number of required slots.

Figure 6: Steady-state waiting list length of category 2

The second step is the comparison between the constant MSS that resulted from the steady-state (SS)
model with the new optimization-simulation approach. The maximum available capacity for the new
approach was set to 17 OT hours, 6 IC beds, and 20 MC beds since that was the booked capacity of the
SS model. Testing the approach with more capacity leads to incomparable results.

The first performance indicators are the waiting list length and the number of tardy patients. Figure 7
displays the total waiting list and the number of tardy patients of both models for over 20 years. A tardy
patient is a patient who remains on the must-do waiting list at the end of the cycle. Therefore, a higher
number of tardy patients implies a lower number of patients planned within their urgency term. The
waiting list that resulted from the constant MSS fluctuates less but has higher peaks in waiting list length
compared to dynamic MSS. Furthermore, fewer tardy patients resulted from the dynamic MSS.
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Table 13: Results of steady-state waiting list length

Category Average arrival rate Average waiting list length Average waiting time in days Number of slots required per 28 days

1 0.85 39.05 46 24

2 0.17 2.44 14 6

3 0.03 0.42 14 2

4 0.35 19.35 55 10

5 0.01 0.36 36 1

6 0.07 1.5 21 3

7 0.03 0.44 15 2

8 0.07 0.97 14 3

9 0.04 0.58 15 2

10 0.15 3.59 24 5

11 0.07 1.29 18 3

12 0.05 1.65 33 2

13 0.12 3.0 25 4

14 0.15 2.66 18 5

15 0.12 3.0 25 4

The next performance indicators are the booked capacity and expected resource utilization. The
expected resource utilization was calculated by adjusting the planned utilization downwards based on
the number of cancelled surgeries due to insufficient patients on the waiting list. Since the SS model had
a constant schedule, the booked capacity remained fixed at 17 OT hours, 6 IC beds and 20 MC beds.
However, the new modelling approach can adjust the booked capacity downwards. Figure 8 illustrates the
booked capacity and expected utilization for each cycle over a 20-year period.
The results from Figures 7 and 8 are interrelated to each other as they represent the same time

period.

Figure 7: Comparison based on the waiting list and number of tardy patients

Figure 8: Comparison based on the booked capacity and expected resource utilization

3.2 Scenario 2: The current situation

The second scenario was designed to evaluate the current planning practice and corresponding surgical
staff availability of the hospital. Scenario 2a demonstrates that planning with the current tactical plan is
not possible. The previous model was infeasible which implies that the number of patients who should be
planned according to the tactical plan did not correspond with the number of target patients from the
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waiting list and demand rate. The new model worked for the first cycle because additional patients could
be planned to fulfil the tactical plan. However, the waiting lists at the beginning of the second planning
cycle were not long enough to fill the tactical plan for the second cycle.

The restrictions related to the number of patients for each category were removed in scenario 2b. This
scenario only contained restrictions on the category of patients. This scenario was compared to the first
scenario, where no restrictions were included.

The first comparison is based on resource utilization. More IC beds and MC beds were required by the
new model when restrictions were added, as shown in Resource results. Figure 9 displays the utilization
of the IC and MC in the first and second scenarios. This figure demonstrates that the planning rules
impact the utilization of the resources, especially the IC beds. Six IC beds were required in scenario 2b,
whereas in the base case scenario, only five IC beds were required. Moreover, the expected utilization of
the OT passed the target utilization in scenario 2b, which implies that insufficient capacity was available
for emergency patients.

Figure 9: Bed utilization with (scenario 2b) and without (scenario 1) restrictions

The second comparison between the first and second scenarios is based on the waiting list characteristics.
The total numbers of tardy patients for scenarios 1, 2a, and 2b for the new model are 33, 31, and 23
respectively. Scenario 2a was only simulated for one cycle and already reached this number of tardy
patients. The absence of restrictions leads to a lower number of tardy patients. An example of the waiting
list of category 2 is presented in Figure 10. The must-do waiting list length was higher than zero at
the end of the first planning cycle for scenario 2a and therefore many tardy patients resulted from this
scenario. This figure illustrates that the first scenario, without planning restrictions, resulted in fewer
tardy patients than the second scenario for patient category 2.

The total number of cancelled slots for both scenarios and optimization models in the first and second
scenarios ranged between 60 and 64, indicating minimal differences in cancellations. Small contrasts were
also present in the average waiting list lengths.

3.3 Scenario 3: The beginning of the pandemic

Scenario 3 is based on the beginning of the pandemic with limited resource availability from the second up
to and including the fourth planning cycle. The previous model was only able to design an MSS for the
first cycle. In the second cycle, the capacity could not meet the target patient throughput and therefore
the model became infeasible.
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(a) Scenario 1 (b) Scenario 2a (c) Scenario 2b

Figure 10: Waiting list results of category 2

The new model was able to design an MSS for all planning cycles. The mismatch between demand and
supply caused high resource utilization and many tardy patients. The utilization was high, resulting in
minimal capacity for emergency patients.

Figure 11 displays the waiting list development of category 4, which is similar to other categories, and
the utilization of the OT of cycle 2, where no capacity was available for emergency patients.

Figure 11: Waiting list results and OT utilization scenario 3

3.4 Scenario 4: During the pandemic

The next scenario is based on the year 2021, which was during the COVID-19 pandemic. Due to the large
waiting lists, hospitals needed to increase their capacity in order to catch up with the backlog of elective
surgeries. Even though the capacity was increased, the previous model was still not able to solve this
scenario. The target patients did not fit in the capacity and therefore the model became infeasible. On
the other hand, the new model was able to generate a schedule and results. The number of tardy patients
for this scenario is high compared to other scenarios because not all target patients could be planned.

The number of tardy patients differs between patient categories. Figure 12 illustrates this difference by
showing that the must-do waiting list of category 8 was empty at the end of all planning cycles, resulting
in zero tardy patients, whereas the must-do waiting list of category 14 was not empty at the end of the
first and third cycle, resulting in a total of 16 tardy patients. The resource utilization during the first cycle
was significantly higher compared to the other planning cycles. This is likely due to the initial waiting
list being longer, indicating a higher demand at the beginning of the planning cycle. Furthermore, more
capacity was required in the first cycle than in the other cycles. The OT was the bottleneck in the first
cycle and not enough capacity could be reserved for the emergency patients. For the remaining cycles, the
extra capacity was too much, and the capacity was adjusted downwards by the new model.
Figure 13 shows the utilization of this scenario for the OT. These results show that 20 OT hours

were not sufficient in the first planning cycle to plan the elective patients within 12 weeks, whereas 14
OT hours were enough in the third cycle to plan the elective patients and reserve space for emergency
patients.
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Figure 12: Waiting list results scenario 4

Figure 13: OT utilization scenario 4

3.5 Scenario 5: Misjudged weights

Various configurations of the weights were chosen in this scenario. The previous model demonstrates
similar outcomes compared to the base case scenario since the unfortunate choice of weights only affected
the resource utilization of the previous model and therefore only scenario 5b. The differences were minimal.
This scenario shows much more impact on the new model.

Setting the patient weights low (scenario 5a) resulted in an empty schedule for the new model. The
under-utilization was not penalized and therefore the model decided not to plan patients. In this scenario,
where no patients were planned, the waiting lists kept increasing resulting in an average number of tardy
patients of 1790, which is considered extremely high for the new model. Consequently, the resource
utilization was zero.

Scenario 5b, where the penalty for over-utilization is lower (wr = 1 ∀r ∈ RS), mainly affected the new
model. The new model unnecessarily adjusted the booked capacity downwards, which resulted in less
capacity being available for emergency patients. This is shown in Figure 14, which displays the OT
utilization for both optimization models in scenario 5b in comparison to the base case.

Scenario 5c only influenced the new model. For this scenario, the weight of the required capacity was set
to zero and was therefore removed from the objective function. Accordingly, the model was not forced to
adjust the required capacity downwards. As many surgery slots as possible were planned in this scenario
because that is rewarded by the objective function as long as the utilization remains under the target
utilization. However, not all slots could be filled during the simulation because the waiting list length was
too short. This resulted in 184 cancelled slots and an average must-do waiting list level of 25 patients,
which are the highest number of cancelled slots and lowest waiting list level over all scenarios.

The final scenario is scenario 5d, in which the patient weights were chosen with high variation. This
resulted in some patient categories that were not planned and their waiting lists kept growing resulting in
many tardy patients. As shown in Appendix F, the difference between the mean and maximum number
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of tardy patients is large in this scenario for the new model. In scenario 1, where the weights were chosen
appropriately, the new model resulted in an average of two tardy patients and a maximum of nine, whereas
in scenario 5d the average is five tardy patients and the maximum is 36 tardy patients.

Figure 14: OT utilization scenario 5b

4 Discussion

Much research has been conducted on the tactical planning of elective surgeries, which involves the
optimization of the MSS, also referred to as the MSSP. Whereas most papers included the optimization of
resource utilization, only a limited amount of papers could be identified that considered the waiting list
when solving or analysing the MSSP. This paper aimed to fulfil that gap by considering the waiting list in
the optimization-simulation approach. Furthermore, we conducted a demand and supply analysis and
tested the effects of surgical staff availability, as suggested for future research by previous papers.
The aim of this paper was to enhance previous models for better practicability. The hospital of the

numerical study was concerned with improving waiting list management in order to treat the right patients
within their urgency term while ensuring high utilization of resources and reserving capacity for emergency
patients by designing an MSS for the CTC department. Therefore, a previous model, the model of Adan
et al. (2009), was adjusted to reach this objective. The uncertainty in the length of stay was adopted from
the previous model because their research highlighted the importance of uncertainty in these variables.
Also, the optimization-simulation approach was acquired to test the effects of the models on the waiting
list.

In this paper, we have presented an optimization-simulation approach to compare the previous model
with our new model for the design of an MSS. Furthermore, the optimization-simulation approach was
compared to a constant MSS, which was based on a sufficient steady-state waiting list length. Multiple
scenarios were simulated to test the practicability of the models. The performance was assessed on waiting
list development, resource utilization, the number of tardy patients, cancellation of slots, and booked
capacity.

Firstly, results indicated that quarterly optimization of the MSS improved the performance in terms of
waiting list length, the number of tardy patients, booked capacity and resource utilization compared to a
constant MSS. This highlights the importance of a dynamic MSS that considers the waiting list when
allocating resource capacity.
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Furthermore, the comparison between the previous and new model demonstrated that outcomes in
terms of resource utilization and waiting list characteristics were comparable in scenarios where demand
and supply matched well. The demand is characterized by the resource needs of patients who should be
treated within their urgency term and the supply by the available capacity of the OT, IC, and MC.
On the other hand, the new model achieved better results in scenarios where demand and supply did

not match well. The previous model became infeasible when the capacity needs of the patients on the
waiting list exceeded the available capacity. Additionally, the previous model performed worse on resource
utilization when the demand was less than the supply because the new model was able to adjust the
target downwards and therefore spread the utilization more equally over the planning cycle.

Fourthly, the results demonstrated that the previous model has an advantage when weights were changed.
The adjustment of weight had a limited impact on the achievements of the previous model, whereas
changing the weights had a major impact on the outcomes of the new model. Therefore, the determination
of weights for the new model should be done by skilled people who understand the implications of their
choices on model outcomes.

Finally, the results showed that the current tactical model of the hospital is unsuitable for their waiting
list and demand rate. Removing the restrictions based on current surgeon availability would lead to
fewer resources required and more patients being treated within their urgency term. Therefore, the
implementation of the new model is advised for the design of a new MSS and the consideration of a change
in surgical staff availability.

Contribution and practical implication

Our model contributes to improving all aspects of the quadruple aim. Firstly, the number of patients
who are planned after their due date can be reduced by considering the waiting list when designing an
MSS, which probably improves the health of the population. Secondly, the model reserves capacity for
emergency patients, which leads to fewer interruptions in the schedule of elective patients and therefore
higher patient satisfaction. Thirdly, results demonstrate that fewer resources are required when planning
according to our optimization-simulation approach, which can reduce costs. Finally, the approach designs
a cyclical schedule, provides the possibility to restrict surgery days, and smoothens bed occupancy, which
aims to improve employee satisfaction.

Furthermore, our model is implemented in a user-friendly interface for the CTC surgery planning of the
MUMC+, which indicates a significant practical application of this study. Screenshots of this tool are
attached in Appendix G. Their planners should be trained properly to choose the weights and interpret
the results because our study showed a major impact of the choice of weights on the schedule. The
simulation tool can help to assess the impacts of the tactical plan of the MUMC+ on resource utilization
and waiting list development. The optimization model could suggest another schedule. Redesigning the
tactical schedule immediately is hard to implement because surgeons have their routine working days and
other hospital processes are affected by the changes. However, gradual implementation is still possible
because patient categories can be restricted. Subsequent research should examine the effects of the new
schedules on the actual resource utilization, the number of cancelled surgeries due to insufficient capacity
reserved for emergency patients, and patient waiting times.
Finally, a number of practical implications can be drawn from the results. Firstly, this paper shows

that a dynamic MSS provides better results in comparison with a constant MSS. The difference between
available and booked capacity can be allocated to other surgical specialisms. Secondly, this research
highlights the importance of considering the waiting list when determining the MSS to allocate resources
to the patient categories with the highest need. Finally, we provide insights into the influence of the
planning of surgeries on bed occupancy.

Limitations and future research

Our research has some limitations that should be considered while reading this paper.
The first limitation relates to the use of weights. As shown in one of the scenarios, these weights have a

huge impact on the model outcomes. However, the weights were set using trial-and-error and all other
scenarios had similar weights. Moreover, the weights were only used for the design of an MSS and did not
further impact the numerical results. These weights are not supposed to provide the best objective, but
as a method to indicate a preference for the model. Therefore, no optimal determination of the weights is
possible. Accordingly, the tool provides the possibility to adjust the weights easily to situational preferences.
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The second limitation of this study is the aggregate level of the simulation, which leads to a limited
ability to predict the operational outcomes of the MSS. For instance, the operational level can compensate
for the cancellations of one patient category by filling them with patients from another category, but the
tactical level does not consider this possibility. Future research could incorporate the operational level
into the simulation model to have a better prediction of operational outcomes.

Additionally, the patient category data in this paper was only calculated based on one year of surgery
data. Multiple years could be used to gather more reliable distributions in patient demand and resource
needs. Nevertheless, the sample of 930 patients for the probability of length of stay can still be considered
significant. Therefore, we recommend providing the tool with better predictions of patient demand and
resource needs in the future.

The final limitation relates to the patient categories, which were composed in accordance with surgeons.
The assumption of Poisson arrivals could change for a different configuration of patient categories. A
goodness-of-fit test was performed to test the assumption for the current input data but was not valid for
all patient categories. Still, a Poisson distribution was assumed to generate multiple demand simulations.
Gathering data for multiple years could be useful for the prediction to validate the model. Future research
could investigate the impact of these categories on the planning problem.

5 Conclusion

This paper aimed to improve waiting list management by solving the MSSP. The main contribution to the
literature was the inclusion of the waiting list in this problem. Therefore, a MIP model was formulated
by extending the optimization model of Adan et al. (2009). The aim of this optimization model was to
develop an MSS which created sufficient surgery slots while reserving capacity for emergency patients
and ensuring high utilization of the resources without wasting capacity. The new model incorporated the
waiting list-based throughput as part of the objective function instead of being treated as a constraint
and introduced the booked capacity as an additional variable to the maximum capacity.

The analysis of the MSS involved two approaches: modelling the waiting list as a Markov process and
developing a simulation model.
The Markov model, which assumes stationary demand and supply, was used to design an MSS that

ensured a sufficient steady-state waiting list length. This constant MSS was then compared with a dynamic
MSS in the optimization-simulation approach.

The optimization-simulation approach combined the optimization model with a simulation model. This
approach was introduced as a research method to model non-stationary demand and supply. A numerical
study was conducted to compare the new optimization model with the previous model and the steady-state
model.

The results confirmed that enhancing the previous model improved the outcomes in terms of the number
of tardy patients, cancelled slots, utilization, and resource requirements.
In scenarios where a mismatch between demand and supply existed, the new optimization model

showed significant improvements compared to the previous model. The previous model was not able to
solve the optimization problem when the capacity was insufficient to plan the target patient throughput.
Furthermore, the new model required less resource capacity when the supply exceeded the demand.

The comparison between the constant and dynamic MSS showed that quarterly optimization results in
more patients being planned within their urgency term and a decrease in the waiting list length.

These results indicate that the new optimization model provides better results than the previous model.
However, choosing the weights carefully is important. Future research should focus on elaborating the
simulation model on the operational level and investigating the impacts of the patient category composition
on the planning problem. The model can be used in practice with the planning tool. As such, we recommend
the adoption of the optimization-simulation approach to improve waiting list management.
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Appendices

A Length of stay distribution

Table A1: Probability of length of stay in days at the ICU (sample of 930 patients)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 15

1 0.00 0.81 0.11 0.04 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.72 0.15 0.03 0.03 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.53 0.29 0.06 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.78 0.16 0.03 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

5 0.00 0.43 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.04 0.46 0.14 0.04 0.11 0.04 0.07 0.00 0.00 0.04 0.00 0.00 0.04 0.04 0.00 0.00 0.00

7 0.00 0.89 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

8 0.00 0.66 0.23 0.00 0.06 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

9 0.00 0.31 0.15 0.08 0.15 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.15

10 0.00 0.90 0.07 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.00 0.73 0.15 0.06 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.91 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 0.87 0.07 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00

14 0.89 0.04 0.04 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.94 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A2: Probability of length of stay in days at the MC/ward (sample of 930 patients)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 15

1 0.03 0.03 0.24 0.35 0.16 0.11 0.04 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01

2 0.01 0.03 0.25 0.24 0.15 0.01 0.09 0.07 0.01 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.06

3 0.06 0.00 0.12 0.12 0.18 0.24 0.00 0.00 0.06 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.06

4 0.03 0.05 0.06 0.57 0.12 0.06 0.06 0.02 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.29 0.14 0.14 0.00 0.14 0.00 0.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00

6 0.18 0.00 0.04 0.04 0.32 0.14 0.07 0.04 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.00 0.11

7 0.00 0.00 0.21 0.32 0.16 0.05 0.00 0.11 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.05

8 0.14 0.03 0.11 0.17 0.23 0.06 0.06 0.03 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.09

9 0.15 0.15 0.00 0.15 0.08 0.00 0.23 0.00 0.00 0.08 0.00 0.08 0.00 0.00 0.00 0.00 0.08

10 0.06 0.03 0.52 0.28 0.04 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.01

11 0.06 0.00 0.03 0.18 0.21 0.21 0.06 0.03 0.03 0.00 0.03 0.06 0.03 0.03 0.00 0.00 0.03

12 0.41 0.00 0.36 0.09 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

13 0.02 0.04 0.09 0.15 0.22 0.24 0.04 0.02 0.02 0.00 0.02 0.04 0.00 0.02 0.00 0.02 0.04

14 0.00 0.02 0.02 0.04 0.15 0.25 0.15 0.11 0.04 0.11 0.04 0.00 0.04 0.04 0.00 0.00 0.02

15 0.02 0.02 0.23 0.46 0.17 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B Arrival rates

Urgent patients Elective patients

h1 h2 h3 h4 yearly h1 h2 h3 h4 yearly

1 0.48 0.58 0.48 0.49 0.51 0.38 0.31 0.32 0.37 0.35

2 0.04 0.05 0.08 0.01 0.04 0.18 0.10 0.10 0.14 0.13

3 0.02 0.02 0.01 0.00 0.01 0.02 0.00 0.01 0.02 0.01

4 0.05 0.05 0.06 0.02 0.04 0.36 0.38 0.15 0.32 0.30

5 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01

6 0.04 0.02 0.02 0.02 0.03 0.08 0.05 0.02 0.04 0.05

7 0.01 0.00 0.00 0.00 0.00 0.04 0.06 0.01 0.01 0.03

8 0.01 0.01 0.05 0.01 0.02 0.11 0.02 0.04 0.02 0.05

9 0.01 0.01 0.02 0.04 0.02 0.04 0.00 0.01 0.01 0.01

10 0.08 0.08 0.00 0.01 0.04 0.12 0.10 0.06 0.17 0.11

11 0.01 0.01 0.01 0.04 0.02 0.11 0.05 0.00 0.07 0.06

12 0.01 0.00 0.02 0.04 0.02 0.07 0.00 0.05 0.02 0.04

13 0.06 0.12 0.11 0.06 0.09 0.00 0.06 0.06 0.01 0.03

14 0.13 0.11 0.18 0.05 0.12 0.02 0.01 0.05 0.04 0.03

15 0.01 0.02 0.02 0.02 0.02 0.08 0.11 0.13 0.07 0.10
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C Patient perspective on the MSSP

Many research papers on the MSSP that include waiting list characteristics assume that patients primarily
prefer short waiting times. Anjomshoa, Dumitrescu, Lustig, and Smith (2018) optimized an MSS that
minimizes the number of overdue patients, the number of patients on the waiting list, and the number of
tardy days and maximizes the revenue. Dellaert et al. (2016) tested strategies to decrease the waiting
times. The research of Makboul et al. (2022) focused on designing an MSS to maximise the surgery score
which was defined as the maximal waiting time minus the number of days prior to the due date. However,
none of these papers actually tested this assumption with real patients. Therefore, we conducted a focus
group session with 8 cardiac patients. The main hypothesis that was tested is the assumption that waiting
time is the most important factor in patient preferences.

Research method

We conducted a focus group within the MUMC+ with 8 cardiac patients. Four aspects related to waiting
list management were investigated, which are presented below.

• Waiting time: time between the date that the need for surgery is indicated and the actual surgery.

• Notification time: how long before the surgery, the moment of surgery is announced. The surgery
date is related to the admission date, which is for some patients one day before the actual surgery.

• Certainty: how certain the surgery moment is when it is announced.

• Specification: how specific the surgery date is announced. This could be the exact hour, day, or
week of surgery.

Five statements were compiled based on these aspects. These statements were based on a conjoint analysis
where the participants could choose between two aspects. An example statement of the trade-off between
notification time and certainty was formulated as “would you rather know the surgery date 4 weeks in
advance with a high cancellation probability or would you rather know the date 2 days in advance with
a low cancellation probability?”. An open discussion took place regarding each statement to gather an
understanding of patient preferences and motives. The second part of the focus group was a ranking of the
four aspects. Participants had to indicate which aspects were most important to them and why.

Results and implications

The open discussion related to the statements showed that a preference in most trade-offs was highly
dependent on personal characteristics and circumstances. The patients with a job were more concerned
with the timely notification of their surgery date compared to retired patients. The patients also indicated
that their preferences were highly dependent on the surgery type and the urgency as indicated by their
doctor. For example, patients indicated that the waiting time for a cardiac device replacement which
already occurred multiple times could be longer than for open heart surgery. Also, the fear related to their
own condition played a part in this consideration. Some would therefore prefer a short waiting time over
all other aspects. Past experiences affected the choice in favour of certainty. Certainty was tremendously
desired by patients whose surgery had been cancelled multiple times in the past. The specification of
the surgery moment was by all patients chosen to be in days instead of hours or weeks. Finally, patients
were asked which aspect was most important to them. Almost all patients indicated that they preferred
certainty over the other aspects. The second aspect in favour was the waiting time for most patients.
Notification time and specification were considered the least important. In this ranking, patients were
told to assume that based on their condition they could wait for surgery for 12 weeks.

From these results, we can conclude that the hypothesis of patient preferences in favour of short waiting
time does not always hold. Based on this focus group, it does hold for urgent surgeries and anxious
patients, but not for elective patients who can wait 12 weeks. For those patients, certainty in the surgery
date is much more important. This could be incorporated into the MSSP by reserving capacity for
emergency patients so that the emergency arrivals would have less impact on the elective program.
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D Algorithm

Algorithm 1

Require: E[WTc] <= TWTc ▷ Expected waiting time should be less than target waiting time
Ensure: BCr <= Cr

Rc ← int(λc ∗ T ) ∀c ∈ N
stop← False
while stop = False do

within target ← True
within capacity ← True
Optimize MSS ▷ Use optimization model
Evaluate the waiting time and planned resource utilization ▷ Use Markov model and Little’s law
for r ∈ RS do

if CNr = Cr then
within capacity ← False

end if
end for
if within capacity = True then

for c ∈ N do
if E[Lc] > TLc then

Rc ← Rc + 1 ▷ Add an additional patient slot in the next iteration
within target ← False

end if
end for
if within target = True then

stop ← True ▷ Stop: sufficient waiting time and capacity
end if

else if within capacity = False then
stop ← True ▷ Stop: capacity reached

end if
end while
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E Resource results

OT utilization IC utilization week IC utilization weekend MC utilization week MC utilization weekend

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Scenario 1 Utilization Previous 0.97 0.75 0.62 0.50 0.85 0.65 0.49 0.41 0.31 0.21 0.17 0.12 0.90 0.69 0.64 0.46 0.88 0.68 0.64 0.47

New 1.00 0.88 0.83 0.79 0.75 0.69 0.64 0.65 0.55 0.55 0.42 0.51 0.91 0.87 0.84 0.84 0.87 0.87 0.80 0.84

Required capacity Previous 16 14 14 14 5 5 5 5 2 2 2 2 18 17 16 15 17 15 15 13

New 16 12 10 9 5 4 3 3 2 2 2 1 18 14 13 10 17 13 13 9

Scenario 2a Utilization Previous

New 0.95 0.69 0.50 0.89 0.88

Required capacity Previous

New 16 6 2 20 18

Scenario 2b Utilization Previous 0.97 0.74 0.62 0.51 0.84 0.64 0.49 0.42 0.34 0.21 0.18 0.14 0.90 0.69 0.64 0.46 0.90 0.70 0.63 0.48

New 1.00 0.88 0.81 0.77 0.76 0.70 0.62 0.61 0.62 0.53 0.50 0.44 0.87 0.82 0.79 0.82 0.88 0.90 0.86 0.84

Required capacity Previous 16 14 14 13 6 5 5 4 3 2 2 2 18 17 17 13 17 15 14 12

New 16 12 12 9 6 5 4 3 3 2 2 1 19 15 15 10 17 14 13 10

Scenario 3 Utilization Previous 0.94 0.82 0.28 0.87 0.88

New 0.97 1.13 1.09 1.05 0.76 0.89 0.85 0.79 0.77 0.71 0.59 0.50 0.93 0.87 0.93 0.89 0.92 0.90 0.91 0.87

Required capacity Previous 14 5 2 17 17

New 14 8 8 8 5 3 3 3 2 1 1 1 18 9 10 9 16 8 9 9

Scenario 4 Utilization Previous

New 1.05 0.88 0.77 0.79 0.82 0.69 0.64 0.66 0.74 0.62 0.47 0.51 1.07 0.97 0.82 0.84 1.08 0.94 0.79 0.85

Required capacity Previous

New 20 15 11 9 7 5 4 3 3 2 2 1 20 19 13 10 20 18 13 9

Scenario 5a Utilization Previous 0.97 0.75 0.62 0.50 0.84 0.66 0.49 0.41 0.32 0.21 0.17 0.12 0.91 0.69 0.64 0.46 0.88 0.69 0.64 0.47

New 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Required capacity Previous 16 14 14 14 5 5 5 5 2 2 2 2 17 17 16 15 17 15 15 13

New 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Scenario 5b Utilization Previous 0.97 0.75 0.60 0.53 0.85 0.65 0.47 0.43 0.32 0.20 0.15 0.14 0.92 0.70 0.62 0.48 0.87 0.67 0.61 0.49

New 1.03 0.93 0.87 0.94 0.96 0.74 0.68 0.79 0.89 0.59 0.48 0.63 0.98 0.92 0.89 0.90 0.99 0.90 0.88 0.92

Required capacity Previous 16 14 14 14 6 5 5 5 2 2 2 2 18 17 17 16 17 15 15 14

New 16 14 11 9 5 5 3 3 2 2 2 1 19 16 15 11 19 16 14 11

Scenario 5c Utilization Previous 0.97 0.75 0.62 0.50 0.85 0.65 0.49 0.41 0.31 0.21 0.17 0.12 0.90 0.69 0.64 0.46 0.88 0.68 0.64 0.47

New 1.00 0.85 0.67 0.64 0.77 0.64 0.42 0.46 0.31 0.21 0.13 0.14 0.90 0.81 0.69 0.62 0.87 0.80 0.65 0.59

Required capacity Previous 16 14 14 14 5 5 5 5 2 2 2 2 18 17 16 15 17 15 15 13

New 16 14 14 14 6 5 5 5 2 2 2 2 17 17 17 17 17 17 17 16

Scenario 5d Utilization Previous 0.97 0.75 0.62 0.50 0.85 0.65 0.49 0.41 0.31 0.21 0.17 0.12 0.90 0.69 0.64 0.46 0.88 0.68 0.64 0.47

New 0.91 0.86 0.86 0.83 0.79 0.76 0.75 0.73 0.80 0.56 0.53 0.58 0.87 0.85 0.84 0.86 0.88 0.85 0.82 0.86

Required capacity Previous 16 14 14 14 5 5 5 5 2 2 2 2 18 17 16 15 17 15 15 13

New 14 12 11 9 4 4 4 3 2 2 1 1 17 14 14 10 15 13 13 9



F Waiting list results

Scenario 1 Scenario 2a Scenario 2b Scenario 3 Scenario 4 Scenario 5a Scenario 5b Scenario 5c Scenario 5d

Number of cancelled slots Mean Previous 4 4 1* 4 4 4 4

New 4 2* 4 2 3 0 8 12 4

Max Previous 14 14 4* 14 13 14 14

New 13 10* 14 8 10 0 22 27 14

Total Previous 62 64 9* 61 64 62 62

New 60 28* 62 33 52 0 113 184 57

Number of tardy patients Mean Previous 2 2 0* 2 2 2 2

New 2 2* 2 21 6 119 1 1 5

Max Previous 12 11 2* 12 13 12 12

New 9 15* 10 168 50 638 7 8 36

Total Previous 33 33 4* 33 36 33 33

New 23 33* 31 308 86 1790 22 20 76

Average must-do WL Mean Previous 2 2 3* 2 2 2 2

New 2 4* 2 6 4 27 2 2 3

Max Previous 9 9 19* 9 9 9 9

New 9 15* 9 43 25 140 8 6 13

Total Previous 35 36 50* 35 35 35 35

New 34 64* 37 95 65 412 28 25 48

Average can-do WL Mean Previous 3 3 4* 3 3 3 3

New 3 3* 3 3 3 3 2 2 3

Max Previous 13 13 16* 13 13 13 13

New 13 16* 13 13 13 15 12 8 13

Total Previous 41 41 55* 41 41 41 41

New 41 45* 42 44 43 48 34 27 42

* Results apply to the first cycle only
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