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Abstract

Kitting can be defined as gathering all parts into a package or cart and feeding them to assembly
lines on the right time with the right quantities. Kitting supports high mix and low volume
production by providing the necessary parts to the work station depending on the assembly
planning. In the literature, there is a lot of research about the benefits of kitting based on costs,
quality and performance. However, there is lack of knowledge about the alignment between
assembly and the kitting planning considering human and production related factors. The goal
of this thesis is to predict the hourly workload to fulfill the kitting requirements affected by the
assembly process.

This thesis begins with reviewing literature about time concepts, manufacturing uncertainties
and prediction models used in manufacturing context. Based on the literature review, three
different machine models are selected. During this thesis, the Cross Industry Standard Pro-
cess for Data Mining is used to develop the prediction models. A separate prediction model
has been developed for each production line of Canon Production Printing due to the different
characteristics. The model tries to predict the rhythm of each kit cart. The results of the
prediction model per production line are combined into one dataset. Finally, a translation has
been made to the required kitting requirements. Based on information about the kitting pro-
cess, a translation has been made to the hourly workforce to fulfill these kitting requirements.
The hourly workload in the kit warehouse can be predicted with average accuracy of 70%.
However, variation in workload in the kit warehouse is still visible due to multiple production
lines. At the end, advice is given to Canon Production Printing on how to balance the workforce.

The main limitation in this research in the limited use of human factors because of privacy
reasons. Moreover, the inclusion of more input factors including human factors are proposed as
topic for future research.

ii



Preface

Last August, I started with my Master Thesis at Canon Production Printing. This thesis finalizes
my master Operations, Management and Logistics at the Eindhoven University of Technology.
It was a great experience to apply the knowledge and skills I learned during my study to this
project at Canon Production Printing. The aim of my research was developing a prediction
model to predict the kitting requirements of the production lines, translated into workload in
the kit warehouse. I would like to use this preface to thank some people who helped or motivated
me during the master and during my master thesis.

Firstly, I would like to thank my mentor and first supervisor Banu Aysolmaz for her support,
feedback and her expertise. The efficient weekly meeting kept me on track and your feedback
helped me a lot with the structure of this research. Thank you for your time, meetings and crit-
ical feedback. I would also like to thank my second supervisor Remco Dijkman, who provided
valuable feedback to improve the quality of my report.

Secondly, I would like to thank my company supervisors Pascal Geraeds and Lissette Contreras
Llamoca for their support, enthusiasm and time during my internship. The weekly meetings with
my company supervisors were essential in my understanding of the company, of the data and of
the expectations of the company. I think we have done a great job convincing management of
the benefits of data science in a manufacturing context. Additionally, I would like to thank the
employees of the kit warehouse and assembly operators for providing valuable information and
insights for my thesis. Furthermore, the R&D employees were very valuable in setting up the
environment to work with Python within the Manufacturing and Logistics department.

Lastly, I would like to thank my family and friends for their support during my master and
during this project. A special thanks to my boyfriend, Bjorn, who was always there for me and
helped me through difficult times.

Thank you all and enjoy reading my thesis.

Esther van Maurik

Eindhoven, April 14, 2023

iii



Executive Summary

Problem context

Kitting can be defined as gathering all parts into a package or cart and feeding them to assembly
lines on the right time with the right quantities. Kitting supports high mix and low volume
production by providing the necessary parts to the work station depending on the assembly
planning. In the literature, there is a lot of research about the benefits of kitting based on costs,
quality and performance. However, there is lack of knowledge about the alignment between
assembly and the kitting planning considering human and production related factors. A difficulty
with mixed-model assembly lines is that the demand of parts are not steady and there arise a
high variability of required part quantities at various stations. Kitting is related to assembly
to get the right materials at the right place on the right time. However, the assembly planning
is hard to predict due to multiple models, human factors and production related factors such
as part shortages and machine breakdowns. As a consequence, the workforce planning of the
kit warehouse is hard to predict. The aim of this research is to develop a prediction model to
predict the required hourly manpower to fulfill the kitting requirements affected by the assembly
process.

Business Understanding

During this research, a case study is conducted at Canon Production Printing (CPP) who
develops and manufactures digital printing equipment. Stakeholder meetings are organised to get
more understanding of the business processes of Canon Production Printing. The stakeholders in
this research are the employees of the kit warehouse, assembly operators, planners and industrial
engineers. The current situation of the alignment between the kitting and assembly process is
identified. Furthermore, factors which could create variation on the kitting process, assembly
process and the alignment between kitting and assembly are analysed. To improve the alignment
between the kitting and assembly process, the production lines used in this research are described
including the different characteristics. Based on the stakeholder meetings, solution requirements
are defined to determine the expectations of the company in order to deliver a specific solution
to the company.

Data Preparation and Modeling

Data about the kitting process and assembly process is collected. The data was cleaned and
prepared for modeling. Unfortunately, a connection between the production order and kit cart is
missing. Because the assembly operators are working parallel and sometimes they are working in
advance, it was impossible to obtain an actual production sequence. Furthermore, new features
are created which are used to predict the kitting requirements without an actual production
sequence. In this research, the prediction model estimates the rhythm of a specific kit cart by
predicting the Time between two calls (TBC) of the same kit cart. A call is performed by an
assembly operator when the kit cart is needed at the production line. For each production line,
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a separate final dataset is created.

Based on the literature review, three different machine learning techniques are tested. For
each production line, the best prediction model including the optimal hyperparameters is se-
lected. After that, the prediction results of the production lines are merged in one dataset. The
records are grouped based on the predicted time point when the same kit cart is called again.
Finally, the predicted number kitlines per time bucket is compared to the actual number of
kitlines per time bucket. This process is done by trying different time buckets to see their effect
on accuracy. the mean accuracy of the number of kitlines is remarkably higher when a time
bucket of 60 minutes is used. A larger time bucket results in a higher accuracy. With a larger
time bucket, there is a greater chance that the kit cart has been predicted in the correct time
bucket. However, with a large time bucket, the variation within a time interval is not visible.
The process of merging the prediction results and the translation to the kitting requirements is
showed in Figure 1.

Figure 1: Process of merging the production lines

Modeling based on Time between Requests (TBR)

In case of CPP, prediction based on Time between Calls (TBC) does not work well because
the assembly operators give a signal to refill the empty kit cart. The workload in the kit ware-
house is dependent on signals of the assembly operator. A kit cart is requested to be refilled
directly when the previous production is finished, but the assembly worker can sometimes be
early or late with requests. Requesting to refill a kit cart could contain some extra human
behavior. This human behavior is identified by comparing the results based on Time between
Calls (TBC) and Time between Requested (TBR). The prediction of the kitlines based on TBR
is slightly worse than TBC which can be explained as human behavior of the assembly operators.

Based on the prediction when the kit cart is requested again by the assembly operator, a new
kit cart queue is calculated. Based on the predicted requested timestamp, predefined duration
and predefined available time to kit, a translation is made to the workload. The start and end
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kitting timestamps of a kit cart are calculated. The calculation of the new kit cart queue is
shown in Figure 2.

Figure 2: Calculation of the kit cart queue

During this thesis the kitting requirements for the production lines are predicted based on Time
Between Calls (TBC) and Time Between Requests (TBR). The average accuracy per 60 minutes
is for both around the 63%. The median accuracy of TBC is slightly better. The differences can
be explained by human behavior of the assembly operators. Based on information about the
kitting process, a translation is made to the hourly workforce to fulfill the kitting requirements.
The workload per 60 min has an average accuracy of 70%. Based on the possible causes of
variation, advice is given to Canon Production Printing on how to balance the workforce.

Conclusions

This research provides contributions to the literature. First, the prediction model contributes to
the literature by supporting decision making in kitting planning considering multiple production
lines and varying processing times. Secondly, the prediction model contributes to the alignment
between kitting and assembly by including information about production amounts and varying
processing times.

The main limitation of this research is the lack of human factors such as experience and age of
the kiting employees and assembly operators due to privacy reasons. Varying processing times
are added to include human behaviour of the assembly operators. Secondly, a limitation in
this thesis is that the same prediction model including the optimized hyperparameters is used
for both time between calls (TBC) and time between request (TBR) prediction. Lastly, this
research is limited to the three biggest production lines of CPP.

Finally, directions of further research are suggested. Research to more input features including
human factors are proposed. Moreover, the connection between the kit cart and the production
order can result in a production sequence. Based on this production sequence, simulation can
be applied. As future research, comparison between machine learning, time series forecasting
and simulation is suggested. Lastly, validation for the generalization of the results is proposed.
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Chapter 1

Introduction

1.1 Research Context

In manufacturing assembly lines, for customized and complex products, it is typical that multiple
variants of the same product are produced on the same line. These variants differ slightly
from each other which requires an efficient part supply to the assembly lines in manufacturing
companies (Schmid et al., 2021). In traditional assembly systems, single-level assembly lines were
used to produce standardized products. However, due to the multiple variants and low demand
of customized products, multiple products can be assigned to the same assembly line (Lopes
et al., 2020). According to Caputo et al. (2015b), kitting supports high mix and low volume
production by providing the necessary parts to the work station depending on the assembly
planning. This reduces the space needed at a work station for materials. Kitting can be defined
as gathering all parts into a package or cart and feeding them to assembly lines on the right
time with the right quantities (Vujosevic et al., 2012). Two types of kit carts are available.
Stationary kit carts contain parts for one workstation and each workstation has their own kit
cart(s). Traveling kit carts contain parts for multiple workstations and travel together with the
product along the assembly line (Wijnant et al., 2018). In high mix and low volume industries,
kitting makes it possible to produce more products on the same line without a lot of parts at
the workstation. Employees in the warehouse, also called kitters, collect all the materials in the
kit warehouse in a box or cart. This pre-sorted kit which contains parts for a specific assembly
process, is delivered at the assembly work station or assembly line at the right time. Kitting
comes with several advantages and disadvantages. Kitting improves the efficiency and quality of
assembly by eliminating the need for the operators to walk to the warehouse to find the products.
Furthermore, training a new operator takes less time than without the kitting process. However,
defect components during the assembly process takes a lot of time to solve, because the defect
parts are not available at the workstation. As a consequence, the operators have to walk to
the warehouse to replace their defect part (Fansuri et al. (2017), Schmid et al. (2021)). Finally,
when the warehouse is not near the assembly line, kit carts have to be transported manually or
with the use of an Automatic Guided Vehicle (AGV) (Hanson and Medbo, 2011). Although less
assembly operators are needed, the major disadvantage of kitting are the kitters needed to kit
all the carts in the warehouse (Khajavi et al., 2018).

1.2 Company information

During this research, a case study is conducted at Canon Production Printing (CPP) who devel-
ops and manufactures digital printing equipment operating in the global market with multiple
sites around the world. CPP is founded and headquartered in Venlo, before known as the Dutch
printing company Océ till the end of 2019 (CPP, 2021a). Factories are located in Europe and
Asia to be able to operate in more than 80 countries. CPP offers a wide variation of products,
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from wide format poster printers to large-format high quality inkjet printers. The main activities
of CPP in Venlo are R&D and manufacturing and logistics of large format, high end production
printers. An example of a printer produced at CPP in Canon can be found in Figure 1.1.

Figure 1.1: VarioPRINT iX-series (CPP, 2021b)

CPP is already using kitting to control the material flow to the assembly process in combination
with mixed model assembly lines. However, CPP experience a lot of variation in workload when
kitting all the materials for the assembly.

1.3 Problem statement and Research objective

In the complex world, changes in consumer’s preferences and production technology bring more
uncertainties into the manufacturing process. These uncertain factors make production plan-
ning for the assembly line very difficult (Li, 2022). Example of an external uncertainty factor
is customer demand which have influence on the production planning. Low volume, high com-
plexity companies often use a Make To Order (MTO) approach where their production is based
on customer demand instead of forecasting. To produce according to the customer demand,
takt time can help to maintain continuous flow by matching the demand rate of the customers
with the output rate in a pull system. Takt time can also be used in Make To Stock (MTS)
environments where the production amount is varying. Takt time can be defined as the amount
of time within a product has to be produced in order to meet the customer demand or planned
production amount (Frandson et al., 2013). Takt time can be calculated dividing the available
time by the production amount per time period.

Takt time =
time available

production amount per time period
(1.1)

Furthermore, varying processing times is an example of an internal uncertainty factor and have
also influence on the production planning. Theoretically, it is assumed that the processing times
on the assembly working stations are operating deterministically (Fathi et al., 2019). However,
in real life assembly, different sources of variation could have impact on the assembly perfor-
mance and processing times. Different types of variation makes it very difficult to predict the
processing times. Human and environmental factors have the greatest impact on the assembly
processing time. Examples of human and environmental factors are workers’ tiredness, illness,
lack of skills, complex operations, part shortages and machine breakdown. According to Ayough
et al. (2020) human factors can have a positive or a negative impact on the operators’ actual
processing times depending on the operator. The processing times are necessary to make an
appropriate production planning. Considering human and environmental factors are necessary
to obtain optimal production schedules and workforce schedules.
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Based on the takt time, a certain amount of time is available to deliver the parts to the assembly
line. Kitting is a labor intensive task which take a certain amount of time. The available time to
kit is dependent on the takt time and the assembly processing times. The available time to kit
can be calculated by subtracting the assembly time and transportation time from the takt time
as shown in Figure 1.2. The takt time of a specific assembly line is dependent on the customer
demand. The more products that have to be made, the lower the takt time, the lower the
time to kit the necessary parts (Bastos et al., 2021). Short takt times cause problems regarding
variability and lead to a demand peak at the kitting warehouse. These short takt times emerge
to be able to deal with higher market driven product demand (Dlouhy et al., 2018). In addition,
every workstation has a specific processing time to complete their assembly depending on the
task (Gardarsson et al., 2019)). The processing time can be defined as the time a operator
spends on assembling a product at a working station (Sotskov et al., 2006). So, the planning of
the kitting activities is connected with the assembly planning. In the literature, different part
feeding policies are compared with each other in terms of costs (Limère et al., 2012). However,
there is lack of knowledge about the alignment between assembly planning and kitting planning
in the literature.

Figure 1.2: Description of takt time

Besides that, it is possible that working stations are operating parallel. Furthermore, there may
be multiple assembly lines. The parallel working stations and the multiple assembly lines are
causing variability in the kitting warehouse based on the different processing times. A difficulty
with mixed-model assembly lines is that the demand of parts are not steady and there arise a
high variability of required part quantities at various stations (Golz et al., 2010).

As described above, kitting is related to assembly to get the right materials at the right place
on the right time. So, the workforce planning of the kitting process is related to the assembly
planning. The assembly activities are affected by human factors and production related factors
such as material problems and changing demand. As a consequence, the assembly planning is
hard to predict and therefore the planning of the kitting activities is also hard to predict. The
short takt times can cause problems in the daily planning, especially in the hourly planning.
This results in the following research objective:

To develop a prediction model to predict the required hourly manpower to fulfill the kitting
requirements affected by the assembly process

1.4 Research questions and contributions

The research gap addressed in this thesis is two fold. First, literature on kitting specific plan-
ning and decision making is limited. The literature focuses mainly on comparing line stocking
with kitting based on costs. However, factors like human resources which have impact on the
performance, are neglected (Caputo et al., 2015a). The use of machine learning or simulation
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has not been applied in kitting specific planning. However, machine learning and simulation are
already successfully applied in assembly planning. The first research gap is the need for tech-
niques to support the kitting planning including human factors and production related factors.
Secondly, there is lack of knowledge regarding the alignment between kitting and assembly. In
the literature, there is a lot of research about the benefits of kitting based on costs, quality and
performance (Limère et al., 2012). Caputo et al. (2015a) developed a mathematical model for
kitting operations planning, but context-specific decision factors like assembly performance were
not included. Furthermore, Choobineh and Mohebbi (2004) did research in material planning
within the kitting context where procurement lead times are variable. However, the alignment
with the assembly lines is missing. As a result, the second research gap identified is the need
for alignment between the kitting process and the assembly lines.

This research will address these research gaps by aligning the assembly planning and the kitting
planning with the help of simulation or machine learning. As already mentioned, a case study
is conducted at Canon Production Printing. In the literature, a few causes of the variation in
the kitting and assembly processes are identified. However, every case is different. To be able to
generate a solution for CPP, the current challenges regarding the alignment between assembly
and kitting should be mapped. Furthermore, knowledge about the production process and vari-
ation of the company is required to include the right features in the model. These knowledge will
be used in the machine learning model or simulation model to predict the kitting requirements.
These predicted kitting requirements should be translated into manpower required per hour.
The following sub research questions are formulated.

1. Which forecasting method can be used to predict kitting requirements according to the
literature?

2. How is variation in the kitting process caused by human and production related factors?

3. Which data features are valuable to predict the kitting requirements and corresponding
working hours?

4. Which prediction method performs best when predicting kitting requirements?

The deliverable of this thesis is a prediction model that predicts the kitting requirements of
multiple production lines. Based on information about the kitting process, a translation is
made to the hourly workforce to fulfill these kitting requirements. Based on the possible causes
of variation in workload in the kit warehouse, advice is given on how to balance the workforce
in the kit warehouse.

1.5 Research design

The research design starts with a literature search to investigate manufacturing uncertainties and
prediction methods. After the literature review, a case study is conducted at Canon Production
Printing. This project is a data mining project and uses the CRoss-Industry Standard Process for
Data Mining (CRISP-DM). CRISP-DM is a standard process model to guide the most common
steps in data mining projects. It is useful to extract knowledge from data to solve business
problems (Martinez-Plumed et al., 2021). This methodology consists of 6 phases: business
understanding, data understanding, data preparation, modeling, evaluation and deployment.
Deployment is not performed in this research because it is beyond of time constraints and scope.
Only advice about deployment and implementation of the prediction model are included in this
research. The full research approach that is adopted in this research is shown in Figure 1.3.
Each of the steps will be explained in this section.
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Figure 1.3: Research design

1.5.1 Literature review

The literature review starts with the explanation of different time concepts used throughout this
thesis. To predict the kit requirements affected by the assembly process, more information is
needed about the factors that cause variation in the assembly process. In this phase, research
about uncertainties in manufacturing processes are investigated. Furthermore, relevant tech-
niques and applications to develop a prediction model to predict the kitting requirements are
researched. Because literature about the alignment between assembly and kitting is lacking, the
literature review focuses on finding prediction models in production processes including manu-
facturing uncertainties and stochastic demand. Hence, with this result the 1st research question
can be answered. The output of this step are the selected prediction techniques, which will later
be used as input during the Modeling phase. Furthermore, possible causes of variation in kitting
and assembly processes are identified

1.5.2 Business understanding

In the Business Understanding, information is gathered about the company to get familiar with
the business processes. Furthermore, factors creating variation in the kitting and assembly
process are identified at the company. This information in combination with the uncertainties
in the literature answers the 2nd research question. With the identified factors creating variation
in the production process, the right features can be chosen to include uncertainties in the model.
This knowledge about the company helps to define a detailed problem. Eventually, a specific
solution can be found to the problem of the company. To gain more understanding about
the processes, meetings with the supervisors, assembly operators and employees of the kitting
warehouse are planned.

1.5.3 Data Understanding

In this phase, the data is collected, explored and the quality of the data is evaluated (Larose
and Larose, 2014). The raw data is collected and explored to get more understanding about
the strengths and limitations of the data. For this project, the data consists of data about
the kitting process, assembly process and production amounts. Data about the kitting process
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consist of the Kit history and the Kit cart events. The data set about the kit cart events also
contains the estimated assembly time on the working station. Finally, production amounts can
be obtained from the supervisors of the various assembly lines. The available data can be used
to gain more knowledge about the production processes.

1.5.4 Data preparation

In this phase, the final data set is being prepared to use in the modeling phase. Examples
of tasks are attribute selection, data cleaning and construction of new attributes (Larose and
Larose, 2014). Different models might require different data preparation. The preparation step
is repeated for every model that is developed in the modeling phase. First, data preprocessing
is applied. The data preprocessing step consists of data filtering, data cleaning and data trans-
formation, such as changing the format of the data set and dealing with missing values. The
data sets are then combined with each other. After the data integration, feature engineering is
applied. In this step, relevant feature are selected for the prediction models. With this result,
the 3rd research question can be answered. The output of the data preparation step is the final
data set for each production line used in the modeling step.

1.5.5 Modeling

In the modeling phase, the appropriate modeling techniques are selected. During the modeling
phase, it is possible that the data has to be prepared in a different way than implemented
before. So, an iteration between data preparation and modeling could take place. Furthermore,
the data preparation is repeated for every model that is developed, because every model needs a
different data preparation. The modeling techniques are chosen based on the method selection in
Chapter 2. The parameters needed for a model are also determined and explained in this phase
(Schröer et al., 2021). Hyperparameter optimization is used to find the optimal parameters for
the selected models. The prediction models with the optimal parameters are used to predict the
kitting requirements in the kitting warehouse.

1.5.6 Evaluation and conclusion

This step helps to ensure that the research goals are met. Each model developed in the previous
phase will be evaluated using evaluation metrics such as MAPE and MAE. The performance
metrics are defined and explained in Section 2. After this step, improvements can be made to
iterate back to the modeling phase. The prediction model will be compared with the current
forecasting method of CPP. With this result, the last research question can be answered. During
all the phases, discussions with employees of the company are performed when needed. This is
done by discussing the questions per phase with the industrial engineers, planners and employees
of the kit warehouse. These people have knowledge about the processes within CPP. Based on
this evaluation, feedback and improvements are used to iterate the process of modeling and
evaluation. At the end, the conclusion and implications are formulated to finalize the project.
Besides that, advice about the implementation is given. The result will be delivered to the
case company in a thesis report. Furthermore, a final presentation will be held to present the
outcome of the project to all involved and interested parties

1.6 Research Outline

This master thesis consists of eight chapters. Chapter 2 discusses the background and literature
relevant to this project. This includes the time concepts used throughout this thesis, uncertain-
ties in manufacturing processes and the analysis of prediction methods in production processes.
Chapter 3 details the Business Understanding phase and elaborates Canon Production Printing
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where the research is conducted. The datasets including data preparation and feature engineer-
ing are described Chapter 4. The processes related to the Modeling and Evaluation phase based
on Time Between Calls (TBC) such as the hyperparameter optimization, the walk forward val-
idation and results are presented in Chapter 5. To be able to predict the kitting requirements
of multiple lines, the results of the prediction models are merged in Chapter 6. For CPP, it is
more beneficial when the time between requests (TBR) to refill the same kit cart is predicted.
In Chapter 7, the prediction model is also applied to predict the time between two requests of
the same kit cart (TBR). Lastly the conclusions, consisting of answers to research questions, sci-
entific and company relevance, limitations and future research directions, are shared in Chapter
8.
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Chapter 2

Background and Related Work

This chapter presents the work and background which is relevant for this research. First, impor-
tant time concepts in manufacturing are explained. These time concepts are used throughout
this research. Subsequently, production uncertainties and factors affecting production planning
and control (PPC) of mixed model assembly lines are described. Finally, applications of fore-
casting methods in manufacturing context are examined.

PPC refers to the organization and planning of the manufacturing process. Example of tasks
are loading, scheduling, sequencing, monitoring and controlling the use of resources during pro-
duction (Oluyisola et al., 2022). Production planning has to consider uncertainty in production
systems (Graves, 2011). The uncertainty causes problems in either stabilizing the system or
predicting and reacting to events and changes in the system.

2.1 Time concepts in manufacturing context

In material warehouses, delivering parts to assembly lines on time is necessary to avoid time de-
lays. Due dates are determined for each part request order (Henn, 2015). The due date of a part
request order depends on the composition of the part request order, processing time to pick this
order and the schedule determining which orders are processed by the different pickers. Efficient
assignment of parts request orders to pickers can improve the performance of the order picking
system (Henn, 2015). However, the part supply system should be adjusted to the assembly line
to optimize the performance. With the help of lean manufacturing, the material feeding flow will
determine the ability of the organization to satisfy the customer demand (Fansuri et al., 2017).
Lean focuses on minimizing the waste by implementing value-added activities and eliminating
non-value added activities (Sundar et al., 2014). Lean manufacturing strives to maximize the
value of the product for the customer. Different time concepts are used in lean manufacturing.
As already explained in Section 1, takt time can be defined as the amount of time available
to produce a product in order to meet the customer demand. The cycle time is the average
time needed to do one repetition of a specific task or production process (Davies, 2009). For
example, the cycle time of a machine is the time between the starting point of one product on a
machine and the starting point of similar product on the same machine. The cycle time has to
be lower than the takt time. If the takt time is lower than the cycle time, the customer demand
will not be satisfied. The lead time is the required time to complete the process from start to
end (Deshkar et al., 2018). The lead time starts with the order of customer and ends with the
delivery to the customer. The processing time depends on the production type, the operation,
the machine and the operator itself (Karnok and Monostori, 2011). An overview of the terms is
given in Table 2.1.

8



Table 2.1: Definitions of time concepts in manufacturing context

Time concept Definition

Takt time The amount of time available to produce a product in order to meet the
customer demand

Cycle time The average time needed to do one repetition of a specific task or production
process.

Lead time The required time to complete the process from start to end. The lead time
starts with the order of customer and ends with the delivery to the customer.

Processing time The time a operator spends on assembling a product at a working station.

2.2 Uncertainties of mixed-model assembly lines

To predict the kit requirements affected by the assembly process, more information is needed
about the factors that cause variation in the assembly process. Mixed-model assembly lines
are used to produce a variety of products on the same assembly line. When product variety
is limited, JIT delivery of parts allows companies to deliver parts to the assembly line within
a very short time. Increasing product variety create reduction of the production rate due to
shortened leadtimes and lack of human resources (Loveland et al., 2007). According to Golz
et al. (2012), mixed-model assembly lines create the following planning problems:

• Line balancing. Processing times at work station are non-identical at different worksta-
tions. The processing time is dependent on the person and the task creating imbalances
on the assembly lines (Shaaban et al., 2014).

• Master production scheduling (MPS). The MPS assign all individual customer orders to
production periods in order fulfill the due dates while keeping the inventory costs low
(Krueger et al., 2022).

• Production sequencing. To determine the production sequence, the MPS is necessary to
know which products will be built (Krueger et al., 2022). However, stabilized production
sequence limit production areas in their decision making because responding to changes
are limited. Another issue with a production sequence is dealing with machine breakdown,
quality issues and part shortages resulting in a changing production sequence. At any time
during the production process, unforeseen events can occur that disrupt the production
sequence in the short term (Franz et al., 2014).

• Material flow control. Material flow control is the supply of parts to the assembly lines.
According to Golz et al. (2012), the high variability of part quantities is a difficulty re-
garding high variant mixed model assembly lines. This high variability is mostly caused
by the ever changing daily production sequences.

• Resequencing. The sequence of the production process can change due to varying lead
times, part shortages, machine breakdown and quality issues (Müller et al., 2020).

These planning problems are related to the PPC process. Besides the difficulties regarding line
balancing and production sequences, human factors are also playing a role regarding PPC.

Human factors

A high amount of manual human work is still involved in operation processes, especially in
material handling and assembly. Most planning models introduced to reduce costs ignored the
human-related aspects which leads to unrealistic planning outcomes (Sgarbossa et al., 2020).
An adjustment to the planning system is mainly based on personal experience and judgement of
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the production managers (Wang and Abubakar, 2017). Humans are more flexible than machines
and are able to react to rapid and unexpected changes (Vijayakumar et al., 2022). Job rotation
is often used to ensure a flexible workforce. However, human performance is also unpredictable
due to their abilities and limitations (Abubakar and Wang, 2018). Including human factors is
necessary to guarantee a high level of productivity and efficiency and providing a realistic plan-
ning model (Sgarbossa et al., 2020). Several factors affect the operator at the workstation in an
assembly line. A high amount of product variants increase the complexity of the manufacturing
process. Furthermore, increased product variation has a negative influence on the operator’s
performance in terms of quality and productivity (Hu et al., 2008). Besides the increased prod-
uct variation, physical layout of the working station and the way of information sharing have
impact on the operator’s performance. Finally, the material flow is highly connected with to
the operator’s performance (Limère et al., 2012). The time to search for materials affect the
operator’s processing time. Kitting can improve productivity and reduce learning times when
the kit cart is designed in the right way. Finally, personal aspects of an operators also have
influence on the operating time. According to Wang and Abubakar (2017), experience and age
significantly affects the processing time to complete a task. The varying processing times have
influence on the alignment between kitting and assembly.

2.3 Prediction methods

In the following section, simulation and machine learning techniques are researched. Because
literature about the alignment between assembly and kitting is lacking, the literature review
focuses on finding prediction models in production processes including manufacturing uncer-
tainties and stochastic demand. Simulation can be used to integrate uncertainties like machine
breakdowns, quality issues and processing time fluctuation in the product (Yang et al., 2016).
Machine learning is also able to take uncertainties into account with the use of artificial intelli-
gence (Das et al., 2015).

Different prediction methods can be used to predict resources or dynamic parameters in a pro-
duction process. In order to predict the kitting requirements affected by the assembly activities,
the Production Planning and Control (PPC) process has to be controlled. The PPC experiences
stochastic manufacturing nature and uncertainties. According to Kang et al. (2020) and Fahle
et al. (2020), the majority of machine learning methods used in manufacturing are based on
supervised learning. As shown in Figure 2.1, tree-based models and neural networks are most
commonly used supervised machine learning techniques (Cadavid et al., 2019). So, decision
tree, random forest, support vector machine and artificial neural network are selected as ma-
chine learning techniques. Furthermore, simulation can also model a PPC process which give
the possibility to predict the required resources.

2.3.1 Simulation

Simulation models give the possibility to model the production planning and control (PPC)
process. As described in Figure 2.2, simulation models predict future behavior based on models.
The biggest issue in creating models for manufacturing applications is collecting the right data
and figuring out the interrelationships (Langer et al., 2021). It is very time consuming to build a
good simulation model. Furthermore, it is very difficult to mimic the reality including all human
behaviors (van der Aalst (2018), Collins et al. (2021)). Process models are often different than
the reality. Process mining can offer data for simulation by analyzing process-specific data
(Langer et al., 2021).
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Figure 2.1: Usage of machine learning techniques in PPC (Cadavid et al., 2019)

Figure 2.2: Connection between process mining and simulation

Simulation is a model that describes the behaviour of an existing or proposed system. The
resulting model can be used to test how the performance of the existing system differ with
different scenarios or process changes (Baines et al., 2004). Discrete Event Simulation (DES)
has been widely used for process improvement and decision making (Machado et al., 2019).
In manufacturing context, simulation is recommended due to complex factors like numerous
manufacturing steps, batch processing and complex equipment (Fowler and Rose, 2004). DES
can model the variation within manufacturing systems with the use of probability distributions
(Prajapat and Tiwari, 2017). Planning and scheduling problems can also be solved with DES.
Scheduling problems with more than two machines can’t be solved by existing optimization
algorithms because they are not able to find a solution in a reasonable time (Varela et al.,
2017). All existing optimization algorithms handle specific types of production system but these
algorithms are less efficient when the system gets larger and include more uncertainties (Kaylani
and Atieh, 2016). Using DES in combination with flexible parameters facilitate modifications
to the schedule quickly and with minimal effort.
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Evaluation metrics

Different key performance indicators can be used to evaluate the simulation model in a man-
ufacturing context. First, the product cycle time can be defined as the total manufacturing
cycle time. The time spent at each individual working station can also be measured. Secondly,
when optimizing a production schedule, delay can be measured as the difference between the
due date and the actual end time in the simulation. The results of the simulation also have to
be compared with the output of the real system. Furthermore, very busy time periods can be
identified which could cause delays in the schedule (Kaylani and Atieh, 2016). Finally, resource
optimization like operator utilization and machine utilization, can be measured.

Digital twin

A digital twin is a digital copy of a physical object and its process (Segovia and Garcia-Alfaro,
2022). The data flow between the physical object and the digital copy are integrated in both
ways. A change in the physical object cause a change in the digital object and in the other
way around (Kritzinger et al., 2018). Simulation and the digital twin are both designed to
replicate existing processes. The main difference between a digital twin and simulation is that
the data twin have a data connection between the physical object and digital object. The
digital twin reacts on real time data while simulation is static and often need manual adaption
of the parameters (Kritzinger et al., 2018). According to the the level of data integration
between the physical object and digital object, three subcategories are considered. In a digital
model, the data is exchanged manually (Singh et al., 2021). Most offline simulation models
belong to this category (Segovia and Garcia-Alfaro, 2022). Secondly, a digital shadow contains
an automated data flow from the physical to the digital object. From the digital object to
the physical object is still manual. A simulation using real-time data as input is an example
of a digital shadow. Finally, the digital twin contains an automatic bi-directional data flow
between the physical and data object. An example is a simulation that uses real-time data
and updates parameters of the manufacturing process (Segovia and Garcia-Alfaro, 2022). The
differences between the digital model, digital shadow and digital object are showed in Figure
2.3 (Singh et al., 2021). According to Zhuang et al. (2021), the digital twin is a way to tackle
high complexity processes. Characteristics of high complexity are strong randomness, process
instability and strict data management. Furthermore, a digital twin can be used to optimize
production planning and scheduling by collecting data from production equipment and enterprise
resource planning systems. With the collected data, the current status of the production systems
can be analyzed including fluctuations in customer demand, inventory and resources (Shao and
Helu, 2020).

Figure 2.3: Difference between digital model, digital shadow and digital twin
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Simulation in manufacturing context

Simulation models are already used in several applications in the manufacturing domain. Ac-
cording to Ali and Seifoddini (2006), a number of factors are critical in effective production
lines, such as product time, human resources and material handling capacity. High mix and
low volume production lines encounter more difficulties due the combination of changing needs
and the complicated constraints such as unpredictable machine breakdowns, unavailability of
human resources, parts shortages. Most of commercial simulation software does not provide the
functionalities to include unexpected variation. The biggest challenge in the literature regard-
ing planning are including the uncertainties to create a more realistic model. In this paragraph,
simulation models including production related uncertainties and human factors are explained.

Yang et al. (2016) developed a flexible simulation support for production planning. In this
simulation, forecast and different scheduling policies are included. With the simulation, the
impact of different uncertainties like machine breakdown, quality uncertainties and processing
time fluctuations, are analyzed very fast in a specific situation. The authors indicated as lim-
itation that input parameters as batch size and parts per arrival are in reality variable. Jung
et al. (2022) applied discrete event simulation to assess the real-time productivity of the garment
production line. With the use of dynamic task time, the simulation was able to predict hour-by-
hour production more accurately. As future research, the study indicated that the simulation
can be further improved by including work difficulty and experience. Ali and Seifoddini (2006)
applied simulation to model manufacturing behaviour considering labor uncertainty, machine
uncertainty and logistics uncertainty. The goal of this study was to solve real-life problems
such as manufacturing scheduling. The authors proposed real-time integration of data on the
factory floor and the inclusion of more features to deal with uncertainties. Finally, Negri et al.
(2021) used a digital shadow by proposing a dynamic production scheduling framework. The
goal of this study is to use real time data for scheduling instead of optimal solution calculated
from historical data. In this framework, uncertainties in the form of failure probabilities are
included. The authors choose to make the framework not fully autonomous. There is still a
degree of flexibility for human decision-makers. Further improvements are proposed by also
predicting the future trend of the failure probabilities instead of only detecting the failure. Most
of the literature research include manufacturing uncertainties. However, Lazarova-Molnar and
Mizouni (2010) applied proxel-based simulation using a discrete-time Markov chain to model
human behavior. The human behavior is modeled by including resource allocation and on-the-
fly human decisions. Future research indicated by this study is to include value, effort and cost
parameters. An overview of the application of simulation models is summarized in Table 2.2.
As a conclusion, simulation already applied human factors and production related factors in
manufacturing context. Usually these applications are done on the assembly planning where the
alignment with kitting is missing. Tetik et al. (2021) emphasized the importance of a planning
to make the product flow more efficient, but the study itself is focusing on the benefits of kitting
on assembly.
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Table 2.2: Application of simulation models in the manufacturing

Study Model Application Limitation

(Yang
et al., 2016)

Discrete Event
Simulation

PPC simulation system in-
cluding forecast and different
scheduling policies consider-
ing uncertainties

In reality, input parameters
such as batch size and parts
per arrival can vary.

(Jung et al.,
2022)

Discrete Event
Simulation /
Digital shadow

Real-time productivity assess-
ment of garment production
line

Work difficulty and experi-
ence is not included.

(Ali and
Seifoddini,
2006)

Simulation Simulation for manufacturing
uncertainties. Fuzzy logics
are used to measure the flexi-
bility of the uncertainties.

Real-time integration of the
factory floor is missing

(Negri
et al., 2021)

Digital shadow
/ Discrete
event simula-
tion

DES model of the production
system with real time compu-
tation of failure probability

Only detects the failure in-
cluding failure probability in-
stead of predicting for the fu-
ture.

(Lazarova-
Molnar and
Mizouni,
2010)

Proxel-based
simulation

Model human behavior by
including resource allocation
and on-the-fly human deci-
sions.

value, effort and cost parame-
ters are not included.

2.3.2 Machine learning

Machine learning methods are able to include dynamic factors like human factors in production
planning in the manufacturing environment (Ryback et al., 2019). Including these factors in
the production planning is important to make the production planning as realistic as possible.
In this section, machine learning algorithms which are applicable in Production Planning and
Control PPC are explained. Machine learning is considered as a subset of Artificial Intelligence
(AI). The goal of AI is to develop human intelligence in machines. Machine learning is how the
system develops human intelligence (Das et al., 2015). The focus of machine learning is to learn
from data without being explicitly programmed (Dijkstra and Luijten, 2021). Machine learning
make predictions by finding patterns and trends in data and adapt to new data. The accuracy
of the machine learning models can be increased by using high quality data and large data sizes
(Kang et al., 2020). According to Kang et al. (2020) and Fahle et al. (2020), the majority of ML
methods used in manufacturing are based on supervised learning. Supervised learning requires
a labeled data set to derive a function between the input and output. Unsupervised learning
does not require labeled data and is used when relationships among input variables are not
known (Kang et al., 2020). Finally, reinforcement learning is a machine learning method based
on rewarding desired behavior and punishing negative behavior. According to the systematic
literature reviews of Fahle et al. (2020), Kang et al. (2020) and Cadavid et al. (2020), the machine
learning algorithms neural networks, support vector machines, random forest and decision trees
are mostly used in manufacturing process planning. The different machine learning algorithms
are further explained in the subsections.

Decision tree

According to (Tso and Yau, 2007), the decision tree can be used as an efficient decision support
for a production system. A decision tree is presented as a tree with decision nodes and leaf
nodes, as shown in Figure 2.4. The root node represent the whole population which have to
be analyzed. The decision nodes are the input variables. The leave nodes are the terminal
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Figure 2.4: Structure of a decision tree

nodes with the possible outcome.The decision tree algorithm is a supervised machine learning
algorithm where labeled data is needed to create a training model (Charbuty and Abdulazeez,
2021). Czajkowski and Kretowski (2016) distinguish two types of decision trees. A classification
tree assigns a categorical label to each leaf node. A regression tree assigns a continuous value
to each leaf node. At each decision point, the error between the predicted value and the actual
value is calculated. The quality of the split in the decision node can be validated by statistical
tests (Pekel, 2020). As a result, decision tree regression is seen as a reliable model. Furthermore,
the structure of a decision tree is very easy to understand. However, the chance of overfitting is
high because of the creation of over-complex decision trees. Overfitting of an machine learning
algorithm means that the model is learning too many details and noise. Furthermore, a small
variation in the data can result in a completely different decision tree. The parameters of the
decision tree have to be tuned to deal with these problems (Pekel, 2020).

Random Forest

Random forest is a supervised machine learning algorithm and can be used both for classification
and regression. Random forest is an ensemble learning method by combining the prediction of
multiple decision trees (Zhang and Ma, 2012). The output of classification is a categorical
variable while the output of a regression is a continuous variable. Each decision tree apply
a different and randomly selected set of predictor variables (Zermane, 2021). These different
decisions trees can deal with different sources of uncertainty and variability (Cheng et al., 2019).
Because of multiple trees with different sets of input variables, random forest algorithms prevents
overfitting and support generalization. When the model is overfitted, the model is too complex
and can’t generalize the new data. However, random forest is a black box method using multiple
decision trees. In addition, the multiple decisions trees require more time and computation power
than a single decision tree (Prasad et al., 2006).

Support vector regression

Support vector regression is based on support vector machine which is a supervised classification
algorithm (Han and Chi, 2016). Support vector regression (SVR) is a regression model that
estimates a continuous-valued multivariate function. This method tries to find a function that
not deviates more than a pre-defined threshold. There is flexibility to define how much error is
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acceptable to fit the data. By using kernels, SVR is able to deal with nonlinearity (Lenz and
Barak, 2013).

Artificial neural network

Artificial neural networks (ANNs), or simply neural networks, are more and more often used in
manufacturing context. ANNs can be used to control production processes. Modelling the dy-
namics of a production process are important to identify the variability of its physical quantities
or states (Burduk, 2013). According to Yuldoshev et al. (2018), artificial intelligent methods like
neural networks will improve operational planning systems. The production planning can react
quickly on changes and corrections in the original data, e.g. in case of random events. In the
context of a production system, ANN is able find a relationship between many input variables
and the output variable without the need to build a mathematical model. The different plan-
ning problems described in section 2.2 make it very difficult to create a mathematical model of
a production system. Another aspect which have influence on production processes are human
factors. According to Abiodun et al. (2018), neural network models are performing better in its
application to human problems. An ANN can act in the same way as the human brain performs
a particular task of interest. Recurrent Neural Network (RNN) is a class of ANN developed to
process time based behaviors or sequential data (Tran et al., 2021). RNNs remember previous
data. The next decision is made using the current input and the input learned from previous
steps. Long short-term memory (LSTM) is a sub-class of RNN and has a longer memory than
RNN. LSTM is used to model patterns in time sequence. The long memory makes it possible
to learn from inputs that are separated from each other by long time lags (Yadav et al., 2020).
Furthermore, this type is able to predict the next most probable element in the pattern (Morariu
and Borangiu, 2018).

Evaluation measures

The quality of machine learning algorithms can be measured with different performance mea-
sures. Decision trees, random forests and neural networks are supervised learning methods. The
most commonly used performance measures for supervised regression methods are rooted mean
squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE
and the mean squared error (MSE) (Seçkin et al. (2019), Botchkarev (2018)). The RMSE is
a scale dependent measure. The RMSE is preferred over the mean squared error because the
error is measured in the same unit as the data (Saigal and Mehrotra, 2012). Low values of MSE
and RMSE are preferred. The MAE measures the average distance between the observed and
predicted variable. Like the RMSE, the MAE is also measured in the same unit as the data.
Furthermore, the MAE tend to be smaller than RMSE, because the RMSE give higher penalties
to large errors while MAE gives the same weight to all errors (de Myttenaere et al., 2016). A
low value of RMSE and MAE is preferred which means low prediction error. The MAPE is
a performance measure based on percentage errors. The MAPE is often used when the value
to predict is above zero (de Myttenaere et al., 2016). A low MAPE value is preferred which is
equal to a low percentage error. This performance measure is valuable for the case study because
the kitting requirements are very high resulting in working hours needed to kit the carts. The
value of the predicted kitting requirements will be above zero. The formulas of the evaluation
measures can be found in Table 2.3.
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Table 2.3: Formulas of the evaluation measures

Evaluation Measure Mathematical formula

Root mean squared error (RMSE) RMSE =

√
(
∑n

i=1(yi−ŷi)2

n )

Mean squared error (MSE) MSE = ( 1n)
∑n

i=1(yi − ŷi)
2

Mean absolute error (MAE) MAE = ( 1n)
∑n

i=1 |yi − ŷi|

Mean absolute percentage (MAPE) MAPE = ( 1n)
∑n

i=1 |
yi−ŷi
yi

|

yi = Observed value in period i
ŷi = Predicted value for period i
ȳi = Average of observed values yi
i = Time period
n = Total number of time periods

Machine learning in manufacturing context

Machine learning models are already used in several applications in the manufacturing domain.
The end goal of machine learning in the manufacturing is to recognize patterns in the data.
With these patterns, future behaviour can be predicted (Bajic et al., 2018). Machine learning
in manufacturing focuses the most on challenges related to complexity and dynamic behaviours.
Parallel and high complex tasks, different skills and constraints regarding workload is rising
complexity in the planning system (Hao et al., 2004). Furthermore, the manufacturing is also
affected by production related uncertainties like part shortages and machine breakdowns. With
machine learning, parameter values of unknown information can be predicted with the use of
historical values. Future information can be predicted to make appropriate decisions regarding
planning activities (Chen et al., 2021). Production uncertainties can change the production
sequence, forcing the production schedule to be changed. (Wu et al., 2020). Existing scheduling
algorithms require very long computational times to solve the changing production sequences.
(Wu et al., 2020). This paragraph focuses on the prediction of human and production related
factors affecting the manufacturing. In addition, this part explains applications of machine
learning algorithms that have succeeded in reducing computation time.

Müller and Wiederhold (2002) applied decision trees to provide online decision support of hu-
man centered production processes. The results showed that one decision tree was not enough
to derive knowledge about operators. The random forest algorithm is already successfully ap-
plied to predict the operator workload based on operator behavior and task demands (Borghetti
et al., 2017). However, random forest is a supervised learning method. The authors indicated
as limitation that a highly dynamic task which is not experienced before is difficult to predict.
For companies with new dynamic activities, unsupervised learning could be a better solution
Gyulai et al. (2018) applied a random forest to predict lead times using real-time streamed
production data. The prediction model was able to react to dynamic changes of the production
environment, while still providing accurate predictions. In this study, the inclusion of control
parameters such as the Overall Equipment Effectiveness (OEE) is suggested.

In addition, neural networks can be used to model human behavior and is applied to personnel
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scheduling (Xie et al. (2003), Hao et al. (2004)). This study highlights the low computational
costs of neural networks compared to mixed integer programming. In the study of Hao et al.
(2004), a limitation is indicated that the neural network applied for personnel scheduling re-
quires more extensive tests to confirm its reliability and general applicability. An artificial neural
network (ANN) is also used to predict dynamic lead times based on flow time forecasting (Sch-
neckenreither et al., 2021). In this study, exponential smoothing and ANN are compared based
on the forecast accuracy. ANN outperforms exponential smoothing in cases of high processing
time variability and in cases with high utilization. A limitation indicated in this study that
the results are limited to the simulated case. Furthermore, inclusion of machine failure and
different scheduling rules are proposed for future research. Sagheer and Kotb (2019) used Long
Short-Term Memory to predict the production of petroleum with time series data. In this study,
LSTM has been compared with traditional statistical methods like ARIMA. The data contains
a lot of noise and defects. Furthermore, the production petroleum is dependent on several dy-
namic factors which are not always available. As a result, LSTM outperforms the statistical
model ARIMA and is able to describe the nonlinear relationship between the systems inputs
and outputs. Future research is suggested to apply LSTM in other forecasting problems with
multivariate time series data. Finally, (Han and Chi, 2016) applied Support Vector Regression
(SVR) to predict the periodically changed parameter. The results show that pre-processing
the data is very important to get the right predictions. A difficulty in this study was that the
machine data was collected in a relatively short period of time, while the product inspection
data was collected in a relatively long period of time. In addition, the predicted value cannot
be applied in real time because the machine must be restored to its original value. Applications
of machine learning in manufacturing context are summarized in Table 2.4.
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Table 2.4: Applications of machine learning techniques in manufacturing context

Study Model ML Method Application Limitation

(Müller and
Wieder-
hold, 2002)

Decision tree Supervised Generate a physical
model including action
of human operators

One decision tree is not
enough

(Borghetti
et al., 2017)

Random forest Supervised Predict lead times using
real-time streamed pro-
duction data

Inclusion of OEE is pro-
posed

(Gyulai
et al., 2018)

Random forest Supervised Scheduling production
tasks on a production
line with short compu-
tation time

It has to be trained on
a large number of well
distributed instances

(Hao et al.,
2004)

Artificial neural
network

Supervised Personnel scheduling
with low computational
costs

Requires more tests to
confirm its reliability
and general applicabil-
ity.

(Schneckenreither
et al., 2021)

Artifical neural
network

Supervised Predict dynamic lead
times based on the flow
time forecast

Results are limited to
the simulated case.
Inclusion of machine
failures and different
scheduling policies are
proposed

(Sagheer
and Kotb,
2019)

Long Short-
Term Memory

Supervised Forecasting of
petroleum production
with a lot of dynamic
factors which are not
always available.

Only tested on produc-
tion data, future re-
search including prob-
lems with multivariate
time series data is sug-
gested.

(Han and
Chi, 2016)

Support vector
regression

Supervised To predict the peri-
odic changed machine
parameter

Different data gathering
periods are used

2.4 Conclusions

Based on the literature review, different prediction methods can be used to predict parameters
in a production process. In order to predict the kitting requirements affected by the assembly
activities, the Production Planning and Control (PPC) process have to be controlled. The PPC
includes the stochastic manufacturing nature and uncertainties. The selection of the techniques
focuses on methods predicting variables in the manufacturing considering uncertainties and
stochastic demands. Decision Tree, random forest, support vector regression, artificial neural
network are the most commonly used machine learning methods in the literature. Because
random forest algorithms prevents overfitting and support generalization compared to a decision
tree, only random forest is selected. So, random forest, support vector regression and artificial
neural network are selected for this thesis. Furthermore, simulation can also model a PPC
process which give the possibility to predict the resources. In this thesis, simulation is not
used, because a connection between the production order and kit cart is missing. When using
simulation, each kit cart would have to be simulated individually rather than a production
order.
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Chapter 3

Business understanding

As mentioned in Section 1.2, this thesis project is conducted at Canon Production Printing
in Venlo. Knowledge about the production process is required to be able to build a prediction
model. First, the kitting process performed at CPP is described. To be able to make a connection
between kitting and assembly, the characteristics of the different production lines are collected.
Additional to influencing factors generated from the literature review, influencing factors on the
kitting and assembly process identified at CPP are presented. These factors are necessary to
predict the kitting requirements including the variation of the production process. Finally, the
solution requirements specific for CPP are defined.

3.1 Current kitting process

In this section, the current kitting process of CPP is described. CPP uses a JIT kitting process
where assembly operators request their parts by notifying the warehouse. To make the com-
munication between the operators and the warehouse easier, they are using a so-called ”pizza
tool” described in Figure 3.1. This ’pizza tool’ is a dashboard which can be compared with the
Pizza tracker used by Domino’s pizza to communicate the progress of making the pizza with
the customer. In case of CPP, the ’pizza tool’ indicates where the kit cart is located. This
dashboard is visible both in the kitting warehouse and at every work station in the assembly
lines. The kitting warehouse can see the status of all kit carts. The dashboard at the working
stations only shows the necessary kit carts for that particular working station.

Figure 3.1: Pizza tool process

The process starts when the assembly operator requests a new kit cart. SAP checks if there is
an production order open where this kit cart is needed. All production orders are connected
with the required kit carts. SAP returns a message to the assembly operator if the kit cart is
requested or not. Then, the kit cart is placed in a queue based on latest start date. The latest
possible start date is the time at which a kit cart can be kitted without causing a delay in the
assembly process as shown in Figure 1.2 and Figure 3.2. Furthermore, an example of the queue
is given in Figure 3.2. The kit carts appear on the scanners of the kitters according the queue
based on the latest possible start date.

In the kit warehouse, the kit carts are kitted by the kitters with the help of a bar code scanner.
The kit warehouse is also called the ’supermarket’ containing most of the parts needed for the
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Figure 3.2: Latest possible start date

assembly lines. After finishing the kit cart, the kit cart is placed at the full busstop, a place
where all full kit carts are collected. The kitter scans the location at the full busstop after
which the materials of kit cart are deducted systematically from the inventory. The assembly
operators are able to call the kit cart when they need the kit cart for assembly. After a call from
the assembly operator, the kit cart is connected to an Automatic Guided Vehicle (AGV) and
will be sent to the assembly operator. The AGV with the kit cart needs about 2 to 5 minutes
to reach the assembly operator, depending on the distance between the kit warehouse and the
production line. The assembly operator receives the kit cart and starts assembling. When the
kit cart is empty, the assembly operator can request to refill the kit cart and returns the empty
kit cart to the supermarket with an AGV. An extensive explanation of the kitting process is
described in Appendix A.

Figure 3.3: Prioritization of new kit cart requests

The kit carts only appear in the kit planning when the kit car is empty and requested. The
products produced on different assembly lines have their own specific takt times. However, the
kit carts are only scheduled based on the latest possible start date. The time availabe for kitting
and time needed to fill a kit cart are predefined based on the minimum takt of the production
line. The kit carts appear in this order on the barcode scanners (SAP WM mobile terminals).
The barcode scanners are connected with SAP. Kit carts from production lines with short takt
times can change the order of the kit carts from hour to hour by requesting kit carts which
have to be kitted very quickly. An example is shown in Figure 3.3. Furthermore, the extra
kit carts make workload planning very difficult because of the varying amount of requests from
hour to hour. An example of the kitting requests per hour during a week is shown in Figure
3.4. Although CPP is using flexible workers to be responsive to swings, it cannot anticipate on
changes in the next one or two hours. These short term changes causes problems in predicting
the capacity of manpower to fulfill the demand and causes high costs because of overstaffing or
delays. CPP is looking for a prediction model to respond to the varying kitting requirements to
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be able to predict the required workload.

Figure 3.4: Variation of kitting requests per hour

3.2 Variation of the kitting requirements

This research attempts to develop a prediction model to predict hourly kitting requirements and
associated work hours. During the literature review, factors influencing the alignment between
kitting and assembly are identified. Furthermore, CPP employees who have knowledge of the
processes are asked which factors could influence the alignment between assembly and kitting.
The group of CPP employees consisted of industrial engineers, planners, assembly operators and
kitters. Based on Section 2.2 and conversation with the employees of CPP, multiple factors are
found to have influence on the relation between kitting and assembly.

Kitting. Multiple factors have influence on the kitting process. Human factors and human
errors could have influence on the kitting process, because the kitting is done manually (Caputo
et al., 2017).

• Variance in kitting performance. The kitting performance can vary depending on the age
and experience of the kitter.

• Inventory shortages. Inventory shortages results in incomplete kit carts. The suppliers
can’t deliver the parts on time.

• Human error. Kitting is done manually which may cause human errors. Examples of
human errors regarding kitting are wrong parts or missing parts. This affects the assembly
operations due to incomplete kits and station downtime (Caputo et al., 2017).

Assembly. Furthermore, the assembly planning can also be influenced by multiple factors.
These variation in assembly are obtained from Section 2.2 and derived from conversations with
the employees of CPP.

• Variance in processing times. Comparable with the variance in kitting performance, dif-
ferences in age and experience can cause variances between assembly operators (Wang and
Abubakar, 2017). Furthermore, product variation and task complexity have influence on
the productivity of the operator (Hu et al., 2008).

• Part shortages. Parts shortages can be errors in the kitting warehouse like damaged ,
missing or wrong parts. It is also possible that the kit cart is arriving too late causing
delays in the assembly operations.

• Human errors. Assembly operations are also performed manually which may cause human
errors. Incomplete assemblies or wrong placement of components are common errors in
assembly. This could change the assembly planning. Requesting a kit cart too early can
also affect the alignment between kitting and assembly.
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Alignment between assembly planning and kitting. In order to predict the kitting re-
quirements considering the assembly process, a connection between the kitting process and the
assembly planning is required.

• Multiple assembly lines. In a warehouse, multiple assembly lines operate. These assembly
lines have different takt times. In order to schedule these multiple assembly lines, knowl-
edge about the production process is necessary (Choueiri and Santos, 2021). These takt
times cause variation in kit cart requests per hour, as shown in Figure 3.5

Figure 3.5: Variation created by multiple assembly lines

• Start moment of production. A possible reason of extra variance in the kitting requests
is the starting moment of the production. If every production line is starting on Monday
morning with a new machine, this could lead to peaks during the week. Shifting the
production schedule of a production line could balance the workload.

• Wrong prioritization of kit carts. The available time for kitting for a specific kit cart is
predefined and always the same regardless of production amount. Based on these times
and the requests from the production, a queue is created. With this way of creating a
queue, it is possible that a certain kit cart is not needed after the predefined time, because
the production amount of that line is lower that week. A kit cart of another line may be
needed in time to prevent delays in production of that specific line.

The relation between kitting and assembly with the influencing factors are shown in Figure
3.6.

Figure 3.6: Relation between kitting and assembly
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Additionally to the influencing factors described above, the layout of a kit cart has also influence
on the kitting process. The number of common parts and type of parts has influence on the
time needed to kit a kit cart. Besides that, the workplace layout of an assembly operator also
has influence on processing times. In this research, changing the layout of the kit carts and
workplace of assembly operators are out of scope.

3.3 Production lines

This thesis is conducted at the Manufacturing and Logistics department of Canon Production
Printing in Venlo. Within the Manufacturing and Logistics department, multiple production
lines are operating with different characteristics. For this research, the three biggest production
lines are chosen, because 89% of the unique kit carts belong to these three production lines. The
characteristics of the production lines are described below.

3.3.1 HCS

HCS is a mixed model assembly line where multiple models are produced on one production
line. The HCS production line can be split into 2 separate lines, HCS3 and HCS2. On the HCS3
line, two models are produced, J1 and N1. Each model has their own set of kit carts. Based on
a quota system, the right kit kart depending on the requested model, appears on the scanner of
the kitters in the kit warehouse. On the HCS2 line, one model is produced for which the same kit
trolleys are always used. The set of kit carts specific for each model is described in Appendix B.1.

The average time to produce one product on the HCS3 production line is about 1.5 hour.
In 2021 and 2022, the production of HCS3 is around 20 per week and the production of HCS2
is around 12 per week. However, the production amount per week is depending on manpower
capacity and parts availability. To produce one machine, multiple kit carts are needed. When
the assembly time of a kit cart is close to the takt of the production line, the time available to
fill a kit cart becomes almost zero. To cope with short takt times and long assembly times, a
Two-Bin system is used where an A and a B version of a kit cart exist. When the A version is
used for assembly, the identical B version is already filled in the kit warehouse. The available
time to kit a kit cart is depending on the minimum time to build a product. In case of HCS,
the available time for kitting is mostly 75 minutes. Although the A and B versions of the kit
kart give more time for kitting in the kit warehouse, the takt time in the kit warehouse is still
between 75 and 90 minutes. After requesting these kit carts, the kit carts show up late in the
queue, as described in Figure 3.3. The kitting queue gives priority to kit carts that have little
time available to kit and allows kit carts with more time to kit and longer takt times to wait.
The short takt time causes last minute changes to the kitting queue.

3.3.2 VP6000

The VP6000 production line also produces multiple models on the same production line. The
assembly operators are using generic kit carts necessary for every model and specific kit carts
specific to a model. There are 45 kit carts for VP6000, but for every model only 31 kit carts
are used to build an engine. Every model has their own set of kit carts. The set of kit carts
per model is described in Appendix B.2. The average time to build one engine on the VP6000
production line is around 4 hours. The production of VP6000 engines is around 10 engines a
week. Similar to the HCS, kit karts of the VP6000 have an A and B version to make it easier
to cope with the short takt times and long assembly times.
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3.3.3 Niagara

Niagara is the production line building largest product. The Niagara production line is divided
into 8 different teams. One team of Niagara does not use kitting. The other 7 teams have
their own kit karts. The time to build one product on Niagara production line is on average 16
hours. The available time to kit these kit karts are long compared to the other two production
lines. Last minute changes to the kit schedule due to HCS and VP6000 may prevent Niagara
kit carts from being filled on time. Compared with the other two production lines, Niagara is a
low volume production line. The kit carts of Niagara are also used around every 16 hours. Less
data about each kit cart is available due to the low volume. The overview of the most important
characteristics of the production lines is described in Table 3.1.

Table 3.1: Important characteristics of the production line

Production line Models Sub Model Number of kit carts Year volume 2022

Niagara varioPRINT iX-series 606 120/year
HCS HCS 3 H1(old model)/J1 13 600/year

N1 13 141/year
HCS 2 10 511/year

VP6000 VP6000 Titan 31 297/year
VP6000 MICR 31 14/year
VP6000 TP 31 67/year

3.4 Solution requirements

In this section, the solution requirements specific to the case study are defined. The require-
ments are based on the the analysis of the current kitting process. Furthermore, supervisors of
the kitting warehouse were asked what they expect from the prediction model. Throughout the
research, the solution requirements are evaluated in an iterative way to assure that the predic-
tion model addresses the research objective. First, the objective of the prediction model is to
make predictions of the kitting requirements. In order to make realistic planning, the inclusion
of human factors is necessary (Sgarbossa et al., 2020). As described in the previous section,
human factors such as age and experience could have influence on the kitting and assembly
process. Furthermore, human behaviour discovered from the data could have influence as well.
This results in the following objective.

R1: The prediction method should predict the required kitting requirements per hour consid-
ering human factors.

First, a model has to be developed to predict the kitting requirements aligned with the assem-
bly planning. This assembly planning contains multiple assembly lines with specific processing
times. These assembly lines encounter human errors, missing parts and varying customer de-
mand. The workforce in the kitting warehouse is related to the kitting requirements. The higher
the kitting requirements, the more people are needed. In order to determine the required work-
force, the predicted kitting requirements have to be translated in working hours. This results in
the following requirement:

R2: The predicted kitting requirements should be translated in working hours

Furthermore, the prediction model should be useful and understandable. The employees of
the kitting warehouse and assembly operators should be able to interpret the results of the
prediction method. Understanding of the prediction model and the corresponding results is
necessary to take the right actions. This is defined in the following objective.
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R3: The prediction model should be easy to use and understandable for its users

Changes in the production schedule also cause changes in the required workforce. In order
to respond in a timely manner to changes in production schedules, the prediction model should
be able to make timely predictions of the required manpower. The manpower prediction have
to be available one day in advance. Time is necessary to rearrange the workforce in the kitting
warehouse, because people are not always available to work. This is defined in the following
objective:

R4: The prediction model should be able to make predictions of the required manpower one
day in advance.

Finally, the production schedule of a low volume, high complexity manufacturing company can
vary every week. Furthermore, a huge amount of process data is collected every week. For this
reason, it is essential that the artifact is able to incorporate new process data over time. With
this new process data, the estimation accuracy can increase. This is defined in the following
objective:

R5: The prediction model should possess the ability to incorporate new process data over time
to increase the accuracy of the predictions.
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Chapter 4

Data Understanding & Data
Preparation

This chapter contains elaboration of the data understanding and data preparation, as described
in the research design shown in Figure 1.3. During this research, case data from CPP is used.
First, the datasets used in this research are described. In Section 4.2, data integration in-
cluding data preparation steps are described. Finally, feature engineering with additional data
preparation steps are detailed in Section 4.3.

4.1 Datasets

In this thesis, case data from CPP is used to build a prediction model. The main datasets used
in this research are the kitting events data, zscankitlog data and AGK data. These datasets are
related to each other based on kit cart information. The datasets were retrieved from databases
from CPP with the use of SQL. In order to use these data to build a prediction model, the data
must be prepared. All the datasets including general data preparation will be in explained in
the subsections.

4.1.1 Kitting events data

CPP is using a ’pizza tool’ to make the communication between the assembly operators and the
kitting warehouse easier. The ’pizza tool’ indicates where the kit cart is located, as shown in
Figure 3.1. The data set about the kitting events contains timestamps from the pizza tool. The
following timestamps are available in this dataset:

• Request: timestamp when the assembly operator request to refill kit cart.

• Start kitting: timestamp when the kitter starts filling the kit cart with materials.

• End kitting: timestamp when the kitter scans the barcode at the full busstop where all
the finished kit carts are collected.

• Called: timestamp when the assembler presses the button to indicate that he needs the
kit car for his assembly job. The assembly worker has to press the button manually on
the computer.

• In transit: timestamp when the kit cart is connected to an AGV and is in transit to
the assembly operator. The employee of the kitting warehouse has to press the button
manually on the computer.

• Next request: timestamp when the assembly operator request to refill the same kit cart.
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In addition to these timestamps, the minutes between all timestamps have been calculated taking
into account evenings, weekends and holidays. For example, the actual time needed for kitting
is calculated by taking the difference between start kitting and end kitting. The visualization of
the kitting events data set is showed in Figure 4.1. All the columns of the data set are described
in Table 4.1. A few example rows of the kitting events are showed in Figure 4.2

Figure 4.1: Visualization of the kitting events dataset

Table 4.1: Columns of kitting events data set

Column Type Description

Kit cart String Number of the kit cart
Request Datetime Timestamp when the assembly operator request to refill kit

cart.
Start kitting Datetime Timestamp when the kitter starts filling the kit cart with

materials.
End kitting Datetime Timestamp when the kitter scans the barcode at the full

busstop where all the finished kit carts are collected.
Called Datetime Timestamp when the assembler presses the button to indi-

cate that he needs the kit car for his assembly job. The
assembly worker has to press the button manually on the
computer.

In transit Datetime Timestamp when the kit cart is connected to an AGV and
is in transit to the assembly operator. The employee of the
kitting warehouse has to press the button manually on the
computer.

Next request Datetime Timestamp when the assembly operator request to refill the
same kit cart.

Date ID String Date ID based on in transit timestamp
Waiting for kit-
ting

Float Time between the request timestamp and start kitting
timestamp in minutes

Kitting duration Float Time between the start kitting timestamp and end kitting
timestamp in minutes

Waiting for call
off

Float Time between the end kitting timestamp and called times-
tamp in minutes

Call off response Float Time between the called timestamp and in transit times-
tamp in minutes

Estimated assem-
bly time

Float Time between the in transit timestamp and next request
timestamp in minutes
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Figure 4.2: Example rows of kitting event data set

Data preparation

The kitting event dataset does not need much data pre-processing. From the timestamp when
the kit cart is called by the assembler, the year, month, week, day, and hour are extracted and
added as a new column. An example is shown in Figure 4.3. This makes it easier to filter the
desired dates by specific years and months.

Figure 4.3: Extracting year, month, day and hour from the Called timestamp

In the same way, the year, month, day and hour are also extracted from the timestamp when
the kitting ends. This makes it possible to merge the kitting events dataset with other data sets
related to kitting which is further elaborated in Section 4.2.

4.1.2 Zscankitlog data

CPP is using customized modules in SAP where the kit carts are added as separate production
orders. When a production order of a module or engine is released, separate production orders
are created for each kit cart needed to complete that production order. The numbers of these kit
cart production orders are noted in this dataset and is unique for every data point. With these
customized modules, the materials of the kit cart are automatically deducted from the inventory
when the kit cart is filled instead of at the end of the production order. If the materials are
deducted from the inventory at the end of the production order (after the last kit cart), there
will be differences in the inventory while assembling the production order. When a kit cart is
requested to refill, the requested kit cart is added to the queue based on the latest possible start
date of a kit cart. This dataset contains all historical data points of kit carts that have appeared
in the kit cart queue, including the planned end kitting timestamp and the actual end kitting
timestamp. The most important columns in the zscankitlog dataset are described below:

• Available time to kit (VGW03): available time to fill the corresponding kit cart. The
available time to kit for a specific kit cart is defined and always the same independent of
the production amount.

• Duration: time needed to refill the corresponding kit cart. The time needed to fill the
specific kit cart is also predefined for each kit cart.

• Pln date and Pln time: date and time when the kit cart should be filled based on the
timestamp of requesting to refill the kit cart and the available time to kit. Based on the
planned date and time and duration to refill a kit cart, the latest possible start date can
be calculated.

• Act date and Act time: date and time when filling the kit cart actually ends.
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• Boolean columns whether the kit cart was filled on time or late and whether the kit cart
is complete or incomplete.

– CO INTM: Complete, in time.

– CO LATE: Complete, late.

– NC INTM: Not Complete, in time.

– NC LATE: Not Complete, late.

With the planned date and time and actual date and time, delays can be calculated. On the
other hand, it can be calculated how much too early a kit cart has been filled. The connection
between the planned date and time and the queue to refill the kit carts is shown in Figure 4.4.

Figure 4.4: Connection between queue of kit carts and planned date and time

Furthermore, the workplace where the kit cart is requested is connected to the SAP transaction
and visible in the dataset. The material number of a kit cart is also stated in the dataset. The
A and B versions of a kit cart have the same material number, because they consist of the same
materials. Personal information such as the kitter’s name has been removed for privacy. The
columns of the zscankitlog dataset are summarized in Table 4.2. A few example rows of the
kitting events are showed in Figure 4.5.

Data preparation

Comparable to the kitting events data set, the year, month, day and hour are extracted from
the Actual time when the kitting was ended. All the columns in zscankitlog have the type
string. The types of the columns are set to be equal among the datasets so that values can be
compared. Planned and actual date and time are converted to type datetime. Furthermore, the
dates and timestamps are combined making it easier to compare with other datetime objects.
The string of duration and the time available to kit (VGW03) are transformed to type integer
and calculated in minutes. The transformation is shown in Figure 4.5
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Table 4.2: Columns of zscankitlog dataset

Column Type Description

Kit cart String Number of the kit cart
Workplace String Workplace where the kit cart is requested
MATNR String Number for each set of kit carts with the same materials.
Time available to kit
(VGW03)

String Available time to fill a kit cart. The string has to be
translated to a timestamp in the form %H%M%S (023000
= 02:30:00).

AUFNR String Production order number of a kit cart. This number is
unique for every data point.

PLN DAT String Date when the kit cart should be filled based on the times-
tamp of requesting to refill the kit cart and VGW03 (time
available to kit). The string has to be translated to a date
in the form of %Y%m%d (20220217 = 2022-02-17).

PLN TIM String Time when the kit cart should be filled based on the
timestamp of requesting to refill the kit cart, VGW03 and
duration. The string has to be translated to a timestamp
in the form %H%M%S (095323 = 09:53:23).

ACT DAT String Date when filling the kit cart actually ends. The string
has to be translated to a date in the form of %Y%m%d
(20220217 = 2022-02-17).

ACT TIM String Time when filling the kit cart actually ends. The
string has to be translated to a timestamp in the form
%H%M%S (095323 = 09:53:23).

CO INTM Boolean Complete, in time. The corresponding kit cart is com-
plete and in time.

CO LATE Boolean Comlete, late. The corresponding kit cart is complete
but late.

NC INTM Boolean Not complete, in time. The corresponding kit cart is not
complete but in time.

NC LATE Boolean Not complete, late. The corresponding kit cart is not
complete and late.

CALC LATE HRS Float How many hours the actual date and time is later than
the planned date and time.

CALC EARLY HRS Float How many hours the actual date and time is earlier than
the planned date and time.

Duration String Time needed to refill the corresponding kit cart. The
string has to be translated to a timestamp in the form
%H%M%S.
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Figure 4.5: Transformation of zscankitlog data

4.1.3 AGK data

At the start and end of an assembly job, the assembly worker must scan a barcode from a travel
ticket or shop floor paper. The data generated by these barcode scanners is timestamps of the
start and end of each assembly job. For Niagara team 2 only, the start and end of an assembly
task are connected to a single kit cart. For another master thesis project, the timestamp when
the kit cart is in transit and the next request of the kit cart are already connected with the
barcode data. The barcode scanners are used from April 21 and further on. So, The registration
of these timestamps started from April 2022. These kit trolleys are linked to a production order,
which makes it possible to determine the production sequence. Unfortunately, the kit carts of
other Niagara teams and the kit carts of HCS and VP6000 are not connected to a production
order. Due to the parallel work on assembly tasks and the possibility to work in advance, it is
difficult to determine a fixed production sequence. For example, a certain assembly task can
already be worked in advance if the assembly operator has a day off during the week. Because
the kit cart is not connected to a production order, it is not clear for which production order
this task was intended. As a result, only for Niagara team 2 it is possible to use the production
sequence and calculate the time between different orders. All the columns of the data set are
described in Table 4.3. A few example rows of the kitting events are showed in Figure 4.6.

Figure 4.6: Example rows of AGK data

Data preparation

In this dataset, the kitkart number of a specific assembly task is available in the operator
description. Deriving the kit cart from the operator description is showed in Figure 4.7. This
dataset can be connected with the kitting events dataset based on the kit cart number derived
from the operator description and the timestamp when the kit cart is in transit.
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Table 4.3: Columns of AGK dataset

Column Type Description

ScanID Integer Unique number of a scan.
WorkstationID Integer Workstation where assembly is executed.
TimestampStart Datetime Start of assembly task based on agk scan.
TimestampEnd Datetime End of assembly task based on agk scan.
Order number String Order number of the end product to which the assembly

task belongs
Start operation de-
scription

String Description of the assembly task.

Kitkar inTransit Datetime Timestamp when the corresponding kit cart is in transit
to the assembly operator.

Kitkar NextRequest Datetime Timestamp when the corresponding kit cart is requested
to refill by the assembly operator.

Figure 4.7: Transformation of AGK data

4.1.4 Kitlines and Production Amounts

In addition to the three major datasets, extra information about the kit carts and production is
collected. Based on the history of the SAP transaction, the number of kit lines per kit cart can
be derived. The kitlines are the total number of parts on a kit cart. Each time the kit cart is
picked, the number of picked parts is stored in the SAP dataset. For each kit cart, the median
number of parts has been taken over the past six months, because this value corresponds to a
complete kit cart. Furthermore, the actual production amounts of the production lines can be
retrieved from SAP. This information will be used to calculate the takt of the production line
during a specific week.

Figure 4.8: Overview of datasets and connections
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4.2 Data Integration and data preparation

CPP stores the datasets separately and therefore the datasets are integrated for modeling. The
characteristics of the most important tables are shown in Table 4.4.

Table 4.4: Characteristics of the databases

Database Records Start End

Kitting events 62354 14-3-2019 6-3-2023
Zscankitlog 353906 4-2-2019 23-2-2023
AGK 3274 21-4-2022 7-3-2023

The zscankitlog dataset and kitting events dataset both contain a timestamp when the kitting is
ended. The zscankitlog dataset is connected to the kitting events dataset based on the ’end kit-
ting’ timestamp, when the kit cart is filled. The actual timestamp of zscankitlog almost matches
the ’end kitting’ timestamp of the kitting event dataset due to a slow lag in SAP. Taking the
year, month, day and hours is enough to match these two data sets, because the lag is only a
few seconds.

The AGK dataset and the kitting events dataset both contain the ’in transit’ timestamp of
a specific kit cart. The AGK dataset can be combined with the kitting events dataset based
on the kit cart number and the ’in transit’ timestamp, when the kit cart is on its way to the
assembly operator. Thereafter, the kitlines are added to the aggregated dataset based on the
kit cart number. An overview of the datasets including the connections is shown in Figure 4.8.
The production amounts are added per production line after the feature selection.

4.2.1 Data preparation

The integrated dataset still need some data preparation to create the final dataset. Data fil-
tering, missing values, outlier detection and feature engineering are described in the following
subsections.

Data filtering

For this study, case data from CPP will be used from 2021 and 2022, because production has
grown strongly over the years, which means that kit trolleys have been added and changed. So,
the final data set is filtered on 2021 and 2022. After integration and filtering, the final dataset
contains 51485 records.

Missing values

The second data preparation step is removing NaN values. The time between two calls of the
same (combined) kit cart can be estimated by looking at the difference between two called
timestamps of the same (combined) kit cart. Whenever a called timestamp is missing, the row
is deleted from the dataset. After removing missing values, the final dataset contains 50212
records.

4.3 Feature engineering

During this section, new features will be introduced. After introducing new features, additional
data preprocessing is executed. Finally, the input variables for the model are described.
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4.3.1 Feature engineering

As mentioned in earlier, the connection between the kit carts and the production order is missing.
When a kit cart is requested to refill, a kit cart production order is created. As soon as the kit
cart production order is created, the connection between the production order and kit cart is
removed. Because the assembly operators are working parallel and sometimes they are working
in advance, it is impossible to obtain an actual production sequence. To be able to predict the
kitting requirements without knowing a clear production sequence, some additional features are
added. The following features are added to the final dataset:

• Production line: The production line can be added based on the first two characters of
a kit car. The dataset can be easily filtered for each production line. For this research, ,
the three largest production lines are used to predict the kitting requirements of multiple
production lines.

• Kit cart combined: HCS and VP6000 are mixed model production lines. Multiple
models are produced on these lines with a different set of kit carts depending on the
model. The kit carts which replace each other when switching to another model can be
combined to get a flow of kit carts.

• Timestamp of the next call of a kit cart: The kitting events dataset is grouped by
the combined kit carts and a new column is added with the timestamp of the next call of
the same combined kit cart.

• Time between calls (TBC) of the same kit cart. The difference between the call
of a specific kit cart and the next call of the same kit cart. The calculation of the time
between two calls of the same kit cart has to be corrected with days off, weekend days
and evenings. The assembly operators calls the kit warehouse when they need a kit cart
from the kit warehouse. A typical workday at CPP is starting at 7:30 and ends at 16:00.
After observing, assembly operators arrive and leave work at different times. It is therefore
assumed that operators do not work for 15.5 hours per day and that the kit cart is not
called in these 15.5 hours.

Figure 4.9: Time between the calls of the same kit cart

• Time-Request-Call. The time between the request to refill the kit cart and the moment
the kit cart is called up for production by the technician. With this function the priority
of the kit carts in the queue can be examined.

4.3.2 Data splitting

The three largest production lines have completely different characteristics as described in the
business understanding. That is why a separate dataset is used for each production line. Based
on the added variable ’team’, the final dataset is split into three separate datasets. Then, the
production amounts per week are added for the VP6000 and HCS line. For the HCS line, the
amounts are splitted in HCS3 and HCS2, because these two models can be modelled in parallel.
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For Niagara, the accumulated production amounts of the last 4 weeks are added to the dataset.
An additional variable is added to each separate data set:

• Takt of the production line Based on the production amounts, the takt of the produc-
tion line is calculated and added to the dataset. For HCS and Niagara, the takt per week
is calculated by dividing 40 hours by the production amount per week assuming a work-
ing week of 40 hours. Niagara is a low volume production line that produces a product
every 16 hours. So the production amount per week is 2 or 3 per week, but in reality the
production amount is approximately 2.5 per week. So for Niagara, the takt is calculated
by dividing 160 hours by the production amount of the last 4 weeks, assuming working
weeks of 40 hours.

Outliers

Finally, the outliers are removed from the dataset. For each kit cart separately, the outliers are
detected per takt time. The outliers are identified by making a boxplot of the time between
the calls (TBC) using the approach explained in Figure 4.10. In addition, the time between
requesting and calling a kit cart is always longer than 30 minutes if all timestamps are available.
So if the same kit cart is called again within 30 minutes, the row will be removed from the
dataset because the records likely represent the same kit cart.

Figure 4.10: Approach of detecting outliers

Table 4.5: Characteristics of the dataset per production line

Production line Records before removing outliers Records after removing outliers

VP6000 19916 12289
HCS 16158 13536
Niagara 13641 11934

Total 49715 43318

4.3.3 Input variables

In the literature, there is no model available to predict the kitting planning according to the
assembly process. The feature importance function of the random forest regressor is used to
select the most important features. According to the feature importance function, the data
features that are valuable and can be used to forecast kitting requirements are the production
amount, takt, kitlines, median value of past assembly times, median value of target variable
and the kit cart number. From the integrated data set, the following features are added to the
model.

• Kit cart. Each kit cart event is connected to a kit cart number. The kit cart numbers
are used as input for the kit cart.

• Kitlines. Total number of parts on a kit cart.
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• Workplace. Workplace where the kit cart is requested.

This research is focusing on predicting the kitting planning considering assembly factors. Hiller
et al. (2022) uses a regression model to predict the throughput of an order. According to Hiller
et al. (2022), mean or median values of processing times based on the material number can
increase the accuracy of the prediction of throughput time. Based on this research, past values
of assembly times are added to the model to increase the accuracy. Additionally past values
of the time between the calls (target variable) can be added to the model. For this research,
the models have been kept as simple as possible. Additional to the features of the integrated
dataset, aggregated features ared added to the model:

• Production amount. The production amount is added to each kitting event separately.
This is dependent on:

– Production line for which the kit cart was needed.

– Production amount for the specific line where the kitting event has been performed.
Every week, the production amount of VP6000 and HCS are determined based on
capacity and parts availability. For Niagara, the production amount per 4 weeks is
added, because the production amount is determined every month.

• Takt. The takt is calculated and added to each kitting event separately based on:

– Production amount. The takt is calculated by dividing the weekly demand by 40
hours. Working weeks of 40 hours are assumed.

By including the takt, the assembly and kitting will be aligned based on the production
amounts of multiple production lines.

• Changing assembly times. The time between calling and requesting to refill a kit cart
could be seen as the estimated assembly time from a kit cart. The time between calling
and requesting to refill a kit cart is the time a kit cart is located at the working station
including travelling time. The estimated assembly time is visualized in Figure 4.1. The
changing assembly times are calculated based on:

– Kit cart number. Based on the kit cart number of the kitting event, previous values
of the same kit cart can be derived.

With the median value of the assembly times, varying processing times which could have
influence on the kitting process are included in the model. The median is used, because
this value is less sensitive to outliers.

• Last value of Time between two calls (target variable). The target variable is
the time between two calls of the same kit cart. The last value of TBC is based on:

– Kit cart number. Based on the kit cart number of the kitting event, previous values
of the same kit cart can be derived.

– Takt. Previous values of a kit cart are added when a production line is operating
with a certain takt.

– Time between calls (target variable). The median value of the time between two calls
of the same kit cart is calculated from the historical data.

The last value of the target value provides information about previous value of a kit cart
used when working with a certain takt.
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These variables are typically available in all manufacturing environments where kit carts are
used to feed material to the assembly lines. Additional features as the day of previous call
and hour of previous call were tested to include in the model. However, the influence of these
variables were too low. Kitting can be used in different ways. Like CPP where the assembly
operator gives a call when the kit cart is needed. However, kitting can also be connected to
the assembly planning (Erickson and Dragonas, 2022). The takt of the assembly lines support
the alignment between assembly and kitting when multiple production lines are operating with
different takt time. The assembly planning contains values about the production amounts and
varying assembly times. Additionally, the impact of human behavior of the assembly operators
can be researched by comparing the requests to refill a kit cart with the call of the kit cart when
the kit cart is needed in production. However, human factors related to kitting performance
were not included due to privacy reasons.
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Chapter 5

Modeling & Evaluation based on
Time between Calls

This chapter shows the modeling and evaluation steps taken to predict the time between calls
of the same kit cart. Based on the literature review in Section 2, random forest, support vector
regression and neural network are compared to each other. To obtain the optimal prediction
model, a hyperparameter optimization is conducted. For the hyperparameter optimization, the
time between two calls is used because this time should be less sensitive to human behavior.
Besides that, manufacturing companies using an assembly schedule can track when the material
is needed in the assembly line.

5.1 Hyperparameter optimization

The hyperparameters of each of the chosen machine learning algorithms should be optimized.
To optimize these hyperparameters, grid search is used. Grid search builds a model for every
combination of hyperparameters and evaluates each model by storing the MAPE. The MAPE
metric is used in the grid search, because this metric is not scale dependent and can be used
to compare different machine learning techniques. The combination with the lowest MAPE is
deemed as the optimal hyperparameters. Furthermore, percentages are easy to understand for
other users. The range of hyperparameters for random forest are determined by first doing a
random search. After the random search, the values close to the best result of the random search
are used to determine a range for the grid search. Due to time constraints, only a grid search in
conducted for the neural network and support vector machines. The following hyper parameters
per machine learning algorithm are taken into account:

Random forest

• Number of trees. this parameter refers to the number of trees used.
Random search: range between 200 and 2000 with steps of 200 is used.

• Max depth. This parameter refers to the maximum depth of the trees reducing the com-
plexity of the model.
Random search: range between 10 and 110 with steps of 10 is used including None.

• Min samples leaf. This parameter refers to the minimum number of data points required
to be at the leaf node.
Random search: values 2, 5 and 10 are tried.

• Min samples split. This parameter refers to the minimum number of data points required
to split an internal node.
Random search: values 1, 2 and 4 are tried.
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• Max features. This parameter refers to the number of features to consider when looking
for the best split.
Random search: sqrt(number of features) and number of features are tested.

• Bootstrapping. Type of resampling. If true, smaller samples of the dataset are used to
build the trees. If false, the whole dataset is used to build each tree.
Random search: True and False are tested.

The values tested for the grid search are based on the results of the random search. The values
tested for the grid search can be found in Appendix C. The final optimal hyperparameters are
summarized in Table 5.1.

Table 5.1: Optimal hyperparameters of the Random Forest model for every production line

Production
line

Bootstrap Max depth Max fea-
tures

Min sam-
ples leaf

Min sam-
ples split

Number
of trees
(n estimators)

VP6000 TRUE 10 40 3 5 200
HCS TRUE 20 40 5 6 100
Niagara TRUE 10 40 3 4 300

Support vector regression

• Kernel. A kernel function is used to take data as input and transform it into the required
form of processing data.
Grid search: values ’linear’, ’rbf’ and ’poly are tested.

• Gamma. Kernel coefficient for ’rbf’, ’poly’, ’sigmoid’.
Grid search: 1e-7 and 1e-4 are tested.

• C. Regularization parameter for the support vector regression. A high value of C gives a
higher priority to avoid mistakes.
Grid search: 1.5 and 10 are tested.

• Epsilon.
This parameter defines a margin of tolerance where no penalty is given to errors. With an
epsilon of 0, every error is penalized. Grid search: 0.1, 0.2, 0.3 and 0.5 are tested.

To use support vector regression for modeling, scaling of the input features is necessary. Sup-
port vector regression uses distances between observation points, so unscaled data generates a
different model. Min-max scaling is used to scale the input features. The optimal support vector
regression hyperparameters per production line are described in Table 5.2.

Table 5.2: Optimal hyperparameters of the Support Vector Regression model for every produc-
tion line

Production line Kernel C Gamma Epsilon

VP6000 linear 10 1,00E-07 0.1
HCS linear 10 1,00E-07 0.5
Niagara linear 10 1,00E-07 0.2

Neural network

• Activation. The activation function defines the output of that node given an input or set
of inputs.
Grid search: ’identity’, ’tanh’, ’relu’ are tested,
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• Solver. This parameter specifies the algorithm for weight optimization across the nodes.
Grid search: ’lbfgs’, ’sgd’ and ’adam’ are tested.

• Alpha. A parameter for regularization term, also called a penalty term that avoids over-
fitting by penalizing weights with large magnitudes.
Grid search: 0.00005, 0.0005, 0.005 and 0.05 are tested.

• Hidden layer sizes. Number of neurons in the hidden layer. The number of hidden neurons
should be between the size of the input layer and the size of the output layer.
Grid search: 4, 16 and 32 are tested.

Neural networks also benefit from scaling so that all features contribute equally to the model.
Min-max scaling is used to scale the input features. The optimal neural network hyperparameters
per production line are described in Table 5.3.

Table 5.3: Optimal hyperparameters of Neural Network model for every production line

Production line Activation Solver Alpha Hidden layer sizes

VP6000 identity Adam 0.005 16
HCS tanh Adam 0.05 4
Niagara tanh Adam 0.00005 64

5.2 Walk-forward validation

During this case study, the walk-forward validation method is applied. Walk forward validation
is often used in time series models or demand forecasting. There are two approaches for walk
forward validation. The expanding window approach trains a model on all available historic
data and uses that to make a forecast. The expanding window approach is showed in Figure
5.1a. Secondly, a rolling window with a certain amount of data points is chosen to train the
model. The rolling window approach uses the most recent data points, as shown in Figure 5.1b.

(a) Expanding window approach (b) Rolling window approach

Figure 5.1: Walk forward validation

5.3 Results

Based on the results of the hyperparameter optimization, the accuracy metrics are calculated for
each production line for three machine learning algorithms. The accuracy metrics are calculated
for the time between two calls of the same kit cart. To find the best model, multiple timestamps
are tested to include easy predictable timestamps and difficult predictable timestamps. For
example, when a prediction is made at the end of the day, the kit cart can be requested the
same day or the next day depending on the behavior of the assembly operator. The same
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goes for predicting around a break of the assembly operators. An expanding walking forward
validation is used where all the data available until the timestamp of the prediction is used for
training. The accuracy metrics are calculated by averaging the accuracy metrics of 19 different
timestamps between 30-08-2022 and 15-11-2022. These timestamps can be found in Appendix
F.3. The accuracy metrics are calculated for each production line seperately and can be found
in the subsections. Only for the 1-MAPE, a high value is preferred. For the other accuracy
metrics, a low value is preferred.

5.3.1 VP6000

For production line VP6000, the accuracy for the time between the calls of the same combined
kit cart is presented in Table 5.4. Based on Table 5.4, support vector regression gives the best
results for VP6000. The MAE, MSE, RMSE and MAPE are the lowest for support vector
regression compared to the other models. Based on the accuracy metrics of the time between
two calls of the same kit cart, support vector regression is the best model. When merging the
production lines, support vector regression is used for the VP6000 production line.

Table 5.4: VP6000 - Accuracy metrics of time between two calls

ML model MAE MSE RMSE MAPE 1-MAPE

Random forest 93.3 13604.95 116.63 0.59 0.41
SVM 92.00 13575.62 116.51 0.56 0.44
NN 94.00 13763.38 117.32 0.60 0.40

5.3.2 HCS

For production line HCS, the accuracy for the time between the calls of the same combined
kit cart is presented in Table 5.5. Based on Table 5.5, the majority of the accuracy metrics
of support vector regression gives the best results for HCS. The MAE, MSE and RMSE has
the best values for support vector regression compared to the other models. When merging the
production lines, support vector regression is used for the HCS production line.

Table 5.5: HCS - Accuracy metrics of time between two calls

ML model MAE MSE RMSE MAPE 1-MAPE

Random forest 69.60 8563.00 92.49 0.542 0.458
SVM 66.20 8028.60 89.56 0.491 0.507
NN 71.45 11181.67 105.66 0.392 0.608

5.3.3 Niagara

For production line Niagara, the accuracy for the time between the calls of the same combined
kit cart is presented in Table 5.6. Based on Table 5.6, random forest gives the best results for
Niagara. The MAE, MSE and RMSE are the lowest for random forest compared to the other
models. When merging the production lines, random forest is used for the Niagara production
line.

Table 5.6: Niagara - Accuracy metrics of time between two calls.

ML model MAE MSE RMSE MAPE 1-MAPE

Random forest 291.55 134052.70 365.88 0.355 0.645
SVM 300.10 145077.78 379.97 0.353 0.647
NN 296.65 142209.34 376.09 0.353 0.647
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The highest performing model for each production line are summarized in 5.7. In the next
chapter, the results of the prediction model per production line are merged.

Table 5.7: Highest performing model for each production line

Production line ML model

VP6000 Support vector regression
HCS Support vector regression
Niagara Random Forest
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Chapter 6

Results of merging multiple
production lines

In previous chapter, the best prediction model for each production line is obtained. The best
performing prediction model of each production line predicts the time between two calls of the
same kit cart. To make a prediction of the required kitting requirements, a translation has to be
made from the time between two calls to the required kitting requirements. Furthermore, the
results of the prediction model per production line are merged to predict the kitting requirements
of all the production lines together.

6.1 Translation to kitting requirements

The goal of this research is to predict the kitting requirements. With the prediction model, the
time between two calls of the same kit cart is calculated, because each kit cart has a certain
rhythm based on the production amounts and assembly times.

To translate the prediction to the required kitting requirements, the timestamp of the next
kit cart has to be calculated. With these timestamps, the kitlines of all production lines can be
summed. As already mentioned in Section 4.3, assembly operators tend to arrive and leave at
different times. Assembly operators are working 8 hours a day excluding a lunch break of half
an hour. Some assembly operators end their day at 4:00 PM while other assembly operators
prefer to start a little later and leave at 4:30 PM. Because assembly operator work at different
times during the day, it is impossible to give a specific timestamp when a kit cart is used for
production because this is dependent on when the assembly operator started to work. To com-
pare actual times and predicted times, a start point is chosen which could be seen as point 0.
An hour after the start point could be seen as point 60. The data of 2021 and 2022 is used,
therefore 01-01-2021 07:00:00 is chosen as start point.

6.2 Results

For each production line, it is exactly known how many kit carts are needed to build a product.
Based on the takt of the production line, the part demand of the production line is constant. A
problem arise when production lines operate on a different takt each week based on the planned
production and capacity. The part demand per takt is constant, but with different takt times
every week, the part demand per hour is varying. The difficulty is predicting the parts demand
across all production lines combined when operating with different takt times and varying pro-
cessing times.
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In Section 5.3, the best prediction model is selected for each production line. The prediction
model per production line predicts the time between two calls of the same kit cart (TBC). This
is the moment when the kit cart is needed for production and is called by the assembly operator.
The results of the prediction models per production line are combined into one dataset. The
merged dataset includes the prediction when the next same kit cart is called by the assembly
operator. The records are grouped based on the predicted time point (minute level) when the
same kit cart is called again. Thereafter, the number of kitlines per time bucket is calculated,
because there are large and small kit carts. As a result, it makes more sense to predict the
kitlines rather than the number of kit carts. Finally, the predicted number kitlines is compared
to the actual number of kitlines. This process is done by trying different time buckets to see
their effect on accuracy. This process is repeated to predict 19 different timestamps to represent
easy predictable days and difficult predictable days. The timestamps can be found in Appendix
F.3. The process of merging the production lines is described in Figure 6.1.

Figure 6.1: Process of merging the production lines

As accuracy metric, the inverse of the MAPE is used. The MAPE is not scale dependent, which
means that different time buckets can be compared with each other. The time buckets are
determined by looking at the most common takt times of the production line. The takt time
of HCS is between 1 and 2 hours. VP6000 has a takt time of approximately 4 hours. Finally,
Niagara has a takt time of around 16 hours. The time buckets are divisible by one of the takt
times of the production lines. The accuracy of the called kitlines per 30, 60, 120, 240 and 480
minutes is shown in Figure 6.2. For example, for a time bucket of 30 minutes, the accuracy of
called kitlines is calculated for the first 30 minutes, second 30 minutes and so on. The mean
accuracy metrics of the called kitlines using different time buckets can be found in Appendix D.1.

As can be seen in the Figure 6.2, the mean accuracy of the number of kit lines is remark-
ably higher when a time bucket of 60 minutes is used. A larger the time bucket results in a
higher accuracy. With a larger time bucket, there is a greater chance that the kit cart has been
predicted in the correct time bucket. However, with a large time bucket is the variation within
a time bucket not visible. It is not known whether there are more kitlines needed in the first
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part of the bucket or the last part. The part demand of a production line is constant during
the takt of the production line. A larger time bucket ensures that a takt of the production line
fits completely in the time bucket, which ensures a constant part demand. However, the takt
of the production lines changes weekly due to customer demand or capacity, dependent on the
company. Because the time bucket is not exactly equal to the size of the takt, some variation
will always be visible. With a time bucket of 30 minutes, the variation is hardly to predict.

Figure 6.2: Mean accuracy called kitlines over time for every time bucket

The median accuracy of the number of called kitlines per time bucket is even higher, as shown
in Figure 6.3. From these results it can be concluded that there are timestamps that are difficult
to predict. The bad timestamps identified in the dataset are timestamps just before a break.
The actual kitlines were lower than the predicted kitlines, because the prediction model does
not include breaks of the assembly operators and kitting employees.

Figure 6.3: Median accuracy called kitlines over time for every time bucket
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Chapter 7

Modeling & Evaluation based on
Time between Requests

In the previous chapters, the time between the calls of the same kit cart was predicted to calculate
the number of kitlines needed at the production lines. In case of CPP, TBC does not work well
because the assembly operators give a signal to refill the empty kit cart. The workload in the
kit warehouse is dependent on signals of the assembly operator. When the assembly operator
requests to refill a kit cart, a queue is created based on the latest possible start date. A kit cart
is requested to be refilled directly when the previous production is finished, but the assembly
worker can sometimes be early or late with requests. Requesting to refill a kit cart could contain
some extra human behavior. In addition, the kit cart cannot be refilled if the kit cart has not
been returned to the kit warehouse. For CPP it is better to predict when the kit cart will be
requested to refill. In this chapter, the number of kitlines per time bucket are generated based
on the time between the requests of the same kit cart (TBR). Thereafter, a comparison is made
between the time between the requests (TBR) and time between the calls (TBC), as shown in
Figure 7.1. Finally, the workload in the kit warehouse based on the requests is calculated for
CPP. Additionally, the results are compared to the current method of CPP.

Figure 7.1: Comparison between TBC and TBR

7.1 Time between Requests (TBR)

In case of CPP, the assembly operator gives a signal for the kit cart to be refilled with materials.
CPP uses the request timestamp to create a kit schedule based on the kit carts that are empty
and need to be refilled. For CPP, it is more beneficial when the time between two requests to
refill the same kit cart is predicted. The predicted timestamp can be used to make a kit schedule.

The same preprocessing steps are applied to predict the time between two requests. First,
data is filtered on 2021 and 2022. Furthermore, missing values are removed. Whenever a called
timestamp is missing, the row is deleted from the dataset. Thereafter, an additional feature is
added to the dataset:

• Time between requests of the same kit cart. The difference between the request of
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a specific kit cart and the next request of the same kit cart, as shown in Figure 7.1. The
time between two requests is corrected for weekend days and days off. A typical workday
at CPP is starting at 7:30 and ends at 16:00. After observing, assembly operators arrive
and leave work at different times. It is therefore assumed that operators do not work for
15.5 hours per day and that the kit cart is not requested in these 15.5 hours.

After splitting the datasets into three separate datasets, one for each production line, the outliers
are detected per takt time for each kit cart separately. The outliers are identified by making a
boxplot of the time between the Requests (TBR). Kit carts requested twice within 30 minutes
are also removed from the dataset, because the records likely represent the same kit cart. The
three final datasets for each production line are used for modeling with the same hyperparame-
ters used in the method for TBC.

The prediction model predicts the time between two requests to refill the same kit cart (TBR).
Based on the predicted time till the next same kit cart, the amount of requested kitlines per
time bucket is predicted. As accuracy metric, the inverse of the MAPE is used. The accuracy
of the kitlines per 30, 60, 120, 240 and 480 minutes is shown in Figure 7.2. Again, the accuracy
metrics are calculated by averaging the accuracy metrics of 19 different timestamps between
30-08-2022 and 15-11-2022. The timestamps can be found in Appendix F.3. The mean accuracy
metrics of the requested kitlines using different time buckets can be found in Appendix D.2.
Comparable to the results of TBC, the median accuracy of the number of requested kitlines per
time bucket is even higher, as shown in Figure 7.3.

7.2 Comparison between TBC and TBR

With the comparison between the time between calling a kit cart (TBC) and requesting to refill
a kit cart (TBR), the impact of human factors can be identified. The kit cart is called when the
kit cart is needed for production which is equal to the production flow. The request to refill the
kit cart with materials is most of the time directly when the previous production is finished, but
the assembly worker can sometimes be early or late with requests. The request to refill a kit
cart is an additional manual task performed by humans. The time between two requests should
follow the same rhythm as the time between two calls of a kit cart. Additional error is caused by
human behavior by requesting a kit cart too early or too late. The comparison between Figure
6.2 and Figure 7.2 shows that the inverse of the MAPE is slightly lower when the number of
kitlines is predicted with the time between requests (TBR) when using small time buckets. For
example, with a time bucket of 60 minutes, TBR has an average accuracy of 63% and a median
accuracy of around 70% where TBC has an average accuracy of 63% and a median accuracy
of 73%. However, when predicting the kitlines requested or called for one day, the requested
kitlines are more stable. In addition, the other accuracy metrics of TBR and TBC can be found
in Appendix D. The prediction of the kitlines based on TBR is slightly worse than TBC which
can be explained as human behavior of the assembly operators.
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Figure 7.2: Mean accuracy requested kitlines over time calculated for every time bucket

Figure 7.3: Median accuracy requested kitlines over time calculated for every time bucket

7.3 Translation to workload

The result of the prediction model based on TBR is the request timestamp of a kit cart. To make
a translation to workload, an extra step is added in the process. After merging the prediction
results of the production lines in one dataset, a step is added to calculate the predicted start and
end kitting timestamp. The kit cart queue of CPP is created based on the request timestamp of
a kit cart following the latest possible start date mechanism. The latest possible start date of a
kit cart can be calculated with the predefined values of the available time to kit and duration.
The start and end kitting can be calculated with Formula 7.1 and Formula 7.2. The visualization
of the calculation is shown in Figure 7.4

End kitting = Request timestamp (predicted) + Time available to kit (predefined) (7.1)

Start kitting = End kitting−Duration (predefined) (7.2)
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Figure 7.4: Calculation of the kit cart queue

The calculation of the start and end of the kitting activity in the process is made visible in
Figure 7.5.

Figure 7.5: Calculation of Start kitting and End kitting in the process

Based on Figure 7.2, a time bucket of 60 minutes is chosen with an average accuracy of 63%
and a median accuracy of around 70%. With the calculated start and end time of the kitting
activity, the workload to pick the materials can be calculated for every hour separately, as shown
in Figure 7.6. So the total workload is calculated for the first 60 minutes, then for the next 60
minutes, etc. In the same way, the number of kitlines to be picked can be calculated for each
hour separately. During this calculation, it is assumed that the duration to kit a kit cart and
the corresponding kitlines are evenly distributed. When a kit cart consists of many common
parts, the picked kitlines per minute are higher than when a kit cart consists of many different
or large parts.
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Figure 7.6: Calculation of workload per time block

The mean and median accuracy of kitting minutes calculated using time buckets of 60 minutes is
shown in Figure 7.7. Additionally, the mean and median accuracy of the kitlines, assuming that
the minutes and kitlines are evenly distributed, are shown in Figure 7.8. Additional accuracy
metrics of the predicted workload and predicted kitlines can be found in Appendix F. The
accuracy metrics for the number of kit lines are better than the accuracy metric of the workload.
The drop in accuracy in the second hour an fourth hour can be explained by breaks. Most
timestamps have a break for the assembly operators and kitting employees after about 2 hours
and after about 4 hours. The connection between the timepoints used in this prediction and
timestamps can be found in Appendix F.3. However, the workload per 60 minutes can be
predicted with a mean accuracy of 70% and a median accuracy of 78%. The kitlines per 60
minutes can be predicted with a mean accuracy of 70% and a median accuracy of 79%.

Figure 7.7: Accuracy of minutes in workload planning of CPP (every 60 min)
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Figure 7.8: Accuracy of kitlines in workload planning of CPP (every 60 min)

7.4 Evaluation with current method of CPP

In the business understanding, a lot of variation in the kitting requests was visible in the number
of requested kitlines per hour which may lead to peaks in the kit warehouse. Currently, CPP
cannot forecast the workload or kitting requirements per hour in the future. People are sched-
uled on the shop floor based on a rough estimate of the kitlines to be picked per day. However,
the variation of kitlines to be picked per hour cannot be predicted.

To show the differences between the current situation and new situation, the results of time
point 229280 are presented. Time point 229280 is equal to the timestamp 17-10-2022 11:50.
Figure 7.9 shows the number of requested kitlines per 60 minutes around time 229280. This
is the moment that the assembly operator request to refill a kit cart. Based on calculation in
Figure 7.4, the kit cart is placed in the kit cart queue. It can be concluded that the number of
requested kitlines varies every 60 minutes.
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Figure 7.9: Requested number of kitlines per 60 minutes

In the current situation, only the already requested kit carts are visible in the kit cart queue of
CPP. An example of the queue at timepoint 229280 is shown in Figure 7.10. As a consequence,
the workload and number of kitlines can only be calculated for the kit carts already requested
at timestamp 229280. In Figure 7.11b and Figure 7.12b, a snapshot of the workload and kitlines
per 60 minutes from timepoint 229280 is shown. Both lines are declining, as the kit carts are
not yet known in the future. In the current situation of CPP, the workload can increase quickly
by requesting kit carts with short takt times. These new kit carts with short times will be
requested and added to the queue in the coming hours.

Figure 7.10: Current kit cart queue of CPP

Historical data has been used to train and test the models for the individual production lines.
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This allows to compare the predicted workload per hour with the actual workload per hour which
was needed to fulfill all the kitlines in that particular hour. The current situation of Canon only
shows a snapshot with the current calculation of the workload and kit lines at timestamp 229280
for the next few hours based on the already requested kit carts.

In the same way, the actual kitlines are the actual to be picked kitlines planned for that time
window. So, the predicted workload and kitlines per 60 minutes are compared with the actual
workload and kitlines per 60 minutes. The comparison between the prediction and the actual
values of the workload and kitlines can be found in Figure 7.11a and Figure 7.12a respectively.

(a) Prediction vs Actuals (b) Current situation CPP (snapshot time 229280)

Figure 7.11: Workload in minutes where new situation is compared to current situation

(a) Prediction vs Actuals (b) Current situation CPP (snapshot time 229280)

Figure 7.12: Number of kitlines where new situation is compared to current situation

In the business understanding in Section 3.1, the current kitting process of CPP is explained.
The order of the kit cart queue of CPP is determined based on the latest possible start date.
As a consequence, new kit cart request with shorter available time to kit were allowed to get
priority in the kit cart queue. In Figure 3.2 and Figure 3.3, the creation of the kit cart queue
was presented. Based on the calculations of the new start kitting time point and end kitting
time point explained in Figure 7.5, a new kit cart queue is generated. Figure 7.13 shows the
new kit cart queue including predictions. The darker lines are the already requested kit carts
while the light lines are the predictions of new kit carts. The new kit cart queue shows that a
few kit carts will be requested from a production line with a shorter takt time in the coming
hour. These kit carts change the order of the queue due to higher priority. With these extra kit
carts, the workload in that particular hour is increased.
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Figure 7.13: Kit cart queue including predictions

In case of CPP, the time available to kit a kit cart and the duration to gather all the materials
of a kit cart is already predefined for each kit cart specific. These times are not dependent on
the varying production amounts. When a kit cart is requested by the assembly operator, the kit
cart is placed in the queue based on the calculated start kitting and end kitting timestamp of the
specific kit cart. For this time point (229280), the number of kitlines to be kitted per 60 minutes
in Figure 7.12a is more stable than the actual requested kitlines in Figure 7.9. Depending on
which kit carts are requested and how much time is available for kitting, a completely different
variation can arise for the workload and number of kitlines per 60 minutes. As a consequence,
the variation of the requested kitlines is translated into a different variation of the kitlines to be
picked per hour.

Furthermore, the kit cart is also waiting a lot in the full bus stop where the kit cart is stored
between kitting and calling. In Appendix E, the time between calling and requesting a kit cart
is compared with the available time to kit. Especially for production VP6000, the time between
requesting and calling the kit cart is much longer than the available time to kit (VGW03). The
kit carts wait for a long time in the full busstop, where all full kit carts are collected, before
the kit cart is called by the assembly operator. This could lead to a wrong urgency of the kit
carts. If a kit cart turns out to be kitted too late according to the predefined time, the kit cart
is probably not late for production. This also applies to a few kit carts of HCS and about half of
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the kit carts of Niagara. As a result, a different variation arises when viewing the called kitlines
per hour. Figure 7.14 shows the differences in variation of the requested kitlines, to be picked
kitlines and the called kitlines.

Figure 7.14: Visualization of differences in variation

7.5 Conclusion

There is a lot of variation in the requested kit lines per 60 minutes. Part of this variation arises
from multiple production lines that work with a different takt times. The prediction model that
predicts the time between two requests from the same kit cart can predict the requested kitting
requirements per 60 minutes with a mean accuracy of 63% and a median accuracy around 70%.
However, the variation of the kit lines to be picked in the kit warehouse is different from the
variation of the requested kit lines due to the predefined time available to kit and the duration.
The workload and the to be picked kitlines in the kit warehouse can therefore also differ from
hour to hour. The workload per 60 minutes can be predicted with a mean accuracy of 70% and
a median accuracy of 78%. The kitlines to be picked per 60 minutes can be predicted with a
mean accuracy of 70% and a median accuracy of 79%. To properly respond to the variation of
the workload, a recommendation is to balance the workload in the kit warehouse by considering
a different scheduling mechanism.
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Chapter 8

Conclusions

The last chapter contains the conclusion of this master thesis. First, the research questions are
revisited and answered. Secondly, the scientific relevance and company relevance are described.
Finally, the limitations of this master thesis and suggestions for future research are described.

8.1 Revisiting the Research Questions

At the beginning of this master thesis, the importance of the alignment between assembly and
kitting is described. During this master thesis, a literature review is conducted where prediction
models are selected to predict manufacturing behavior. After that, business understanding about
the production processes is obtained and data is collected. After preparing this data, prediction
models are created and evaluated. Finally, application of the prediction models is elaborated
at the case company. The output of this thesis is a prediction model that predicts the kitting
requirements of the production line including multiple production lines. With the information
about the kitting process, a translation is made to the hourly workforce to fulfill these kitting
requirements. Based on the possible causes of variation in workload in the kit warehouse, advice
is given on how to balance the workforce in the kit warehouse.

As mentioned in Section 1.3, the main research objective is formulated as:

RO: To develop a prediction model to predict the required hourly manpower to fulfill the kitting
requirements affected by the assembly process

To achieve research objective, four subquestions are formulated and answered in detail.

SQ1: Which forecasting method can be used to predict kitting requirements according to the
literature?

To answer this research subquestion, a literature review is conducted. However, in the literature,
not much attention is paid to the alignment between kitting and assembly. As a consequence, the
focus of the literature review is on finding prediction models in production processes including
manufacturing uncertainties, human behavior and stochastic demand. It is found that machine
learning models and simulation are techniques which are used to predict dynamic lead times or
manufacturing behaviour. The literature review contains three simulation techniques and five
machine learning techniques that can be used to predict manufacturing behaviour. Simulation
is not used, because a connection between the production order and kit cart was missing in the
case study data. When using simulation, each kit cart would have to be simulated individually
rather than a production order. As a consequence, three machine learning models were selected
to use during this master thesis.

SQ2: How is variation in the kitting process caused by human and production related factors?
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Influencing factors creating variation on the kitting and assembly process are identified during
the literature review and business understanding. With the identified factors creating variation
in the production process, the right features can be chosen to include uncertainties in the model.
During this thesis a case study is conducted at Canon Production Printing. To be able to
generate a solution for CPP, the current challenges regarding the alignment between assembly
and kitting should be mapped. Various discussions were held with industrial engineers, planners,
assembly operators and employees of the kit warehouse to get knowledge about the production
processes of CPP. It was found that human factors have influence on kitting performance and
assembly performance. Furthermore, inventory shortages and part shortages also create some
deviating manufacturing behavior. The alignment between assembly and kitting could also be
disturbed by multiple assembly lines operating with different takt times. Additionally, the start
moment of the production and prioritization of the kit carts may create variation in the kit
warehouse.

SQ3: Which data features are valuable to predict the kitting requirements and corresponding
working hours

In the literature, there is no model available to align the kitting process with the assembly lines.
For this research, the models have been kept as simple as possible. Based on the literature review
and business understanding, multiple data features are added to the dataset. Additional features
as day of previous call and hour of previous call are tried to add to the model. However, the
influence of these variables were too low. The feature importance function of the random forest
regressor is used to select the most important features. According to the feature importance
function, the data features that are valuable and can be used to forecast kitting requirements
are the production amount, takt, kitlines, median value of past assembly times, median value
of target variable and the kit cart number.

SQ4: Which prediction method performs best when predicting kitting requirements?

After a detailed analysis and comparison of existing machine learning techniques, three machine
learning techniques were selected. Due to the completely different characteristics of the pro-
duction lines, each production line has their own prediction model. For each machine learning
technique, hyperparameter optimization is conducted to find the optimal parameter settings
of the model for each production line. For random forest, random search and grid search is
combined. Due to time constraints, only grid search is used for support vector regression and
artificial neural network.

For each production line, the three machine learning algorithms with their optimal hyperpa-
rameters are tested. Based on the accuracy metrics, the highest performing prediction model
is chosen for each production line. For production lines VP6000 and HCS, the best performing
model is support vector regression. For production line Niagara, random forest is the best per-
forming model. To be able to predict the kitting requirements of multiple lines, the results of
the prediction models are merged. The goal of this thesis is to predict the hourly manpower.
However, when time buckets are used, variation is created if the kit cart is predicted a few min-
utes late and end up in the wrong time bucket. So, the accuracies using different time buckets
based on the takt of average production are calculated. From the results with different time
buckets it can be concluded that a larger time bucket leads to a more stable prediction of the
required kit lines on the production lines.

Revisiting main research objective

With the research subquestions above, the main research objective is achieved:
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RO: To develop a prediction model to predict the required hourly manpower to fulfill the kitting
requirements affected by the assembly process

During this thesis the kitting requirements for the production lines are predicted based on Time
Between Calls (TBC) and Time Between Requests (TBR). The average accuracy per 60 minutes
is for both around the 63%. The median accuracy of TBC is slightly better. The differences can
be explained by human behavior of the assembly operators. Based on information about the
kitting process, a translation is made to the hourly workforce to fulfill the kitting requirements.
The kitlines to be picked per 60 minutes can be predicted with a mean accuracy of 70% and a
median accuracy of 79%. The workload per 60 min has an average accuracy of 70%. Based on
the possible causes of variation, advice is given on how to balance the workforce.

8.2 Relevance

This section presents the relevance of this research. First, the scientific relevance is described.
Secondly, the relevance to CPP is discussed.

8.2.1 Scientific Relevance

As stated in Section 1.4, based on literature two research gaps are identified. First, literature on
kitting specific planning and decision making is limited. In the literature, comparisons between
different methods to feed materials to production line are compared based on costs (Caputo
et al., 2015a). So there is a lot of evidence that kitting has benefits as long as it is well orga-
nized. A technique to support kit planning was missing. The prediction model contributes to
the literature by supporting decision making in kitting planning considering multiple production
lines and varying processing times.

Secondly, there is lack of knowledge regarding the alignment between kitting and assembly.
In the literature, there is a lot of research about the benefits of kitting based on costs, quality
and performance (Limère et al., 2012). Caputo et al. (2015a) developed a mathematical model
for kitting operations planning, but context-specific decision factors like assembly performance
were not included. However, the alignment with the assembly lines is missing, especially when
multiple production lines are operating. All the production lines have different characteristics
with their own variation. This variation is also translated to the kitting process. The difficulty
is predicting the parts demand across all production lines combined when operating with dif-
ferent takt times. Furthermore, human factors create a variation in the assembly process. By
including information about production amounts and varying processing times, the prediction
model contributes to the alignment between kitting and assembly.

8.2.2 Company relevance

The conclusions and outcomes of this master thesis research are relevant to Canon Production
Printing. In Chapter 7, the application at the CPP is described. In Section 3.4, requirements
specific to CPP are described. The requirements are answered in detail below.

R1: The prediction method should predict the required kitting requirements per hour
considering human factors.

The general prediction model predicts the number of kitlines based on the time between the calls.
With this prediction model, the number of kitlines per hour needed at the production lines can
be calculated. In the prediction model, varying processing times are included. Besides that, the
human behavior of assembly operators is researched. The prediction based on TBR are slightly
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worse than TBC which can be explained as human behavior of the assembly operators. However,
human factors such as experience and age of the assembly operators and kitting employees
is neglected due to privacy constraints. So, the prediction model indeed predicts the kitting
requirements per hour but the human factors are limited.

R2: The predicted kitting requirements should be translated in working hours

Due to the large time differences between requesting and actually needing the kit cart, the
prediction of the number of kit lines is also made based on the time between the requests of
the same kit cart. Furthermore, the available time for kitting and the duration to kit a kit
cart are pre defined. So, the workload of CPP is dependent on the available time for kitting,
duration and the request timestamp. Based on the predicted request time point, the start and
end kitting can be estimated. The queue can be estimated with the predicted request time point,
start kitting and end kitting. With the created queue, the workload and kitlines per hour can
be estimated.

R3: The prediction model should be easy to use and understandable for its users

The results of the prediction model are not explicitly tested with the users. However, the
dashboard visible in the kit warehouse is constructed in the same way as the dashboard in the
old situation. When implementing the results in the data flow of the company, the users have
to be involved to assess if the prediction model is easy to use and understandable.

R4: The prediction model should be able to make predictions of the required manpower one day
in advance.

The prediction model is able to make predictions a few days ahead. The workload per 60 minutes
can be predicted with a mean accuracy of 70% and a median accuracy of 78%.

R5: The prediction model should possess the ability to incorporate new process data over time
to increase the accuracy of the predictions.

Finally, the prediction model is able to incorporate new process data. The model is build in
Jupyter notebook. The data in the model is immediately loaded from SQL which is updated
regularly. The additional pre-processing step that needs to be done each year is to add the
company’s collective free days. These days are not considered working days. Furthermore, the
new production amounts can be added to the model via Excel or SQL. When the prediction
model is run again, historical records are automatically used as training set. The aggregated
variables are also calculated immediately.

Based on the results of calculating the workload and kitlines per 60 minutes when using the
time between two requests of a kit cart, some recommendations specific for CPP can be sug-
gested. During this research, the difficulty was to merge all the production lines with different
characteristics operating with different takt times. The requested kitting lines are varying from
hour to hour due to different takt times and different behavior of production lines. A suggestion
is to form a separate kit team for each production line with their own planning. The production
lines are very different and splitting the lines with their own preferred time bucket size could be
beneficial. The size of the time bucket to predict the workload can then be adjusted to the takt
time of the production line.

Based on the planning mechanism of CPP, a kit cart queue is created based on the latest
possible start date of a kit cart. However, the use of predefined available time to kit (VGW03)
and duration to kit causes a variation in the number of kitlines and workload per hour in the kit
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cart queue. To properly respond to the kitting requirements of the production lines, the kitlines
and corresponding workload in the kit warehouse have to be balanced. A suggestion to get a
balanced workload is to change the priority of the production lines. For example, the kit trolleys
of the production line can be kitted first with the highest probability. Then the production line
with the second priority can be kitted and finally the holes are filled with kit carts from the
production line with the lowest priority. Another suggestion is to use dynamic times for the
time available to kit, but this can still lead to peaks in the kit warehouse. A next step for CPP
could be research in different planning mechanism to balance the workload in the kit warehouse.

8.3 Limitations and future research directions

In the final section of this thesis, the limitations and recommendations for future research are
presented. The main limitation of this research is the lack of human factors such as experience
and age of the kiting employees and assembly operators. Experience and age could have influ-
ence on kitting performance and assembly performance. However, companies have to deal with
privacy rules to protect their employees. Furthermore, requesting and calling up a kit cart is
done via the pizza tool. This action is linked to an IP address and not to a specific person.
Requesting and calling the kit cart can be done by different people. Only varying processing
times are added to include some human behavior of the assembly operators.

A limitation in this thesis is that the same prediction model including the optimized hyperpa-
rameters is used for both time between calls (TBC) and time between request (TBR) prediction.
Due to time constraints, the hyperparameter optimization steps are not repeated for time be-
tween requests (TBR). Another limitation regarding the model is that the outliers and missing
values have been removed from the dataset. This can create gaps in the dataset. A suggestion
is to replace the outliers with estimated values based on the remaining data.

In this thesis, the three biggest production lines are used to predict the kitting requirements.
However, service kit carts also create variation in the requested kitlines and workload per hour
in the kit warehouse. This group has to be included to get a more reliable prediction. All the
production lines need preparation due to their own characteristics. So, due to time constraints,
the three biggest production lines are chosen. Furthermore, the calculation of the workload and
kit lines per hour assumes that the workload and kit lines are evenly distributed. In reality, it
depends on the type of parts and the number of common parts.

Finally, three direction of further research are suggested. First, research to more input fea-
tures is proposed. As already mentioned in the thesis, the link between the production order
and the kit car is missing. When assembly workers work in parallel and in advance, it is not
possible to obtain an actual production sequence. With a production sequence, the relationship
between the kit carts could be determined. Based on probabilities, the next kit cart within
a production order can be predicted. With the availability of a production sequence, other
techniques like simulation could give better predictions. Due to lack of literature about the
alignment between kitting and assembly, the model to predict the time between two calls of
the same kit cart have been kept as simple as possible. More input features can lead to higher
accuracy. Inclusion of more human factors can already give more information about different
processing times and kitting performance. Furthermore, the inclusion of real time information
about the process could give better predictions.

In this thesis, only machine learning models are used to predict the kitting requirements per
hour. Simulation and time series forecasting could also be possibilities to predict future values.
When there is no connection with the production order, a simulation for each kit cart separately
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has to be created. Time series forecasting including input factors like takt time can be used
to predict either the required kitlines or required manpower. However, information about the
kit carts is not available anymore. To include information about which kit cart is causing the
kitlines in a given period, a time series prediction of each kit cart is required individually. An
advantage of simulation and time series forecasting is the inclusion of breaks from the kitting
employees and assembly operators. As future research, comparison between machine learning,
time series forecasting and simulation is suggested.

Besides, validation for the generalization of the results is suggested. The results of this research
are currently based on one case study executed in a high complex, low volume manufacturing
environment with mixed-model assembly lines.
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Seçkin, M., Çağdaş Seçkin, A., and Coşkun, A. (2019). Production fault simulation and fore-
casting from time series data with machine learning in glove textile industry. Journal of
Engineered Fibers and Fabrics, 14. 16

Sgarbossa, F., Grosse, E. H., Neumann, W. P., Battini, D., and Glock, C. H. (2020). Human
factors in production and logistics systems of the future. Annual Reviews in Control,
49:295–305. 9, 10, 25

Shaaban, S., McNamara, T., and Hudson, S. (2014). Mean time imbalance effects on unreliable
unpaced serial flow lines. Journal of Manufacturing Systems, 33:357–365. 9

Shao, G. and Helu, M. (2020). Framework for a digital twin in manufacturing: Scope and
requirements. Manufacturing Letters, 24:105–107. 12

Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., and Devine, D. (2021). Digital
twin: Origin to future. 12

Sotskov, Y. N., Dolgui, A., and Portmann, M. C. (2006). Stability analysis of an optimal balance
for an assembly line with fixed cycle time. volume 168, pages 783–797. 3

Sundar, R., Balaji, A. N., and Kumar, R. M. S. (2014). A review on lean manufacturing
implementation techniques. volume 97, pages 1875–1885. Elsevier Ltd. 8

Tetik, M., Peltokorpi, A., Seppänen, O., Leväniemi, M., and Holmström, J. (2021). Kitting
logistics solution for improving on-site work performance in construction projects. Journal
of Construction Engineering and Management, 147. 13

Tran, T. T. K., Bateni, S. M., Ki, S. J., and Vosoughifar, H. (2021). A review of neural networks
for air temperature forecasting. Water (Switzerland), 13(9):1–15. 16

Tso, G. K. and Yau, K. K. (2007). Predicting electricity energy consumption: A comparison of
regression analysis, decision tree and neural networks. Energy, 32(9):1761–1768. 14

van der Aalst, W. M. (2018). Process mining and simulation: A match made in heaven! vol-
ume 50, pages 39–50. The Society for Modeling and Simulation International. 10

Varela, M. L. R., Trojanowska, J., Carmo-Silva, S., Costa, N. M. L., and Machado, J. (2017).
Comparative simulation study of production scheduling in the hybrid and the parallel flow.
11

Vijayakumar, V., Sgarbossa, F., Neumann, W. P., and Sobhani, A. (2022). Framework for
incorporating human factors into production and logistics systems. International Journal
of Production Research, 60:402–419. 10

Vujosevic, R., Ramirez, J. A., Hausman-Cohen, L., and Venkataraman, S. (2012). Lean kitting:
A case study. 1

Wang, Q. and Abubakar, M. I. (2017). Human factors and their effects on human-centred assem-
bly systems - a literature review-based study. volume 239. Institute of Physics Publishing.
10, 22

Wijnant, H., Schmid, N. A., and Limère, V. (2018). The influence of line balancing on line
feeding form mixed-model assembly lines. 32nd annual European Simulation and Modelling
Conference 2018. 1

Wu, C. X., Liao, M. H., Karatas, M., Chen, S. Y., and Zheng, Y. J. (2020). Real-time neural
network scheduling of emergency medical mask production during covid-19. Applied Soft
Computing Journal, 97. 17

Xie, C., Lu, J., and Parkany, E. (2003). Work travel mode choice modeling with data mining:

67



Decision trees and neural networks. pages 50–61. National Research Council. 18
Yadav, A., Jha, C. K., and Sharan, A. (2020). Optimizing lstm for time series prediction in

indian stock market. volume 167, pages 2091–2100. Elsevier B.V. 16
Yang, S., Arndt, T., and Lanza, G. (2016). A flexible simulation support for production planning

and control in small and medium enterprises. volume 56, pages 389–394. Elsevier B.V. 10,
13, 14

Yuldoshev, N., Tursunov, B., and Qozoqov, S. (2018). Use of artificial intelligence methods in
operational planning of textile production. Journal of Process Management. New Tech-
nologies, 6:41–51. 16

Zermane, H. (2021). Development of an efficient cement production monitoring system based
on the improved random forest algorithm. The International Journal of Advanced Manu-
facturing Technology. 15

Zhang, C. and Ma, Y. (2012). Ensemble machine learning: methods and applications. Springer.
15

Zhuang, C., Gong, J., and Liu, J. (2021). Digital twin-based assembly data management and
process traceability for complex products. Journal of Manufacturing Systems, 58(PB):118–
131. 12

68



Appendix A

Description of kitting process

During this research, a case study is conducted at Canon Production Printing (CPP) who develops and
manufactures digital printing equipment operating in the global market with multiple sites around the
world. CPP is founded and headquartered in Venlo, before known as the Dutch printing company Océ
till the end of 2019 (CPP, 2021a). Factories are located in Europe and Asia to be able to operate in
more than 80 countries. CPP offers a wide variation of products, from office printers to large-format high
quality inkjet printers. The main activities of CPP in Venlo are R&D and manufacturing and logistics
of large format, high end production printers. An example of a printer produced at CPP in Canon can
be found in Figure A.1.

Figure A.1: VarioPRINT iX-series (CPP, 2021b)

CPP uses a JIT kitting process where assembly operators request their parts by notifying the warehouse.
To make the communication between the operators and the warehouse easier, they are using a so-called
”pizza tool” described in Figure A.2. This ’pizza tool’ is a dashboard which can be compared with the
Pizza tracker used by Domino’s pizza to communicate the progress of making the pizza with the customer.
In case of CPP, the ’pizza tool’ indicates where the kit cart is located. This dashboard is visible both in
the kitting warehouse and at every work station in the assembly line. The kitting warehouse can see the
status of all kit carts. The dashboard at the working stations only shows the necessary kit carts for that
particular working station.

Figure A.2: Pizza tool process

The process starts when the assembly operator requests a new kit cart. SAP checks if there is an
production open where this kit cart is needed. SAP returns a message to the assembly operator if the
kit cart is requested or not. When the refill of a kit cart is requested, the kit cart status is turned on
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”Empty”. Based on the kit cart, multiple transfer requests in SAP WMS are created depending on the
parts. After that, a kit cart production order is created to be able to backflush the materials when the kit
cart is used instead of back flushing all the materials at the end of the production of one product. Back
flushing all the materials at the end causes a lot of inventory differences throughout the week, because
a product is using a lot of kit carts to finish all the assemblies and make the final product. These kit
cart production order is different than the production order for a product which consist of multiple kit
carts. Then, the kit carts are placed in a queue based on latest start date. The latest possible start date
is the time at which a kit cart can be kitted without causing a delay in the assembly process as shown in
Figure 1.2 and Figure A.3. Furthermore, an example of the queue is given in A.3.

Figure A.3: Latest possible start date

The warehouse is also called the ’supermarket’ containing most the parts needed for the assembly lines.
In the supermarket, the kit carts are kitted by the kitters with the help of a bar code scanner. The kit
carts appear on the scanners of the kitters according the queue based on the the latest possible start date.
The status of the kit cart in SAP is ”lock” when the kit car appears on the scanner of a kitter preventing
showing up on multiple scanners. If the kit cart is accepted on a scanner by a kitter, the kit cart status
turned into ”WIP”. After accepting the kit cart, the transfer requests (TR) changed to transfer orders
(TO). The transfer orders connected to the kit cart are kitted by the kitter in the supermarket. In case
of a break, for example going to the toilet, the status of the kit cart changes to ”Stop”. The kit cart
status changes back to ”WIP” when the kitter continues kitting the kit cart. After finishing the kit cart,
the kit cart is placed at the full busstop, a place where all full kit carts are collected. The kitter scans
the location at the full busstop after which the materials of kit cart are deducted systematically from the
inventory. The status of the kit cart changes to ”Full” and the assembly operators are able to call the
kit cart when they need the kit cart for assembly. After a call from the assembly operator, the kit cart
is connected to an AGV and will be sent to the assembly operator. The AGV with the kit cart needs
about 2 to 5 minutes to reach the assembly operator. The assembly operator receives the kit cart and
starts assembling. When the kit cart is empty, the assembly operator can request tp refill the kit cart
again and returns the empty kit cart to the supermarket with an AGV.

With the use of JIT, the kit carts only appear in the kit planning when the kit car is empty and requested.
The products produced on different assembly lines have their own specific takt times. Depending on the
takt time and the latest possible start date, the different kit carts are placed in order. The kit carts
appear in this order on the kit scanners. Short takt times can change the order of the kit carts from hour
to hour by adding kit carts which have to be kitted very quickly. An example is shown in Figure A.4.
Furthermore, the extra kit carts make workload planning very difficult because of the varying amount
of requests from hour to hour. Although CPP is using flexible workers to be responsive to swings, it
cannot anticipate on changes in the next one or two hours. These short term changes causes problems in
predicting the capacity of manpower to fulfill the demand and causes high costs because of overstaffing
or delays. CPP is looking for a prediction model to respond to the varying kitting requirements to be
able to predict the required workload.
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Figure A.4: Prioritization of new kit cart requests
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Figure A.5: Description of kitting process
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Appendix B

Set of kit carts per model

B.1 HCS

Three different models are modelled at the HCS production line. Every model has their own selection of
kit carts. The selection of kit carts per model is described in Table B.1.

Table B.1: HCS kit carts per model

HCS H1 (Older version of J1, HCS3) HCS J1 (New model HCS3) HCS NI (HCS3) HCS2

H01 H02 H13 H41
H02 H03 H51 H42
H03 H04 H52 H43
H04 H05 H53 H44
H05 H07 H54 H45
H06 H09 H55 H46
H07 H10 H56 H47
H08 H11 H57 H48
H09 H12 H58 H49
H10 H13 H59 H50
H11 H31 H60
H12 H38 H61
H13 H56 H62

B.2 VP6000

The VP6000 production line also produces multiple models on the same production line but the operators
are using generic kit carts necessary for every model and specific kit carts specific to a model. There
are 45 kit carts for VP6000, but for every model only 31 kit carts are used to build an engine. Every
model has their own selection of kit carts. The selection of kit carts per model is described in B.2. The
differences in kit carts are highlighted.
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Table B.2: VP6000 kit carts per model

VP6000 Titan VP6000 MICR VP6000 TP

V01 V01 V01
V02 V03 V04
V05 V05 V05
V06 V06 V06
V07 V07 V07
V09 V09 V08
V10 V11 V09
V12 V12 V12
V13 V13 V13
V14 V14 V14
V15 V15 V15
V16 V16 V16
V19 V19 V19
V20 V20 V20
V21 V21 V21
V22 V22 V22
V23 V23 V23
V24 V24 V24
V25 V25 V25
V26 V26 V26
V27 V29 V29
V28 V30 V30
V31 V31 V31
V32 V32 V32
V33 V33 V33
V34 V36 V38
V35 V37 V39
V50 V50 V50
V51 V51 V51
V52 V52 V52
V53 V53 V53
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Appendix C

Hyperparameter optimization
Random Forest

For the hyperparameter optimization of random forest, random search is used. Based on the results of
the random search, the values close to the best result of the random search are used to determine the
range for the grid search. The values tested for the grid search and the final optimal hyperparameters
are described in Table C.1.

Table C.1: Optimal hyperparameters of the Random Forest model for every production line

Production
line

Grid search Bootstrap Max
depth

Max
fea-
tures

Min
sam-
ples
leaf

Min
sam-
ples
split

Number
of
trees
(n estimators)

VP6000

bootstrap’: [True],
’max depth’: [10, 20, 30],
’max features’: [40, 5, ’sqrt’],
’min samples leaf’: [3, 4, 5],
’min samples split’: [4, 5, 6],
’n estimators’: [100, 200, 300, 500]

TRUE 10 40 3 5 200

HCS

bootstrap’: [True],
’max depth’: [10, 20, 30],
’max features’: [40, 5, ’sqrt’],
’min samples leaf’: [3, 4, 5],
’min samples split’: [4, 5, 6],
’n estimators’: [100, 200, 300, 500]

TRUE 20 40 5 6 100

Niagara

bootstrap’: [True],
’max depth’: [10, 20, 30],
’max features’: [40, 5, ’sqrt’],
’min samples leaf’: [3, 4, 5],
’min samples split’: [4, 5, 6],
’n estimators’: [100, 200, 300, 500]

TRUE 10 40 3 4 300
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Appendix D

Accuracy metrics TBC and TBR

D.1 Time between calls (TBC)

Table D.1: Mean accuracy metrics of predicted called kitlines based on Time Between Calls

Time bucket Time 1-MAPE MAPE MAE MSE RMSE
30 0 -136.88 236.88 893.15 933293.80 893.15
30 30 21.74 78.26 200.00 57447.23 200.00
30 60 29.43 70.57 254.77 98342.62 254.77
30 90 50.70 49.30 161.69 38973.08 161.69
30 120 51.73 48.27 177.62 50608.23 177.62
30 150 42.93 57.07 148.31 39171.85 148.31
30 180 23.36 76.64 245.15 79081.46 245.15
30 210 32.84 67.16 205.08 60468.92 205.08
30 240 67.56 32.44 171.00 46130.85 171.00
30 270 61.10 38.90 160.00 39944.92 160.00
30 300 59.33 40.67 144.15 36241.69 144.15
30 330 33.51 66.49 222.92 67305.69 222.92
30 360 18.85 81.15 234.46 100277.80 234.46
30 390 49.69 50.31 205.62 64866.85 205.62
30 420 40.31 59.69 201.54 67358.31 201.54
30 450 43.24 56.76 260.15 96190.00 260.15
30 480 22.36 77.64 242.54 80190.38 242.54
30 510 37.48 62.52 153.77 41593.15 153.77
30 540 45.00 55.00 187.92 63573.46 187.92
30 570 23.94 76.06 280.38 103441.90 280.38
30 600 52.23 47.77 176.77 39943.23 176.77
30 630 36.35 63.65 258.33 82508.83 258.33
30 660 45.26 54.74 148.00 42847.85 148.00
30 690 9.55 90.45 228.33 93117.00 228.33
30 720 53.39 46.61 191.08 46439.23 191.08
30 750 38.01 61.99 213.15 64865.92 213.15
30 780 66.84 33.16 131.77 27165.31 131.77
30 810 49.14 50.86 215.15 74868.85 215.15
30 840 15.62 84.38 221.62 91998.54 221.62
30 870 27.95 72.05 175.77 61763.92 175.77
30 900 26.97 73.03 235.69 76511.08 235.69
30 930 29.43 70.57 209.00 68372.69 209.00
60 0 0.16 99.84 799.62 771363.50 799.62
60 60 71.60 28.40 264.46 102220.00 264.46
60 120 68.79 31.21 215.62 73921.92 215.62
60 180 55.59 44.41 343.46 188425.50 343.46
60 240 77.42 22.58 244.08 84302.38 244.08
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Table D.1: Mean accuracy metrics of predicted called kitlines based on Time Between Calls

Time bucket Time 1-MAPE MAPE MAE MSE RMSE
60 300 68.55 31.45 275.38 114247.40 275.38
60 360 64.18 35.82 297.15 154681.20 297.15
60 420 69.01 30.99 273.85 119854.60 273.85
60 480 61.04 38.96 290.15 123157.20 290.15
60 540 55.50 44.50 349.85 165002.30 349.85
60 600 71.00 29.00 233.62 84204.69 233.62
60 660 42.85 57.15 308.77 157488.80 308.77
60 720 69.26 30.74 241.46 95692.69 241.46
60 780 72.90 27.10 208.62 70372.77 208.62
60 840 40.92 59.08 351.38 206859.50 351.38
60 900 52.75 47.25 354.38 183671.30 354.38
120 0 59.25 40.75 686.38 660098.80 686.38
120 120 78.05 21.95 356.00 202924.50 356.00
120 240 85.68 14.32 293.77 127850.10 293.77
120 360 73.09 26.91 467.77 305594.10 467.77
120 480 77.97 22.03 335.23 187870.30 335.23
120 600 77.61 22.39 327.15 232715.90 327.15
120 720 81.79 18.21 324.54 166720.40 324.54
120 840 64.65 35.35 613.00 485625.90 613.00
240 0 76.44 23.56 811.00 1179536.00 811.00
240 240 81.58 18.42 686.62 583216.90 686.62
240 480 80.45 19.55 639.31 629042.10 639.31
240 720 79.54 20.46 728.77 775288.00 728.77
480 0 84.18 15.82 1134.38 2253208.00 1134.38
480 480 80.94 19.06 1348.54 2305024.00 1348.54
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D.2 Time between requests (TBR)

Table D.2: Mean accuracy metrics of predicted requested kitlines based on Time Between Re-
quests

Time bucket Time 1-MAPE MAPE MAE MSE RMSE
30 0 -98.93 198.93 665.62 568121.20 665.62
30 30 57.52 42.48 213.69 87117.23 213.69
30 60 65.47 34.53 159.92 46880.85 159.92
30 90 38.95 61.05 233.15 70010.69 233.15
30 120 51.62 48.38 176.77 62988.15 176.77
30 150 32.22 67.78 173.92 51843.92 173.92
30 180 48.54 51.46 195.85 47110.77 195.85
30 210 23.70 76.30 261.00 100233.20 261.00
30 240 66.62 33.38 180.08 40715.31 180.08
30 270 33.05 66.95 200.85 61107.31 200.85
30 300 34.13 65.87 180.62 53291.85 180.62
30 330 56.54 43.46 181.23 55418.31 181.23
30 360 35.12 64.88 209.54 53198.00 209.54
30 390 47.18 52.82 219.38 74218.15 219.38
30 420 44.40 55.60 141.08 32493.08 141.08
30 450 66.69 33.31 139.62 25432.23 139.62
30 480 39.25 60.75 224.85 65007.46 224.85
30 510 16.24 83.76 224.77 63905.23 224.77
30 540 42.04 57.96 186.85 65364.54 186.85
30 570 67.94 32.06 115.46 24081.77 115.46
30 600 23.66 76.34 302.31 107897.50 302.31
30 630 -501.73 601.73 245.92 111598.10 245.92
30 660 -18.79 118.79 191.54 58047.38 191.54
30 690 51.17 48.83 153.50 32941.33 153.50
30 720 49.86 50.14 178.38 47432.23 178.38
30 750 38.99 61.01 234.08 78952.69 234.08
30 780 15.40 84.60 224.85 75985.15 224.85
30 810 56.25 43.75 145.85 56001.08 145.85
30 840 17.29 82.71 193.15 71355.46 193.15
30 870 57.88 42.12 163.38 42990.46 163.38
30 900 31.52 68.48 199.46 66195.46 199.46
30 930 55.65 44.35 195.92 47881.92 195.92
60 0 37.72 62.28 529.00 353470.10 529.00
60 60 67.71 32.29 284.92 101891.80 284.92
60 120 70.80 29.20 215.15 87686.85 215.15
60 180 45.90 54.10 420.54 223982.10 420.54
60 240 72.37 27.63 273.08 103971.70 273.08
60 300 68.90 31.10 203.23 64277.23 203.23
60 360 67.42 32.58 283.08 149503.50 283.08
60 420 75.06 24.94 183.46 57439.62 183.46
60 480 54.06 45.94 328.08 149544.20 328.08
60 540 71.80 28.20 214.00 78952.77 214.00
60 600 59.06 40.94 336.38 177688.70 336.38
60 660 43.99 56.01 329.46 141238.40 329.46
60 720 63.01 36.99 293.85 134216.50 293.85
60 780 65.36 34.64 256.38 136213.90 256.38
60 840 66.77 33.23 237.92 138730.80 237.92
60 900 64.81 35.19 289.08 119903.50 289.08
120 0 75.03 24.97 462.69 291841.80 462.69
120 120 78.82 21.18 364.00 201356.00 364.00
120 240 76.76 23.24 380.46 222295.40 380.46
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Table D.2: Mean accuracy metrics of predicted requested kitlines based on Time Between Re-
quests

Time bucket Time 1-MAPE MAPE MAE MSE RMSE
120 360 84.89 15.11 273.77 94209.92 273.77
120 480 78.70 21.30 343.62 173356.10 343.62
120 600 73.90 26.10 426.00 249270.60 426.00
120 720 74.09 25.91 445.00 243998.50 445.00
120 840 80.64 19.36 321.00 184493.30 321.00
240 0 83.37 16.63 590.69 459846.20 590.69
240 240 89.46 10.54 388.54 260706.80 388.54
240 480 83.19 16.81 534.69 478569.80 534.69
240 720 83.21 16.79 589.38 480888.90 589.38
480 0 89.36 10.64 734.00 904078.00 734.00
480 480 85.56 14.44 998.69 1458766.00 998.69
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Appendix E

Data analysis per production line

E.1 VP6000

Every time a kit cart is requested to refill by the assembly operator, the kit warehouse get an amount of
time to refill the the kit cart. Per kit cart, a standard time to refill the kit cart is defined in SAP. In a
continuous production, these times (VGW03) should be approximately equal to time between requesting
the kit cart by the assembly operator and calling the kit cart by the assembly operator. The time between
requesting to refill kit cart and calling the kit cart to use the kit cart is compared with the predefined
amount of time to refill the kit kart in Figure E.1. The blue dot in Figure E.1 is the predefined time
available to kit a kit cart. The boxplot shows the actual time between requesting the kit cart and calling
the kit cart for production. For the kit carts of VP6000, the time between requesting and calling the kit
cart is much longer than the predefined time (VGW03) to fill the kit cart. This leads to wrong urgency
or the kit carts. If a kit cart turns out to be kitted too late according to the predefined time, the kit
cart is probably not late for production. This also applies to a few kit carts of HCS and about half of
the kit carts of Niagara. The same figures are made for HCS and Niagara in Figure E.2 and Figure E.3
respectively.

Figure E.1: Relation between VGW03 and the time between requesting and calling
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E.2 HCS

Figure E.2: Relation between VGW03 and the time between requesting and calling
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E.3 Niagara

Figure E.3: Relation between VGW03 and the time between requesting and calling
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Appendix F

Application at the company -
accuracy metrics

F.1 Accuracy metrics workload per 60 minutes

Table F.1: Mean accuracy metrics workload every 60 minutes

Day 1-MAPE Mape
1 - (sum error
/ sum actuals)

MAE MSE RMSE

0 84.42 15.58 84.42 55.85 4859.95 55.85
60 60.31 39.69 60.31 154.35 34176.90 154.37
120 84.89 15.11 84.89 63.35 7136.36 63.37
180 41.49 58.51 41.49 218.00 64226.12 218.02
240 82.43 17.57 82.43 73.20 8167.50 73.20
300 85.02 14.98 85.02 71.25 9090.19 71.25
360 70.95 29.05 70.95 129.05 22080.60 129.07
420 64.24 35.76 64.24 138.50 28719.31 138.52
480 76.55 23.45 76.55 94.90 14926.12 94.93
540 75.66 24.34 75.66 89.85 12872.17 89.87
600 74.81 25.19 74.81 111.45 17976.49 111.47
660 62.30 37.70 62.30 146.05 28761.55 146.05
720 74.29 25.71 74.29 103.95 20257.29 103.98
780 67.95 32.05 67.95 118.40 22888.78 118.45
840 54.63 45.37 54.63 128.25 28895.87 128.22
900 65.86 34.14 65.86 142.45 31448.89 142.42
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Table F.2: Median accuracy metrics workload every 60 minutes

Day 1-MAPE Mape
1 - (sum error
/ sum actuals)

MAE MSE RMSE

0 88.30 11.70 88.30 44.50 1982.50 44.50
60 71.10 28.90 71.10 137.00 18724.06 136.83
120 91.30 8.70 91.30 44.00 1937.00 44.00
180 50.69 49.31 50.69 223.50 50024.50 223.50
240 86.85 13.15 86.85 55.00 3026.00 55.00
300 90.15 9.85 90.15 46.50 2168.50 46.50
360 74.25 25.75 74.25 129.50 16770.50 129.50
420 72.59 27.41 72.59 129.00 17041.00 129.00
480 82.54 17.46 82.54 68.00 4625.00 68.00
540 82.89 17.11 82.89 76.50 5888.89 76.67
600 76.26 23.74 76.26 100.00 10000.00 100.00
660 73.85 26.15 73.85 124.00 15520.00 124.00
720 79.96 20.04 79.96 85.50 7322.50 85.50
780 78.27 21.73 78.27 96.50 9368.50 96.50
840 76.75 23.25 76.75 96.50 9291.22 96.33
900 72.56 27.44 72.56 116.50 13572.50 116.50

F.2 Accuracy metrics kitlines per 60 minutes

Table F.3: Mean accuracy metrics kitlines every 60 minutes

Day 1-MAPE Mape
1 - (sum error
/ sum actuals)

MAE MSE RMSE

0 83.25 16.75 83.25 126.74 24829.40 126.74
60 64.92 35.08 64.92 270.85 112217.78 270.85
120 81.40 18.60 81.40 166.84 47889.33 166.84
180 48.18 51.82 48.18 362.09 188592.78 362.09
240 84.75 15.25 84.75 129.14 24628.51 129.14
300 81.81 18.19 81.81 162.37 42385.56 162.37
360 70.66 29.34 70.66 260.13 95315.32 260.13
420 63.19 36.81 63.19 291.79 120729.68 291.79
480 75.76 24.24 75.76 206.36 70931.51 206.36
540 73.42 26.58 73.42 201.11 62259.92 201.11
600 71.75 28.25 71.75 246.87 85008.12 246.87
660 65.12 34.88 65.12 290.68 120477.38 290.68
720 67.03 32.97 67.03 267.40 115605.49 267.40
780 69.67 30.33 69.67 232.54 82426.25 232.54
840 56.78 43.22 56.78 243.15 109368.96 243.15
900 66.09 33.91 66.09 275.53 135167.79 275.53

84



Table F.4: Median accuracy metrics kitlines every 60 minutes

Day 1-MAPE Mape
1 - (sum error
/ sum actuals)

MAE MSE RMSE

0 87.07 12.93 87.07 115.22 13337.78 115.22
60 79.48 20.52 79.48 209.29 43830.53 209.29
120 84.80 15.20 84.80 114.77 13427.59 114.77
180 65.82 34.18 65.82 343.69 118589.39 343.69
240 87.85 12.15 87.85 113.49 12879.51 113.49
300 83.01 16.99 83.01 132.86 18247.02 132.85
360 73.65 26.35 73.65 228.93 52409.43 228.92
420 76.87 23.13 76.87 251.55 64400.94 251.55
480 82.86 17.14 82.86 197.15 38866.01 197.14
540 81.65 18.35 81.65 162.50 26405.50 162.50
600 72.26 27.74 72.26 233.65 54606.95 233.64
660 74.44 25.56 74.44 227.13 51616.46 227.13
720 72.39 27.61 72.39 243.02 59056.22 243.01
780 76.79 23.21 76.79 192.82 37850.18 192.82
840 82.09 17.91 82.09 171.12 29363.63 171.12
900 84.78 15.22 84.78 168.08 28372.39 168.07

F.3 Timepoints connected with timestamps

Table F.5: Timepoints connected with timestamp

Time point Time stamp

212000 2022-08-30 12:50:00
213440 2022-09-02 11:20:00
214880 2022-09-06 11:40:00
216320 2022-09-12 08:20:00
219200 2022-09-19 13:50:00
220640 2022-09-22 12:20:00
222080 2022-09-27 10:50:00
223520 2022-09-30 09:20:00
224960 2022-10-05 07:50:00
226400 2022-10-07 14:50:00
227840 2022-10-12 13:20:00
229280 2022-10-17 11:50:00
230720 2022-10-20 10:20:00
232160 2022-10-25 08:50:00
233600 2022-10-27 15:50:00
235040 2022-11-01 14:20:00
236480 2022-11-04 12:50:00
237920 2022-11-09 11:20:00
239360 2022-11-14 09:50:00
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