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Abstract

Optical satellite communication has emerged as a groundbreaking technology in the field of
space communication and offers numerous advantages over traditional methods, namely a higher
throughput, low power requirement, and higher security. Optical satellite communication prom-
ises several improvements, but it is also subject to challenges regarding sensor calibration. The
introduction of coarse pointing assemblies (CPAs) in laser terminals enables fast alignment and
accurate tracking between satellites. There is an increasing need for rapid and precise calibra-
tion of position sensors in CPAs. Subsequently, fast and accurate calibration of position sensors
in mirror assemblies is crucial to increase their pointing capabilities, ensuring precise alignment,
tracking, and satellite communication.

This thesis utilizes the potential of Gaussian process regression (GPR) for cascaded calibration
in such systems. The research conducted in this thesis aims to assess the effectiveness of GPR-
based cascaded calibration to improve calibration accuracy. Emphasis is placed on the application
of GPR for sensor calibration in optical satellite communication systems, specifically focusing
on CPAs. Additionally, these GPR models are able to improve the error budgeting accuracy
for control systems. Consequently, dynamic error budgeting (DEB) is utilized, which is able
to seamlessly analyze the propagation of error sources through high-precision control systems,
enabled via power spectral density (PSD) modeling. This thesis presents a PSD estimation and
analysis of the modeling uncertainties in GPR models for sensor calibration. Simulation results
show the effectiveness of GPR models in cascaded calibrations of position sensors, and in error
budgeting of remaining modeling uncertainties.

The calibration process of a 2DOF CPA is analyzed to detail, and a complete procedure
is presented. The calibration is performed via optical alignment with a test bench designed
to calibrate such dynamic mirror assemblies. The kinematic behavior of the optical alignment
is carefully thought out, and the conceptual procedure is proven in simulation. A GPR-based
cascaded calibration of its position sensors is presented.

Keywords: optical satellite communication, coarse pointing assembly, optical alignment,
cascaded calibration, position sensors, Gaussian processes, Gaussian process regression, control

systems, dynamic error budgeting, power spectral density estimation
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I know anything 
and everything!

Hey, I was wondering.. 
..what is this ‘sate’ I am 

hearing about?

SOME TIME LATER...

Will you tell me about
chicken sate? I heard it’s 
a good Indonesian dish. 

Sure! Sate is basically 
chicken served on a stick.

So this must be
sate...

Sate is just  
chicken on a 

stick...

This four-panel comic represents the importance of Bayesian reasoning.

Context: In this comic, Beth (the woman with black hair) provides Joe (the man with glasses)
with a limited amount of information about chicken sate. Joe then passes this information to
Mary (the woman with orange hair), who forms her beliefs about sate based on data with high
uncertainty. When seeing a chicken standing literally on a stick, she incorrectly concludes that it
must be sate, because she assumed the data she was given was complete and certain.

Without using Bayesian reasoning, Mary does not consider the uncertainty in the evidence or
seek out additional information to make a more informed decision. This leads to her making an
incorrect conclusion about the definition of sate, highlighting the pitfalls of not applying Bayesian
reasoning in the face of uncertain information.
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Chapter 1

Introduction

Technological advancements have led to an increasing demand for high-precision mechatronic sys-
tems. In many industries, including robotics, advanced manufacturing, and aerospace engineering
the requirement for high precision is necessary as applications become increasingly complex. In
this context, proper sensor calibration is essential to achieve accurate measurements, which dir-
ectly impacts the system’s performance capabilities. Careful consideration is given to the sensor
calibration process to ensure high performance for sophisticated mechatronic systems.

Accurate position measurements are a necessary requirement for the high-precision capabilities
of mechatronic systems. Position sensors that are used to position mechatronic systems, e.g. via
feedback control, are described by their precision, accuracy, and their uncertainty. The uncer-
tainty of a sensor measurement is a measure of confidence, taking into account both precision and
accuracy. Using the dartboard analogy in Figure 1.1 the differences between these terminologies
are described. Sensor calibration in this context involves correcting for systematic errors that
negatively impact the positioning capabilities of the corresponding mechatronic system. By mitig-
ating sensor inaccuracies through calibration, the overall positioning capabilities of such systems
are enhanced. Consequently, the sensor accuracy is improved, while the precision of the sensor is
dictated mostly by the manufacturer.

Direct calibration of position sensors can be challenging for some mechatronic systems. In
such cases, a multi-stage calibration process can be employed to indirectly calibrate a low-accuracy
sensor using a highly accurate reference sensor, ultimately improving the positioning capabilities of
the mechatronic system. The attention will be limited to position sensors that consistently exhibit
position-dependent inaccuracies. Often these inaccuracies can be removed with offline calibrations,
i.e. when the system is not yet in operation. These methods typically yield high-precision and
accurate calibration models.

Additionally, modeling errors resulting from sensor calibration, affect the system’s achievable
performance. These modeling errors are included in error budgeting frameworks, to measure the
impact on the achievable performance. In error budgeting frameworks, multiple error sources
are identified and managed to ultimately optimize the system’s performance, e.g. the European
Space Agency (ESA) follows specific instructions to budget pointing errors [1]. Sensor inaccuracies
are common error sources and play a critical role in determining the total error budget that is
achievable. Validating the impact of these modeling errors and incorporating their contributions
to the total error budget enables further enhancement of a system’s performance capabilities.

One prominent industry where the need for high-precision mechatronic systems have become
increasingly vital is the field of optical satellite communication. Optical satellite communication
has emerged as a groundbreaking technology in the field of space communication, offering numer-
ous advantages over traditional radio frequency (RF) methods. Optical satellite communication
enables high throughput, requires low power, and has high security for optical wavelengths. In
recent years ESA has created a sophisticated laser communication network known as the European
data relay system (EDRS). This project aims to provide a fast and secure communication net-

Enhancing Sensor Calibration through Gaussian Process Regression 1
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Figure 1.1: Dartboard analogy to visualize the difference between sensor precision, accuracy, and un-
certainty. The bullseye of the dartboard depicts the true value, while the darts ( ) are individual meas-
urements of the sensor. Sensor uncertainty described the probability of a measurement being in a certain
range.

work between satellites in orbit and satellite to ground stations. It consists of a large network
of geostationary satellites equipped with laser communication terminals. In this regard, the laser
communication terminals developed by TESAT played a pivotal role. Inter-satellite optical com-
munication enabled a factor 10 higher transmission rates and increased security, while shortly
after, laser links from space to ground were realized by mitigating atmospheric turbulence [2, 3].

Since optical beams are very narrow, it is essential to perform accurate acquisition and tracking
of partnering terminals. Minor inaccuracies in beam-pointing can lead to significant performance
losses. Accurate sensor calibration is crucial for ensuring stable and reliable acquisition and
tracking in optical satellite communication systems.

1.1 Motivating example

The field of optical satellite communication is becoming more popular as technology advancements
enabled accurate pointing of optical beams. The introduction of coarse pointing assemblies (CPA)
in laser terminals enables fast alignment and accurate tracking between satellites [4]. The high
demand for these components in laser terminals draws attention to the need for low size, weight,
and power (SWaP) design [5]. Consequently, there is an increasing need for rapid and precise
calibration of position sensors in CPAs.

A high-efficiency laser communication terminal that is currently being developed by TNO is
shown in Figure 1.2. This terminal includes a 2DOF CPA which acts as the motivating example in
this thesis. Calibration of this CPA using highly accurate measurement tools, e.g. a theodolite, is
not directly available, since these high calibration tools are not suitable for dynamic testing. For
this reason, a pointing test bench (PTB) has been developed by TNO in 2019 [6], which enables
fast dynamic calibration and performance verification of coarse pointing assemblies. The PTB
requires only a single static calibration using a theodolite and is able to calibrate CPAs afterward.
This is an example where a multi-stage calibration is required to indirectly calibrate the CPA to a
highly accurate measurement tool. This multi-stage calibration process is schematically visualized
in Figure 1.3. The visualization illustrates a cascade of sensor calibrations, where each calibration
stage affects the next.
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Figure 1.2: Optical satellite communication is becoming an important solution to achieve safe and high-
speed communication. This image showcases a high-efficiency miniature demonstrator for optical satellite
communication that is being developed by TNO [7].

1.2 Research outline

In sensor calibration, a calibration model is created to eliminate systematic errors. Due to limited
data, sensor reach, and other factors, the model uncertainty can be relatively high, and hence
its reliability low. This thesis draws attention to cascaded calibration procedures for sensors,
specifically addressing the calibration of position sensors in mechatronic systems. High-precision
calibration of position sensors can also be performed by a National Metrology institute (NMi) [8],
e.g. calibration methods using an AFM probe [9]. It is also common practice to perform sensor
calibrations in-house, e.g. via the use of theodolites [10]. In a cascaded sensor calibration process,
the uncertainty from one stage is carried forward and impacts the training data for all subsequent
stages. By emphasizing the utilization of uncertainty information, resources can be effectively
allocated, which enhances the modeling accuracy of the cascaded calibration process.

In [11], a variety of statistical sensor calibration methodologies are presented and applied to
diverse models using both classical and Bayesian frameworks. Bayesian methods are particularly
suitable for cascaded sensor calibration, as they offer a well-founded approach that is able to
systematically integrate prior knowledge, and manage uncertainties at each calibration stage.
In [12,13] Bayesian methods are applied to the calibration of Hall sensors, showing that combining
sensor data with prior information enables accurate modeling with limited resources. Bayesian
methods naturally extend to non-linear applications, where [14] presents a Bayesian inference-

CPA PTB Theodolite

calibrated oncalibrated on

Figure 1.3: Overview of the calibration sequence for coarse pointing assemblies.
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Figure 1.4: A visual illustration of Gaussian process regression.

based dynamic calibration method addressing sensor non-linearity and time drift, validated on
both real and synthetic datasets.

Bayesian regression methods inherently regularize an optimization problem as it addresses over-
fitting by placing weights on the prior distribution parameters. Subsequently, these methods are
popular modeling tools that are able to perform more accurate regularization in resource-limited
environments compared to non-Bayesian techniques [15]. In [16, Chapter 4] the strengths of
Bayesian frameworks are discussed regarding regularization, and showcases the powerful modeling
tools these frameworks provide, e.g. empirical Bayes or maximum entropy principles.

Gaussian process regression (GPR) [17], visualized in Figure 1.4, is a non-parametric Bayesian
regression method, which uses Gaussian processes (GPs) to model prior distributions. It enables
flexible, fast, and accurate Bayesian modeling, and lately has become popular in the field of control
systems [18–22]. This also applies to sensor calibration, where in [23] an efficient GP-based sensor
calibration procedure is presented.

Although there are conclusive results for sequential calibrations using Bayesian frameworks [24],
there is still a need for a comprehensive Bayesian framework regarding cascaded sensor calibra-
tions. Sensor calibration modeling uncertainties, which are estimated in closed-form by Bayesian
frameworks, are also not yet included in error budgeting for control systems. Comprehensive error
budgeting techniques already exist and are widely used in industry for their quick and flexible
design approaches, and can be combined with Bayesian sensor calibrations to create more accur-
ate error budgets. This results in the following research questions (RQ) that will be covered in
this thesis:

RQ1: What is the potential of a novel GPR framework in cascaded calibration of position sensors?

Q1.1: What is the effect on the position estimation if multiple sensors are consecutively cal-
ibrated on each other?

Q1.2: How can the variance of the position estimate be quantified using GP models, when
considering a consecutive sequence of sensor calibrations?

RQ2: How can the uncertainty in GPR models, which are generated from (cascaded) sensor calib-
ration, be incorporated into error budgeting frameworks to optimize for system performance?

Q1.1: What methods can be used to obtain a power spectral density (PSD) model of the
uncertainty in GPR models for (cascaded) sensor calibration?

Q1.2: How can this model be utilized in error budgeting frameworks?
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1.3 Overview of thesis

The aim of this thesis is to find a novel GPR framework for cascaded sensor calibrations. Addi-
tionally, these models can enable more accurate error budgeting for control systems by including
modeling inaccuracies, which can enable more accurate control design. This thesis has two main
contributions (C) followed up by a case study (CS) regarding cascaded sensor calibration for optical
satellite applications:

C1: A GPR framework for cascaded calibration of position sensors is developed. The approach
takes the model uncertainty of the first calibration step into account to arrive at a more
accurate estimation in the subsequent calibration step. The effectiveness of the approach
is demonstrated through Monte Carlo simulations on a reproducible case study, and it is
shown that the developed calibration method yields significantly more accurate models of
the sensor offsets than alternatives such as lookup tables. The results indicate that more
accurate calibration of position sensors is possible with fewer resources.

C2: A PSD estimation and analysis framework for GPRmodeling uncertainties is developed. This
framework is able to critical power spectral information for error budgeting purposes. This
framework also clarifies the role of the GP prior model and the training data in determining
the spectral characteristics of the modeling uncertainty. Using this framework the inclusion
of GPR modeling uncertainties in dynamic error budgeting frameworks is enabled.

CS: A case study on cascaded sensor calibration for optical satellite communication subsystems,
utilizing contributions 1 and 2, is presented. Specifically, the motivating example provided
in Section 1.1 is considered. In addition to contributions 1 and 2, the entire calibration
procedure is thoroughly examined. This includes the optical alignment procedure between
the CPA and PTB, which involves complex inverse kinematics.

This thesis is constructed as follows. First, in Chapter 2, a general framework is presented for
the cascaded calibration of position sensors. This framework lays out a method for performing
cascaded calibrations through GPR models. Second, in Chapter 3 a framework is presented for
PSD estimation and analysis of GPR modeling uncertainties. The PSD characteristics of these
calibration models impose an additional budget on the spectral requirements for the system.
Afterward, by making use of the findings in previous chapters, Chapter 4 presents a case study
regarding sensor calibration of CPAs in optical satellite communication terminals. In Chapter 5
a conclusion is drawn and an answer is provided for the research questions in this thesis. Finally
in Chapter 6 recommendations are provided for future work.
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Chapter 2

Cascaded Sensor Calibration using
Bayesian Regression Models

The demand for high-precision mechatronic systems has been steadily increasing over the past
years, due to rapid advancements in technologies e.g. in optical satellite communication [25]. To
meet strict accuracy requirements, test beds are being developed to rapidly test optical subsys-
tems and sometimes entire terminals [26]. The accuracy requirements can be met through sensor
calibration on these sophisticated test beds. In this context, accuracy refers to the proximity
of the position measurement to the actual position, in contrast to precision, which refers to the
repeatability of the position measurements. The difference between these terminologies has been
previously clarified through a dartboard analogy in Figure 1.1. Here, only position sensors that
consistently exhibit position-dependent inaccuracies are considered.

Calibration via test beds is a prime example of cascaded sensor calibration. Essentially, this
process reduces the inaccuracies of a position sensor in a mechatronic system by utilizing test
bed calibration. Meanwhile, the position sensors on the test bed require calibration using high-
accuracy calibration instruments. This was also evident in the motivating example, where the
CPA is not directly accessible by high-precision theodolites, leading to the calibration procedure
depicted in Figure 1.3. This chapter will describe the considered problem in broader terms. The
calibration procedure boils down to the following order of position sensor calibrations: 1. test bed
sensor is calibrated on a high-accuracy calibration instrument, 2. mechatronic system sensor is
calibrated on the test bed sensor. Thus, this cascaded calibration process estimates a two-stage
regression model, where the first-stage regression model provides training data for the second-stage
regression model.

This chapter provides a formal problem description for cascaded calibration procedures. Using
Bayesian regression methods, a closed-form expression is obtained for the uncertainty of a regres-
sion model. In multi-stage regression models, such as the previous example, uncertainty propag-
ates through the regression models and affects the predictions. The uncertainty information in
Bayesian regression methods, specifically GPR, is utilized to obtain more accurate corrections for
the position-dependent inaccuracies that are present in the measurements of these sensors.

First, in Section 2.1 the concept of sensor calibration in the context of this thesis is clarified.
Section 2.2 presents the problem description for a cascaded calibration procedure applied to posi-
tion sensors, additionally, a multi-stage regression problem is presented. In Section 2.3 regularized
regression techniques are related to a Bayesian perspective, which helps lay the foundation to GPR
modeling for cascaded calibrations. In Section 2.4 a common example of a cascaded calibration
is provided, for which the GPR method is utilized. Afterward, Section 2.5 provides Monte Carlo
simulation results, which prove the effectiveness of said method for cascaded calibrations. Finally,
the results are summarized and a conclusion is provided in Section 2.6.
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yiy∗i ŷ∗i+

η̂i
+

fi∗→i

f̂i→i∗

Sensor Calibration

εn,i

Figure 2.1: A graphical description of the definition for sensor calibration. The true position y∗i is meas-
ured by a sensor with additive noise εn,i. The sensor measurement yi is obtained by the mapping function
fi∗→i(y

∗
i ), which transforms the true position into a measurement with position-dependent inaccuracies.

The position-dependent inaccuracies can be removed by means of calibration, i.e. by finding a function
estimate f̂i→i∗(yi) which maps the measurement back to an estimate of the true position.

2.1 Sensor calibration

Sensor inaccuracies can have multiple causes, e.g., manufacturing tolerances, mechanical wear,
or imperfect assembly. Many types of deviations can exist between a sensor reading and the
true value that should be measured [11], in this context only position-dependent inaccuracies are
considered.

Consider a system denoted by i that is equipped with a position sensor known as Si. The
system’s true position is denoted by y∗i ∈ R. The position sensor Si of this system measures a
position yi ∈ R, which contains position-dependent inaccuracies.

Definition 1 (Sensor calibration for position-dependent inaccuracies) To calibrate a po-
sition sensor Si is to find the function which describes a mapping of the position measurements yi
to the true position y∗i , given by,

y∗i = fi→i∗(yi), (2.1)

where fi→i∗ : R → R is a non-linear function, mapping a position measurement to the true
position. This mapping serves to eliminate any systematic, position-dependent inaccuracies from
the measurements. ■

A graphic description for sensor calibration as described by Definition 1 can be seen in Figure
2.1. The sensor measurement yi is obtained by the mapping function fi∗→i(y

∗
i ), which transforms

the true position into a measurement with position-dependent inaccuracies. Note that fi∗→i(y
∗
i )

is the inverse of the function fi→i∗(yi).

Assumption 1 (Invertability) The function given by y∗i = fi→i∗(yi) is assumed to be invertible,
where the inverse is equal to

(fi→i∗(yi))
−1

:= fi∗→i(y
∗
i ) ∀ yi, y∗i . (2.2)

■

After sensor calibration, an estimate of the true position can be found by

ŷ∗i = f̂i→i∗(yi). (2.3)

The sensor measurements are often close to the true value, thus for notational convenience, the
function in (2.3) can be described by

f̂i→i∗(yi) = yi + η̂i(yi), (2.4)

where η̂i(yi) ∈ R depicts the estimated position-dependent inaccuracies. Temporal inaccuracies,
such as sensor drift, are considered to be non-existent in this context.
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Assumption 2 (No time-dependence) Dependence of position measurements on time is as-
sumed to average out, i.e., fi→i∗(yi, t) ≈ fi→i∗(yi): the focus is restricted to position-dependent
inaccuracies, and sensors are assumed to yield highly repeatable measurements during calibration.

■

The sensor measurement yi is corrupted by a zero-mean additive white Gaussian noise, given
by εn,i(t) ∼ N (0, σ2

n,i). The effect of zero-mean sensor noise is negligible.

Assumption 3 (Sensor noise is negligible) Measurements yi of y
∗
i are corrupted by zero-mean

additive Gaussian white noise εi with variance σ2
n,i, which is assumed to be small with respect to

position-dependent inaccuracies ηi(yi). ■

Removing the position-dependent inaccuracies of sensor Si requires knowledge of the true
position of system i. However, the true position of system i can never be exactly known. Thus a
reference system can be utilized by first aligning the reference system j with system i, such that
their true position are equal. The measurement of sensor Sj can now be used to measure the
inaccuracies of sensor Si, given that sensor Sj is on average expected to be more accurate, i.e.

E
[
yj − y∗j

]
< E [ yi − y∗i ] , ∀yi, yj

E [ ηj ] < E [ ηi ] , ∀yi, yj
(2.5)

where ηi := η(yi) and ηj := η(yj). In practice, when there are no other means of measurement,
the reading of sensor Sj is considered to be the true position such that yj serves as a proxy for y∗

2.1.1 Sensor inaccuracies vs misalignment

Consider again a sensor Si that measures the position of a system i, and similarly a more accurate
sensor Sj that measures the position of system j, as depicted in Figure 2.2. To compare both
sensor readings, systems i and j must be aligned such that their true positions are equal, i.e.
y∗i = y∗j . However, aligning two sensors for means of calibration is not always perfect, which leads
to a sensor misalignment denoted with ε.

Assumption 4 (Misalignment errors are negligible) When a pair of sensor readings (yi, yj)
is measured at a fixed point in time, it is assumed that misalignment errors are negligible w.r.t.
sensor inaccuracies:

|y∗i − y∗j | ≪ |y∗i − yi|. (2.6)

■

fixed world frame

i j

y∗i y∗j

Si Sj

yi

ηi

yj

(a) aligned systems

fixed world frame

i j

y∗i y∗j

ε

Si
Sj

yi

ηi

yj

(b) misaligned systems (ε)

Figure 2.2: Schematic visualization of a single dimension calibration of sensor Si. In this example, sensor
Si of system i is calibrated onto sensor Sj of system j. Sensor Sj is assumed to be measuring the true
position of system i, i.e. the sensor inaccuracy of sensor Sj is equal to ηj = y∗j −yj = 0. In (a), the case is
presented when there is no misalignment between Si and Sj , where y

∗
i = y∗j . In (b), the case is presented

when there is a misalignment in the true position ε between both sensors.
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Given Definition 1 and Assumptions 1-4, the sensor reading from pair (yi, yj) can be util-
ized to estimate a function fi→j(yi) that maps a measurement from Si to a measurement from

Sj .The modeling accuracy of the estimate f̂i→j(yi) may be restricted due to the limited number
of measurements that accurate reference sensors permit. Additionally, data points obtained from
accurate reference sensors are often expensive, such as with theodolite-based calibrations [27,28].
A common solution to negate high costs is by means of calibration via sophisticated test beds.
This results in a cascaded calibration procedure described in the following section.

2.2 Problem description: cascaded calibration of sensors

This section provides the problem description regarding the cascaded calibration procedure of a
position sensor. First in section 2.2.1, the concept of cascaded sensor calibration is introduced.
Then, section 2.2.2 defines the objective of cascaded calibration, along with the corresponding
cost function that requires optimization. Finally, in section 2.2.3, the optimization is presented as
a multi-stage regression problem.

2.2.1 Cascaded calibration of sensors

A schematic representation of a cascaded calibration is shown in Figure 2.3, where the aim is to
remove any position-dependent inaccuracies of Sensor 1. This type of cascaded calibration pro-
cedure sees Sn as the absolute truth, as this sensor measurement has highest accuracy. Moreover,
the objective is to obtain f1→n, which describes a mapping from the measurements on the least
accurate sensor S1 to the most accurate sensor Sn. This can be done by means of many sequential
sensor calibrations as outlined by Definition 1.

2.2.2 Objective function for cascaded calibrations

The cost function can be defined as the continuous integral of squared errors between the estimate
f̂1→n(y1) and the true function f1→n(y1). To optimize for this cost function a regression problem
is defined. The goal is to obtain a regression model (see A.1) in the form of

ŷn = f̂1→n(y1, β), (2.7)

where β are the model parameters. The cost function is given by

J =

(∫ b
a
[f̂1→n (y1, β)− f1→n(y1)]

2 dy1

b− a

) 1
2

. (2.8)

where the sensor measurement has range y1 ∈ [a, b]. In practice, the true function f1→n that is
being modeled is not actually measurable. Only via a series of calibrations can a measurement
of sensor S1 be mapped to a measurement of a more accurate sensor, i.e. a cascaded calibration
procedure is required.

i

Sensor calibrates

· ··

Sensor

n 1

Sensor

· ··

calibrates

Most accurate sensor Least accurate sensor

Figure 2.3: Schematic diagram of a cascaded calibration procedure. Several position sensors are being
calibrated in sequential order. This means that any imperfections in the calibration of the more accurate
sensors will affect the calibration and accuracy of the less accurate sensors down the chain.
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Figure 2.4: Simple schematic of a two-stage regression problem. The objective in a virtual regression
problem ( ) is to learn a model estimate f̂(x, β⋆), where β⋆ are optimized model parameters. This
model is learned via a virtual data-set D′

v, i.e the dependent variable y is generated by another estimated
model ŷ = ĝ(u, γ⋆) that is found via a first-stage regression problem ( ).

2.2.3 Cascaded calibration through regression

The cascaded calibration problem can be defined as a multi-stage regression problem, where two
different types of regressions can be identified: (i) a first-stage regression, where one sensor is
calibrated on a highly accurate sensor that serves as a proxy for the true position, and (ii) a
series of virtual regressions, given by Definition 2.

Definition 2 (Virtual regression) In a virtual regression problem, the data set has dependent
variables that are generated via an estimated model. In multi-stage regressions, every stage after
the first can be characterized as a virtual regression. An example of a virtual regression problem
can be seen in Figure 2.4. In literature, this type of regression is also referred to as instrumental
variable regression or two-stage regression. ■

A graphical description of the cascaded calibration procedure presented in Figure 2.3 can
be posed as a multi-stage regression problem as schematically depicted in Figure 2.5. The two
regression types that have been introduced above, are given by:

(i) The first-stage regression problem is the calibration of sensor Sn−1 on sensor Sn. This is
the only instance where measurements on sensor Sn can take place. Suppose the data-set

obtained from measurements on both sensors is given by Dn−1 = {ȳn−1,k, ȳn,k}Nn−1

k=1 , where
Nn−1 is the number of available datapoints. An overline notation ȳi, implies measured data
on sensor Si. The objective is to solve

β⋆n−1 = argmin
βn−1

Nn−1∑
k=1

(
f̂n−1→n (ȳn−1,k, βn−1)− fn−1→n (ȳn−1,k)

)2
+ λ ∥βn−1∥2 , (2.9)

where β⋆n−1 is the minimizer, and λ ≥ 0 is a scaling parameter. The second term in (2.9) is
for regularization, to prevent over- and underfitting of parameters.
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Figure 2.5: The cascaded calibration procedure is defined as a multi-stage regression problem, which
consists of a first-stage regression problem ( ) and a series of virtual regression problems ( ).

(ii) Following the first-stage regression step, the remaining calibrations of sensors Si, i ∈ {1, .., n−
2} require solving a virtual regression problem. Consider sensor Si which is to be calibrated
on sensor Si+1. In the cascaded chain of calibrations, sensor Si+1 has already been calibrated,
i.e. a function estimate ŷn = f̂i+1→n(yi+1) already exists. This means that the dataset given

by Di = {ȳi,k, ȳi+1,k}Ni

k=1, can be transformed into D′
i = {ȳi,k, f̂i+1→n(ȳi+1,k)}Ni

k=1, which is
called the virtual dataset, where Ni is the number of available datapoints. The objective is
to solve

β⋆i = argmin
βi

Ni∑
k=1

(
f̂i→n (ȳi,k, βi)− f̂i+1→n

(
ȳi+1,k, β

⋆
i+1

))2
+ λ ∥βi∥2 , (2.10)

where β⋆i is the minimizer for the optimal model estimate given by f̂i→n (yi, β
⋆
i ). This

process has to be repeated for all sensors Si in the cascaded calibration chain, such that the
regression model given by (2.7) can be derived.

2.3 Bayesian interpretation of regularization

This section provides the most important results that relate well-known regression techniques and
regularization methods to a Bayesian perspective. As kernel methods and regularization are not
necessarily Bayesian in nature, this discussion will help in laying the foundation for GPR modeling,
as kernel methods are a key component in Bayesian probability.

In the previous section, the problem definition and the corresponding regression problems that
lead to an optimal model estimate were introduced. The non-linear model structure for which
these nonlinear regression problems are solved, can be described by

f(x) = ϕ(x)Tβ, (2.11)

where x ∈ X = RD and ϕ(x) ∈ RM is a nonlinear function that maps a D-dimensional input vector
x into an M -dimensional (possibly infinite) feature space, i.e. ϕ : RD → RM . The corresponding
model parameters are given by β ∈ RM .

Section 2.3.1 describes how to circumvent the high dimensional feature space RM using ker-
nels. Afterwards, section 2.3.2 establishes the link from kernel methods to Bayesian regression.
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Section 2.3.3 explains the reason for the effectiveness of Bayesian regression methods for cascaded
calibration. Finally, section 2.3.4 introduces the GPR method, which uses Bayesian regression to
estimate predictions.

2.3.1 The representer theorem

The model in (2.11) is expressed as a linear combination of non-linear basis functions ϕ(x), also
called features. This feature space is used to model a non-linear relationship between the input
vector x and the output variable y. A commonly used set of basis functions are polynomial basis

functions, where ϕ(x) =
[
1 x x2 . . . xM−1

]
.

The nature of the non-linear relationship between the input variables and the output variable
is often unknown or difficult to specify. In such cases, it is difficult to find an appropriate set of
basis functions that captures the non-linear relationship accurately. Or it might be the case that
the dimension of this feature space is large, which makes it computationally difficult to solve a
regression problem. In such cases, kernel functions can be utilized, as they allow for the modeling
of complex non-linear relationships without the need to specify or compute any basis functions.
A formal definition for the kernel function is given by Definition 3.

Definition 3 (Kernel function) Consider a basis function ϕ(x) ∈ RM with x ∈ X the input
vector. The kernel function k(xA, xB) : X × X → R is given by the inner-product of the basis
functions evaluated at two instances, i.e.

k(xA, xB) = ϕ(xA)
Tϕ(xB). (2.12)

This way the kernel function can measure the similarity between two data points xA and xB without
directly computing the inner product of the feature vectors as defined in (2.12). ■

An intuitive approach to show how kernels can be used for non-linear regularized regression
can be found in Appendix A.2. The representer theorem, given by Theorem 1, shows how an
optimization problem can be solved using kernels. The solution is given by a linear combination
of a kernel function and the corresponding coefficients. When the feature space lies in a higher
dimension than the number of data points, the optimization can be solved more efficiently.

Theorem 1 (Representer theorem [29,30]) Consider a real-valued positive definite kernel
k(xA, xB) : X × X → R, let K be its associated reproducing kernel Hilbert space (RKHS) [31],
and X be non-empty. Given a data-set D = {xk, yk}Nk=1, where xk ∈ X = RD and yk ∈ R, which
describes the unknown non-linear process y = f(x). The optimization to find minimizer f⋆ is
given by

min
f∈K

J = L(Y, f(X)) + λ∥f∥2K, (2.13)

where L(Y, f(X)) is an arbitrary loss function, with X =
[
x1 x2 . . . xN

]T
∈ RN×D and

Y =
[
y1 y2 . . . yN

]T
∈ RN , and λ ≥ 0 is a scaling parameter. The minimizer f⋆, at an

arbitrary query point x ∈ RD, has the form

f⋆(x) =

N∑
k=1

αkk(x, xk), (2.14)

where αi ∈ R. In matrix form, the minimizer is given by f⋆(x) = k(x)Tα, where k(x) := k(X,x) ∈
RN and α ∈ RN . The proof can be found in [29]. ■

When solving a regression problem, the loss function L(Y, f(X)) in (2.13) is generally chosen to

be the residual sum of squares given by
∑N
i=1 (yi − f(xi)). The minimizer resulting from this

optimization problem is given by

f⋆(x) = k(x)T (K + λIN )−1Y︸ ︷︷ ︸
α

, (2.15)
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where IN ∈ RN×N the identity matrix and K := k(X,X) ∈ RN×N is the kernel matrix, with
entries Kij = k(xi, xj).

2.3.2 Predictive distribution for Bayesian regression

Here the Bayesian treatment of regression for non-linear models is discussed. A generalized kernel
method for regularized regression problems has been introduced in the previous section. In this
section, equivalent regularized regression problems are viewed from a Bayesian perspective. The
regression model that is found via Bayesian inference holds a similar form to that of (2.15), which
resulted from the representer theorem given by Theorem 1. Specifically, Maximum a Posteriori
(MAP) estimation is utilized to find the most likely values for the parameters that maximize the
posterior distribution, given the observed data and prior beliefs.

Recall the non-linear model structure given by (2.11). The observed target value is given by

y = f(x) + εn, (2.16)

where y ∈ R and εn ∼ N (0,Σ) is an additive zero-mean Gaussian uncertainty to the measure-
ment. Here, Σ ∈ SN++ is a symmetric positive definite covariance matrix. For further details on
multivariate Gaussian distributions and its properties, see B.1.3. Using Baye’s rule, prior beliefs
over the weights can be updated given observations of the process. The updated distribution over
the weights also referred to as the posterior distribution, is given by

posterior =
likelihood× prior

marginal likelihood
, p(β|Y,X) =

p(Y |X,β)p(β)
p(Y |X)

, (2.17)

where Y =
[
y1 y2 . . . yN

]T
∈ RN and X =

[
x1 x2 . . . xN

]T
∈ RN×D. The likelihood is

given by
p(Y |X,β) ∼ N (ΦTβ,Σ), (2.18)

where Φ := ϕ(X) =
[
ϕ(x1) ϕ(x2) . . . ϕ(xN )

]T
∈ RN×M . To express beliefs over the weights

a prior can be specified over the parameters before looking at the observations. For simplicity, a
zero mean Gaussian prior is put on the weights,

β ∼ N (0,Σp), (2.19)

with Σp ∈ RN×N the prior covariance matrix. Using the definitions given by (2.18) and (2.19),
the posterior distribution can be described by

p(β|X,Y ) ∼ N (β⋆, ΦΣ−1ΦT +Σ−1
p ), (2.20)

where β⋆ =
(
ΦΣ−1Φ+ Σ−1

p

)
ΦΣ−1Y , which is the MAP estimate. The predictive distribution for

f⋆(x) := f̂(x) is computed by averaging the output of all possible model parameters w.r.t. the
Gaussian posterior. Additionally, via mathematical reformulations (see A.3 for further elabora-
tion), the predictive distribution is given by

p(f̂(x)|X,Y, x) ∼ N
(
f̂(x), cov(f̂(x))

)
,

∼ N
(
k(x)T (K +Σ)−1Y, k(x, x)− k(x)T (K +Σ)

−1
k(x)

)
,

(2.21)

where the kernel function has form k(xA, xB) = ψ(xA)
Tψ(xB), with ψ(x) = (Σp)

1/2ϕ(x), and the
kernel matrix is defined by K = ΦTΣpΦ. Additionally, an estimate for the uncertainty of the

prediction is provided, i.e. a closed-form expression of the covariance cov(f̂(x)) is estimated. Note

that the mean of the predictive distribution f̂(x) in (2.21) has the same form as the minimizer f⋆(x)
given by (2.15) This states that in Bayesian regression, given a positive definite kernel function,
the likelihood covariance acts as a regularizer. This property is formally stated in Lemma 1.
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Lemma 1 (Regularizer for Bayesian regression) Consider a finite set of observations D =
{xk, yk}Ni=1, i.e. N is finite. Recall the regularizer term λ∥f∥2K in the regularized regression optim-
ization given by (2.13). Considering the likelihood has a Gaussian distribution, e.g. p(Y |X,w) ∼
N (ΦTw,Σ), then the scaling parameter λ for Bayesian regression is given by the covariance matrix
Σ of the likelihood. ■

2.3.3 Bayesian inference for virtual regressions

Bayesian regression methods are an especially powerful tool when considering virtual regression
problems, as defined by Definition 2. Section 2.2.3 states that cascaded calibration procedures
consist of one regular regression problem and a total of n − 2 virtual regression problems that
follow. Bayesian regression methods can lead to more accurate optimization of a model estimate
in case of virtual regression problems. This property has been stated formally in Conjecture 1.

In a two-stage regression, as visualized in Figure 2.4, the objective is to find a model estimate
f̂(x). In the virtual regression, the finite dataset of the process is given in the form, D′

v =
{X, ĝ(U)}, where the dependent variable y, is estimated by a model ŷ = ĝ(u).

The model estimate ĝ(y) is learned via Bayesian regression. Given finite dataset D = {U, Y },
the predictive distribution is given by,

p(ĝ(u)|D, u) ∼ (ĝ(u), cov(ĝ(u))) . (2.22)

The predictive distribution for the model estimate f̂(x) is also learned via Bayesian regression,
through the prior and likelihood distribution, given by (2.21). However, in this case, the likelihood
covariance Σ is evaluated from the predictive distribution of ĝ(u) (2.22). This results in a precise
estimate for the likelihood covariance,

Σ = cov(ĝ(U)). (2.23)

In essence, the two-stage regression problem can be solved accurately through Bayesian meth-
ods. The uncertainty of the first-stage regression is used as the regularizer for the second-stage
virtual regression, which is supported by Lemma 1. This provides evidence that the uncertainty
information of the first-stage regression problem can be utilized in the second-stage virtual regres-
sion, which is formally stated in Conjecture 1.

Conjecture 1 (Bayesian regression for virtual regression problems) In a two-stage re-
gression problem the second stage is referred to as the virtual regression. The uncertainty that
propagates to the virtual regression can be utilized in the regression problem using the Bayesian
framework. This property is supported by Lemma 1. ■

Evidence for Conjecture 1 is provided by means of Monte Carlo simulations in section 2.5,
which shows a more accurate model estimation in a cascaded calibration setting.

2.3.4 Gaussian process regression

Gaussian process regression (GPR) is a type of non-linear Bayesian regression method, where the
prior is defined by a Gaussian process. Instead of expressing beliefs over the weights as done in
(2.19), they are expressed over the function.

Definition 4 (Gaussian process [17]) A Gaussian process (GP) is a collection of infinitely
many random variables, e.g. {f(x)|x ∈ RD}, any finite number of which has a joint multivariate
Gaussian distribution. ■

A GP can be fully specified by its mean function m(x) and kernel (or covariance function)
k(xA, xB) given by

f(x) ∼ GP(m(x), k(xA, xB)), (2.24)
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with

m(x) = E [f(x)] ,

k(xA, xB) = E [(f(xA)−m(xA)) (f(xB)−m(xB))] .
(2.25)

The choice for the mean and kernel functions directly affects the behavior of the prior distribution
and, consequently, the resulting posterior- and predictive distributions. The previous section
presented a predictive distribution (2.21) with a zero-mean prior distribution. Now the prior can
be modeled by a GP as defined by (2.24). This form of Bayesian regression is referred to as
Guassian process regression.

In GPR, given a data-set D = {X,Y } where the observed target values are given by (2.16),
the predictive distribution of f(x) for an arbitrary query input x is given by

p(f̂(x)|X,Y, x) ∼ N
(
f̂(x), cov(f̂(x))

)
, where

f̂(x) := E
[
f̂(x)

]
= m(x) + k(x)T (K +Σ)

−1
(Y −m(X)),

cov(f̂(x)) = k(x, x)− k(x)T (K +Σ)
−1
k(x).

(2.26)

In section 2.4 a GPR example is given for a cascaded calibration procedure. It also includes a
demonstration on how to choose the mean and kernel function.

2.4 Cascaded sensor calibration via test beds

A common practice for calibrating low-accuracy position sensors in mechatronic systems involves
a cascaded calibration procedure that utilizes sophisticated test beds. This section presents a
problem description of such a cascaded calibration which involves a total of three position sensors:
a low-accuracy position sensor in a mechatronic system, a test bed sensor, and a high-accuracy
calibration instrument.

In section 2.4.1 a detailed cascaded calibration procedure is presented for a low-accuracy pos-
ition sensor of a mechatronic system. In section 2.4.2 the objective function and the correspond-
ing regression problems for this example are defined. Section 2.4.3 works out the GPR models,
where-after in section 2.4.4 the model structure is defined. In section 2.4.5 a hyper-parameter
optimization is presented for the GPR model. The GPR algorithm for cascaded calibration is
presented in 2.4.6.

2.4.1 Calibration procedure

For the rapid calibration of low-cost sensors, often test beds are utilized. Only a single calibration
is then required of the test bed, for which a highly accurate manual calibration instrument is
required. A schematic example of this type of procedure is displayed in Figure 2.6, with three
sensors. In this example, the mechatronic system has an angular position sensor, called S1, that
needs calibration. The test bed has sensor S2, and the manual calibration instrument has sensor
S3. The objective is to obtain a model f̂1→3 of f1→3, while f1→3 cannot be observed directly. This
is because the manual calibration instrument cannot be directly aligned with the mechatronic
system for calibration, due to two reasons:

1. it is not economically viable to calibrate the sensors of multiple mechatronic systems using
a manual calibration instrument,

2. and some mechatronic systems may be built too compactly to allow physical access for
manual calibration.

The indirect mapping of S1 onto S3 is visualized in Figure 2.7. This two-step cascaded cal-
ibration procedure is described in detail in Procedure 1. This cascaded calibration procedure is
derived from the general problem description described in Section 2.2. The two-step procedure
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Figure 2.6: A mechatronic system with angular
position sensor S1 is optically linked for calibration
with a test bed, with its own sensor S2. The test
bed itself is calibrated on a highly accurate manual
measuring instrument S3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f2→3

f1→2

y1, y2

y 3

Figure 2.7: Sensor S1 ( ) is calibrated on a test
best with sensor S2 ( ), which is in turn calibrated
on S3 ( ). This procedure constructs an indirect
mapping from the less-accurate measurements y1 to
a highly accurate measurement y3.

Procedure 1 Cascaded calibration of S1 with n=3

1: Align systems 2 and 3 and obtain a data-set D2 = {ȳ2,k, ȳ3,k}N2

k=1. Use these observations to

fit a function ŷ3 = f̂2→3(y2).
2: Align systems 1 and 2 and obtain a data-set D1 = {ȳ1,k, ȳ2,k}N1

k=1. Then construct virtual data-

set D′
1 = {ȳ1,k, f̂2→3(ȳ2,k)}N1

k=1 using the model of Step 1, and use these virtual observations

to fit a function ŷ3 = f̂1→3(y1).

consists of a first-stage regression and a single virtual regression. Since measurements of S3

are labor-intensive and time-consuming, the first-stage regression model f̂2→3 might be based on
a limited amount of data (N2 ≪ N1), and consequently, it may contain modeling errors. This

potentially deteriorates the accuracy of f̂1→3 w.r.t. the true f1→3.
The following section outlines how the construction of a model f̂1→3(y1) through Steps 1-2 of

Procedure 1 can be formally framed as a series of regression problems.

2.4.2 Objective function and cascaded regression problem

The objective function for this motivating example is given by the cost in (2.8), where n=3, i.e.
there are in total three sensors in the cascaded calibration chain. The cost to be optimized is given
by

min
β1,β2

J =

(∫ b
a
[f̂1→3 (y1, β1)− f1→3(y1)]

2 dy1

b− a

) 1
2

. (2.27)

where y1 ∈ [a, b]. From Procedure 1 the cost function is subject to two regression problems, an
first-stage regression and a following virtual regression, given by

β⋆2 = argmin
β2

N2∑
k=1

(
f̂2→3 (ȳ2,k, β2)− f2→3 (ȳ2,k)

)2
+ λ ∥β2∥2 ,

β⋆1 = argmin
β1

N1∑
k=1

(
f̂1→3 (ȳ1,k, β1)− f̂2→3

(
ȳ2,k, β

⋆
2

))2
+ λ ∥β1∥2 .

(2.28)

Gaussian process regression (GPR), introduced in section 2.3.4, will be used to solve for β⋆1
and β⋆2 . GPR models are a powerful non-parametric tool that can model all kinds of processes,
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Figure 2.8: Here Step 1 of Procedure 1 is visualized, consider the position-dependent inaccuracies as
introduced in figure 2.7, where the unknown mapping functions f2→3 ( ) and f1→3 ( ) are depicted.
Given data-set D2 ( ), a GPR model is generated which gives a predictive mean f̂2→3 ( ) and predictive
covariance cov(f̂2→3) ( ).

including non-linear functions. Additionally GPR models are able to estimate an uncertainty
measure over the predictions. The latter property, as stated by Conjecture 1, is a key characteristic
that enables improved model estimation for cascaded calibrations.

2.4.3 Gaussian process regression for cascaded calibrations

Here a solution is presented for the regression problems, presented in Procedure 1 via GPR models.
GPR models are able to estimate the uncertainty at the predictions, which makes them inherently
strong for cascaded approaches.

Procedure 1 - Step 1: calibration of sensor S2

The first-stage regression problem given by Step 1 of Procedure 1, is the calibration of sensor
S2 on sensor S3. The function that maps the measurement y2 to a measurement y3 is given by
f2→3(y2). The GP prior is defined as

f2→3(y2) ∼ GP(m2(y2), k2(y2,A, y2,B)). (2.29)

Given the dataset D2 = {ȳ2,k, ȳ3,k}N2

k=1, the likelihood is given by

p(Ȳ3|Ȳ2, β2) ∼ N
(
f2→3(Ȳ2, β2),ΣȲ3

)
, (2.30)

where Ȳi =
[
ȳi,1 ȳi,2 . . . ȳi,N2

]T
∈ RN2×N2 and ΣȲ3

= σ2
nI the covariance matrix of the

observations. The predictive distribution for any arbitrary measurements y2 ∈ RM2 becomes

p(f̂2→3(y2) | Ȳ2, Ȳ3) ∼ N
(
f̂2→3(y2), cov(f̂2→3(y2))

)
, where

ŷ3 := E
[
f̂2→3(y2)

]
= m2(y2) + k2(y2)

T
[
K2 +ΣȲ3

]−1
(Ȳ3 −m2(Ȳ2)),

cov(ŷ3) := cov(f̂2→3(y2)) = k2(y2,y2)− k2(y2)
T
[
K2 +ΣȲ3

]−1
k2(y2),

(2.31)

where k2(y2) := k(Ȳ2,y2) = k2(y2, Ȳ2)
T ∈ RN2×M2 and K2 := k2(Ȳ2, Ȳ2) ∈ RN2×N2 . The mean

prediction ŷ3 := E[f̂2→3(y2)] maps any given measurement y2 into a measurement y3. It is essential
to notice that (2.31) provides an analytical expression for the uncertainty of our prediction, i.e.

the covariance estimate cov(f̂2→3(y2)).

18 Enhancing Sensor Calibration through Gaussian Process Regression



CHAPTER 2. CASCADED SENSOR CALIBRATION USING BAYESIAN REGRESSION MODELS

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

y2

y 3

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y1

y 3

Figure 2.9: Here Step 2 of Procedure 1 is visualized. Given virtual dataset D′
1 ( ), a GPR model

is generated which gives a predictive mean f̂1→3 ( ) and predictive covariance cov(f̂1→3) ( ). It is
essential to notice that the high uncertainty of the first-stage calibration influences the predictive mean
and covariance estimate of the following virtual regression.

Procedure 1 - Step 2: calibration of sensor S1

Following the first-stage regression, a virtual regression is performed to obtain an estimate for the
objective function f1→3(y1), that maps the measurement y1 to a measurement y3. The GP prior
is defined as

f1→3(y1) ∼ GP(m1(y1), k1(y1,A, y1,B)). (2.32)

A data-set D1 = {ȳ1,k, ȳ2,k}N1

k=1 is measured, and transformed into a virtual data-set D′
1 =

{ȳ1,k, ŷ3,k}N1

k=1, where ŷ3,k := f̂2→3(ȳ2,k). The likelihood is given by

p(Ŷ3|Ȳ1, β1) ∼ N
(
f1→3(Ȳ1, β1),ΣŶ3

)
. (2.33)

Recall from Lemma 1 and Conjecture 1 that for this virtual regression problem, the likelihood
covariance ΣŶ3

is fully described by the model uncertainty cov(f̂2→3(Ȳ2)), i.e

Ŷ3 := [f̂2→3(ȳ2,1), . . . , f̂2→3(ȳ2,N1
)]⊤,

ΣŶ3
:= cov(f̂2→3(Ȳ2)).

(2.34)

The predictive distribution for any arbitrary measurements y1 ∈ RM1 becomes

p(f̂1→3(y1) | Ȳ1, Ȳ2) ∼ N
(
f̂1→3(y1), cov(f̂1→3(y1))

)
, where

ỹ3 := E
[
f̂1→3(y1)

]
= m1(y1) + k1(y1)

T
[
K1 +ΣŶ3

]−1

(Ŷ3 −m1(Ȳ1)),

cov(ỹ3) := cov(f̂1→3(y1)) = k1(y1,y1)− k1(y1)
T
[
K1 +ΣŶ3

]−1

k1(y1),

(2.35)

where k1(y1) := k(Ȳ1,y1) = k1(y1, Ȳ1)
T ∈ RN1×M1 and K1 := k1(Ȳ1, Ȳ1) ∈ RN1×N1 . The mean

prediction f̂1→3(y1) := E[f̂1→3(y1)] maps any given measurements y1 into a measurement y3.
Figure 2.9 shows that by choosing the regularizer as the likelihood covariance, the mean estimate
diverges from the virtual observations and gets closer to the actual function f̂1→3(y1).

2.4.4 Model structure for position sensor calibrations

In GPR, the likelihood (2.18) and a GP prior (2.24) describe the predictive distribution (2.26).
A GP prior distribution has a mean function and kernel function, where the latter captures the
underlying assumptions about the correlation and smoothness between different points in the input
space.
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Recall (2.4), which showed that a calibration function can be seen as the sum of a sensor
measurement yi and a position-dependent inaccuracy ηi(yi). As a result, the mean function can
be chosen to be m(yi) = yi, while the kernel function describes the basis features of ηi(yi).

Although there are many kernels to choose from [17], in this chapter the attention is restricted
to the squared exponential kernel (or radial basis function (RBF)), given by

ki(yi,A, yi,B) = σ2
f exp

(
− 1

2ℓ2
(yi,A − yi,B)2

)
, (2.36)

where ℓi and σ2
f,i are the characteristic length scale and the magnitude of the prior variance,

respectively. Where-as the likelihood covariance, when unknown, can also be parameterized with
the noise variance σ2

n,i. Parameters that are defined in the GP prior and the likelihood are called

hyper-parameters, given by Θi = {li, σ2
f,i, σ

2
n,i}.

2.4.5 Hyper-parameter optimization

The hyper-parameters for GPR, which involves a GP prior and Gaussian likelihood, can be es-
timated by means of empirical Bayes. The key idea for empirical Bayes is to find these hyper-
parameters by using the data itself. This can be done by evaluating the marginal likelihood (2.17)
for different combinations of hyperparameters and selecting the set of hyperparameters that max-
imize the log marginal likelihood, e.g. given data-set Di = {Ȳi, Ȳj} the optimization for Θi is given
by

log p(Yj |Yi,Θi) = −
1

2
Y ⊤
j K̃

−1
i Yj −

1

2
log
∣∣∣K̃i

∣∣∣− Ni
2
log2π, (2.37)

where K̃i = Ki(Yi, Yi) + ΣYj . This expression can be maximized w.r.t. Θi using an optimiza-
tion algorithm for non-convex problems. The log marginal likelihood (2.37) is dependent on the
likelihood covariance ΣYj

.

2.4.6 Summary

In this section a common example has been presented, where low-accuracy position sensors S1 are
calibrated via a test bed S2, which also requires a one-time calibration using a highly accurate
calibration instrument S3. This is referred to as cascaded calibration, where multiple sensor
calibrations are performed sequentially. The three sensors given by S1, S2 and S3 measure a
position y1, y2 and y3 respectively.

The objective is to find a function which maps the position measurement y1 onto position
measurement y3. To solve for this cascaded problem, GPR models have been selected as a suitable
method. Here, Algorithm 1 presents the sequence of steps for a cascaded calibration with three
position sensors.

Algorithm 1 Cascaded calibration via Bayesian inference

Require: Data-sets D1, D2, test points y1 ∈ RM1 .
1: Specify kernel functions k1, k2 with initial hyper-parameters Θi,0, see Section 2.4.4.
2: Find optimal hyper-parameters Θ⋆2 by maximization of log p(Ȳ3|Ȳ2,Θ2), see (2.37).

3: Compute Ŷ3 = E[f̂2→3(Ȳ2)] ∈ RN1 and cov(Ŷ3) = cov(f̂2→3(Ȳ2)) ∈ RN1×N1 with (2.31).

4: Find optimal hyper-parameters Θ⋆1 by maximization of log p(Ŷ3|Ȳ1,Θ1), see (2.37).

5: Compute ỹ3 = E[f̂1→3(y1)] ∈ RM1 with (2.35).
6: return ỹ3

In the following section Monte Carlo simulations are presented, which show that for the purpose
of cascaded calibrations, GPR models are highly capable of estimating and utilizing uncertainty
information to achieve higher accuracy.
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Figure 2.10: A sample set of functions from (2.38), with f2→2∗(y2) ( ) and f1→1∗(y1) ( ). The bottom
two figures show the position-dependent inaccuracies ηi(yi) = y∗i − yi, i ∈ {1, 2}.

2.5 Monte Carlo simulations

This section provides proof of the effectiveness of the developed cascaded calibration approach,
demonstrated through Monte Carlo simulations. In section 2.5.1 the simulation set-up is given
first, where-after in section 2.5.2 the results are presented.

2.5.1 Simulation set-up

Consider that each system in the cascaded calibration procedure is aligned at once and is positioned
at a certain y∗, e.g. y∗ = y∗1 = y∗2 = y∗3 . Each sensor Si, i ∈ {1, 2, 3}, has measurement yi, given
by

y3 = y∗ + ε,

y2 = y∗ +

Ns∑
k=1

ak sin (ω1,ky
∗) + bk cos (ω1,ky

∗) + ε,

y1 = y∗ +

Ns∑
k=1

ck sin (ω2,ky
∗) + dk cos (ω2,ky

∗) + ε,

(2.38)

with Ns = 10 the amount of sines, ε ∼ N (0, 10−8) an additive Gaussian white noise to the
measurements, ak, bk, ck, dk ∼ N (0, 10−4) the discrete Fourier coefficients, and ωi,k ∼ N (0, 6) the
frequencies. A sample set of functions from (2.38) can be seen in Figure 2.10.

The position range of interest is y∗ ∈ [0, 1] m. The position measurements are defined in the

form, fi∗→i(yi) , while the calibration functions that are being estimated have the form f̂i→i∗(yi).
Note that fi→i∗(yi) is the function inverse of fi∗→i(y

∗
i ), which exists under Assumption 1. The

inverse cannot be expressed in a closed-form expression, however, it was ensured that each sampled
set of functions is valid.
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Figure 2.11: For the sample set of functions given in Figure 2.10, here the observations of f2→3(y2) ( ),
given by D2 = {y2,k, y3,k}N2

i=1 ( ), have been plotted for both Case 2.1 and 2.2. In Case 2.1 (left plot), the
data-set consists of an evenly spaced grid with N2 = 40. In Case 2.2 (right plot), the data-set consists of
a more dense grid, with N2 = 64, but the edges and center of the data-set cannot be reached.

In order to prove the efficiency of GPR models in uncertainty-rich regression problems, Monte
Carlo simulations will be utilized. At least MC = 5000 different pairs of position measurements,
as defined by (2.38), are generated. The two-step calibration procedure consists of a first-stage
regression and a following virtual regression. The first-stage regression will be varied for two
different cases:

Case 2.1: y2 is observed for an equally spaced grid of N2 = 40 values of y3, to obtain data-set D2

Case 2.2: y2 is observed for an equally spaced grid of 100 values of y3, but then 10% of the data
on either edge and 20% of the data in the center are removed, leading to N2 = 64. Here,
data-set D2 has limited reach. This represents a scenario where S3 cannot measure the test
bed everywhere, e.g., because it is physically obstructed.

Both cases have varying levels of uncertainty due to limitations in data reach, i.e. Case 2.2 is
considered to be uncertainty rich due to limitations in measurement data. Figure 2.11 shows the
difference in data-set reach for both cases. The virtual regression problem that follows the first-
stage regression problem does not have any limitations for the reach of its data-set, i.e. data-set
D1 can be infinitely large.

Algorithm 1 will be utilized to obtain a model estimate f̂1→3(y1) for all N iterations. The
cost, given by (2.27), demonstrates the modeling accuracy of the method. In addition, Algorithm
1 will be compared to two alternative methods, given by:

Alternative 1: Algorithm 1 is followed, except for the virtual regression of f̂1→3(y1) the likelihood
covariance is assumed to be unknown. Instead, the variance of the model is parameterized
by ΣŶ3

= σ2
n,3I, where σ

2
n,3 is found by maximization of the marginal likelihood. Where-as

for Algorithm 1 the likelihood covariance is known via cov(f̂2→3(y2)).

Alternative 2: A lookup table is made of f̂2→3 using D2. Subsequently, a lookup table f̂1→3

is made using virtual data-set D′
1. In Case 2.1, cubic spline interpolation is used between

entries in the lookup table, and in Case 2.2, linear interpolation is used, since cubic splines
are not well suited for extrapolation.

The cost (2.27) will be evaluated for these alternative methods to compare to the efficiency of
Algorithm 1. Alternative 1 will be used to validate and prove Conjecture 1. In essence, Al-
ternative 1 neglects the added advantage of Bayesian regression for virtual regression problems,
as described in Conjecture 1.
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Figure 2.12: Top: Normalized empirical probabil-
ity density functions; Bottom: Cumulative density
functions of J (MC=5000) for Case 2.1, with an
equidistant grid of data points from S3. Algorithm
1 ( ) achieves an equally accurate fit f̂1→3 as Al-
ternative 1 ( ), which disregards the variance of
the first model. However, both methods signific-
antly outperform Alternative 2 ( ) which uses a
lookup table with cubic spline interpolation.
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Figure 2.13: Top: Normalized empirical probab-
ility density functions; Bottom: Cumulative dens-
ity functions of J (MC=12000) for Case 2.2, where
some sensor locations are not measured by S3. Al-
gorithm 1 ( ) results in a noticeably more accurate
fit f̂1→3 compared to Alternative 1 ( ), which ig-
nores the variance of the first model. Both methods
significantly outperform Alternative 2 ( ) which
employs a lookup table with linear interpolation.

2.5.2 Simulation results

The results of the Monte Carlo simulations for both Case 2.1 and 2.2 can be seen in Figures 2.12
and 2.13 respectively. For both cases, the empirical probability density and the cumulative density
functions of the cost J in (2.27) have been determined. Here the empirical probability density
function has been normalized to have a total unit area.

From the results of Case 2.1, no difference can be observed in performance between Algorithm
1 and Alternative 1, while Alternative 2 performs considerably worse. Here Algorithm 1 and
Alternative 1 perform equally well, i.e., taking into account the model uncertainty of f̂2→3(y2)

does not lead to a more accurate model f̂1→3(y1). Nevertheless, both Algorithm 1 and Alternative
1, which use Bayesian inference with kernel regularization, lead to a considerably better model
estimate compared to lookup tables with cubic interpolation.

For Case 2.2, the reach of sensor S3, and thus data-set D2, has been limited considerably.
This introduces high uncertainty in the prediction of f̂2→3(y2). As Algorithm 1 makes use of the
uncertainty estimate from this prediction, supported by Lemma 1, it can lead to considerably
better model estimates for f̂1→3(y1) compared to Alternative 1. For large gaps in data-set reach,
lookup-tables are out of the question, as they perform substantially worse.

2.6 Conclusion

This chapter has presented a Bayesian framework for cascaded sensor calibrations. Specifically,
GPR models are utilized to efficiently model a multi-stage regression problem, which leads to more
accurate model estimation. The uncertainty in multi-stage regression problems can be utilized in
Bayesian frameworks, which shows more accurate modeling compared to traditional methods,
e.g. lookup tables. The use of such frameworks is especially recommended given uncertainty-rich
data-sets.

A common cascaded calibration example is presented: test-bed calibration of position sensors
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in mechatronic systems. A simulation example in combination with Monte Carlo experiments,
has provided evidence for more efficient model estimation using the novel Bayesian calibration
framework.
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Chapter 3

Budgeting of Bayesian Regression
Modeling Uncertainties

Sensor calibration is efficiently performed using Bayesian regression methods. In the Bayesian
framework, modeling uncertainties are estimated in closed-form and give great insight into the
positioning capabilities of control systems. This chapter introduces a framework that aims to in-
clude these modeling uncertainties in existing error budgeting frameworks for control systems. The
previous chapter introduced cascaded sensor calibrations and how these are efficiently performed
using the Gaussian process regression (GPR) method. A GPR model consists of a Gaussian pro-
cess (GP) prior model, which is a prior distribution over functions. Given a set of observations,
the GP prior is updated to produce a predictive distribution (Section 2.3.4). Additionally, the
predictive distribution estimates uncertainty at the predictions in closed-form. In this context, it
is possible to define and estimate modeling uncertainties through Bayesian regression methods.

This chapter provides methods to obtain the PSD of said modeling uncertainties. It is also
shown that the kernel function of a GP prior encodes much of the power spectral characteristics of
these modeling uncertainties. This is highly valuable information, as the GP prior, before making
observations or predictions, encodes power spectral characteristics of the modeling uncertainties.
Using these techniques, the PSD of modeling uncertainties that result from sensor calibration
is made available. The objective is to include the PSD of these modeling uncertainties in error
budgeting frameworks, e.g. when designing a feedback controller that requires specific spectral
characteristics, for instance, bandwidth limitations.

First in Section 3.1 an introduction is provided for error budgeting frameworks, which includes
DEB. Additionally, a clear distinction is made between types of error contributions in a control
system. Section 3.2 gives the formal definition for modeling uncertainties given predictive distri-
butions. Afterward, 3.3 introduces methods to find the PSD of GPR models. Section 3.4 explains
how these modeling uncertainties can be accounted for in error budgeting frameworks. In Section
3.5 a complete overview is provided of the frameworks presented in this thesis for GPR-based
sensor calibration and error budgeting. Finally, in section 3.6 a conclusion is provided on the
main results.

3.1 Error Budgeting frameworks

Error budgeting is a valuable approach for managing and estimating errors in a system, and
is an iterative process that takes place at various stages of a system’s development. Without
available experimental data, error budgeting can be performed using models and prior knowledge.
This preliminary analysis helps set expectations and design guidelines based on a theoretical
understanding of the system. Alternatively, error budgeting can be performed after experimental
data becomes available, which in most cases provides critical information about the system’s
capabilities, e.g. levels of sensor inaccuracies. This empirical data can be included in the error

Enhancing Sensor Calibration through Gaussian Process Regression 25



CHAPTER 3. BUDGETING OF BAYESIAN REGRESSION MODELING UNCERTAINTIES

Procedure 2 Dynamic Error Budgeting for linear control systems [34]

1: Design and model a control system conceptually, such that closed-loop transfer functions are
defined properly.

2: Identify all significant error sources in the closed loop system and find their respective PSD
models.

3: Define and observe the total error of the control system by simulating the system. The
contribution of each error source to the total error can be analyzed.

4: Check if the total error budget is acceptable, if not, make changes to the system and go back
to step 3.

5: Repeat steps 3-4 until the total error budget is in an acceptable range.

budgeting process, to create a more accurate estimate of the achievable system performance.
In this context, the DEB framework will be regarded as an essential framework, which allows

for managing and budgeting errors in high-precision machines. This framework analyzes the
propagation of error sources through a high-precision control systems, which is enabled via a PSD
modeling of these error sources.

In a larger scope of error budgeting frameworks, the European Space Agency (ESA) Point-
ing Error Engineering handbooks [32] serve as an important reference. This handbook provides
guidelines on how to create and manage well-organized error budgets for laser-pointing systems.
Although this handbook serves as a guideline specifically for pointing systems, it can also be ap-
plied to other complex systems requiring high precision and careful budgeting. Certain aspects of
these guidelines are out of the scope of this thesis, though a few key guidelines are emphasized.
That is, a clear distinction is made between knowledge errors and performance errors, each playing
a role in the total error budget.

In Section 3.1.1 the DEB framework is explained in more detail. Afterward, in Section 3.1.2
the distinction is made between performance error sources and knowledge error sources. The
objective is to categorize modeling uncertainties that arise from sensor calibration. These modeling
uncertainties are position-dependent, which can complicate error budgeting for these error sources
and highlight the need for careful considerations.

3.1.1 Dynamic Error Budgeting

The DEB high-level design process is presented in the Procedure and describes the concept of
systematic budgeting for certain performance specifications. For technical details and examples
regarding DEB framework see the research conducted in [33] and [34]. The assumptions for this
framework are as follows:

1. Assume the (sub-)systems can be described accurately with linear-time invariant models.

2. Error sources acting on the system must be stationary, their statistical properties are not
allowed to change over time.

3. Stochastic error sources are only allowed, as signals with pure harmonic or dc-components
give infinite peaks in their PSDs.

There is no underlying assumption on the type of distribution for the error sources. This thesis
has continuously used Gaussian distributions and thus is suitable for this DEB framework.

3.1.2 Performance error vs knowledge error

A distinction is made between two main types of error sources in a control system, performance
error and knowledge error sources. A control system uses data, obtained via sensors or via models,
to position itself accurately for a given reference signal. In Figure 3.1 a schematic is shown that
depicts different types of error sources and in which category these land. The performance error
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Figure 3.1: For control systems a distinction can be made between two main types of error sources,
performance error sources and knowledge error sources. Performance errors and knowledge errors are
correlated for some error sources, e.g. sensor noise can fall into both categories.

and knowledge error are denoted by ep and ek respectively. The sum of the two types of error
constitutes the total error, denoted by et.

Performance error sources are sources that directly influence the control performance of the
system. In other words, every error source that causes deviations between the reference signal and
a measured signal is categorized as a performance error. One such example are external vibrations
that act on a control system. In the control diagram, the performance error is given by

ep(s) = r(s)− ŷ(s),
= Sr(s)− Sϵ(s)− Sdy(s)− PSdu(s),

(3.1)

where s is the Laplace variable, S is the sensitivity given by, S = 1/(1+PC), and ϵ represents any
errors in the sensor measurement. A knowledge error disturbs the system’s understanding of a
certain state but does not necessarily affect the system’s output or performance. One example of
a knowledge source is an incorrect assumption about the system dynamics. The knowledge error
in the control diagram is given by

ek(s) = ŷ(s)− y∗(s),
= ϵ(s).

(3.2)

Knowledge error sources like sensor noise can act as performance error sources. An intuitive
example is when the control bandwidth of a system is placed at high frequencies. This results in
the amplification of high-frequency sensor noise, which can deteriorate the overall tracking per-
formance. Although sensor noise is defined as a knowledge error source, it can act as a performance
error source, given poor control strategies. The total error is given by the sum of both errors types,
which is given by

et(s) = r(s)− y∗(s),
= ep(s) + ek(s),

= Sr(s)− (1− S)︸ ︷︷ ︸
T

ϵ(s)− Sdy(s)− PSdu(s),
(3.3)

where (1− S) := T the complementary sensitivity. Modeling uncertainties that arise from sensor
calibration are primarily categorized as knowledge errors, and are described in Section 3.2. These
error sources are one of the contributors to the total error budget. Section 3.3 provides the
necessary tools for estimating the PSD function of these modeling uncertainties, enabling their
inclusion in the DEB framework.

Enhancing Sensor Calibration through Gaussian Process Regression 27



CHAPTER 3. BUDGETING OF BAYESIAN REGRESSION MODELING UNCERTAINTIES

3.2 Problem description: modeling uncertainties in
Bayesian regression methods

In Bayesian regression methods, the predictive covariance represents the uncertainty in the pre-
dictions. To better understand this concept, an intuitive example is provided to illustrate the
definition of modeling uncertainty and the possible modeling errors that can arise.

In Section 3.2.1 a definition is provided for modeling uncertainties in GPR methods. Afterward,
in Section 3.2.2 an intuitive example is provided, which shows how possible modeling errors emerge
from Bayesian regression models. Finally, in Section 3.2.3 a link is made to sensor calibrations
and the effect of modeling uncertainties on the feedback control of a dynamical system.

3.2.1 Defining modeling uncertainties in Bayesian regression

The following discussion focuses on the modeling uncertainties in Bayesian regression methods and
how to characterize them using the estimated predictive covariance. The predictive distribution
resulting from Bayesian regression methods provides a mean and covariance estimate.

Instead of using the notations for sensor calibration as described in Definition 1, here for
notational simplicity the process is given by y = f(x) + εn : RD → R. A GP prior model of a
process f(x) is given by

f(x) ∼ GP (m(x), k(xA, xB)) . (3.4)

Assume here that hyper-parameter optimization provides a GP model with a squared exponential
kernel function k(xA, xB) and a zero-mean function m(x) (Section 2.4.5). In the absence of any
observations, samples can be taken from the GP prior. The GP prior is evaluated on a query grid
of points x ∈ RM×D, which gives a Gaussian distribution

p(f(x)) ∼ N (µp,Σp) , (3.5)

where µp := m(x) ∈ RM the prior mean, and Σp := k(x,x) ∈ SM++ the prior covariance matrix.

Given the GP prior and observations, the predictive distribution (2.26) is derived. Consider a
data-set given by D = {X,Y }, where X ∈ RN×D and Y ∈ RN . Take the same set of query grid
points x, which results in the predictive distribution given by

p(f̂(x)|X,Y,x) ∼ N (µŷ,Σŷ), (3.6)

where µŷ := E[f̂(x)] ∈ RM the predictive mean, and Σŷ := cov(f̂(x)) ∈ SM++ the predictive
covariance matrix. The modeling uncertainty, which is encoded by the predictive covariance
matrix Σŷ, describes possible deviations from the predictive mean. In other words, the predictive
covariance indicates that possible modeling error exists within the predictive distribution. The
definition for modeling uncertainty in GPR methods is formally stated in Definition 5.

Definition 5 (Modelling uncertainty in Gaussian process regression) Gaussian process
regression provides a predictive Gaussian probability distribution (2.21), which includes an es-
timate for the covariance Σŷ at the predictions. The modeling uncertainty ϵ is described by the
zero-mean predictive distribution, given by

p(ϵ(x)|X,Y, x) ∼ N (0,Σŷ). (3.7)

■

Samples are drawn from this modeling uncertainty, with each sample being a possible deviation
from the mean prediction, i.e. a modeling error. The following section describes this phenomenon
with an intuitive example.
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x

y

Figure 3.2: A process y = f(x) + εn ( ), with a finite amount of observations ( ). This example has
been taken from Case 2 in Section 2.5, where observations have been severely limited to a certain range.

3.2.2 Sampling modelling errors from the predictive distribution

Possible modeling errors resulting from Bayesian regression are sampled by the modeling uncer-
tainty, see Definition 5. To provide an intuitive understanding of how modeling errors can arise
in Bayesian regression, a straightforward single-dimensional example is presented. A simple pro-
cess, given by y = f(x) + εn : R → R, has been plotted in Figure 3.2, with a finite amount of
observations.

The prior distribution (3.5) and the predictive distribution (3.6) are visualized in Figure 3.3.
Samples are drawn from the prior distribution to demonstrate that, in the absence of observations,
the function space described by the GP prior encompasses all possible functions. Appendix A.4
demonstrates the procedure for sampling from multivariate Gaussian distributions by utilizing the
Cholesky decomposition of the covariance matrix.

It is apparent that adding observations squeezes the uncertainty in the predictive distribution,
i.e. the prior knowledge has been updated via Bayesian inference. However, due to the restricted
and finite reach of the observations, uncertainty remains. Samples drawn from the predictive
distribution deviate from the prior mean at locations with high uncertainty. These deviations are
possible modeling errors that arise from Bayesian regression and are all encoded in the predictive
covariance matrix, as described in Definition 5.

In Figure 3.4 several samples have been drawn from the modeling uncertainty which presents
possible modeling errors that might be present in the predictive distribution. The following sec-

x

y

(a) prior distribution f(x) ∼ N (µp,Σp)

x

y

(b) posterior distribution

p(f̂(x)|X,Y, x) ∼ N (µŷ,Σŷ)

Figure 3.3: (a) The GP prior distribution given by (3.5) is sampled for the entire input range x for five
different occasions, with prior covariance Σp ( ) for 99% confidence. With a finite amount of observations
( ) the predictive distribution (3.6) is determined. (b) The predictive distribution, with mean µŷ ( )
covariance estimate Σŷ ( ), is sampled five times.
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x

y

Figure 3.4: The modeling uncertainty p(ϵ(x)|X,Y, x) ∼ N (0,Σŷ)

tion examines the implications of modeling uncertainties in sensor calibration models, and the
consequences these have on feedback control of a dynamical system.

3.2.3 Modeling uncertainties in sensor calibrations

The objective is to obtain the power spectrum of modeling uncertainties and to assess how these
propagate in a feedback control system. This will allow for more accurate budgeting of modeling
uncertainties for control design purposes.

Bayesian regression methods, such as GPR methods, have proven to be useful in the case of
sensor calibration. Notably, in a cascaded calibration problem, these methods are believed to be
superior to traditional approaches, as described in Conjecture 1.

Consider in Figure 3.5 a feedback control diagram of a dynamical system Pi, that has sensor
Si. The sensor Si measures the true position y∗i and returns a position measurement yi, this
process is depicted by Si(y

∗
i ) = fi∗→i(y

∗
i ). Using Bayesian regression methods, this sensor has

been calibrated on a more accurate reference sensor Sj , which results in a model estimate given

by ŷj = f̂i→j(yi). A perfect model estimate would indicate that it perfectly describes the inverse

of the sensor Si, i.e. specifically Si(f̂i→j(yi)) = 1. In reality, a model is never perfect and results
in modeling uncertainties,

Si(f̂i→j(yi)) = 1 + ϵ(yi) (3.8)

where ϵ(yi) := ϵi is the modeling uncertainty that encodes imperfect modeling.
Section 3.3 provides the necessary tools to determine the PSD of modeling uncertainties. Fol-

lowing that, Section 3.4 explains how this PSD information can be employed for error budgeting
purposes.

y∗iei ui
−

Ci Pi

ŷj
Sif̂i→j

yi

(a)

y∗i

ǫi

ei ui
−

+

Ci Pi

ŷj

(b)

Figure 3.5: Control diagrams including sensor calibration models, where (a) shows sensor calibration
being included in a control system and (b) shows a compact representation of calibration modeling un-
certainties in control systems
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3.3 Power spectral density for GPR models

A GPR model has a GP prior which is updated using observations, to obtain the predictive
distribution. As shown in Definition 5 in the previous section, modeling uncertainties in Bayesian
regression can be defined by utilizing the predictive covariance estimate. In this section, available
methods are provided to perform a PSD analysis on modeling errors in GPR models.

The proposed framework for PSD analysis and estimation of GPR modeling uncertainties is
given by two steps:

(i) The PSD model is obtained of the zero-mean GP prior

(ii) The PSD estimate is obtained of the modeling uncertainty distribution in (3.7).

The first step gives insight into the power spectral characteristics regarding the modeling uncer-
tainties. In this step, the mean function of the GP prior can be set to zero as it does not affect
the distribution of the modeling uncertainties. The distribution in (3.7) is fully dictated by the
predictive covariance estimation and is thus invariant from the choice of the mean function.

The second step involves the estimation of a conditioned distribution, i.e. the modeling un-
certainty which is conditioned on observations. There is no straightforward method to estimate a
PSD model of a conditioned Gaussian distribution, thus a practical solution is provided.

In the following sections, the principles behind these methods will be explained in sufficient
detail. Afterward, an example is given that showcases the two-step framework. First, in Section
3.3.1, the Wiener-Khinchin theorem is introduced as a means for calculating the PSD of a zero-
mean GP prior model. This theorem is explained in detail, and its relevance to Gaussian processes
is discussed within the section. Section 3.3.2 shows that the Wiener-Khinchin theorem does not
hold for conditioned distributions, which are generally non-stationary. This section provides Monte
Carlo methods that are able to estimate the PSD of conditioned distributions. Finally, Section
3.3.3 provides an example of a PSD analysis for a GPR model with a squared exponential kernel.

3.3.1 Power spectral density of Gaussian process priors

Here methods are provided to derive a closed-form expression for the power spectral density
function for stationary stochastic processes. These methods can be used to determine the PSD
function of a GP prior model. In a later example, it is shown that the GP prior provides valuable
information regarding the power spectral characteristics of modeling uncertainties.

Before presenting these methods, it is worth noting Lemma 2, which demonstrates how one can
determine whether the Fourier transform of a process exists. The Fourier transform of a stochastic
process, such as a GP, is only defined under strict conditions.

Lemma 2 (Existence Fourier transform [35]) Consider a signal that is defined by a function
f(x) : X → R. The input space is denoted by X , i.e. X = RD with D the dimension of the input
space. The Fourier transform for this multidimensional function is given by,

F (ξ) = F{f(x)}(ξ) ≡
∫
X
f(x)e−i2πξxdx, (3.9)

with ξ ∈ R the spatial frequency with unit m−1. For this Fourier transform to exist, the function
f(x) is required to be Lebesgue integrable, given by∫

X
|f(x)|dx <∞. (3.10)

■

The Fourier transform is typically defined for signals that are integrable over a finite interval,
but the Fourier transform for infinite-duration stochastic processes, such as GPs, is not well-defined
in this sense.
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Consider a random process Y (x), with y(x) a realization of this random process. There may be
some realizations of y(x) which are not Lebesgue integrable, in which case the Fourier transform
does not exist [36, Chapter 7]. Nonetheless, if the process Y (x) is wide-sense stationary (WSS),
and if the autocorrelation function is known, the PSD function can be calculated in closed form.

Definition 6 (Wide-sense stationary) A Wide-sense stationary (WSS) stochastic process re-
quires that its mean and correlation are independent of its argument [37, Chapter 3]. A continuous
WSS stochastic process f(x), has a mean µ and correlation function R given by,

E[f(x)] = µ,

E[(f(xA))(f(xB))] = R(τ), ∀τ, xA, xB ∈ R,
(3.11)

where τ = xA − xB is the difference between two position instances. ■

The PSD function for WSS stochastic processes is calculated by taking the Fourier transform
of the correlation function. This property is formally defined in Theorem 2, and is known as the
Wiener-Khinchin theorem. Note in this thesis, the term stationarity of a signal specifically denotes
that the signal is assumed to be WSS.

Theorem 2 (Wiener-Khinchin theorem) The power spectral density S(ξ) of a WSS
stochastic process f(x), is the Fourier transform of the (auto)correlation function R(τ),

R(τ)
F←→ S(ξ). (3.12)

The proof is provided in [38]. ■

For a given continuous correlation function R(τ) the power spectral density function can be ob-
tained given by,

S(ξ) :=

∫ −∞

∞
R(τ)e−i2πξτdτ. (3.13)

For a discrete process fk(xk) with discrete correlation sequence Rk the PSD function can be
defined by the DTFT of the correlation sequence, given by

S(ξ) := ∆x

∞∑
k=−∞

Rke
i2πξk∆x, (3.14)

where k ∈ Z are the sample points and ∆x = xk+1−xk is the distance between the sample points.
As an intuitive example, using Theorem 2, it can be shown that a white noise signal indeed

has a flat power spectrum.

Example 1 (PSD of white noise signal) Consider a discrete-time white noise temporal pro-
cess ε[k] := εk which has zero mean. This signal can be characterized as WSS, with the following
mean and correlation,

µε,k = E[εk] = 0 ∀k,

Rε,k =

σ2
n∆x if k = 0

0 if k ̸= 0
,

(3.15)

where σ2
n is the variance. Using equation 3.14 the spectral density function is given by

S(ξ) = σ2
n∆x ∀ξ. (3.16)

■
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A GP, given by Definition 4, is an infinite-dimensional generalization of the multivariate normal
distribution. Using the Wiener-Khinchin theorem from Theorem 2, the power spectral density
function S(ξ) of a stationary GP can be estimated.

A stationary kernel function of a GP, which is also known as the covariance function, can be
expressed as k(xA, xB) = k(τ). For a zero-mean GP, the covariance function k(τ) and correlation
function R(τ) become equal. This property is described in more detail in Appendix B.1.1. The
following is then true for a stationary zero-mean process f(x):

k(τ) = R(τ) = E[f(xA)f(xB)]. (3.17)

Under these conditions, the PSD function of a GP can be analytically defined in Corollary 1.
Using this Corollary, the PSD function S(ξ) of a GP prior model can be determined in closed-form.

Corollary 1 (PSD of a zero-mean stationary GP) Consider a zero-mean stationary GP
f(x), with stationary kernel function k(τ), the Wiener-Khinchin theorem in Theorem 2 states
that the Fourier transform of the kernel gives the power spectral density S0(ξ) of the zero-mean
process:

S0(ξ) := F {k(τ)} (3.18)

■

3.3.2 Power spectral density of conditioned distributions

The PSD of conditioned Gaussian distributions, such as the modeling uncertainties (3.7), can be
estimated by means of Monte Carlo estimation, which will be introduced here. An analytical
method to obtain the PSD function of a stationary zero-mean GP is provided by Corollary 1.
Here it is shown why it is not straightforward to obtain the spectrum of a conditioned Gaussian
distribution. By conditioning a stationary Gaussian distribution it generally loses its stationary
property.

Conditioned distributions are not generally stationary because they are conditioned on data
and thus do not hold to the requirements for Corollary 1. To provide evidence for this statement,
the property that a stationary covariance matrix is always symmetric Toeplitz is proven. This
property is stated in Proposition 1.

Proposition 1 (Symmetric Toeplitz property for covariance matrices) A covariance
matrix is symmetric Toeplitz if the stochastic process holds to the WSS property, as defined in
Definition 6.

Proof: Samples are drawn from a zero-mean Gaussian process y = f(x) with stationary kernel
k(τ) given by f(x) ∼ GP(0, k(τ)), for any input point x ∈ RD. Given a array of input points

x =
[
x1 x2 . . . xM

]T
∈ RM×D, the covariance matrix can be defined by

k(x,x) =


k(x1, x1) k(x1, x2) . . . k(x1, xN )

k(x2, x1)
. . .

...
...

. . .
...

k(xN , x1) . . . . . . k(xN , xN )

 . (3.19)

The kernel has stationary property k(τ) = k(xA, xB) and symmetric property k(τ) = k(−τ).
Using these properties the covariance matrix can be written as a function of τ , which results in a
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symmetric Toeplitz matrix, given by

k(x,x) =


k(τ0) k(τ1) . . . k(τN-1)

k(τ1) k(τ0) . . . k(τN-2)
...

...
. . .

...

k(τN-1) k(τN-2) . . . k(τ0)

 , (3.20)

where τk = x0+k − x0 with k = 0, 1, .., N − 1 ■

Proposition 1 shows that the conditioned distributions, such as the predictive distribution, has
a covariance matrix that is non-Toeplitz, which indicates a loss in stationary.

A number of methods exist in literature that attempts to determine a closed-form expression
of a PSD estimate for non-stationary stochastic processes [35]. As these approaches tend to
severely increase complexity, a practical approach is adopted instead. By means of Monte Carlo
methods, the PSD of a non-stationary distributions can be estimated. Suppose there exists a
process y = f(x), with non-stationary distribution f(x) ∼ N (µ,Σ), where Σ is non-Toeplitz
according to Proposition 1. From this non-stationary distribution, a total ofMC samples are drawn
at query input points x ∈ RM×D. The query output vectors yi ∈ RM are drawn independently
and identically from the same Gaussian distribution with mean µ and covariance matrix Σ, i.e.

y1,y2, ..,yMC
∼ iid N (µ,Σ), (3.21)

where iid (independent and identically distributed) means that each vector is independent of
the others and that they all have the same distribution. The Monte Carlo approach in Algorithm
2 computes the PSD estimates Ŝ1, Ŝ2, .., ŜMC

for each output vector y1,y2, ..,yMC
via the discrete

Fourier transform (DFT) and periodogram equations. The PSD estimate of the non-stationary
Gaussian distribution is obtained by averaging over each Monte Carlo sample.

Algorithm 2 Monte Carlo PSD estimation of non-stationary Gaussian distributed signals

Require: non-stationary probability distribution of process f(x) ∼ N (µ,Σ), input grid points
x ∈ RM×D, distance between grid points ∆x, number of Monte Carlo iterations MC .

1: Draw M samples at input points x, to obtain y1,y2, ..,yMC
∼ iid N (µ,Σ).

2: For non-periodic processes f(x), segment output vector yi into K overlapping windows and
apply windowing function at each window1.

3: Obtain the DFT at each sample, using Fi,l =
∑M−1
k=0 yi,ke

−i 2πl
M k, where i = 1, 2, ..,MC and l

the frequency bin number, i.e. the DTFT is sampled at frequencies ξl =
l

M∆x

4: Compute the periodogram, using Si,l =
∆x
M |Fi,l|

2, with ∆x
M the normalizing prefactor2.

5: Compute the average over MC samples, using Ŝl =
1
MC

∑MC

i=1 Si,l.

More background information on the DTFT and DFT equations are shown in Appendix B.3.
The DFT calculation in step 3 of Algorithm 2, samples at the frequencies ξ, which is the spatial
frequency in m−1. When dealing with rotational measurements the spatial frequency can also be
expressed as ν, which has unit rad−1.

Using the results presented in Corollary 1 and Algorithm 2 a complete PSD analysis for GPR
modeling uncertainties is possible. An example is presented for a GPR model with a squared
exponential kernel in the following section.

1Windowing functions are applied to the signal to prevent spectral leakage which is caused by a mismatch
between the frequency components of the signal and the frequency resolution of the DFT. A common window
function is the Hann window, which tapers both ends of each window, reducing the effects of spectral leakage.

2The normalizing prefactor ∆x
N

normalizes the power spectral density Si,k, which after scaling has unit (·)2/m
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Figure 3.6: Non-linear single-dimensional process y = f(x) + εn ( )

3.3.3 Example: squared exponential kernel

Here an example will be provided of a PSD analysis for GPR modeling uncertainties. Provided a
non-linear single-dimensional process y = f(x) + εn given in Figure 3.6, where f(x) : [0, 1] → R
and εn ∼ N (0, σ2

nI) . The variance of the additive noise is given by σ2
n = 10−8. A GPR model is

chosen with GP prior f(x) ∼ GP(m(x), k(τ)) that has zero-mean m(x) and has stationary squared
exponential kernel k(τ) given by,

m(x) = 0

k(τ) = σ2
f exp

(
− 1

2ℓ2
(τ)2

)
(3.22)

where τ = xA − xB , and kernel hyper-parameters is given by Θ = {l, σf} = {5 · 10−2, 10−2}.
The GP prior is conditioned on observations to obtain a predictive distribution, consisting of
a predictive mean and covariance. The estimate of the predictive covariance fully describes the
modeling uncertainty distribution, as given by Definition 5. The observations are stored in dataset
D = {X,Y }, where X ∈ [0, 1]N and Y ∈ RN . The predictive distribution that is conditioned on
N observations, can be evaluated on a grid of points x ∈ [0, 1]M given by

p(f̂N (x)|X,Y,x) ∼ N (µŷ,Σŷ). (3.23)

The modeling uncertainty at the predictions is described by the zero-mean predictive distribu-
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0.1
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Case 1
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Case 2

Figure 3.7: Given a total of 10 observations, the dataset D1 ( ) and D2 ( ) has been plotted for Case
3.1 and 3.2 respectively. While the observations in D1 are at equidistant input locations, the observations
in D2 are drawn from a uniform distribution over the input space.
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(a) predictive distribution (3.23) given observations D1

( ), with mean µŷ ( ) and covariance Σŷ ( ).
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(b) predictive distribution (3.23) given observations D2

( ), with mean µŷ ( ) and covariance Σŷ ( ).
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(c) the PSD estimates for Case 3.1, Ŝl(ξl+) ( ), and for Case 3.2, Ŝl(ξl+) ( ). Additionally, the PSD function
of the zero-mean GP prior is plotted, denoted by S0(ξ+) ( )

Figure 3.8: Simulation results for N=20 observations: (a) predictive distribution is plotted for Case
3.1, (b) predictive distribution is plotted for Case 3.2, (c) the PSD estimates obtained from Monte
Carlo simulations in Algorithm 2. This simulation example shows the importance of the placement of
observations, which affects the level of uncertainty, and thus the PSD estimate.

tion, given by
p(ϵN (x)|X,Y,x) ∼ N (0,Σŷ). (3.24)

The number of observations, and the placement of observations affect the predictive covariance
Σŷ, and thus affect the modeling uncertainty distribution. To observe this relation, two cases are
considered:

Case 3.1: Observation of process y = f(x) are at equidistant input locations X1 ∈ [0, 1]N , res-
ulting in dataset D1 = {X1, Y1}.

Case 3.2: Observations of process y = f(x) are at random input locations X2 ∈ [0, 1]N , resulting
in dataset D2 = {X2, Y2}. The input locations are sampled form a uniform distribution

over the input space, i.e. the input locations X2 = [x2,1 x2,2 . . . x2,N ]
T

are sampled from
x2,1, x2,2, .., x2,N ∼ idd U(0, 1), without replacement3.

A PSD analysis is conducted for both cases, and the results are compared to evaluate whether
the placement of observations has any significant impact.

Comparison Case 3.1 and Case 3.2 for N=20

Given N=20 observations the datasets for both cases are shown in Figure 3.7. A PSD analysis to
measure the power spectrum of modeling uncertainties is performed in two steps.

3The term without replacement indicates that each draw from the uniform distribution can only be assigned
once. This ensures that every input location x2,1, x2,2, .., x2,N is unique
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(a) the PSD estimate Ŝl(ξl+) ( ) for varying amounts
of observations, with equidistant input locations (Case
3.1).
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(b) the PSD estimate Ŝl(ξl+) ( ) for varying amounts
of observations, with random input locations (Case
3.2).

Figure 3.9: Simulation results for a varying number of observations: (a) the PSD estimate of the mod-
eling uncertainty distribution is plotted for N = 0, 10, 20, 50, 100, (b) the PSD estimate of the modeling
uncertainty is plotted for N = 0, 10, 20, 50, 100.

The first step is to obtain a closed-form expression of the PSD function zero-mean GP prior.
The results obtained in Section 3.3.1, showed that using Corollary 1 the PSD function can be
obtained by Fourier transforming the kernel function of the GP prior. The second step is to
obtain a PSD estimate of the modeling uncertainty distribution. The results obtained in Section
3.3.2, showed that using Algorithm 2 a PSD estimate can be obtained of the modeling uncertainty
given by (3.24).

First, the PSD model of the zero-mean GP prior is computed. The single-sided4 PSD function
of this prior is given by

S0(ξ+) = 2F {k(τ)} = 2
(
σ2
f

√
π/n e−π

2ξ2+/n
)
, (3.25)

with n = (2l2)−1. The derivation of the Fourier transform is provided in Appendix B.6.
Second, the PSD estimate of the modeling uncertainty is computed using Algorithm 2. For

Algorithm 2 the input grid points are chosen to be x ∈ [0, 1]M , with M=1000 and with ∆x=1e-3.
The average of MC=1000 iterations results in the PSD estimate Ŝl(ξl) with frequency resolution
(M∆x)−1 = 1m−1. The single-sided PSD estimate is given by Ŝl(ξl+) = 2Ŝl(ξl).

For the datasets D1 and D2, given N=20 observations, a PSD analysis of the modeling uncer-
tainty is performed and presented in Figure 3.8. From these results the following conclusions can
be drawn:

• The PSD function S0(ξ+) shows an identical roll-off frequency compared to the PSD estimate
of the modeling uncertainty distribution Ŝl(ξl+). This roll-off frequency is fully governed by
the smoothness hyperparameter l of the kernel function.

• Case 3.1, which distributed the input locations at an equidistant grid, has substantially lower
PSD values at low frequencies than Case 3.2, which randomly sampled the input locations.

• The noise floor for both Case 3.1 and Case 3.2 is due to the additive Gaussian white noise.
The derivation of the PSD for additive Gaussian white noise is presented in Example 1. In
Figure 3.8c one can verify that the noise floor is equal to 2σ2

n∆x, that is for a single-sided
PSD.

4A single-sided PSD function represents the power spectral density of a signal only in the positive frequency
range ξ+ ∈ [0,∞). The total power is divided equally between the positive and negative frequency components,
thus the single-sided PSD S(ξ+) is twice the two-sided PSD function S(ξ), i.e. S(ξ+) = 2S(ξ)
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Figure 3.10: The total power Pt of the modeling uncertainty as a function of the number of observations,
for both Case 3.1 ( ∗ ), and Case 3.2 ( ∗ ). The total power is always lower than the signal variance σ2

f

of the GP prior ( ), and always larger than the additive Gaussian noise variance σ2
n ( ).

Comparison Case 3.1 and Case 3.2 for varying N

Here, Case 3.1 and Case 3.2 are compared for a varying number of observations N , that are
available to condition the GP prior. The PSD function is estimated in an equivalent manner as
done above, for the case where N=20.

The results are presented in Figure 3.9. Figures 3.9a and 3.9b show the PSD estimates for
a varying number of observations. In Figure 3.10 the total power of the modeling uncertainty is
compared as a function of the number of observations. From these results the following conclusions
can be drawn:

• When no observations are available (i.e. N = 0) the PSD estimate Ŝl(ξl+) obtained through
Algorithm 2 equals the PSD function of the zero mean GP prior S0(ξ+).

• Placing observations at equidistant input locations results in lower power Pt while requiring
a smaller number of observations N .

• The total power of the modeling uncertainty at zero observations equals the signal vari-
ance σ2

f . The total power converges towards the Gaussian white noise variance σ2
n as more

observations are added.

The hyperparameters of the kernel are optimized using empirical Bayes, briefly introduced in
Section 2.4.5. The results obtained for this simple example demonstrates that the hyperparameters
for a squared exponential kernel influence the spectral characteristics. For instance, the smoothness
parameter l affects the roll-off frequency, the signal variance σ2

f determines the maximum power,

and the sensor noise variance σ2
n establishes the minimum achievable power.

The subsequent section will take a step back to examine how a PSD estimation of modeling
uncertainties in sensor calibration can be utilized for error budgeting. Afterward, in Section 3.5,
both frameworks presented in this thesis are revisited to provide visual aid that demonstrates the
entire process of using GPR models for sensor calibration and error budgeting.

3.4 Error budgeting for modeling uncertainties in sensor
calibration

Modeling uncertainties in sensor calibration are primarily categorized as knowledge errors. As seen
in previous sections, Bayesian regression modeling uncertainties are depicted by a non-stationary
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Procedure 3 Temporal PSD estimation for arbitrary motions x(t)

1: Obtain an arbitrary motion x(t) as a function of time.
2: Use this motion to evaluate modeling uncertainties ϵ(x) as a function of time, given by
ϵ(x(t))→ ϵ(t)

3: Use Algorithm 2 to estimate a temporal PSD S(f), where input location grid x ∈ RM×D is
replaced by input time grid t ∈ RM .

predictive distribution, i.e. the modeling uncertainty varies over the position. The PSD models
S(ξ) obtained in previous sections have spatial frequency ξ (or ν). This property complicates the
inclusion of modeling uncertainties in the error budgeting frameworks like DEB, which require
temporal PSD models S(f) where the frequency component f has unit Hz.

Considering a non-stationary calibration error ϵ(x), one can define x(t) and compute a PSD
estimate. This can be done for two situations, when (i) x(t) is linear w.r.t time and (ii) for any
arbitrary motion x(t) w.r.t time. For both situations the conversion from spatial to temporal PSD
estimation is considered:

(i) For linear motions x(t) w.r.t time, a spatial PSD can also be scaled linearly. Define a scaling
parameter γ, which defines the linear relationship between the position x and time t, given
by x = γt. The spatial frequency can be transformed by the same scaling parameter to
obtain the temporal frequency:

f = γξ. (3.26)

Given this relation, a change of variables is used to transform a spatial PSD S(ξ) into a
temporal PSD S(f), given by

S(ξ)→ S((1/γ)f). (3.27)

(ii) For any arbitrary motion x(t) w.r.t. time, the PSD cannot be scaled in a straightforward
manner. A quick and practical solution is the transformation of a spatial PSD S(ξ), to a
temporal PSD using Procedure 3. Algorithm 2 will be utilized, but the spatial grid is now
replaced with a temporal or time grid t ∈ RM with sampling time ∆t.

In the context of sensor calibration, the input to my calibration model is an uncalibrated sensor
measurement yi(t), so x(t) −→ yi(t). The position measurement of a dynamical system is often
not perfectly linear, even in closed-loop situations. This implies that, for sensor calibration, the
second situation is more common, where it is assumed that yi(t) is arbitrary with respect to time.

The temporal PSD estimate Ŝl(fl), obtained for modeling uncertainties in sensor calibration,
can now be utilized in DEB.

3.5 A complete overview of sensor calibration through
Gaussian process regression

In the previous chapter and this chapter, two distinct frameworks involving GPR models are
introduced. This section aims to present a comprehensive overview of the relationships between
these frameworks and their respective connections. The present chapter emphasizes estimating
the PSD function, given specific Bayesian modeling uncertainties. The focus is on a calibration
procedure and how the strength of GPR models extends beyond cascaded calibration to also
encompass error budgeting of modeling uncertainties. A complete overview of sensor calibration
through GPR is provided in Figure 3.11.

The general overview provided here uses for simplicity general notations for a process that is
being estimated, i.e. the unknown non-linear (noisy) process y = f(x) + εn. When discussing
sensor calibration specifically, refer to Definition 1, which states that the sensor measurement yi
of a system i can be calibrated to a more accurate sensor measurement yj . This process can be
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Cascaded Sensor Calibration using Bayesian Regression ModelsChapter 2:

Budgeting of Bayesian Regression Modeling UncertaintiesChapter 3:

Section 2.4.5

maximize log marginal like-
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PSD function: S0(ξ) := F{k(τ)}

Figure 3.11: A complete overview of sensor calibration through GPR.

represented by a non-linear function defined as yj = fi→j(yi) + εn. So to apply this complete
framework to sensor calibration, the following changes in notation are performed:

the function becomes f(x) −→ fi→j(yi),

the input becomes x −→ yi

and the output becomes y −→ yj .

3.6 Conclusion

This chapter has demonstrated that modeling uncertainties in Bayesian regression can be repres-
ented by their PSD function. This framework can be applied to sensor calibration models and
subsequently play a pivotal role in error budgeting frameworks.

A comprehensive framework has been introduced, which shows accurate analysis and estima-
tion of the PSD function. This framework has been employed in a simple example, where PSD
estimation and analysis are illustrated for a Gaussian Process Regression model with a squared
exponential kernel.

This approach naturally extends to a dynamic error budgeting framework, capable of incor-
porating the PSD function into the total budget by examining how each PSD source propagates
through a control system. While an in-depth analysis of this process has not been presented, it is
evident that the framework outlined in this chapter yields accurate models that can be utilized in
such error budgeting frameworks.
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Chapter 4

Case Study: Cascaded Calibration
of Coarse Pointing Assemblies

This chapter provides a cascaded calibration procedure for CPAs designed and manufactured by
TNO. The cascaded calibration consists of a two-step calibration procedure: first a static calibra-
tion of the PTB using a theodolite which has highly accurate measurement, and second a dynamic
calibration of CPAs using the PTB. The calibration procedure will make use of the cascaded calib-
ration algorithm presented in Chapter 2. Given the structure of the expected calibration functions,
appropriate kernels will be chosen that make up the Gaussian process prediction models.

Before the calibration of CPAs can take place, the alignment procedure of the CPA and the
PTB is critical. Calibration by means of optical alignment between a test bench and a mechatronic
system requires an optical sensor that manages the alignment. This requires additional steps in
the calibration procedure.

In Section 4.1 the CPA and PTB both developed by TNO will be introduced. In Section 4.2
the calibration procedure will be discussed, where the optical alignment plays an important role.
The optical alignment between the CPA and the PTB is discussed in Section 4.3. Afterward, in
Section 4.4 a data-driven approach is provided to estimate the inverse optical kinematic behavior of
the aligned optical systems. In Section 4.5, the detailed cascaded calibration procedure (Chapter
2) for CPA position sensors is presented, featuring a 2DOF approach. Finally, in Section 4.6 a
conclusion is given on the results of this case study.

4.1 System characteristics

The calibration procedure of a CPA consists of three systems; a CPA, a PTB and a theodolite.
This section provides key characteristics of these systems, that enable choosing suitable kernel
functions. In this example, the assumption is made that the theodolite measurements are of
absolute accuracy.

Coarse pointing assembly

First observe the CPA in Figure 4.9a. This 2 degrees of freedom CPA has a periscope type design,
which enables a large field of regard. The rotation measurement around the azimuth axis is given
by ϕz, and the rotation measurement around the elevation axis is given by ϕx. The CPA is able
to reach a full hemisphere.

The rotation of these axes is performed by means of a switch reluctance motor, more detail
can be found in Appendix C.1. The rotation axis contains a high-permeable magnetic rotor with
an n amount of teeth. The magnetic flux variation over this rotor can be measured via Hall
sensors and is used to estimate the angle of the rotor. More information on how the angle of the
rotor is measured using a Hall encoder is explained in Appendix C.2. The measurement accuracy
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(a) coarse pointing assembly (CPA) (b) pointing test bench (PTB)

Figure 4.1: Schematic drawings of the degrees of freedom for the optical systems. The azimuth rotation
measurement for the CPA and PTB is given by ϕz and θz respectively. The elevation rotation measurement
for the CPA and PTB is given by ϕx and θx respectively.

using Hall encoders is often relatively poor. This can be attributed to several factors, including
incorrect tooth geometry and tooth pitch, improper lateral or vertical placement of Hall sensors,
and magnetic hysteresis in rotor teeth.

The position dependent inaccuracies of the Hall encoder denoted by η(ϕi) with i ∈ {x, z}, can
be distinguished in two categories:

• low repeating position-dependent sensor inaccuracies ηL(ϕi), which have periodicity given
by, ηL(ϕi + 2πi) = η(ϕi)

• high repeating position-dependent sensor inaccuracies ηH(ϕi), which are repeated over the
teeth of the rotor. Given the rotor has n teeth, the periodicity can be defined by,
ηH(ϕi +

2π
n ) = ηH(ϕi). This is assuming the rotor has identical teeth. Appendix C.3 shows

measurement data for measurement on an experimental single-dimensional CPA, where high
repeating position-dependent sensor inaccuracies are observed.

The total sensor inaccuracy ηϕi for a Hall encoder measurement ϕi, is described by,

ηϕi = ηH(ϕi) + ηL(ϕi, ϕj) ∀ i, j ∈ {x, z}| i ̸= j. (4.1)

The significance of the expected structure for position-dependent inaccuracies is important
when selecting an appropriate kernel function for GPR models. Additionally, it is worth noting
that the periodicities in ηi(ϕ) can be seamlessly integrated into the kernel functions.

Pointing test bench

The schematic drawing of the PTB is given in figure 4.9b. It consists of two rotation stages, a large
azimuth stage that measures a rotation θz and a smaller elevation stage that measures a rotation
θx. In [6] it is shown that the calibration onto the theodolite was performed using a combination
of a lookup table and a parametric model containing a sum of sines. There exists only low-rate
position-dependent inaccuracies denoted with ηL(θi) with i ∈ {x, z}.

The total sensor inaccuracy ηθi for sensors measuring θi can be described by,

ηθi = ηL(θi, θj) ∀ i, j ∈ {x, z}| i ̸= j. (4.2)

The design requirements and main specification of the PTB can be found in Appendix [6].
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4.2 Calibration procedure

Recall the motivating example provided in the introduction, where Figure 1.3 showed an overview
of the cascaded calibration procedure. Section 2.4 showed that a cascaded calibration via test bed
can be performed via a two-stage regression problem, described in Procedure 1. As an extension
to this procedure and the results obtained in previous chapters, this chapter introduces a 2DOF
cascaded calibration procedure.

The three position sensors in this cascaded calibration are numbered, where the CPA Hall
encoders are S1, the PTB encoder are S2 and the theodolite is S3. The sensors measure the
angular position in radians. The cascaded calibration of the CPA Hall encoders requires two
calibration procedures and a single alignment procedure:

1. Static calibration of the pointing test bench onto a highly accurate theodolite. This calib-
ration is expensive and is limited in the number of datapoints that can be measured. For a
2DOF calibration procedure, two separate processes are defined, each for one axis given by

θt,z = f2→3,z(θ),

θt,x = f2→3,x(θ),
(4.3)

where θt,z ∈ [0, 2π) and θt,x ∈ [0, 2π) are the theodolite measurements in azimuth and
elevation respectively, θ = [θz, θx]

T ∈ R2 is the PTB measurement in both dimensions.
The mapping functions can be expressed as f2→3,i(θ) = θi + ηθi , i ∈ {z, x}, which can be
recalled from (2.4). The position-dependent inaccuracies ηθi in the PTB z-stage and x-stage
measurement is defined by (4.2).

Obtain data-set D2,i = {Θ̄, Θ̄t,i}, where Θ̄ = [θ̄1 θ̄2 . . . θ̄N2
]T ∈ RN2×2 and Θ̄t,i ∈ RN2

are discrete measurements on the PTB and the theodolite respectively, used for training the
GPR model. Finally, estimate both processes given by

θ̂t,i = f̂2→3,i(θ), for i ∈ {z, x}. (4.4)

2. Optical alignment of the CPA with the PTB, is discussed in Section 4.3. Additionally, data-
driven estimation of the optical kinematics is provided in Section 4.4, which enables active
optical alignment.

3. Dynamic calibration of the CPA onto an already calibrated PTB. Obtaining datapoints is
inexpensive and can be done dynamically. The processes being estimated are given by

θt,z = f1→3,z(ϕ),

θt,x = f1→3,x(ϕ),
(4.5)

where ϕ = [ϕz, ϕx]
T ∈ R2 is the Hall encoder measurement of the CPA orientation. The

mapping functions can be expressed as f1→3,i(ϕ) = ϕi + ηϕi
, i ∈ {z, x}. The position-

dependent inaccuracies ηϕi
of the Hall encoder in z-axis and x-axis is defined by (4.1). The

CPA Hall encoders cannot be calibrated directly onto the theodolite measurements, which
has been the main reason for developing a cascaded calibration procedure that can do this
indirectly efficiently.

Obtain data-set D1 = {Φ̄, Θ̄}, where Φ̄ = [ϕ̄1 ϕ̄2 . . . ϕ̄N1 ]
T ∈ RN1×2 are discrete measure-

ments on the CPA and Θ̄ ∈ RN1×2 are discrete measurements on the PTB. The estimated
process given by (4.4) is used to transform data-set D1 into two virtual data-sets given by

D′
1,i = {Φ̄, f̂2→3,i(Θ̄)}. Finally, using the virtual data-sets, estimate both processes given

by
θ̂t,i = f̂1→3,i(ϕ), for i ∈ {z, x}. (4.6)

The cascaded calibration procedure, which consists of the first and third step of the entire calib-
ration procedure, is given in Section 4.5. Before this, attention is put on the optical alignment
between the CPA and PTB optical systems. This is necessary to obtain data-set D1, mentioned
in third step of the calibration procedure.
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Figure 4.2: This is a schematic representation of the optical alignment between the CPA and PTB
optical systems. The orientations in this schematic represents the initial orientation, where the angles are
zero. The rotational degrees of freedom of the CPA, are given by ϕz and ϕx for the azimuth and elevation
rotation respectively. The rotational degrees of freedom of the PTB are given by θz and θx for the azimuth
and elevation rotation respectively. The difference in orientation between the optical systems is detected
on the OPS via the receiving beam Rx.

4.3 Active optical alignment

The optical alignment between the CPA is governed by a laser source and an optical position sensor
(OPS). The difference in orientation between the CPA and PTB can be evaluated using the OPS
reading. Therefore, it is essential to convert the OPS reading into a meaningful delta orientation
value, representing a difference between the true CPA angle and the true PTB angle. In this
context, optical kinematics play a crucial role, and it is vital to determine them appropriately.

First, Section 4.3.1 describes the process of aligning the systems using an OPS. Second, in
Section 4.3.2 more intuition is provided for the behavior of the optical kinematics. In Section
4.3.3 the invertibility of the optical kinematic model is analyzed. Finally in Section 4.3.4 two
configurations are provided which enable active optical alignment between the CPA and PTB.

4.3.1 Optical alignment

The laser source transmits a laser-bundle (Tx) at an arbitrary location, the pointing direction is
fixed and given by unit vector uTx. The PSD receives a laser-bundle (Rx) at a unit direction
given by uRx. Figure 4.2 visualizes the optical path during alignment.

The OPS measures the precise location of the laser beam at the sensor’s surface. The OPS
returns the coordinates xops and yops of the light spot. A schematic visualization of the OPS
sensor measuring the location of the laser beam spot is shown in Figure 4.3. An OPS reading
at the origin, means that the CPA and PTB are aligned. In other words an OPS reading given
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xops

yops

Figure 4.3: Schematic representa-
tion of the OPS surface, where the
Rx-beam ( ) lands.

Gopt(φ
∗)

θ∗ xops, yops

φ∗

− ∆θ∗ +

εopt

Figure 4.4: The optical gain function Gopt(ϕ
∗) transforms a

difference in true orientation ∆θ∗ to an OPS reading xops, yops.

by xops, yops = 0 implies that the orientation of the CPA and PTB are approximately equal in
true position, i.e. ϕ∗ ≈ θ∗, where ϕ∗ ∈ R2 is the true orientation of the CPA, and θ∗ ∈ R2 is the
true orientation of the PTB. Note that in the case of xops, yops = 0, the additive white noise in
the OPS measurements and any disturbances in the optical path contribute to a misalignment in
true position. This phenomenon is already explained in Figure 2.2 using a visual illustration for
a single-dimensional example. The alignment between the CPA and PTB can be maintained by
actively controlling the CPA or the PTB, such that the OPS reading stays at the origin.

The relationship between the OPS reading and the orientation of the optical systems can be
described by the schematic shown in Figure 4.4. As the focus is on small orientation differences,
the optical gain is considered to be linear in ∆θ∗. In this schematic, the optical gain function
Gopt(ϕ

∗) : R2 → R2 transform a difference in true orientation ∆θ∗ ∈ R2 to the OPS reading
[xops, yops]

T ∈ R2, given by xops
yops

 = Gopt(ϕ
∗)∆θ∗ + εopt, (4.7)

where ∆θ∗ = θ∗−ϕ∗ ∈ R2 and εopt describes the sensor noise and any disturbances in the optical
path.

For active optical alignment, the objective is to obtain the inverse kinematic model. This can
be achieved by first determining the forward kinematic model, linearizing this model, and then
inverting the model to find the inverse kinematic behavior. The forward kinematics of the optical
alignment are detailed in Appendix D. Although the forward kinematics are thoroughly explained,
determining the inverse kinematics using the mentioned method can be challenging in practice.
This is due to its time-consuming nature and the need to identify numerous geometrical constants
to accurately model the forward kinematic model. Instead, this thesis presents a data-driven
approach to obtain an estimate of the inverse kinematic model directly.
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Figure 4.5: Here the OPS reading, given by xops, yops ( ), is determined for each principle case A-D.
These principle cases show that the optical kinematic behaviour differs significantly for varying orientations
of the optical systems. For case B the position and orientation of the optical systems is visualized in Figure
4.6, at four different angles ϕ∗

z denoted with B1-B4. The OPS reading in principle case C shows two periods
and crosses twice through the origin.

4.3.2 Optical kinematic behaviour

The optical kinematics is governed by the optical gain function that depends on the true CPA
orientation ϕ∗. This section provides more insight into the behavior of the optical kinematics.
In total, four principal cases will be considered, for which the forward kinematics model will be
evaluated:

A: ϕ∗ = {(ϕ∗z, ϕ∗x) | 0 ≤ ϕ∗z ≤ 2π, ϕ∗x = 0}, ∆θ∗z = 10−2, ∆θ∗x = 0

B: ϕ∗ = {(ϕ∗z, ϕ∗x) | 0 ≤ ϕ∗z ≤ 2π, ϕ∗x = 0}, ∆θ∗z = 0, ∆θ∗x = 10−2

C: ϕ∗ = {(ϕ∗z, ϕ∗x) | ϕz = 0, 0 ≤ ϕ∗x ≤ 2π}, ∆θ∗z = 10−2, ∆θ∗x = 0

D: ϕ∗ = {(ϕ∗z, ϕ∗x) | ϕ∗z = 0, 0 ≤ ϕ∗x ≤ 2π}, ∆θ∗z = 0, ∆θ∗x = 10−2

For each principal case, the OPS reading is plotted in Figure 4.5, showing four different circular
motions. This demonstrates the effect of the optical gain function and its dependence on the true
CPA orientation.

Each case shows a spiral pattern with a single period, except for case C. This is an exception
and complicates the kinematics. At angles {ϕ∗x, θ∗x} = {1/2π, 1/2π}, a singular point is reached.
In this specific orientation, the CPA elevation axis ϕ∗x points towards zenith, i.e. it points directly
upwards. Notably, in this orientation, any variations in ∆θ∗z do not result in changes to the OPS
reading xpsd, ypsd. The same phenomenon is present at angles {ϕ∗x, θ∗x} = {3/2π, 3/2π}, i.e. when
facing downwards.

For case B, the system orientations at four points have been schematically visualized in Figure
4.6, which provides more visual representation. Here, the PSD measurement makes a circular
motion as the optical systems rotate, while the difference in orientation remains a positive constant,
given by ∆θ∗ = [10−2, 0].
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Figure 4.6: Four different orientations in case B, given by ϕ∗
z = {0, 1/2π, π, 3/2π} = {0◦, 90◦, 180◦, 270◦}.

The PSD reading makes a circular motion for a constant difference in elevation angle ∆θ∗x between the
systems.

The inverse kinematics are required to enable active optical alignment between the optical
systems. The following section will discuss the existence and uniqueness of the inverse optical
kinematic model.

4.3.3 Invertability of the optical kinematics

Now that the optical forward kinematics have been defined, the existence of the optical inverse
kinematics will be examined. It is assumed that an analytical expression for the forward kinematic
model is not available, so the existence of the inverse kinematic model must be determined by
acquiring data. First, the linearization against ∆θ∗ in the forward kinematics model is validated.
At various orientations ϕ∗, data is made available that demonstrates a linear relationship between
xops and yops. The optical gain function can be written as a square matrix given by

Gopt(ϕ
∗) =

g11(ϕ∗) g12(ϕ
∗)

g21(ϕ
∗) g22(ϕ

∗)

 , (4.8)
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Figure 4.7: This image shows the linear behaviour of the optical gain function as a function of the CPA
orientation for ϕ∗

x, ϕ
∗
z = {0, 1/2π, π, 3/2π}, with g11(ϕ∗) ( ), g12(ϕ

∗) ( ), g21(ϕ
∗) ( ) and g22(ϕ

∗) ( ).
At the singular points ϕ∗

x = 1/2π and ϕ∗
x = 3/2π, which are highlighted in the figure ( ), the optical

gain function loses a single rank, and the matrix in (4.8) is thus singular. The highlighted graphs show
that at least three out of four optical gains are zero, which proves the loss of rank.

which results in the optical kinematic model given by

xops = g11(ϕ
∗)∆θ∗z + g12(ϕ

∗)∆θ∗x,

yops = g21(ϕ
∗)∆θ∗z + g22(ϕ

∗)∆θ∗x.
(4.9)

In Figure 4.7, it can be seen that at ϕ∗x = 1/2π and ϕ∗x = 3/2π, the optical gain matrix in (4.8)
is singular. This can be seen by observing that at a CPA orientation given by ϕ∗z = 3/2, ϕ∗x = 1/2π,
three out of four optical gains g11, g12, g21 are zero. The singularity of a matrix can be proven by
determining its determinant. For the optical gain matrix, the determinant is given by

det (Gopt) = g11(ϕ
∗)g22(ϕ

∗)− g12(ϕ∗)g21(ϕ∗). (4.10)

The determinant of this matrix at the singular point equals zero. To prove uniqueness for
the inverse kinematic behavior, the determinant of Gopt needs to be non-zero for all ϕ∗. Figure
4.8 shows the determinant of the optical gain matrix as a function of the CPA orientation. It
can indeed be observed that at the singular points, the determinant is equal to zero. The inverse
optical kinematic model can be described by the inverse optical gain function, which is given by
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Figure 4.8: The determinant for the optical gain matrix as a function of the true CPA orientation ϕ∗.
At the elevation angles ϕ∗

x = 1/2π and ϕ∗
x = 3/2π the determinant is zero ( ).

Fopt(ϕ
∗) =

f11(ϕ∗) f12(ϕ
∗)

f21(ϕ
∗) f22(ϕ

∗)


=

1

det (Gopt)

 g22(ϕ
∗) −g12(ϕ∗)

−g21(ϕ∗) g11(ϕ
∗)

 (4.11)

Here, Fopt(ϕ
∗) : R2 → R2 is the inverse optical gain function that converts an OPS reading

into a difference in orientation, given by

∆θ∗z = f11(ϕ
∗)xops + f12(ϕ

∗)yops

∆θ∗x = f21(ϕ
∗)xops + f22(ϕ

∗)yops
(4.12)

A unique inverse kinematic model holds everywhere except for the singular points where det (Gopt)
is equal to zero.

4.3.4 Controlling the optical alignment

The optical alignment can be actively maintained by adjusting the orientation of the optical
systems such that the beam spot on the PSD surface stays at the center, i.e. [xops, yops]

T = [0, 0]T

or [∆θ∗z ,∆θ
∗
x]
T = [0, 0]T .

The previous section demonstrated that the forward optical kinematic model is a function of
the true orientation of the CPA. The inverse kinematic model was also introduced in (4.12), which
transforms an OPS reading xops, yops, into an estimation of the difference in true orientation ∆θ∗.
In practice, onboard sensors on the CPA and PTB are used to obtain ϕ and θ, which contain
position-dependent inaccuracies ηϕ and ηθ as described in Section 4.1.

There are two configurations in order to actively stabilize the optical alignment:

• PTB: slave, CPA: master.
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Figure 4.9: Two configurations to stabilize the optical alignment. In (a) the PTB is actively maintaining
the optical alignment, where Lptb and Sptb the PTB open-loop transfer function and the PTB sensor
respectively. In (b) the CPA is actively maintaining the optical alignment, with Lcpa and Scpa the CPA
open-loop transfer function and the CPA sensor respectively.

• PTB: master, CPA: slave,

The slave actively maintains the optical alignment, while the master can move freely. The
feedback control diagram for both configurations is provided in Figure 4.9. The expected speed
and acceleration are anticipated to be lower on the larger and heavier PTB compared to the
CPA. Thus, the second configuration is deemed more reasonable for optical alignment. These
configurations demonstrate that an estimate of the inverse kinematic model F̂ (ϕ) is used, which

transforms an OPS reading xops, yops into an estimate of the difference in true orientation ∆θ̂.

The estimation of the optical inverse kinematics is crucial for active optical alignment. Optical
alignment ensures that the true orientation of both optical systems is equal, enabling sensor
calibration. This thesis focuses on the estimation of the optical inverse kinematics using GPR
models. Although many other estimation methods exist, GPR modeling is employed in this work
to provide more intuition into the multi-dimensional capabilities and varying model structures for
GPR modeling.

4.4 Data-driven estimation of the inverse optical kinematics

In this section, the data-driven estimation of the optical kinematics is presented for the optical
setup shown in Figure 4.2. A regression problem is defined and solved using multi-dimensional
GPR. The data is generated via the forward kinematic model provided in Appendix D. It is
assumed that the geometric parameters defined in this kinematic model are unknown. To simplify
the regression problem, it is also assumed that the sensor measurements of the optical systems do
not contain any position-dependent inaccuracies, i.e. ϕ ≈ ϕ∗ and θ ≈ θ∗.

First in Section 4.4.1 a procedure is described to obtain a data-set. In Section 4.4.2 the
objective function and the regression problems are defined. Afterward, the GPR prediction models
are defined in Section 4.4.3. These GPR models have a four-dimensional input space, and thus
the model structure is crucial for accurate modeling of this process. The GPR model structure
and the choice for the kernel function are provided in Section 4.4.4. Section 4.4.5 explains the
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Step 2: Pertubate the PTB

choose a set of orientations φ

true orientation is equal to φ∗ = φ+ ηφ

manually align the systems at these
orientations, i.e. ∆θ∗ = θ∗ − φ∗ = 0

Step 1: Choose CPA Orientation

fix φ, and pertubate θ to induce a
difference in orientation ∆θ �= 0

measurements xops, yops will diverge
from the origin

Step 3: Save Measurement Data

obtain dataset:

estimate the inverse optical kinematic
regression model ∆θ̂ = F̂ (φ)[xops, yops]

T

D = {φk, xops,k, yops,k,∆θk}
N
k=1

Figure 4.10: A three-step procedure to obtain a data-set used to estimate a regression model for the
inverse optical kinematics.

procedure for hyperparameter optimization for multi-dimensional processes. Finally in Section
4.4.6 simulation results are provided for the estimation of the inverse optical kinematics.

4.4.1 Obtaining measurement data for optical kinematic model estim-
ation

This section briefly describes the procedure for obtaining a data-set that will be used to find the
inverse kinematic model. The procedure consists of three steps and is schematically visualized in
Figure 4.10. The following steps are required:

1. Select the CPA orientations for data acquisition. At these locations, manually align the
PTB with the CPA by finding the angles ϕ and θ at which the OPS reads zero values. By
aligning the systems, it is ensured that the true orientation of the CPA and PTB is equal,
i.e., ∆θ∗ = θ∗ − ϕ∗ = 0.

2. Perturb the PTB to induce a difference in orientation ∆θ between the systems.

3. Save the measurement data to a data-set D = {ϕk, xops,k, yops,k,∆θk}Nk=1 and estimate a

regression model F̂opt(ϕ). This regression model can be used to actively align the optical
systems as shown in Figure 4.9.

The effects of sensor inaccuracies on the estimation of the inverse kinematic model will not be
discussed in this section. It is assumed for this example that the sensor measurements contain no
inaccuracies by stating ηϕ, ηθ = 0, or equivalently by stating ϕ ≈ ϕ∗ and θ ≈ θ∗. The following
section introduces the regression problem, where the data-set obtained through this procedure can
be utilized.

4.4.2 Regression problem for optical kinematics

The respective xpsd and ypsd locations on the PSD surface, can be parameterized by the CPA
orientation ϕ and the difference in orientation ∆θ. The optical kinematic model is described by

∆θz = Fopt,z(ϕ, xpsd, ypsd),

∆θx = Fopt,x(ϕ, xpsd, ypsd).
(4.13)

Given data-set Di = {zk,∆θi,k}Ni

k=1, where zk = {ϕk, xpsd,k, ypsd,k}, where i ∈ {z, x}, both func-

tions in (4.13) can be estimated. To find a model estimate ∆θ̂i = F̂opt,i(zk),∀i ∈ {z, x}, regression
problems can be defined given by

β⋆z = argmin
βz

Nz∑
k=1

(
F̂opt,z(zk, βz)− Fopt,z(zk)

)2
+ λ ∥βz∥2 ,

β⋆x = argmin
βx

Nx∑
k=1

(
F̂opt,x(zk, βx)− Fopt,x(zk)

)2
+ λ ∥βy∥2 ,

(4.14)

where β⋆z and β⋆x are the optimal model parameters.
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4.4.3 Gaussian process regression for optical kinematic estimation

Here the GPR predictive equations are provided for the inverse kinematic model. The inverse
kinematic model is given by two processes given by ∆θi = Fopt,i(z), i ∈ {z, x} in (4.13), where
the GP prior of the inverse kinematic process is given by,

Fopt,i(z) ∼ GP(m(z), k2(zA, zB)). (4.15)

Given the data-set D = {z̄k,∆θ̄k}Nk=1, where z̄k = {ϕ̄k, x̄psd,k, ȳpsd,k}, the likelihood is given by

p(∆Θ̄i|Z̄, βi) ∼ N
(
Fopt,i(Z̄, βi),ΣΘ̄i

)
, (4.16)

where Z̄ =
[
z̄1 z̄2 . . . z̄N

]T
∈ RN×4 and Σ∆Θ̄i

= σ2
nI the covariance matrix of the observa-

tions. The predictive distribution for any arbitrary z ∈ RM becomes

p(F̂opt,i(z) | Z̄,∆Θ̄i) ∼ N
(
F̂opt,i(z), cov(F̂opt,i(z))

)
, where

∆θ̂i := E
[
F̂opt,i(z)

]
= m(z) + ki(z)

T
[
Ki +ΣΘ̄i

]−1
(∆Θ̄i −m(Z̄)),

cov(∆θ̂i) := cov(F̂opt,i(z)) = ki(z, z)− ki(z)T
[
Ki +ΣΘ̄i

]−1
ki(z),

(4.17)

4.4.4 Model structure for optical kinematic estimation

The model structure for multi-dimensional model structures is rather straightforward. Each input
dimension can be addressed by its own kernel function and corresponding hyperparameters. There
are thus many ways of constructing a kernel function for multi-dimensional processes. In Section
2.4.4 a model structure for a one-dimensional GPR model has been provided.

The inverse optical kinematic process as given by (4.13) has in total four input dimensions.
For each input dimension, a kernel function can be specified, and these can be combined in order
to describe the relationship and interaction between the multi-dimensional input and the output.
By carefully selecting and combining kernel functions, one can construct a GP prior model that
captures the underlying structure of the data, accounting for additional properties such as linearity,
periodicity, and smoothness [39].

In the four-dimensional input space of the inverse optical kinematic process, two different
kernels are employed to model the structure of the function Fopt,i. Specifically, a periodic kernel
for the first two input dimensions and a linear kernel for the third and fourth input dimensions.
A mask is applied to isolate the relevant dimensions for each kernel, by defining

mper(z) =
[
z1, z2

]
=
[
ϕz, ϕx

]
,

mlin(z) =
[
z3, z4

]
=
[
xpsd, ypsd

]
.

(4.18)

This kernel construction allows us to capture the unique characteristics of each input dimension,
such as periodicity in the first two dimensions and linear relationships in the third and fourth
dimensions. The combined kernel function is then defined as the product of the individual kernels
applied to their respective masked inputs, given by

ki(zA, zB) = kper(mper(zA),mper(zB))klin(mlin(zA),mlin(zB)) (4.19)

where the kernels kper(zA, zB) are a periodic kernel and klin(zA, zB) a linear kernel. These kernels
are defined by

kper(mper(zA),mper(zB)) :=

2∏
d=1

σ2
d exp

(
− 2

l2per,d
sin

(
π
|mper,d(zA)−mper,d(zB)|

p

))

:= σ2
f exp

(
−2

2∑
d=1

1

l2per,d
sin

(
π
|mper,d(zA)−mper,d(zB)|

p

))
,

klin(mlin(zA),mlin(zB)) := mlin(zA)
TP mlin(zB),

(4.20)
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Figure 4.11: The estimated inverse kinematic model queried at several points. The true inverse kinematic
model is also visualized ( ).

where P = diag(l2lin,1, l
2
lin,2), insinuating that the interaction between the linear components in

mlin(z) is assumed to be negligible. The periodic kernel has in total four hyperparameters, given
by the signal variance σ2

f , the period p, and smoothness parameters l2per,1, l
2
per,2.

4.4.5 Hyperparameter optimization

The hyperparameter optimization for multi-dimensional GPs is similar to one-dimensional pro-
cesses which are already provided in Section 2.4.5. However, the computational effort of the
optimization increases drastically for larger kernel functions. The hyperparameters for the inverse
kinematic model are given by Θi = {l2lin,1, l2lin,2, l2per,1, l2per,2, σ2

f}. The period p is fixed at 2π.

4.4.6 Simulation results

Here simulation results are presented for the estimation of the inverse optical kinematics. As pre-
viously stated the forward kinematic model is used to generate data. The geometrical parameters
that govern the behavior of the optical kinematic model are assumed to be unknown. The pre-
dictive distribution in (4.17) is evaluated at a grid of input locations z ∈ RM×D and visualized in
Figure 4.11. Similar to Figure 4.5 which visualized the forward kinematics in four separate cases,
here a similar approach is taken. Although, here, the OPS measurements are also varied, which
shows how the spiral pattern increases or decreases in size.

It is important to note that the GPR model does not take into account the singularities at
elevation angles ϕx = 1/2π and ϕ = 3/2π. This causes the GPR model to perform poor predictions
near these points.
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4.5 Cascaded calibration of Hall encoders

The cascaded calibration procedure has been thoroughly explained in Section 4.2. Here the GPR-
based cascaded calibration of the CPA Hall encoder is provided. This is assuming the second
step in this procedure, which involves the optical alignment of the PTB with the CPA, is already
accomplished.

First, in 4.5.1, the objective function and regression problems are defined for a 2-DOF calibra-
tion procedure of Hall encoders. Subsequently, in Section 4.5.2, the GPR models are introduced.
The model structure for these GPR models, including the choice for kernel and mean function,
is discussed in Section 4.5.3. Finally, in Section 4.5.4, simulation results of a calibration pro-
cedure are presented. The generated sensor inaccuracies are based on real data obtained from
experimental CPAs and the PTB calibration provided in [6].

4.5.1 Cascaded regression problem for coarse pointing assemblies

The 2DOF calibration procedure of the CPA Hall encoders naturally extends from the 1DOF
example in Section 2.4.2. The cost to be optimized can be defined separately for both degrees of
freedom, given by

min
β1,i,β2,i

Ji =


∫ 2π

0

(
f̂1→3,i (ϕ, β1,i)− f1→3,i(ϕ)

)2
dϕ

2π


1
2

, ∀i ∈ {z, x}. (4.21)

For each degree of freedom the cost function Ji is subject to two regression problems, given by

β⋆2,i = argmin
β2,i

N2,i∑
k=1

(
f̂2→3,i

(
θ̄k, β2,i

)
− f2→3,i

(
θ̄k
))2

+ λ ∥β2,i∥2 ,

β⋆1,i = argmin
β1,i

N1,i∑
k=1

(
f̂1→3,i

(
ϕ̄k, β1,i

)
− f̂2→3,i

(
θ̄k, β

⋆
2,i

))2
+ λ ∥β1,i∥2 ,

(4.22)

The overline in θ̄ signifies that it represents discrete PTB measurement data utilized for calibrating
the PTB sensors. The additional underline in θ̄ serves to differentiate that the PTB measurement
data is acquired specifically for the calibration of the Hall encoder.

4.5.2 Gaussian process regression for 2DOF CPAs

The regression problems discussed in previous sections are addressed through GPR models, which
extend the 1DOF example presented in Section 2.4.3. Initially, a first-stage regression problem is
tackled to calibrate the PTB sensors using theodolite measurements. Assuming optical alignment
between the PTB and CPA has already been established, the process continues with a virtual
regression that calibrates the CPA Hall encoders.

Calibration of the PTB sensors

The calibration of the PTB sensors serves as a first-stage regression. The processes being estimated
are given by (4.3). The GP priors are defined as

f2→3,i(θ) ∼ GP(m2,i(θ), k2,i(θA, θB)), i ∈ {z, x}. (4.23)

Given the data-set D2,i = {Θ̄, Θ̄t,i}, the likelihood is given by

p(Θ̄t,i|Θ̄, β2,i) ∼ N
(
f2→3,i(Θ̄, β2,i),ΣΘ̄t,i

)
, (4.24)
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where ΣΘ̄t,i
∈ SN2

++, the covariance matrix of the theodolite observations. The predictive distribu-

tion for any arbitrary measurements θ ∈ RM2×2 becomes

p(f̂2→3,i(θ) | Θ̄t,i|Θ̄) ∼ N
(
f̂2→3,i(θ), cov(f̂2→3,i(θ))

)
, where

θ̂t := E
[
f̂2→3,iθ)

]
= m2,i(θ) + k2,i(θ)

T
[
K2,i +ΣΘ̄t,i

]−1

(Θ̄t,i −m2,i(Θ̄)),

cov(θ̂t) := cov(f̂2→3,i(θ)) = k2,i(θ,θ)− k2,i(θ)T
[
K2,i +ΣΘ̄t,i

]−1

k2,i(θ),

(4.25)
where k2,i(θ) := k2,i(Θ̄,θ) = k2,i(θ, Θ̄)T ∈ RN2×M2 and K2,i := k2,i(Θ̄, Θ̄) ∈ RN2×N2 . The mean

prediction θ̂t,i := E[f̂2→3,i(θ)] maps any given measurements θ into an estimate of the measure-

ment θt,i. The uncertainty of the predictions, i.e. the covariance estimate cov(f̂2→3,i(θ)), will be
utilized in the following virtual regression problem regarding the CPA Hall encoder calibration.

Calibration of the CPA Hall encoders

The processes that we are trying to estimate for the CPA hall encoder are given by (4.5). The
GP prior is defined as

f1→3,i(ϕ) ∼ GP(m1,i(ϕ), k1,i(ϕA, ϕB)). (4.26)

A data-set D1 = {Φ̄, Θ̄} is measured, and transformed into a virtual data-sets D′
1,i = {Φ̄, Θ̂t,i},

where Θ̂t,i := f̂2→3,i(Θ̄). The likelihood is given by

p(Θ̂t,i|Φ̄, β1,i) ∼ N
(
f1→3,i(Φ̄, β1,i),ΣΘ̂t,i

)
. (4.27)

The likelihood covariance ΣΘ̂t,i
is fully described by the model uncertainty cov(f̂2→3,i(Θ̄)), i.e

Θ̂t,i := [f̂2→3,i(θ̄1), . . . , f̂2→3,i(θ̄N1
)]⊤,

ΣΘ̂t,i
:= cov(f̂2→3,i(Θ̄)).

(4.28)

The predictive distribution for any arbitrary measurements ϕ ∈ RM1×2 becomes

p(f̂1→3,i(ϕ) | Φ̄, Θ̄) ∼ N
(
f̂1→3,i(ϕ), cov(f̂1→3,i(ϕ))

)
, where

θ̃t,i := E
[
f̂1→3,i(ϕ)

]
= m1,i(ϕ) + k1,i(ϕ)

T
[
K1,i +ΣΘ̂t,i

]−1

(Θ̂t,i −m1,i(Φ̄)),

cov(θ̃t,i) := cov(f̂1→3,i(ϕ)) = k1,i(ϕ,ϕ)− k1,i(ϕ)T
[
K1,i +ΣΘ̂t,i

]−1

k1,i(ϕ),

(4.29)
where k1,i(ϕ) := k1,i(Φ̄,ϕ) = k1,i(ϕ, Φ̄)

T ∈ RN1×M1 and K1,i := k1,i(Φ̄, Φ̄) ∈ RN1×N1 . The

mean prediction f̂1→3,i(ϕ) := E[f̂1→3,i(ϕ)] maps any given measurements ϕ into an estimate of
the measurement θt,i. The following sections discuss the choices for appropriate kernels and mean
functions given the information in Section 4.1 regarding the system characteristics.
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4.5.3 Model structure and hyperparameter optimization

The PTB and CPA system characteristics in Section 4.1 offer valuable insights into the expected
sensor inaccuracies. This information enables the selection of an appropriate kernel capable of
accurately modeling these inaccuracies.

Section 2.4.4 presents the idea that, for sensor calibration purposes, the mean function can be
chosen as the input of the GPR model. The mean functions in the cascaded calibration model are
given by

m2,i(θ) = θi,

m1,i(ϕ) = ϕi.
(4.30)

The kernels then assumes full responsibility for modeling the behavior of the sensor inac-
curacies. The PTB system characteristics reveal that the inaccuracies exhibit periodicity over an
entire rotation around the axis. These errors, referred to as low-repeating errors ηL, can fully
describe the PTB position-dependent inaccuracies for both stages ηθi , as given by (4.2). The
kernel functions k2,i for the process described by (4.3) are expressed as

k2,i(θ) = kper,i(θ)

= σ2
f exp

−2 2∑
j=1

1

l2per,j
sin

(
π
|θj,A − θj,B |

p

) , with p = 2π,
(4.31)

where l2j is the smoothness parameter for j ∈ {z, x}, and σ2
f is the signal variance. The periodicity

of the periodic kernel remains fixed at 2π.

The CPA system characteristics reveal that the Hall encoder relies on flux variation over the
teeth to determine the rotor position. This introduces high-repeating position-dependent sensor
inaccuracies, as indicated in (4.5). The kernel functions are chosen as a product of two kernels: one
for high-repeating inaccuracies and one for low-repeating inaccuracies. These kernels are expressed
as

k1,i(ϕ) = kper,H,i(ϕ) ∗ kper,L,i(ϕ)

= σ2
f,H exp

(
−2

l2per,H,i
sin

(
π
|ϕi,A − ϕi,B |

pH

))
·

σ2
f,L exp

−2 2∑
j=1

1

l2per,L,j
sin

(
π
|ϕj,A − ϕj,B |

p

) ,

(4.32)

with the low-repeating and high-repeating periods fixed at p = 2π and pH = 2π/n, where n
represents the number of teeth on the CPA rotor. High-repeating position-dependent inaccuracies
are present only on the axis being calibrated. To offer more insight, consider the process given
by θt,z = f1→3,z(ϕ), which takes both ϕz and ϕx as inputs. This process can be described by
f1→3,z(ϕ) = ϕz + ηϕz

. From (4.1), the inaccuracy of the CPA Hall encoder in the z-axis is given
by ηϕz

= ηH(ϕz) + ηL(ϕ), where the high-repeating inaccuracies only consider ϕz.

Equivalent to Sections 2.4.5 and 4.4.5, the hyperparameters for each kernel k1,z, k1,x, k2,z and
k2,x can be optimized through the maximization of its corresponding log marginal likelihood.

56 Enhancing Sensor Calibration through Gaussian Process Regression



CHAPTER 4. CASE STUDY: CASCADED CALIBRATION OF COARSE POINTING ASSEMBLIES

4.5.4 Simulation results

The GPR algorithm for cascaded calibration of the 2DOF CPA is tested in simulation. As stated
previously, this simulation is based in experimental results obtained on a prototype 1DOF CPA in
Appendix C. The position-dependent sensor inaccuracies as described by Section 4.2 are randomly
generated. The position-dependent inaccuracies for the PTB sensors are given by

ηθi(θz, θx) =

N2,L∑
k=1

(
cL,i,k
k3

sin(kϕz) +
dL,i,k
k3

cos(kϕz)

)N2,L∑
k=1

(
cL,i,k
k3

sin(kϕx) +
dL,i,k
k3

cos(kϕx)

)
.

(4.33)
The position-dependent inaccuracies for the CPA Hall encoder are defined by,

ηϕi
(ϕz, ϕx) =

N1,H∑
k=1

(aH,i,k sin(k · n · ϕi) + bH,i,k cos(k · n · ϕi))+

N1,L∑
k=1

(
aL,i,k
k3

sin(ϕz) +
bL,i,k
k3

cos(ϕz)

)N1,L∑
k=1

(
aL,i,k
k3

sin(ϕx) +
bL,i,k
k3

cos(ϕx)

)
+ ηθi .

(4.34)

The constants used to generate the PTB inaccuracies in (4.33) are given by:

• aL,z, aL,x, bL,z, bL,x ∼ N (0, 2.5 · 10−3),

• N2,L = 3.

Samples for ηθz and ηθx , that are generated from these constants, are visualized in Figure 4.12.
Similarly the constants for the CPA Hall encoder inaccuracies in (4.34) are given by:

• aH,z, aH,x, bH,z, bH,x ∼ N (0, 10−4),

• aL,z, aL,x, bL,z, bL,x ∼ N (0, 2.5 · 10−3),

• N1,L = 1, N1,H = 3,

• the number of teeth n = 4.

The samples ηθz and ηθx , that are generated from these constants, are visualized in Figure 4.13.
The theodolite, and PTB sensor, CPA Hall encoder measurements are given by

θt,i = θ∗t,i − εn,
θi = θ∗i − ηθi ,
ϕi = ϕ∗i − ηϕi ,

(4.35)

Figure 4.12: The position-dependent inaccuracies of the PTB sensors in both z-stage and x-stage, θz
and θx respectively. The data-set that is obtained to calibrate the PTB is visualized and given by D2,z

( , left) and D2,x ( , right).
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Figure 4.13: The position-dependent inaccuracies of the CPA Hall encoder in both azimuth and elevation
axis, ϕz and ϕx respectively. The virtual data-sets D′

1,z and D′
1,z will be used to find a regression model.

Note that, due to the size of the data-sets, they have not been visualized in the respective figure.

where i = {z, x}, and it is assumed the systems are perfectly aligned, i.e. the true orientations are
equal θ∗t = θ∗ = ϕ∗ The additive sensor noise is given by σ2

n ∼ N (0, 10−6), which originates from
the theodolite measurements.

Given datasets D2,z, D2,z, D′
1,z, and D′

1,z, the cascaded GPR model in Section 4.5.2 is employed
for Bayesian inference. The first-stage regression, due to its limited quantity of data, exhibits high
uncertainty in its predictions. This uncertainty is attributed to the expensive and time-consuming
nature of calibration using the theodolite. The data-sets for calibration of the PTB sensors consist
of a have size N2 = 25, while the virtual data-set for calibration of the CPA Hall encoder is given
by N1 = 6400. For simplicity, the data-sets for z- and x-orientation have been chosen to be equal.
The GPR models, for the z-axis only, in (4.25) and (4.29) are queried for two different inputs,
given by

1. a pure motion in z-axis, or azimuth rotation,

2. and a diagonal motion through equal steps in both z-axis and x-axis, or azimuth- and
elevation rotation.

The difference in the estimated covariance of the predicted sensor inaccuracies between these
two types of motion is attributed to the scarce amount of data points for the first-stage regression
problem. The dataset for the first-stage regression D2,z contains a limited number of data points.
This illustrates that the prediction uncertainty is high when the observations in the dataset are
far apart. The predictions of the sensor inaccuracies in z-axis for a pure motion in z-axis, is shown
in Figure 4.14. The predictions of the sensor inaccuracies in z-axis for a diagonal motion in both
z-axis and x-axis is shown in Figure 4.15.

This example shows the strength of cascaded calibration through GPR models, which are able
to seamlessly estimate the propagated uncertainty through each calibration stage. The following
sections inspects the modeling uncertainty and utilizes the tools for PSD estimation of GPR
models, which are provided in Chapter 3.
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(a) The predicted sensor inaccuracy in the PTB z-stage η̂θz = θ̂t,z−θz ( , 99% interval) is shown. Through a pure
motion in z-axis, at a constant elevation angle θx = π, the predictions are at a large distance from the training data
( ), which increases the uncertainty, given by cov(θ̂t,z) ( ), of the predictions and increases the total uncertainty.

(b) The predicted sensor inaccuracy in the CPA z-axis, represented as η̂ϕz = θ̃t,z −ϕz ( ), is displayed. Although
the training data-set D1,z has a sufficient number of data points, the uncertainty from the first-stage regression of the
PTB calibration model affects the prediction in the subsequent virtual regression. This is because the uncertainty
from the initial stage propagates through the cascaded model, influencing the overall prediction uncertainty cov(θ̃t,z)
( , 99% interval).

Figure 4.14: Predictions using the cascaded GPR model for the z-axis, given a constant motion in z-axis.
(a) The estimated sensor inaccuracy of the PTB z-axis η̂θz , and (b) the estimated sensor inaccuracy in
the CPA Hall encoder η̂ϕz is plotted
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(a) The predicted sensor inaccuracy in the PTB z-stage η̂θz = θ̂t,z − θz ( ) is shown. Through a diagonal motion,

the predictions align precisely with the observed training data, which reduces the uncertainty, given by cov(θ̂t,z)
( , 99% interval), of the predictions and decreases the total uncertainty.

(b) The predicted sensor inaccuracy in the CPA z-axis, represented as η̂ϕz = θ̃t,z−ϕz ( ), is displayed. The uncer-
tainty from the initial stage propagates through the cascaded model, influencing the overall prediction uncertainty
cov(θ̃t,z) ( , 99% interval).

Figure 4.15: Predictions using the cascaded GPR model for the z-axis, given a diagonal motion in both
z- and x-axis. (a) The estimated sensor inaccuracy of the PTB z-axis η̂θz , and (b) the estimated sensor
inaccuracy in the CPA Hall encoder η̂ϕz is plotted.

4.6 Conclusion

This chapter presents a case study for the cascaded calibration of CPAs in optical satellite com-
munication. The complete calibration procedure thoroughly explained. This includes an active
optical alignment procedure between the CPA and PTB optical systems. The existence and beha-
vior of the forward and inverse kinematic models are analyzed to detail. In addition, a GPR-based
approach is taken to model the inverse kinematics.

The cascaded calibration procedure is utilized for the calibration of the CPA Hall encoder.
The GPR-based cascaded calibration of a sensor is introduced in Chapter 2, which provides core
details regarding its efficiency and background information. This chapter shows that this procedure
naturally extends to a 2DOF calibration procedure. The GPR model obtained in the cascaded
calibration procedure is suitable for DEB via the framework presented in Chapter 3.
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Chapter 5

Conclusion

This thesis shows the successful implementation of GPR models in position sensor calibration,
which is able to provide accurate cascaded calibration models, and enables budgeting of modeling
uncertainties in error budgeting frameworks. Both contributions are formulated in separate frame-
works that are applied to the calibration of a position sensor. A complete calibration procedure
is presented for a CPA in optical satellite communication.

Chapter 2 demonstrates the effectiveness of a GPR framework for a cascaded calibration of
position sensors. This cascaded calibration procedure is described as a multi-stage regression
problem. Using GPR models the uncertainty that propagates through the multi-stage procedure
is modeled and included in the optimization of the regression problems. Evidence is provided via
Monte Carlo simulations that this method as compared to traditional methods provides a more
accurate estimation of the regression model. This evidence supports Conjecture 1, which states
Bayesian methods enable efficient and accurate modeling of multi-stage regression problems by
utilizing the uncertainty information that is carried from one stage to all the subsequent stages.

Chapter 3 demonstrates that modeling uncertainties in Bayesian regression, in particular in
GPR, can be represented by their PSD function. A framework for PSD estimation and analysis is
introduced, with a potential extension to dynamic error budgeting, that enables error budgeting
using PSD models of stochastic disturbances. In the context of the thesis, the PSD of modeling
uncertainties in position sensor calibrations can naturally be included in dynamic error budgeting
frameworks.

This framework first determines the PSD of a GP prior by utilizing Corollary 1. This PSD
function provides the spectral characteristic of the modeling uncertainties such as the roll-off
frequency, which is governed by the smoothness hyperparameter of the prior kernel. Second,
the PSD function of the modeling uncertainty is determined by utilizing Algorithm 2. This is
based on a rather pragmatic Monte Carlo approach to estimating the PSD function of conditioned
distributions.

In Chapter 4 a case study is presented for the cascaded calibration of CPAs in optical satellite
communication. This case study presents the use of both frameworks in a complex 2-DOF example.
Attention is put on the optical alignment procedure for the calibration of these systems. To enable
sensor calibration via optical alignment, the inverse optical kinematic model is estimated via GPR
methods. The inverse kinematic model features a four-dimensional input, which greatly increases
the complexity of the GPR models.
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Discussion and Recommendations

In this chapter, recommendations for future research and improvements are presented based on
the findings and insights gained throughout this thesis. First, the potential GPR methods in cas-
caded sensor calibration is discussed and the importance of comparing GPR with other Bayesian
methods is highlighted. Second, the limitations of the predictive covariance estimate in expressing
uncertainty is mentioned, and a suggestion is made to explore deep Gaussian processes to better
handle uncertainty propagation. In the third section, the significance of understanding the influ-
ence of datapoint placement on the spectral characteristics of the PSD function is emphasized,
and research into optimization based on spectral information is suggested. Lastly, the challenges
of increasing dimensionality in GPR models is discussed and recommendations are provided to
decrease the computational effort.

Gaussian process regression for cascaded calibrations

This thesis demonstrates the potential of GPR models for cascaded sensor calibration and its be-
nefits in error budgeting. The primary focus has been on showcasing the advantages of Bayesian
methods in general, and GPR specifically. To further strengthen these findings, it is crucial to
compare the results obtained in this thesis with other existing Bayesian methods and frameworks.
Future research should explore alternative Bayesian regression techniques, evaluate their perform-
ance in comparison with GPR, and investigate different model structures, kernel functions, and
inference types. Conducting experimental validation may provide deeper insights into sensor cal-
ibration using Bayesian approaches.

Evidence supporting Conjecture 1 is provided through Monte Carlo simulations, without es-
tablishing a mathematical proof. Mathematical proof of the improved estimation via cascaded
GPR models would reinforce the findings of this thesis and validate the results for a broader range
of applications.

Limited expressiveness of the covariance estimate

This thesis has shown various examples of cascaded calibrations with a total of three position
sensors. Although this is carefully worked out, the expressiveness of the predictive covariance
is limited to only three sensors. The reason for this is explained by looking at the covariance
estimation of the predictive distribution, which represents the uncertainty of the predictions.
Notice that this predictive covariance only represents the uncertainty of the function values, and
does not contain information regarding the observation uncertainties. It is common practice to
sum the predictive covariance with the observation covariance. However, a requirement for this
practice is that the observation covariance be stationary, e.g. additive Gaussian white noise.
In a cascaded calibration setting the observation uncertainty after the first stage is in general
non-stationary, which is supported by Proposition 1.
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Moreover, deep Gaussian processes (DGP) [40] may provide more reliable uncertainty estim-
ates due to its inherent ability to handle uncertainty propagation across layers. The cascaded
calibration procedure provided in this thesis is chaining separate GPR models. Although DGPs
require greater computational effort they may bring more seamless modeling of the uncertainty
that propagates in a cascaded calibration procedure.

Efficient exploration based on spectral information

The PSD estimation and analysis framework enables flexible estimation and analysis of PSDs for
modeling uncertainties in sensor calibration. Chapter 3 has shown that selecting the placement of
datapoints has a great influence on the power spectral characteristics of the PSD function. It is
recommended to find a better understanding of the placement of data points and the influence it
has on the spectral characteristics of the PSD function. This would enable smart exploration based
on spectral information, rather than using uncertainty information in Bayesian Optimization [41].
This approach will allow for more efficient exploration strategies in sensor calibration and lead to
more refined error budgets. There is already an extensive amount of research available to be able
to find a closed-form expression of the PSD estimate [35].

The PSD function can nonetheless be used in DEB frameworks to enable more accurate error
budgeting. These budgeting frameworks assume linear time-invariant (LTI) systems, which in
many cases, may not be the case. Future research should address the complexities introduced
by linear parameter varying (LPV) or linear time-varying (LTV) systems, such as the CPA SRM
motor [42].

Curse of dimensional in Gaussian Process regression

The case study presented in this thesis highlights the challenges of increasing dimensionalities,
also referred to as the curse of dimensionality. This phenomenon plays a significant role in the
optimizations shown in the case study. Estimating the uncertainty for the inverse optical kinematic
model is not required, and there is no strict modeling accuracy requirement. This provides a solid
reason to opt for more pragmatic parametric modeling techniques, such as ordinary least squares
(OLS), eliminating the need for regularization by ensuring low but sufficient model complexity.

A cascaded sensor calibration procedure relies on the accurate estimation of uncertainty and
aims to achieve the highest possible level of modeling accuracy. Future work can decrease compu-
tational effort by utilizing more efficient GPR approaches, such as sparse GP methods [43].

To better understand the effect of an additional dimension, let’s observe the computational
effort of a GPR model. The computational effort is defined by the effort required for training
the GPR model on N input locations and for predictions on M query input locations. The
computational effort for training is dictated by inverting the matrix in (2.26), which requires
O(N3) operations. Once this inverse is determined, predictions can be made, which require
O(N2M) for the covariance estimate and O(NM) for the mean estimate. The number of data
points N increases quadratically with the size of input dimension D, i.e. the required number of
data points increases to ND and thus the required amount of operations for training increases to
O(N3D).
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Appendix A

Additional Material for Regression
and Gaussian processes

A.1 The regression model

A regression model is defined by y = f(x, α) + e, where y is the dependent variable, x represents
independent variables, α are unknown model parameters, and e are error terms. The goal of
regression is to estimate the underlying relationship between y and x, enabling predictions and
creating more understanding regarding the process f(x).

The function f(x, α) models the relationship between variables, and can be either parametric or
non-parametric, which enables more flexible modeling. Error terms e can be additive white noise
in the process, or any behaviour in the process that is not modelled. Estimation of α is achieved
using optimization techniques like gradient descent, linear regression, or Bayesian methods.

A.2 Regression methods and regularization

In this section an overview is given on the general framework for regression and regularization.
Consider a discrete dataset given by D = {xk, yk}Nk=1, with N the amount of datapoints. To
find model f(x) : X → R, which fits to the measured data y, there are many types of regression
methods.

In section A.2.1 the basic properties of linear regression using least squares is given. In sections
A.2.2 and A.2.3 regularized regression for linear and non-linear models are presented respectively.
In section A.2.4 kernel ridge regression is introduced, which combines the ridge regression method
with the kernel trick to more efficiently model nonlinear functions.

A.2.1 Least square linear regression

The most well known regression method is least squares linear regression [44]. For linear regression,
the model can be described by

f(x) = xTw, (A.1)

where w ∈ R the model parameters (or weights). Assume that the index set X , which describes
the set for all inputs, can be generalized to RD, where D is the dimension of the input. To find
the weights that fit the datapoints the best the cost for linear regression is given by

J [w] =

N∑
i=1

(
y − xTw

)2
. (A.2)
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For which the optimal weights can be derived, given by

w∗ =
(
XTX

)−1
XTY, (A.3)

where X = [x1 x2 . . . xN ]T ∈ RN×D and Y = [y1 y2 . . . yN ]T ∈ RN . In most cases, when
there are many correlated variables in a linear regression model, the model parameters will be
poorly determined, i.e. we experience over-fitting or under-fitting. In order to prevent over- and
under-fitting model parameters, regularization can be used.

A.2.2 Regularized regression for linear models

A prominent example for regularized least squares regression is called ridge regression, where we
introduce an additional cost for the model parameters. The cost for ridge regression is given by

J [w] =

N∑
i=1

(
y − xTw

)2
+ λ ∥w∥2 . (A.4)

Here the first term is a data-fit term, as in (A.2), also referred to as the loss function, which
assesses the quality of the fit given the observed data y. The second term is the regularizer, which
puts a cost on the parameter values. The parameter λ can be used to scale between the two terms.
The solution for the optimal w∗ can be found by setting the differential of equation A.4 to zero.
This results in the weight given by

w∗ =
(
XTX + λIN

)−1
XTY,

= XT
(
XXT + λIN

)−1
Y,

(A.5)

where IN ∈ RN×N the identity matrix. A prediction for regularized regression regarding non-
linear model structures, can be easily derived using the solution given by (A.5). For any testpoint
x, we can predict the function value using the optimal weights,

ŷ = xTw∗ = xTXT
(
XXT + λIN

)−1
Y, (A.6)

let α =
(
XXT + λIN

)−1
Y , then

ŷ = xTXTα,

= xT
N∑
i=1

αixi =

N∑
i=1

αi · xTxi.
(A.7)

Regularized regression for any type of non-linear model are derived in Section A.2.3 from the
results obtained here.

A.2.3 Regularized regression for non-linear models

The non-linear model structure for f(x) is given by

f(x) = ϕ(x)Tw, (A.8)

where ϕ(x) ∈ RN is a non-linear basis function. The introduction of ϕ which maps aD-dimensional
input vector x into an M -dimensional feature map, i.e. ϕ : RD → RM , enables more complex
modeling features. The solution for the weights can be found by replacing x with ϕ(x) and X
with Φ := ϕ(X) = [ϕ(x1) ϕ(x2) . . . ϕ(xN )]T ∈ RN×M in (A.4) and (A.5). The optimal weight
are given by,

w∗ = ΦT (ΦΦT + λIN )−1Y, (A.9)
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where

ΦΦT =


ϕ(x1)

Tϕ(x1) ϕ(x1)
Tϕ(x2) . . . ϕ(x1)

Tϕ(xn)

ϕ(x2)
Tϕ(x1) ϕ(x2)

Tϕ(x2) . . . ϕ(x2)
Tϕ(xn)

...
...

. . .
...

ϕ(xn)
Tϕ(x1) ϕ(xn)

Tϕ(x2) . . . ϕ(xn)
Tϕ(xn)

 . (A.10)

The term ΦΦT can be replaced by a kernel matrix K, also referred to as Gramm matrix, where
each element is determined by Kij = k(xi, xj). This matrix is symmetric positive semi-definite,
i.e. K ∈ SN+ = {K ∈ RN×N : K = KT , xTKx ≥ 0∀x ∈ RN |x ̸= 0}. This enables us to describe
every dot product of an unknown, possibly infinitely many basis functions, in terms of kernels.
This is also referred to as the kernel trick and will be explained in more detail in Section A.2.4.

A.2.4 Kernel ridge regression

In the previous sections, it has been demonstrated that optimal weights can be solved for when the
model is described by a non-linear kernel function. However, consider a high-dimensional feature
space, i.e., many measurement points N . It can also be the case that the correct choice for basis
functions is not known.

Using Mercer’s theorem [45], the inner product of two vectors in some feature space can be
replaced without the need to visit it. In other words, there is no need to know ϕ(x), only that
it exists. The kernel can be described by a function k(xi, xj) : X × X → R. This phenomenon
is also known as the kernel trick, which is a very efficient way of transforming data into higher
dimensions. The kernel can be defined as the in-product between two feature vectors, i.e.

k(xi, xj) = ϕ(xi)
Tϕ(xj). (A.11)

For a test input x, the prediction of the function value is given by the model in (A.8) and the
optimal parameters given by (A.9). Recall from Section A.2.3 that the kernel matrix equals
K = ΦΦT . The prediction can thus be written as

ŷ = ϕ(x)TΦT (K + λIN )−1Y. (A.12)

Now let α = (K + λIN )−1Y ,

ŷ = ϕ(x)TΦTα,

=

N∑
i=1

αi · ϕ(x)Tϕ(xi).
(A.13)

By substituting (A.11) in (A.13), an estimate of the function value using only the kernel function

can be obtained, ŷ =
∑N
i=1 αi · k(x, xi).

The aim is to find a suitable kernel function and its parameters that fit the observed data.
A prominent example is a squared exponential kernel, which is introduced in Section 2.4.4. This
kernel has an infinite number of dimensions in its feature space, as it can be expanded by the
Taylor series. In essence, it is possible to operate in the original feature space without computing
in the higher dimensional space, which is potentially infinitely large.

A.3 Derivation of predictive distribution for Bayesian re-
gression

Here the derivation of the predictive distribution in (2.21). The posterior distribution of the weighs
is given by,

p(β,Φ, Y ) ∼ N
(
β⋆,ΦΣ−1ΦT +Σ−1

p

)
, (A.14)
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where β⋆ = (ΦΣ−1ΦT +Σ−1
p )−1ΦΣ−1Y . Define a new variable A, which is given by

A = ΦΣ−1ΦT +Σ−1
p , (A.15)

then the predictive distribution can be obtained by averaging the output of all possible models
with respect to the Gaussian posterior,

p(f̂(x) | Φ, Y, ϕ) =
∫
p(f̂(x) | ϕ, β)p(β | Φ, Y )dβ,

= N
(
ϕTβ⋆, ϕT

(
ΦΣ−1ΦT +Σ−1

p

)
ϕ
)
,

(A.16)

where ϕ(x) := ϕ, and ϕ(X) = Φ. Using the new variable A in (A.15), the predictive distribution
can be rewritten to,

p(f̂(x) | Φ, Y, ϕ)N
(
ϕTA−1ΦΣ−1Y, ϕTA−1ϕ

)
. (A.17)

Now define a new variable, K = ΦTΣpΦ. The relation between A and K can be described as
follow,

AΣpΦ =
(
ΦΣ−1ΦT +Σ−1

p

)
ΣpΦ,

= ΦΣ−1ΦTΣpΦ+ Φ,

= ΦΣ−1
(
ΦTΣpΦ+ Σ

)
,

= ΦΣ−1 (K +Σ) .

(A.18)

By substituting AΣpΦ with ΦΣ−1(K + Σ) in (A.17), the predictive distribution in (2.21) is
obtained.

A.4 Sampling from Gaussian distributions

Given a multivariate Gaussian distribution with mean vector µ ∈ Rn and covariance matrix
Σ ∈ Rn×n, the goal is to draw random samples from this Gaussian distribution. The probability
density function of this distribution is given by (B.3).

Samples can be drawn from this distribution using the Cholesky decomposition. The Cholesky
decomposition of the covariance matrix Σ obtains a lower triangular matrix L ∈ Rn×n, given by

Σ = LLT . (A.19)

Generate a vector z = [z1, z2, ..., zn]
T ∈ Rn of independent standard normal random variables.

Each component zi is drawn from a univariate standard normal distribution given by zi ∼ N (0, 1)
Transform z using the Cholesky factor L and the mean vector µ, which gives

x = µ+ Lz. (A.20)

The resulting vector x ∈ Rn is a random sample drawn from the corresponding multivariate
Gaussian distribution.
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Appendix B

Gaussian and Fourier Transform
Properties

B.1 Stochastic signal properties

First, the correlation -and covariance functions of stochastic processes will be described. After-
ward, the basic properties of the (multivariate) Gaussian distribution.

B.1.1 Correlation and Covariance

Consider a WSS stochastic process f(x), the mean and covariance function for this process have
been given in (3.11). The correlation and covariance function partially describe the time domain
behavior of the underlying stochastic process. They will be used later to derive the spectral
(frequency domain) properties of the process. The correlation function R of f(x) is given by,

E[f(xA)f(xB)] = R(τ) ∀τ, xA, xB ∈ R. (B.1)

For processes with zero mean, µ = 0, the covariance function in (3.11) equals the correlation
function.

B.1.2 Gaussian distribution

A normal distribution, also referred to as the Gaussian distribution, is heavily used in statistics to
describe independent random variables. The function, which describes the continuous probability
distribution of a variable f(x), is given by its mean µ, and its standard deviation σ, given by

p(f ;µ, σ) =
1√
2πσ

e−(f−µ)2/(2σ2). (B.2)

The shape of this distribution is a bell curve, where the mean gives the center of this bell curve
and the standard deviation the amount of stretch of this curve. We can say that a variable, f ,
has a normal distribution by writing f ∼ N (µ, σ), where σ = k(0) = E

[
(x− µ)2

]
B.1.3 Multivariate Gaussian distribution

The multivariate normal distribution or the multivariate Gaussian distribution is a generalization
of the single-dimension normal distribution to higher dimensions. Suppose we are looking at a
random vector-valued variable given by f ∈ Rn, with n the size of the vector. The random vector
f has a multivariate Gaussian distribution, with a mean vector µ ∈ Rn and a symmetric positive
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definite covariance matrix Σ ∈ Sn++ ⊆ Rn×n. The multivariate Gaussian distribution is given by

p(f ;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(f − µ)TΣ−1(f − µ)

)
, (B.3)

where,

µ = E [f ] ,

Σ = E
[
(f − µ)(f − µ)T

]
,

Sn++ = {Σ ∈ Rn×n : Σ = ΣT , xTΣx > 0 ∀x ∈ Rn| x ̸= 0}.
(B.4)

B.2 Fourier transform

The Fourier transform decomposes a signal into its frequency components. The Fourier transform
can show that any signal can be re-written as a sum of sinusoides,

F (ω) := F{f(x)} =
∫ ∞

−∞
f(x)e−iωxdx, (B.5)

where the Fourier transform is function of ω: F{f(x)}(ω), with ω the frequency in rad/second.
The inverse Fourier transform is given by

f(x) := F−1{F{f(x)}} = 1

2π

∫ ∞

−∞
F (ω)eiωxdω. (B.6)

Note that the 1
2π term is added, so that the equation f(x) = F−1{F{f(x)}} holds.

B.3 Discrete Fourier Transform

The discrete-time variant of the Fourier transform is called the Discrete-time Fourier transform
(DTFT). The DTFT for a finite amount of discrete samples is given by equation:

Fd(ω0) :=

N−1∑
k=0

fke
−iω0k. (B.7)

where ω0 is the normalized frequency in rad/sample, fk is the discrete time signal, with k ∈
0, .., N -1. The periodicity of the normalized version of the DTFT is is 2π. The DTFT transforms
a finite number of sampled points into a function Fd(ω) which has a continuous input ω0. When
including the sampling interval, the normalized frequency can be transformed using

w0 = 2πfT (B.8)

where f is the frequency in Hz and T is the sampling interval in seconds. Using this relation, the
DTFT can be written as a function of frequency, given by

Fd(f) :=

N−1∑
k=0

fke
−i2πfkT , (B.9)

In numerical analyses discrete samples are taken from the DTFT, which results in the discrete
Fourier transform (DFT). This prevents taking an infinite amount of computations to obtain the
Fourier transform of a finite amount of spatial or temporal domain samples. The DTFT is sampled
at frequencies ωk = 2π

N l which gives the DFT,

Fd,l :=

N−1∑
k=0

fke
−i 2πl

N k, (B.10)

where Fd,l and fk are points in frequency and time respectively. The finite points in frequency
domain Fd,l are now a weighted combination of the finite points in time.
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B.4 Properties of the Fourier transform

In this section, several properties of the Fourier transform that are relevant to this research are
provided. These include differentiation, multiplication by the input, input scaling, and input shift
properties. There are many more properties of the Fourier transform that are not discussed here.

B.4.1 Differentiation

The inverse Fourier transform, recovers a function from its Fourier transform. The inverse Fourier
transform of a function F{f(x)} is given by

f(x) = F−1{F{f(x)}} = 1

2π

∫ ∞

−∞
F(ω)eiωxdω. (B.11)

We can now observe the effects of taking the derivative of function f(x), which is given by d
dxf(x).

The inverse Fourier transform of d
dxf(x) can be written as

d

dx
f(x) =

d

dx

(
1

2π

∫ ∞

−∞
F(ω)eiωxdω

)
=

1

2π

∫ ∞

−∞
F(ω) d

dx

(
eiωx

)
dω,

=
1

2π

∫ ∞

−∞
iωF(ω)eiωxdω = F−1{iωF{f(x)}}.

(B.12)

This property shows that taking the Fourier transform of a functions derivative d
dxf(x), is the

same as taking the Fourier transform of the regular function f(x) and multiplying the Fourier
transform by a iω term. Repeated differentiation will result in an increase of the power of the iω
term, and can be written as

dn

dxn
f(x) = F−1{(iω)n{f(x)}}. (B.13)

B.4.2 Multiplication by the input

Suppose the input to our function f(x) denotes time or position. The Fourier transform of a func-
tion given by x times the function itself xf(x) is equal to the derivative of the Fourier transform,

F ′{f(x)} = d

dω

(∫ ∞

−∞
f(x)e−iωxdx

)
=

∫ ∞

−∞

d

dω

(
f(x)e−iωx

)
dx =

∫ ∞

−∞
−ixf(x)e−iωxdx

= F{−ixf(x)}.
(B.14)

Note that using the Leibniz integral rule, the derivative with respect to ω can be placed inside the
integral. by multiplying both sides with the imaginary number i, the following property holds

iF ′{f(x)} =
∫ ∞

−∞
xf(x)e−iωxdx,

= F{xf(x)}.
(B.15)

B.4.3 Input-scaling

Scaling the input of the function f(x) with a factor n will result in a compression or expansion of
the Fourier transform. This can be logically explained by assuming the function f(x) represents
a periodic signal with x representing time. If time, denoted by x, is scaled by a factor n, which
results in a function f(nx), the time for the periodic signal to complete an entire period will also
be scaled by n. We can essentially make time go faster (when n > 1) or slower (when n < 1). The
Fourier transform of a function where the input is scaled f(nx), is given by
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F{f(nx)} =
∫ ∞

−∞
f(nx)e−iωxdx,

do a substitution of variables, let t = nx, which results in, x =
t

n
, dx =

dt

n
,

F{f(nx)} =
∫ ∞

−∞
f(t)e−iω

t
n dt/n =

1

n

∫ ∞

−∞
f(t)e−i

ω
n tdt,

=
1

n
F{f(x)}

(ω
n

)
.

(B.16)

B.4.4 Input-shift

As with the input-scaling, suppose the function f(x) is a periodic signal where x represent time.
By delaying a function in time with a value given by m, the function becomes f(x − m). The
Fourier transform of a delayed function corresponds to a multiplication with a complex exponential
given by e−iωm. This is proven by taking the Fourier transform of f(x−m),

F{f(x−m)} =
∫ ∞

−∞
f(x−m)e−iωxdt,

do a substitution of variables, let t = x−m, which results in, x = t+m, dx = dt,

F{f(x−m)} =
∫ ∞

−∞
f(t)e−iω(t+m)dt = e−iωm

∫ ∞

−∞
f(t)e−iωtdt,

= e−iωmF{f(x)}.

(B.17)

An interesting observation is the fact that the term e−iωm is equal to the frequency response
function of a time-delay H(iω) = e−iωTd , which shifts the phase by −ωTd radians, where Td is the
time-delay in seconds.

B.5 Gaussian integral

A Gaussian integral, also referred to as the Euler-Possion integral, is the integral of the function,
f(x) = e−x

2

, over the entire real line. Note that the distribution of a normal (or Gaussian)
distributed variable is of the same function type, hence the importance of this integral. The
integral is given by, ∫ ∞

−∞
e−x

2

dx =
√
π. (B.18)

An intuitive approach to understand why the integral contains π, can be shown by performing
two steps. The first step is to take the square of the gaussian integral, which becomes a double
integration in Cartesian coordinates. The second step is to transform the double integral to polar
coordinates,(∫ ∞

−∞
e−x

2

dx

)2

=

∫∫
R2

e−(x2+y2)dxdy =

∫ 2π

0

∫ ∞

0

re−r
2

drdθ = 2π

∫ ∞

0

re−r
2

dr. (B.19)

By a substitution of variables, u = −r2 and du = −2rdr, the integral is solved,

2π

∫ −∞

0

−1

2
esds = −π

∫ −∞

0

esds = −π(e−∞ − e0) = π. (B.20)

The integration of the Gaussian integral squared results in π, hence the Gaussian integral
should result in its root

√
π.
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B.6 Power spectral density function for squared exponen-
tial kernels

The properties of the Fourier transform and the Gaussian distribution provided in this Appendix
are used to determine the PSD function of the squared exponential kernel.

First the Fourier transform of a Gaussian function is obtained. The Gaussian function is given
by

f(x) = e−x
2

, (B.21)

with the Fourier transform is given by

F{f(x)}
∫ ∞

−∞
f(x)e−ikxdx. (B.22)

The derivative of a Gaussian function is equal to

df(x)

dx
= −2xe−x

2

,

= −2xf(x),
(B.23)

which is also Gaussian. Now using the properties for the Fourier transform in (B.11) and (B.15)
with the Gaussian function in (B.21) and its derivative (B.23) are used to derive

iωF{f(x)} = −2i d
dω
F{f(x)}. (B.24)

A unique solution for this ordinary differential equation is given by

F{f(x)} = c · ew
2/4, (B.25)

where c is determine by plugging in ω = 0, which results in the Gaussian integral in Section B.5.
The final solution for the Fourier transform for a Gaussian function is given by

F{f(x)} =
√
πe−ω

2/4, (B.26)

which is also Gaussian. Now the input-scaling and input shift properties can be used to determine
the Fourier transform of the squared exponential function, which has a shift in input with µ and
the input scaled by (2l2)1/2.
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Appendix C

Coarse Pointing Assmbly

This chapter includes information regarding a single DOF experimental CPA. The working prin-
ciple of this experimental CPA is almost identical to that of the 2DOF CPA which is presented in
this thesis. The results obtained in this chapter are taken from the preparation phase report.

Section C.1 explain the principle behind the switch reluctance motor (SRM). Afterward in
Section C.2 the Hall encoder principle is explained. Finally in Section C.3 experimental results
are shown that explain the repetition of position-dependent inaccuracies in the Hall encoder.

C.1 Switch reluctance motor

Compared to DC motors, SRM motors deliver power to windings in the stator instead of the rotor.
The motor principle consist of three phases which have been separated by 120◦. By distributing
the torque over each motor phase, continuous torque can be achieved. A schematic of the stator be
seen in Figure C.1a. The stator and rotor of the single-axis CPA, which are highlighted in Figure
C.1b, have been molded from a high-permeable magnetic material. Each stator contains a total of
9 individual teeth, which act as individual poles that are excited simultaneously. The CPA rotor
has 131 teeth in total, thus a single tooth pitch equals a rotation of 2π

131 rad. The motor torque of
a single phase is a non-linear function of the angular position and quadratic current, given by,

Tc = i2c
1

2

∂L

∂ψ
= i2cG(ψ), (C.1)

where c ∈ {1, 2, 3} is the coil number, ic is the coil current and L is the inductance of the
motor phase, determined by the tooth geometry, coil size, magnetic material. We assume there
is no magnetic saturation present. A well thought commutation strategy is required for smooth
transitions between the generated torque through each motor phase.
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(a) (b)

Figure C.1: a) Motor assembly with three separate stators (b) Assembly of the single-axis CPA bread-
board, where (1) is the rotor with 131 individual teeth and (2) the motor assembly.

C.2 Hall encoder principle

The actuation rotor of the CPA has several teeth that are also used to determine its angular
position. The CPA contains magnetic Hall sensors that form a Hall encoder. Each sensor
contains a pair of Hall plates which measure the flux density. The sensors are able to readout the
differential flux density using two Hall plates, resulting in signals di with i ∈ {1, 2}. A schematic
drawing of the working principle can be seen in Figure C.2a. The measured flux density of a
single Hall sensor, with Hall plates numbered 1 and 2, has been plotted in Figure C.2b. The
difference of both flux densities is an approximate sine function, as shown in Figure C.2b. A
second Hall sensor, with Hall plates numbered 3 and 4, results in an approximate cosine signal.
The Hall sensor measurements are communicated through an SPI interface.

Initial measurements have been performed on the Hall encoder of the single-axis CPA. The
single-axis CPA mirror has been given a constant velocity trajectory of one whole rotation. The
signals d1 and d2 have been plotted in Figure C.3. This data can also be presented in a Lissajous
figure, where the cosine signal (d2) has been plotted on the x-axis and the sine signal (d1) has
been plotted on the y-axis. The Lissajous figure shows many rotations, one for each tooth pitch.
The angle between the x-axis and the vector drawn, is the relative motor phase ψ ∈ S, with

(a) (b)

Figure C.2: (a) Working principle magnetic Hall sensor (b) Fem simulation Hall encoder [42]
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Figure C.3: Hall sensor measurements, showing the differential flux density measurements.

S = {ψ| − π ≤ ψ ≤ π}. The relative motor phase is determined using,

ψ = atan2(d1, d2). (C.2)

To obtain the absolute rotor angle, the relative motor phase ψ has to be unwrapped. This is
accomplished using the equation given by,

ϕ =
unwrap(ψ)

N
, (C.3)

where ϕ ∈ R is the rotor angle and N is the amount of teeth on the rotor. The function unwrap
is available in Matlab, which unwraps phase jumps greater than π.

C.3 Repetition of errors

The Lissajous figure of the CPA Hall encoder has already been plotted in Figure C.3. Each tooth
period in this figure is equal to a single tooth period on the CPA rotor. The thickness of the band
in the Lissajous figure indicates differences between the teeth of the individual rotor. The spread
between each tooth period has been visualized in Figure C.4. To plot this figure, data has been
obtained from the Hall encoder ψ(k) and the Renishaw encoder which measures the absolute rotor
angle ϕren(k). The absolute rotor angle is then converted to the relative motor phase using (C.3),
in order to obtain ψren(k). Data has been obtained for an entire rotation of the CPA rotor, at
discrete time steps k. For simplicity purposes the notation is shortened to ψ and ψren.

The x-axis shows the Hall encoder motor phase ψren, while the y-axis shows the difference
between the Renishaw encoder and the Hall encoder, i.e. the measured position-dependent inac-
curacies of the Hall encoder ηψ. It shows that the angle obtained on each tooth period is varying.
However, with this information we can assume a single mapping function taken for each tooth
period to be sufficient.
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Figure C.4: The x-axis shows the relative motor phase of the Hall encoder ψ, while the y-axis shows the
difference between ψren and ψ, given by ηψ. The spread in data indicates differences between each tooth
period. The mean ( ) is visualized and the confidence interval ( , 99%)
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Appendix D

Optical Forward Kinematics

This chapter provides derivation of the forward kinematic model Gopt(ϕ). First, in Section D.1 the
kinematic chains of the CPA and PTB is given. Then in the plane-line intersection equations are
provided D.2, where-after in Section D.3 the procedure and derivation of the forward kinematic
model are provided.

θz

θx

z2,a

y2,a x2,a

z2,b

y2,b x2,b

W

z0

y0 x0

φz

z1,a

x1,a
y1,a

z1,b

x1,b

φx
z2,m

y2,m x2,m

a

b
c

y1,b

Figure D.1: Kinematic diagram of the CPA ( ) and PTB ( ) degrees of motion. The CPA has
azimuth rotation ϕz and elevation rotation ϕx. The PTB has z-stage motion θz and x-stage motion θx.

D.1 System kinematics

The kinematics of the optical systems can be seen in Figure D.1. The CPA which has two
rotational degrees of motion is depicted in blue, while the larger PTB system has two rotational
stages, depicted in red. For every rotation degree of freedom a set of basis vectors {x(·), y(·), z(·)}
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is defined. These basis vectors have their own position and orientation with respect to the world
frame W := {x0, y0, z0}. Transformation matrices are defined that transform local coordinates to
world coordinates.

The local coordinates of the CPA elevation mirror are given by {x1,b, y1,b, z1,b}. The position
and orientation of the elevation mirror with respect to the world frame are described by

T 0
1,b = Tϕz

Tϕx
,

=

R0
1,b m0

1,b

03 1

 , (D.1)

where m0
1,b and R

0
1,b are the position and of the orientation of the elevation mirror with respect to

the world frame W respectively. The transformation matrix Tϕz
represents the rotation around

the azimuth axis, and Tϕx
represents the rotation around the elevation axis. These transformation

matrices in the kinematic chain are given by

Tϕz =


C(ϕz) −S(ϕz) 0 0

S(ϕz) C(ϕz) 0 0

0 0 1 −a
0 0 0 1

 , Tϕx =


1 0 0 0

0 C(ϕx) −S(ϕx) −b
0 S(ϕx) C(ϕx) 0

0 0 0 1

 , (D.2)

where C(ϕ) =: cos(ϕ), S(ϕ) =: sin(ϕ), a is the distance of the azimuth mirror w.r.t to the world
frame, b is the distance between the elevation mirror and the azimuth mirror.

The center of the PTB mirror is given by the local coordinate {x2,m, y2,m, z2,m}. The position
and orientation of the PTB mirror with respect to the world frame are given by the transformation

T 0
2,m = TθzTθxTm,

=

R0
2,m m0

2,m

03 1

 , (D.3)

where m0
2,m and R0

2,m are the position and of the orientation of the PTB mirror w.r.t. the world
frame W respectively. The transformation matrix Tθz represents the rotation around the z-stage,
Tθx represents the rotation around the x-stage and Tm is the position offset of the PTB mirror
with respect to the rotation stages. The individual transformation matrices in the kinematic chain
are given by

Tθz =


C(θz) −S(θz) 0 0

S(θz) C(θz) 0 0

0 0 1 0

0 0 0 1

 , Tθx =


1 0 0 0

0 C(θx) −S(θx) 0

0 S(θx) C(θx) 0

0 0 0 1

 , Tm =


1 0 0 0

0 1 0 0

0 0 1 −c
0 0 0 1

 ,
(D.4)

where c is the location of the PTB mirror along the direction orthogonal to both the x-axis and
z-axis, see Figure D.1.

D.2 Plane-line Intersections

The algebraic steps and calculation of the intersection point between a line and a plane is presented
here. A plane in vector notation is given by,

(p− p0)n = 0, (D.5)
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Figure D.2: The mirrors of the optical systems are visualized for their respective zero orientation.

where n is the normal vector to that plane, p0 is any point vector on that plane, and p is any
arbitrary point vector on that plane. A line in vector notation is given by

p(d) = l0 + dl, (D.6)

where l0 is a point on the line expressed as a position vector, d ∈ R is the distance on the line and
l is the direction of the line.

Now (D.6) is substituted in (D.5) to solve for d, which results in

d =
(p0 − l0) · n

l · n
. (D.7)

The distance d at which an intersection takes place is a function of the plane normal n, any point
vector on the plane p0, and a line vector that starts at l0 and has direction l. Use p(d) in (D.6) to
determine the line vector at which the intersection takes place.

D.3 Optical kinematics

The optical kinematics consists of a series of plane-line intersections, which determine the point
and angle of incidence1 as a function of the mirror normal. The mirror normal vectors n(·) have
been depicted in Figure D.2, where the azimuth axis is positioned at ϕz=−90 degrees. These
mirror normals are defined in their respective local frame, here each and every normal vector is
provided with respect to the world frame:

1For a flat mirror the point/angle of incidence and point/angle of reflection is equal.
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1. The surface normal for the PTB is given by nptb =
[
0 1 0

]
. Subsequently, the orientation

of the surface normal can be described with respect to the world frame given by

nptb,0 = R0
2,m(θx, θz)nptb, (D.8)

which is dependent fully on the orientation of PTB.

2. The surface normal for the C3PA elevation mirror is given by nce =
[
1 1 0

]
. Sub-

sequently, the orientation of the surface normal can be described with respect to the world
frame given by

nce,0 = R0
1,b(ϕx, ϕz)nce, (D.9)

which is dependent on the orientation of the azimuth ϕz and the elevation angle ϕx of the
C3PA.

3. The surface normal for the C3PA azimuth mirror is given by nca =
[
0 −1 1

]
. Sub-

sequently, the orientation of the surface normal can be described with respect to the world
frame given by

nca,0 = R0
1,a(ϕz)nca, (D.10)

which is dependent on the orientation of the azimuth angle ϕz only.

4. The surface normal of the static mirror is given by ns =
[
0 1 −1

]
. Subsequently, the

orientation of the surface normal can be described with respect to the world frame given by

ns,0 = ns, (D.11)

which is independent of the orientation of the C3PA.

5. The surface normal of the OPS is fixed and is given by

nops,0 = nops =
[
0 −1 0

]
(D.12)

In order to trace the laser ray that is responsible for aligning the systems, plane-line intersect
equations are used. The ray is traced from the laser source (Tx), back to the PSD (Rx). Using
this procedure the OPS the exact intersection between the OPS sensor plane and the Rx-beam is
calculated.
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