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Abstract

One of the most used reactor types involving reactions with solid particles are fluidized bed
reactors. Over the years, the desired process properties may have changed, which led to a variety
of more tailored reactor designs. One of these changes is the injection of a liquid in the fluidized bed
reactor. Depending on the process, the liquid is used as a transportation medium, acts as a reactant
or is used for heat removal. The addition of a liquid gives rise to the formation of agglomerates.
These agglomerates may lead to poor mixing, local defluidization and the decrease of solid mixing
of the total system. Moreover, this may lead to a decrease of heat- and mass-transfer, which
can cause loss of reactor performance. To overcome these problems a good understanding of the
behaviour of these agglomerates is needed. The goal of this theses is to design a robust detection
algorithm that can detect agglomerates in a pseudo-2D fluidized bed.

In this research, a pseudo-2D fluidized bed was used to observe the behaviour of the agglom-
erates. A temperature difference between the agglomerates and the bed was created, which was
captured by the high-speed infrared camera. To understand the behaviour of these agglomerates,
they need to be detected. Deep learning for computer vision was used to detect agglomerates.
To determine the effect of different variables and to determine the detection algorithm with the
highest accuracy and detection rate, multiple detection algorithms were trained with the Mask
R-CNN model. These detection algorithms were compared to each other and it showed that in-
creasing the number of images in the training data increases the detection rate. Furthermore,
the detection algorithm was less consistent in the detection of objects smaller than six pixels.
Additionally, by increasing the bounding box size the detection rate increased, especially of small
objects. Moreover, it showed that neural networks, which were trained with images that resemble
the real images the most, were detected more accurately. The synthetic images neural network
scored the best on the images of the synthetic images training data with a score of 99%. Addition-
ally, this neural network detected the most agglomerates in the real images of all studied neural
networks.

The neural networks are used for slightly different type of images. First of all, the brightness of
the real images was increased. This decreased the detection rate. However, the synthetic images
neural network was able to detect agglomerates when another particle size was used. Concluding,
the synthetic images detection algorithm can detect agglomerates in a pseudo-2D fluidized bed.
However, the robustness of the detection algorithm is not perfect.
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Nomenclature

Symbols Units
dp Sauter mean particle diameter m
Ubg Background velocity −
Umf Minimum fluidization velocity m/s
Usp Spout velocity −

Greek letters Units
ρ Particle density kg/m3

Φl Liquid flow rate ml/min

Abbreviations
AP Average Precision
CNN Convolutional Neural Network
FBR Fluidized Bed Reactor
FN False Negative
FP False Positive
IR InfraRed
mAP Mean Average Precision
ReLU Rectified Linear Units
TN True Negative
TP True Positive
IoU Intersection over Union
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Chapter 1

Introduction

Fluidized Bed Reactors (FBR’s) have been performing a variety of multi-phase chemical reactions
in the past decades. These reactors are generally used for reactions involving solid reactants. In the
FBR, a medium (often gas) with sufficiently high velocity passes through the solid particles, which
allows the solid particles to be fluidized and behave like a fluid. This enables multiple advantages
for this reactor type such as high mass transfer, high heat transfer, good mixing properties, simple
design and good control over the parameters [1]. Because the desired process properties have
changed over the years, the original FBR design has changed to a more tailored design. One of
these changes is the injection of liquid into the FBR. The purpose of the addition of the liquid
can be different. In Spray Fluidized Bed Granulation the liquid acts as a transport medium, in
Fluid Coking it acts as a reactant [2] and in Condensed Mode Gas Phase Polymerisation it is
used for heat removal [3]. Although the purpose is different the complexity of the multi-phase
system of all three increases. This change in the multi-phase system may lead to poor mixing,
local defluidization and the decrease of solid mixing of the total system. This may result in the
decrease of heat- and mass-transfer which may lead to a loss of reactor performance. One of the
reasons for these phenomena is the formation of agglomerates [4].

To overcome these problems a good understanding is required of the behaviour of these ag-
glomerates in the bed and their influence on the fluidized bed. The position, size and movement
of the agglomerates can influence the properties of the bed. To determine these parameters, the
agglomerates need to be localized. This localization can be done using image recognition in com-
puter vision. In recent years these image recognition via conventional computer vision techniques
is outperformed by deep learning techniques [5], especially the use of Convolutional Neural Net-
works (CNN’s), as showed by Krizhevsky et al. [6]. The research of Frei et al. has shown that it is
possible to detect agglomerates with Mask R-CNN [7]. However, in that work, the detection of ag-
glomerates in a clear background is very simplistic in comparison to the detection of agglomerates
in a fluidized bed.

The goal of this thesis is the design of a robust detection algorithm with the help of deep
learning. This detection algorithm should be able to detect agglomerates in a pseudo-2D fluidized
bed.

The Detection of Agglomerates in a Pseudo-2D Fluidized Bed with Deep Learning for Computer Vision 1



Chapter 2

Theoretical background

2.1 Fluidized bed

In a fluidized bed, particles feel gravity forces, buoyancy forces and drag forces. The upward
movement of the gas accelerates particles. The particles will act as a fluid when the drag and the
buoyancy forces cancel each other. [8]. Important parameters for the fluidization of the solids are
the particle size and the gas velocity. The advantage of a fluidized bed in comparing to a packed
bed is the enhanced heat and mass transfer due to the movement of the solids and the possibility
of continuous processing [9].

2.1.1 Flow regimes

Based on the different velocities, gas and solid properties the fluidized bed can behave differently,
as shown in Figure 2.1 [10]. Figure 2.1A shows a fixed bed regime. In this regime, the gas
passes through the voids between the solid particles, but the particles are stationary and thus
the height of the bed is constant. By increasing the gas velocity to the minimum fluidization
velocity (Umf ), the drag force exerted by the upward flowing gas becomes equal to the weight of
the particles. This results in an increase of voidage between the solid particles and therefore the
height of the bed increases, as shown in Figure 2.1B. When the gas flow is increased even further,
bubbles are formed. A bubbling fluidized bed is created, as shown in Figure 2.1C. Increasing the
velocity even further results in the coalescence of the bubble. This increases the bubble size. The
maximal horizontal bubble size is the diameter of the reactor bed, as shown in Figure 2.1D. This
phenomenon is called slugging and therefore it is a slugging bed. When the gas velocity exceeds
the terminal velocity, the bed becomes a turbulent bed, see Figure 2.1E. In the turbulent regime,
the upper surface of the bed disappears and turbulent motion of solid clusters and gas voidage of
different sizes can be observed. Finally, a pneumatic regime can be reached at high gas velocities.
In this case, the fluidized bed is classified as an entrained bed, see Figure 2.1F. This entrained
bed can have a disperse, dilute or lean phase fluidized bed, which results in pneumatic transport
of the solid particles.

Besides the gas velocity, the particle properties have an influence on the fluidization of the bed.
The fluidization behaviour can be predicted by the Geldart classes, which categorize the particles
into four groups, based on the Sauter mean particle diameter (dp) and the particle density (ρ)
[11]. In Figure 2.2 the four Geldart classes are shown with the corresponding particle diameter
and density [10]. Geldart A particles tend to be aeratable and are generally the easiest to fluidize.
Smooth fluidization does almost not occur with Geldart B particles. When a bed of Geldart B
particles starts to fluidize, bubble formation occurs almost immediately resulting in a bubbling
bed, as shown in 2.1C. Geldart C particles are generally considered to be the hardest to fluidize due
to their cohesive behaviour. This cohesive behaviour is caused by the small size of the particles.
The small size of the particles causes the particles to behave more as a cluster of particles than
a single particle. This cohesive cluster formation can result in the formation of small channels in
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CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Schematic representation of the different flow regimes in a fluidized bed reactor [10].

the bed. Through these channels, the gas phase can bypass most of the bed, as small bubbles.
This process is also called channelling. The last group of particles are Geldart D, which contain
the largest and heaviest particles. Their large size and high weight cause the required gas velocity
for fluidization to be the highest. That is why slugging more often occurs for this particle type.

The use of a spout can introduce a different gas pressure to the system. This may cause a
change in classification of the particles [11]. For example, small Geldart B particles can behave as
Geldart A powders due to high pressure. This change in classification is not well defined within the
Geldart Group classification diagram, shown in Figure 2.2. Furthermore, in some cases, a particle
may fit in multiple classifications. An example is powders that belong to both the Geldart A and
C classes. These powders behave as Geldart A particles when fluidized, but when the particles
are in at rest the powder behave as Geldart C particles.

The Detection of Agglomerates in a Pseudo-2D Fluidized Bed with Deep Learning for Computer Vision 3
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Figure 2.2: Diagram of the Geldart Group classifications of particles based on the Sauter mean
diameter and the particle density [10].

2.2 Formation of Agglomerates

The introduction of a fluid in a fluidized bed results in a complex multi-fluid system. The solid
particles are wetted by the introduced liquid. When wetted particles collide, liquid bridges may
be formed, ultimately forming particle agglomerates. Agglomeration may take place due to the
cohesive forces established by the liquid bridges. These cohesive forces in the liquid between the
particles are the surface tension and viscous forces [12]. On the one hand, disruptive forces such as
inter-particle friction/shear forces, caused by the mechanically agitated fluidized bed, can disrupt
the formation of agglomerates. The formation and growth of agglomerates take place when the
cohesive forces in-between the particles are stronger than the disruptive forces [13]. On the other
hand, the agglomerates can break when the shear force acting on the agglomerates exceeds the
critical shear force. Parveen et al. showed that by decreasing the liquid content or bulk density
or increasing the Sauter mean diameter the critical shear force needed to break an agglomerate
could be reduced [12].

2.3 Deep learning for computer vision

Deep learning for computer vision contains two combined working fields. The first is in the
interdisciplinary scientific working field of computer vision, where computers are trained to obtain
results from digital images. This high-level of understanding is similar or even better than the
human visual system.

The second disciplinary is deep learning. Deep learning is a part of machine learning, which can
be considered part of Artificial intelligence. Machine learning is the study of computer algorithms
that can make predictions or decisions without being specifically programmed to do so. These
computer algorithms improve automatically through experience. This experience is gathered from
the so-called ”training data” and together with the machine learning algorithm, a prediction/-
decision model is created. The machine learning model consists of an Artificial Neural Network
(ANN), which is inspired by the biological neural network of a brain. One of the most commonly
used deep learning architectures is the Convolutional Neural Network (CNN), which is a variant
of the ANN used in machine learning.

2.3.1 Deep learning tasks for computer vision

Computer vision can be used in a wide variety of tasks related to image processing. Next to the
more straightforward tasks, such as filtering, contrast normalization, edge detection, cropping,
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clustering, recognition can also be performed using computer vision. It may be noted that re-
cognition tasks can be used without deep learning. However, in recent years recognition tasks
including deep learning have outperformed conventional techniques [5], especially the CNN’s out-
performed the conventional recognition methods [6]. Following, different CNN models such as
Faster R-CNN, mask R-CNN and EfficientDet have been created to perform recognition tasks
among other things. Although there are some differences within these models the base working
principles and architecture are the same, which will be explained in section 2.3.2.

Image classification, detection and segmentation

The three main tasks of deep learning for computer vision are classification, detection and seg-
mentation. Image classification can be used to determine one simple object within the image,
which is in Figure 2.3a a cat. The localization can be used to find where the object is; i.e.: finding
the cat within the image, as shown with the red bounding box in Figure 2.3b [14]. When the image
becomes more complex and multiple objects need to be detected, image detection should be used
instead of image classification. This is illustrated in Figure 2.3c [14]. Image detection is also used
to find the location of the objects. The objects in this case are the different animals. Additionally,
it can define by which class it belongs. Figure 2.3c shows that cats are surrounded by red bounding
boxes, while dogs are indicated by blue and ducks by green. Within these bounding boxes, only
parts are pieces of the object. By dividing the image into smaller segments, the segments can be
analysed. This will lead to the so called mask, which can detect the objects, as shown in Figure
2.3d [14]. This is called segmentation.

(a) (b) (c) (d)

Figure 2.3: Figure 2.3a can be classified as cat using image classification. In addition to image
classification localization can be used to find the cat as shown in Figure 2.3b. Both these images
contain only a single object. For multiple objects image detection as shown in Figure 2.3c or image
segmentation as shown in Figure 2.3d can be used [14].

2.3.2 Convolutional Neural Networks

CNN’s are created by combining different building blocks, called layers, to achieve different tasks
[15]. All layers in the CNN perform a specific mathematical operation. The depth of the CNN
is determined by the number of layers used [5]. A simplified representation of a CNN consists of
hidden layers in between the input layer and the output layer. An example of such a representation
is shown in Figure 2.4 [16]. The input for deep learning for computer vision is an image, which
can be seen as a matrix with three dimensions. The matrix consists of 2D points and the number
of colour channels used. The output can be image classification, detection or segmentation. When
image classification is used the output will be a class as shown in Figure 2.4. Although the user
can only see the input and output, the neural network will create intermediate outputs. These
intermediate outputs are referred to as feature maps. The four most common layers used in a CNN
are convolutional layer, pooling layer, rectified linear units (ReLU) and fully connected layers [17].

The Detection of Agglomerates in a Pseudo-2D Fluidized Bed with Deep Learning for Computer Vision 5
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Figure 2.4: Simplified CNN using image classification which has an input layer, multiple hidden
layers and an output layer. The input is an image and the output is the class bird [16].

Convolutional layer

The core building block of the CNN is the convolutional layer, which also does the heaviest
computational lifting [17]. The main task of the convolutional layer is mapping the detected local
conjunctions of features from the previous layer into a feature map. Additionally, this created
feature map stores wherein the image the feature occurs and how well it corresponded to the filter
used [15].

Rectified linear units

The ReLU in a CNN will apply an element-wise activation function on the feature map, which
creates an activation map as its new output. The activation function is executed elementwise over
the input volume of the feature map. Therefore, the output dimensions of the activation map
remain the same as the input dimensions of the feature map. The ReLU is a piecewise linear
function which can be described as Equation 2.1 when a threshold of zero is used [15]. Where the

activation volume (Y
(l)
i ) on position (i) and layer (l) is a function of the feature volume (Y

(l−1)
i ) on

position (i) and layer (l-1). Using the ReLU thresholds the negative values to zero. This increases
the robustness to small changes which can arise due to noise.

Y
(l)
i = max

(
0, Y

(l−1)
i

)
(2.1)

Pooling layer

The main task of the pooling layer or downsampling layer is to reduce the spatial size of the
activation map, to reduce the number of parameters and computational effort by the neural
network. Additionally, it reduces the chance of overfitting.

Different forms of pooling layers can be used such as max pooling, average pooling and L2-
norm pooling. In practice, max pooling has been outperforming other forms of pooling layers.
Therefore, only max pooling will be discussed. An example of the most common form of max
pooling layer is shown in Figure 2.5 [17]. The filter size is 2 by 2 and the stride is two in both
width and height. The stride is the amount at which the position of the filter shifts to create the
next filter within the matrix. It takes the highest number from each filter and converts it into a
new matrix. By doing this it loses 75% of the activations. It may be noted that the depth remains
the same.

Fully connected layer

The input in a fully connected layer moves only in one direction. The aim of the fully connected
layer is to map the activation volume from the different layers into one class probability distribu-
tion. At the end of the fully connected layers, a vector is generated with the number of classes
available. For example, in Figure 2.4 it would be a vector with three classes: dog, bird and cat.

6 The Detection of Agglomerates in a Pseudo-2D Fluidized Bed with Deep Learning for Computer Vision
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Figure 2.5: Example of a max pooling layer with filter size of 2 by 2 and a stride of 2 both in
width and height [17].

2.3.3 Training process

Each hidden layer consists of a set of neurons, which are independent of all the other neurons
within the same layer. However, the neurons in the single layer are connected to all neurons in the
previous layer. An image of size 32x32x3 (32 wide, 32 high, 3 colour channels) would have 3072
(32*32*3) connections with the previous layer, called weights, in the first hidden layer if it is a
single fully connected neuron [17]. These weights determine the path through the neural network
based on specific information within the image. Through training, these weights are updated to
increase accuracy. This process of updating the weights is called backpropagation. The number
of times backpropagation is used depends on the batch size.

Besides the batch size, epoch is a commonly term used when considering neural networks.
Epoch is the number of times all the images of the training set passed through the neural network.
To clarify it, an example is given. Assume a training set contains 200 images, a batch size of 5
and 1000 epochs. This means that the train set is divided into 40 batches and the model will be
updated 40 times per epoch. Passing through the 1000 epochs it will be updated 40,000 times in
total [18].

To increase the learning rate even further, an already trained neural network can be used for
another type of objects. It uses the already determined weights of the neural network as a starting
point. By using these weights it learns faster [5]. This process is called transfer learning.

During training and validating the algorithm, three different sets are used: the training set,
the test set and the validation set. The training set is used to train. Based on the training set
the weights are updated. When the neural network is trained, the test set is passed through the
neural network, which updates the weights one last time. Finally, the validation set is a new set,
can be used to validate the performance of the neural network. It may be noted that scientists
sometimes call the test set the validation set and vice versa [18].

2.3.4 Accuracy measurement for object detection

The mean average precision (mAP) is a way to assess the accuracy of a detection algorithm. This
results in a value between 0 and 1, where 0 represents no accuracy while 1 indicates a perfect
match. To determine the mAP, precision, recall and intersection over union (IoU) are needed,
which are explained in the next subsections.

Precision and recall

The precision is a measure of the accuracy of the prediction. It refers to the percentage of the
correctly predicted bounding boxes out of all the predicted bounding boxes. The calculation of
the precision is presented in equation 2.2 [19]. The true positive (TP) is divided by the sum of

The Detection of Agglomerates in a Pseudo-2D Fluidized Bed with Deep Learning for Computer Vision 7
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the true positive and the false positive (FP). In Figure 2.6, an example is given for a prediction
on the detection of blue dots. The 4 green borders are TP, while the 2 red borders are FP. The
precision of this example will be 0.66 according to equation 2.2.

Precision =
TP

TP + FP
(2.2)

Figure 2.6: In this schematic example the blue dots are the objects and the borders are predictions.
The dots with green borders are TP, the red border without dots are FP and the dot without
border is FN.

The recall measures the ground truth bounding boxes that are correctly predicted by the
predicted bounding boxes. It is calculated with equation 2.3 [19]. In this equation, the TP is
divided by the sum of the true positive and the false negative (FN). In Figure 2.6 one dot is not
predicted, so FN is 1. The recall from this example would be 0.8, according to equation 2.3.

Recall =
TP

TP + FN
(2.3)

Intersection over union

IoU is used to determine the area of overlap between the ground truth bounding box and the
predicted bounding box. The calculation of the IoU is given in equation 2.4 [5]. To determine if a
TP is truly a TP the IoU should generally be more than 0.5 [19]. An example is shown in Figure
2.7, where the intersection is given in red and the union given in green. Three different examples
with other IoU values are presented in A.1 in Appendix A.

There are two cases where overlapping bounding boxes are considered as FP: when the IoU is
smaller than 0.5 and when more than one predicted bounding box covers the same ground truth
bounding box [19]. In the last case, only the predicted bounding box with the highest IoU will be
considered as TP. The other bounding boxes will be considered as FP.

IoU =
Area of Overlap

Area of Union
(2.4)

Mean average precision

To reduce the impact of small variations caused by the ranking of detection the wiggles (zigzag
formation) that are created need to be removed. This is done by replacing the precision value
for recall (r) by the max precision to the right where r̃ ≥ r. This is mathematically described
in equation 2.5 [19], where the new precision at r is called the interpolated precision (pinterp).
By doing this replacement of the precision the orange line converts into the green line, as shown
in Figure 2.8. Afterward, the average precision (AP) can be calculated by determining the area

8 The Detection of Agglomerates in a Pseudo-2D Fluidized Bed with Deep Learning for Computer Vision
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Figure 2.7: Visual example of the different zones of the IoU. The overlapping part of the ground
truth bounding box and the predicted bounding box is the intersection, which is shown in red.
The total area of the overlapping ground truth bounding box and the predicted bounding box is
the union, shown in green [5].

under the precision-recall curve [20]. The determined area is the area under the green line without
the wiggles as shown in Figure 2.8.

The AP is calculated with the recall precision curve, as given in equation 2.6 [20]. An example
graph where the precision is plotted over the recall is shown in Figure 2.8. This example shows
that the recall increases as more ground truth objects are detected. In addition, all objects are
detected and a recall of 1 is reached. On the other hand, the precision behaves as a zigzag pattern.
It increases with bounding boxes that are TP and decreases with bounding boxes that are FN.

The AP can be calculated for each class within the data set. Averaging the AP’s of different
classes gives the mAP. However, when there is only one class the AP is mAP.

pinterp(r) = max
r̃≥r

p(r̃) (2.5)

AP =

∫ 1

0

p(r)dr (2.6)

Figure 2.8: Precision-recall curve with and without the removal of the wiggles [5].
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Chapter 3

Experimental setup

To create training data, an experimental setup was needed. The experiments were performed
using a setup based on the experimental setup of Li et al. [21]. The experimental setup contained
three main parts: the pseudo-2D fluidized bed, the cameras and the computers. These three were
needed to create images of the fluidized bed with and without agglomerates. This chapter focuses
on the experimental setup and procedure. The processing of the obtained images and the creation
of the different data sets (training set, test set and validation set) will be explained in Chapter 4
and Chapter 5, respectively.

3.1 Fluidized bed setup

The fluidized bed setup contains a pseudo-2D fluidized bed with a height of 200 mm, a width of
80 mm and a depth of 15 mm. The fluidized bed setup is shown in Figure 3.1. At the bottom of
the bed, a porous gas-distributor is placed to distribute the gas for the background velocity. In
addition, the gas distributor contains a nozzle with a diameter of 1.5 mm, which is placed in the
center of the gas-distributor, which enables spout fluidization. The front window of the fluidized
bed, is made from sapphire glass because sapphire glass has excellent transmittance properties
in the infrared spectrum. To reduce heat losses, PolyMethyl MethAcrylate (PMMA) has been
chosen for all the other walls of the fluidized bed setup, because of the low thermal conductivity
of this material. To increase the contrast between the bubble phase and the emulsion phase, a
black painted aluminium plate was attached to the PMMA back wall.

Nitrogen was used as a fluidizing agent in the FBR. The gas flow to the gas distributor and the
spout were controlled by separate mass flow controllers. The background gas was passed through
a humidifier after the mass flow controllers to reduce electrostatic charging. Finally, both gas flows
were heated to increase the temperature of the bed. To reduce heat loss from the heater to the
spout and/or gas distributor, the gas-lines were traced. A schematic representation of the setup
is shown in Figure 3.2.

To introduce the liquid into the system, a KD Scientific syringe pump in combination with
a 50 ml Terumo syringe was used. The used liquid was demineralized water (demi water). The
syringe was connected to a tube that leads to the gas flow line ending in the spout as shown in
Figure 3.2.
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Figure 3.1: Photograph of the experimental setup without the computers. On the left is the
high-speed infrared camera (FLIR X8400 sc) and on the right the high-speed camera (pco.dimax
HD+).

Figure 3.2: Schematic representation of the fluidized bed setup.
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3.2 Camera setup

A high-speed camera and a high-speed infrared (IR) camera were used to obtain all whole-field
data. The high-speed IR camera uses IR-thermography to convert the detected amount of radiation
to a temperature. The captured temperature difference in the images was used to extract ”cold”
agglomerates from the ”warm” bed. From the images from the high-speed camera, the 2D solid
fraction was determined following the method of Jong et al. [22]. Both images were required for
creating the training data, which is further explained in Chapter 5. The high-speed camera is the
pco.dimax HD+, which is referred to as visual camera and the high-speed IR camera is the FLIR
X8400sc, which is referred to as IR camera. Some of the specifications of both cameras are given
in Table C.1 in Appendix C.

A schematic top-down view of both cameras of the fluidized bed setup is illustated in Figure
3.3. The visual camera was placed directly in front of the fluidized bed. The IR camera is
positioned in a 5◦ to 10◦ angle with respect to the fluidized bed. This small angle was required
because the reflection of the lens of the IR camera will be visible in the images. Additionally, it
is placed slightly in front of the high-speed camera to prevent capturing the radiation created by
the high-speed camera.

Figure 3.3: Schematic representation of the top-down view of the two cameras in front of the
fluidized bed.

3.3 External computers

The first computer used the software Wonderware to operate the mass flow controllers, heaters
and LED lights. Additionally, it tracked all the data such as temperature, pressure and mass
flow within the system at the designated positions. The second computer was used to obtain the
pictures directly to the computer. For the visual camera, CamWare v3.16/64bit software was used
while FLIR ResearchIR Max was used for the IR pictures.

To ensure the camera’s frame rate and the start of the frames were taken at the exact same
time, a trigger (Velleman PCGU 1000) was used. The visual camera was used to construct a
velocity field. Therefore, two consecutive images were needed, which were created by sending two
pulses within a short interval to the visual camera. Determining the thermal field of the bed
required only one image. Therefore, two times fewer images were created with the IR camera than
with the visual camera.
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3.4 Surroundings

To increase the consistency of the experiments and the pictures taken, multiple measurements
were taken. Firstly, the experimental setup was placed in a box within a climate-controlled room
where the temperature is set at 18 ◦C. Furthermore, two additional LED lights were used to have
a consistent light source to light the fluidized bed, as shown in Figure 3.1. Third and last, the glass
of the box was covered with a dark lead rubber material to prevent capturing infrared radiation
coming from the environment, i.e. humans and working computers.

3.5 Experimental execution

For an experiment, the fluidized bed was filled with 96 ml of Geldart B or D glass bead particles.
More specifics about the particles and the bed are presented in Table 3.1 [23]. The Geldart D
particles were only used to analyse the robustness as described in Chapter 5.3.2. For all other
parts, the Geldart B particles were used. The heater for the background was set to 120◦C and
the heater of the spout was set to 100◦C. Due to the heat loss, the average temperature in the
bed was between 60◦C and 70◦C. The gas flow rate for the background was 42.5 nl/min, while the
gas flow rate for the spout was 3 nl/min. The normalized gas flow with the minimum fluidization
velocity is presented in Table 3.2. When the temperature reached steady state, the pictures were
taken. Approximately 500 pictures with a frame rate of 50 Hz were taken with the IR camera
and twice as many images were generated with the visual camera for the Geldart B particles.
These results were without any liquid and did not contain any agglomerates. Afterward, 50 ml
of demi water was introduced via the spout flow. Again, the bed was allowed to reach a steady
state temperature before the pictures were taken. For the Geldart B particles, approximately a
similar amount of images with the same settings were taken of the previous set. For the Geldart
D particles, only wet results including agglomerates were obtained. For these particles, the frame
rate was decreased to 10 Hz.

Table 3.1: Particle and bed properties used for the experiments [23].

Sauter mean
diameter (nm)

Material density
(kg/m3)

Geldart group
(-)

Bed mass
(g)

Bulk density
(kg/m3)

600 2500 B 149 1550
900 2500 D 151 1571

Table 3.2: The experimental conditions used to create images with and without agglomerates. The
background velocity and spout velocity were normalised by dividing over the minimum fluidization
velocity of 0.26 m/s for Geldart B particles and 0.53 m/s for Geldart D particles, which are the
respectively dimensionless velocities Ubg and Usp. The liquid flow rate Φl is in ml/min.

Geldart B Geldart D
Φl (ml/min) Ubg (-) Usp (-) Ubg (-) Usp (-)
0.0 2.5 29 - -
0.5 2.5 29 2.2 44
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Chapter 4

Image processing

The images recorded during the experiments did not only contain the fluidized bed, but also other
parts of the experimental setup. Therefore, the created IR images and visual images needed to be
cropped such that the images contained the fluidized bed. The IR images were taken at a small
angle as stated in the previous section. Therefore, the images of the IR camera did not match
the images taken by the visual camera. To match both images the IR images were transferred to
match the visual images. Finally, some parts of the bed were darker than others due to shadows.
A shadow correction was required to decrease the error caused by the shadows. This chapter will
give a detailed explanation of these image processing steps.

4.1 Image cropping and transformation

For both the image cropping and transformation, a MATLAB script was developed. The script
required the dimensions of the fluidized bed and markers in the image to determine the exact
location of the fluidized bed. The markers were created circular stickers that were positioned
at a known distance from the fluidized bed, as shown in Figure 4.1 [23]. Because these stickers
were made from alumina tape, they were visible in both the IR and visual image. The algorithm
determined the position of the markers in both images and transformed the IR image, such that
the markers in both images overlapped. The MATLAB ImageProcessing Toolbox was used to
select the four stickers in the image. Afterward, a visible red rectangle popped up as shown in
Figure 4.1b [23]. This square can be used to crop the image to only include the fluidized bed.

The contrast between the particles and the background was improved during the cropping and
transformation of the image [23]. This improved contrast was useful later on, as described in
Chapter 5. The difference before the cropping and transformation and after is shown in Figure
4.2 [23].
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(a) (b)

Figure 4.1: Two images from the user interface. On the left in Figure 4.1a is the user interface
with the partly selected aluminium stickers. On the right in Figure 4.1b is the user interface with
the red cropping rectangle [23].

Figure 4.2: An example of an image before cropping (on the left) and after cropping (on the right)
[23].
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4.2 Shadow correction

The determination of the solid fraction in the bed depends on the light intensity in the visual
image. Despite the use of additional LED lights, shadow regions still existed near the sides and
bottom of the bed because the LED lights were placed at an angle. To reduce the effects of these
shadow regions, a shadow correction was used. For the shadow correction, the bed was first filled
with the used particles. The bed was uniformly filled with particles and should have had a uniform
intensity. Shadow regions were detected, as these had a lower intensity. The data was stored in a
shadow correction map, which was used on the new visual images to increase the light intensity of
the shadow regions. In Figure 4.3 the difference with and without the shadow correction is shown.
Especially on the sides and the bottom, the effect of the shadow correction is clear.

Figure 4.3: On the left is a cropped image without shadow correction and on the right a cropped
image with shadow correction [23].
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Chapter 5

Detection algorithm

5.1 Creating training data

To train and verify the neural network to detect agglomerates training data was required. This
data consisted of a list of images and a list of detailed locations of the detectable objects. The
list of objects is often referred to as the annotation file. The training data can be split into three
groups: the training set, test set and validation set. The validation set is a part of the training
data that was reserved to validate the training result.

The images used for the training data were created with the experimental setup, as explained
in Chapter 3. Both the IR and visual images were further processed as described in Chapter 4.
One of the problems is that a pseudo-2D bed was used with a depth of 15 mm, which allowed
agglomerates to partly or fully disappear behind other particles. This complicated the process of
finding the location of all agglomerates within the IR images. To isolate and find the locations of
some of the visible agglomerates, three different filters were used. These locations were annotated
in the annotation file. After training the neural network, the detection algorithm should be able
to find all visible agglomerates within the images.

5.1.1 Filters

The location of the agglomerates was determined using three different filters in MATLAB. The
filters will be explained in no specific order. The first filter will be referred to as temperature
adjustment. This filter used a binary filter to remove high temperatures within the image. For
example, the air above the bed has a higher temperature and was decreased as shown in Figure
5.1. The high temperatures were created by the heated gas flow. The filter was used to reduce
contrast in the image.
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Figure 5.1: On the left is a processed image and on the right is a processed image where an adjust
temperature filter is used on.

The next filter will be referred to as proper disk filter. The proper disk filter blurred the image
by using the MATLAB xspecial function. As described before, the particles can be in front of
the agglomerates due to the thickness of the pseudo-2D fluidized bed. By blurring the image,
isolated particles in front of an agglomerate were removed. An example of the blurring is shown
in Figure 5.2. The proper disk filter used an average value of a circle with a specific diameter.
This caused some problems on the border of the image. Therefore, the borders were temporarily
duplicated and attached to the outside of the borders. After blurring the images were returned to
their original size.

Figure 5.2: On the left is a processed image and on the right is a processed image where a proper
disk filter is used on.
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The last filter will be referred to as Scanner. This filter scanned a small part of the grid and
counted the times a pixel was lighter than its surroundings. When the count is high, the local
intensity of the map increases and vice versa, as shown in Figure 5.3. It should be noted that
there are no additional filters used in this figure. Due to the high contrast between the particles
and the gas flow, the particles were of a lower intensity than the agglomerates. Therefore, this
filter was only used in combination with a filter to adjust the temperature. The figure also shows
that dark regions were created at the border of the image. The reason is that it compared the
border with the outside of the border, which is generally white. However, this did not influence
the isolation of the agglomerates.

Figure 5.3: On the left is a processed image and on the right is a processed image where a scanner
filter is used on.

5.1.2 Isolation of agglomerates and creating annotation file

Using the described filters, the agglomerates within the IR images have been highlighted. The
filters were used in the following order: the proper disk filter, the adjust temperature and the
scanner. After applying the filters the images were normalized between 0 and 1, which ensured
a white background and black agglomerates, as shown in Figure 5.4b. The contrast between the
black agglomerates and the white background was used to find the agglomerate locations.

The next step was the determination of the location of the agglomerates. A MATLAB script
was able to find black objects within a white background and created red bounding boxes around
them. Overlapping bounding boxes were removed to prevent problems, that would have occurred
in later steps. Next to visualizing, the location of the created bounding boxes in Figure 5.4c, were
also saved. Using the minimum x value (xmin) and the minimum y value (ymin) of the bounding
box and the size of the box in both directions. Because the size of the obtained image was the
same as the original, the location in the filtered image could directly be transferred to the original
image, as shown in Figure 5.4d. This figure, it shows the locations of the found agglomerates by
the yellow bounding boxes.

Next to a processed image, an annotation file was created for training, testing and validating the
detection algorithm. MATLAB was also used to create the .xml annotation file. In the annotation
file, four parts of information were saved, which were required to train the detection algorithm.
First of all, the file name was consistent with the IR image. Secondly, the name of the object that
it learned to detect was saved. In this project, this was always an agglomerate. Additionally, the
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(a) (b) (c) (d)

Figure 5.4: Figure 5.4a is the processed image. Figure 5.4b was the processed image where the
filters were used on. In Figure 5.4c are the bounding boxes around the agglomerates added to
the filtered and processed image. In Figure 5.4d are the bounding boxes around the agglomerates
added to the processes image.

height, width and depth of the processed image were stored. Finally, the agglomerate locations
and their bounding boxes were saved. An example of annotation file is shown in Appendix B in
Figure B.1.

5.1.3 Creating different training data

The detection of agglomerates in IR images is difficult. These difficulties could have been due
to the different shapes and sizes of the agglomerates. Additionally, agglomerates might not have
been fully visible due to the pseudo-2D fluidized bed, which allowed agglomerates to be partly or
fully covered behind other particles. To increase the accuracy of the detection algorithm, different
parameters that might have influenced the detection were tested. In total, five different training
data were created. Four training data were used to separately analyse the effect of size, shape
and noise. The fifth training data contained synthetic images and was visually the closest to the
real images. As in the previous four training data, the ground truth is 100% which was needed to
train the neural network. However, it was not possible to gain a 100% ground truth on the real
images.

Training data small circles

Next to the bounding box positions, the size and the center of the bounding box were determined
during the filter process. To analyse the size of the agglomerates, the most simple possible training
data was created: images containing circles as agglomerates. This training data will be referred to
as small circles training data. The small circles training data were created on a background with
the same dimensions as the real images. On this white image, perfect black circles with different
sizes were placed. The location and the size of the perfect black circles were known. In Figure
5.5, an image of the small circles training data is shown.

Training data big circles

Based on the results on the small circles training data as presented in Chapter 6.1.1, a new training
data for the size analysis was created. In this training data, all agglomerates smaller than twice
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Figure 5.5: An image of the small circles training data.

the particle size, in total 1.2 mm, were removed from the training data. This size is based on
the agglomerate formation of a tetrahedron, as shown in Figure 5.6. This formation consists
of four particles and from every angle, it has a minimum length of two particle diameter. It
should be noted that the smallest agglomerate is two particles. However, it is assumed that these
agglomerates are not stable. In Figure 5.7, an image of the big circles training data is shown. This
training data will be referred to as big circles training data.

Figure 5.6: The tetrahedron formation shown with four spheres [24].

Training data shape

To analyse the effect of the shape of the agglomerates, the shape of the black circles was changed,
as presented in Figure 5.8. This new training data will be referred to as shape training data. For
this training data, a white image with identical size and the same agglomerate positions as in the
previous training data were used. To make this training data, isolated agglomerates, created from
the original images, using the different filters as described in Chapter 5.1.2, were used. Finally,
the isolated agglomerates were transferred to the white image.
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Figure 5.7: An image of the big circles training data. This image contains objects with a minimum
of twice the particle diameter.

Figure 5.8: An image of the shape training data.

Training data background

For the noise analysis training data the perfect black circles from big circles training data were used,
but a realistic background was used. This training data will be referred to as background training
data. For the background training data, the IR images from the dry fluidization experiment were
used. To prevent agglomerates from randomly floating in the gas phase 2D fractional map was
used. For every IR image in the training data, the coupled visual image was used to determine the
2D fractional map according to the method of de Jong et al. [22]. Additionally, the 2D fractional
map was determined for all images of the dry images set. The difference between the IR image
and the dry image was determined. The image with the largest resemblance is chosen as the new
background for the located agglomerates. In Figure 5.9, an image of the background training data
is shown.

Training data synthetic images

The last training data was the training data with the synthetic images, which will be referred
to as synthetic images training data. For this training data, dry images without agglomerates
were used to create training data with a 100% ground truth. Without a 100% ground truth, the
neural network is unable to determine if an object is correctly decided or not, which leads to a
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Figure 5.9: An image of the background training data.

less accurate detection algorithm. Furthermore, it is only possible to numerically validate training
data where a 100% ground truth is known.

The background of these images was determined the same way as the previous set using the
2D fractional map. The agglomerates from the original image were transferred to a dry image.
This was done by creating a mask of the bounding box. The mask used a re-scaled error function
between 0 and 1 for the pixel intensity of the bounding box, which is given in Equation 5.1. For x,
the value 4 is taken and determines the steepness of the error function and bbox is the bounding
box. Within the bounding box, the mask is responsible for the transition between the agglomerate
and the dry bed. This allowed for the insertion of the agglomerates in the dry images without
having sharp bounding box borders as shown in Figure 5.10. The image shown in Figure 5.10 is
part of the synthetic image training data.

Mask(i, j) = 0.5 + 0.5 + erf(x ∗ bbox(i, j) − 2) (5.1)

Figure 5.10: An image of the synthetic images training data.
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5.2 Training and testing the detection algorithm

The base of the detection algorithm is designed by Brownlee [18]. The processed images and
annotation files within the five training data were used for training, testing and validating the
detection algorithm. For the training and testing process, four different python scripts were used.
The core of all scripts was the same, but the usage and output were different. All scripts loaded
in the images and the annotation files were divided into a training set, test set and validation set,
which were respectively 70%, 15% and 15% of the training data.

5.2.1 Pre-check the training data

The training data was generated in MATLAB and the detection algorithm was designed in Python,
which has some differences. An example is that the first position in an array in Python is zero,
while in MATLAB it is one. Without correction, there would be a slight displacement of the
bounding boxes in Python. Additionally, the processing within MATLAB might contain errors,
which might influence the results. Therefore, it was essential to analyse the correctness of the
transfer from MATLAB to python. First of all, the generated images with bounding boxes around
the agglomerates were checked. An example of such an image is shown in Figure 5.11, but the
bounding box is in this case around the kangaroo instead of an agglomerate. These generated
images were visually checked before going to the next step.

Figure 5.11: The bounding boxes from the actual image are generated from the annotation file of
the training data.

5.2.2 Training the detection algorithm

In this work, the MASK R-CNN model was used for the detection algorithm [25]. During the
training of the detection algorithm, the validation set was not used. Only the training set and
test set were used for training the algorithm. Additionally, transfer learning was used to increase
the learning rate. For transfer learning, the mask rcnn coco.h5 file was used [25].

5.2.3 Test the detection algorithm

The detection algorithms were tested both numerically and visually, both using their own script.
The order of execution did not matter, but both should have been executed with the training
result. To numerically test the method, an IoU of 0.5 was used to determine the mAP with the
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use of precision over recall curve. The mAP was determined for the training set, test set and
validation set.

For visually analysing the data, new images were generated. These output images consited
of two images: the original image with the loaded in annotations and the image obtained with
the detection algorithm. The first image will be referred to as the actual image and the second
image will be referred to as the predicted image. An example is shown in Figure 5.12. In this
example, minor differences can be seen between the bounding box sizes around the kangaroos in
both images.

Figure 5.12: The bounding boxes from the actual image are generated from the annotation file of
the training data. The bounding boxes of the predicted image are generated by the neural network
that was trained with the training data.

5.3 Performance analysis of the detection algorithms

Multiple neural networks were created and tested on different images that were validated quantit-
atively and qualitatively. The big training data of all the five training data consisted of 300 images.
This total amount was divided into sets of 210 images for the training set, 45 images for the test
set and 45 images for the validation set. Additionally, similar training data were created with a
different annotation size with an increased bounding box size, but with the same 300 images. The
bounding box size was increased by one pixel in all directions. Furthermore, smaller training data
of the five training data were created using the 28 images for the training set, 6 images for the
test set and 45 images for the validation set. This is done to preserve the same 70% to 15% ratio
between the train and test set. Additionally, to have a representative validation set, the number
of images in the validation set remained 45. A batch size of 2 and 5 epochs were used for the
training of the neural network for the 15 different training data.

All these 15 training data were qualitatively and quantitatively tested according as described
in Chapter 5.2.3. However, when there was no 100% ground truth, the check was only based on
the qualitative analysis.

5.3.1 Testing the algorithms quantitatively

Multiple tests were performed to analyse the influence of different parameters. For this test, the
big training data with the big bounding boxes were used. To determine the learning curve, the
small training data was used as well and to determine the influence of annotation the training
data with the small bounding boxes was used as well. Additionally, the other parameters analysed
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Table 5.1: The 15 different training data which were used to determine multiple parameters, which
influenced the detection algorithm.

Resolution
limitations

Learning
curve

Influencec
of annotation

Geometric
dependence

Influence
of noise

Multiple
neural
networks

Small
circles

Training
data size

small X

big X X X X
Bounding
box size

small X

big X X X X
Big
circles

Training
data size

small X

big X X X X X X
Bounding
box size

small X

big X X X X X X

Shape
Training
data size

small X

big X X X X
Bounding
box size

small X

big X X X X

Background
Training
data size

small X

big X X X X
Bounding
box size

small X

big X X X X
Synthetic
Images

Training
data size

small X

big X X X
Bounding
box size

small X

big X X X

were: the limitation of the resolution, the shape dependence and the effect of noise. Additionally,
the neural networks of the five groups were tested on the synthetic images.

Resolution limitations

To investigate the resolution limitations, a training data with small objects was compared to the
training data with objects bigger than 1.2 mm, see Table 5.1. In this test, the mAP of the training
data with the big circles was compared with the training data of the small circles. Using the small
circles training data, the size of the largest undetected object was determined.

Learning curve

To analyse the learning rate of the detection algorithm, two different training data sizes were used,
as shown in Table 5.1. This learning rate will be referred to as the learning curve. The mAP scores
of all five groups of the big and the small training data were compared to each other to determine
the influence on the learning curve.

Influence of annotation

To determine the effect of different bounding box sizes, the training data with the big bounding
boxes were compared to the training data with the small bounding boxes, as presented in Table
5.1. This was done by comparing the mAP scores of all five groups to each other.
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Shape dependence

To analyse the effect on the detection rate of the algorithm by using objects with different shapes,
the big circles training data was compared to the shape training data, as shown in Table 5.1.
Again, the mAP scores were compared.

Influence of noise

By adding a background to the big circles training data, the influence of noise was analysed. This
was done by comparing the mAP scores of the big circles training data to the background training
data, as shown in Table 5.1.

Detection on synthetic images by different trained neural networks

The difficulty of the detection from small circles training data to synthetic images training data
was expected to increase. Additionally, the resemblance to the original images also increased.
The five groups were tested on the detection of objects within the images of the synthetic images
training data. None of the trained neural networks has seen the images of the synthetic training
data, except for the neural network that was trained with it. However, some of the information
like size, position, shape and background of the synthetic images training data were used in the
other four groups. Therefore, these images will still be split into mAP scores of the training set,
test set and validation set. All these sets of the five groups were compared to each other.

5.3.2 Testing the algorithms qualitatively

A 100% ground truth of the images is needed to realistically analyse the mAP scores. The images
used in this part do not contain the 100% ground truth. Therefore, the results will be based only
on observations.

Detection algorithm on real images

The detection algorithm trained with the five different training data was tested on the real images.
The five different trained neural networks that were trained with the 300 images and big bounding
boxes of the small circles, big circles, shape, background and synthetic images training data will
be referred to as small circles neural network, big circles neural network, shape neural network,
background neural network and synthetic images neural network, respectively. The generated
images with predicted bounding boxes were analysed.

Robustness

To check the robustness, three sets were analysed. In all three sets, agglomerates were detected
using the synthetic images neural network. The first set of images was created with the Geldart
B group particles. To create the test set, a liquid flow rate of zero was used for this experiment.
The dry images were tested by the detection algorithm to analyse the need for detection. For this
test, the ground truth was known. However, the mAP could not have given valuable feedback, i.e.
if something is detected the mAP score will be zero.

The second set was the same as the real images set, but with different brightness. All the
images of this set were brighter than the original real images. This set was used to analyse the
detection algorithm when different brightness was used in the image.

The third and last set was a set that was obtained with the Geldart D particles. This set was
used to analyse if the detection algorithm is still able to detect agglomerates when other particles
are used.
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Chapter 6

Results

6.1 Quantitative results

As discussed in the previous chapter, the results are scored using the mAP. First, the effects of
resolution limitation on the detection will be discussed. Afterward, the effect of the learning curve
using different sizes of data sets will be shown. Furthermore, the effect of annotation based on
different sizes of bounding boxes can be seen. In addition, the results of the shape dependence will
be shown. Furthermore, the effect of a different background can be seen. Finally, the synthetic
images were tested by different trained neural networks. It may be noted that all validation sets
were not seen during the training process of the neural network.

6.1.1 Resolution limitations

The mAP of both the small circles and big circles are high, as can be seen in Table 6.1. However,
the small circles scores were a bit lower because some small objects are not detected. An example
is shown in Figure 6.1. In this figure one object is not detected in the image at approximately
x-axis of 180 and y-axis of 380. Within multiple images, the biggest object that is not detected is
5 pixels long. Two times the particle diameter is minimal 6 pixels long. Therefore, all the objects
in the big circles are detected, as shown in Figure 6.2. Based on these results the training data of
shape, background and synthetic images only used objects that were bigger than 1.2 mm or two
times the particle diameter.

Table 6.1: Accuracy results with small circles vs the big circles. Based on the normal train data
with big bounding boxes.

Small circles Big circles

Train set 0.935 0.998
Test set 0.931 0.999
Validation set 0.899 1.000

6.1.2 Learning curve

The mAP results of both the big training data and small training data of the five groups are
presented in Table 6.2 and 6.3, respectively. The tables show that the mAP scores of the big
circles training data and the shape training data in both tables are similar. Additionally, the
tables also show that detection algorithms that are scoring low with the big training data score
even lower when the size of training data decreases. This effect is the clearest from the decrease
of mAP scores of the synthetic images and small circles training data. Both tables show that an
increase in training data does increase the accuracy scores, which means that the learning rate
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Figure 6.1: The bounding boxes from the actual image are generated from the annotation file of
the small circles training data. The bounding boxes of the predicted image are generated by the
neural network that was trained with the small circles training data.

increases with the size of the training and test set. Therefore, the neural networks were trained
with the training data of 300 images.

Table 6.2: Accuracy results of the small circles, big circles, shape, background and synthetic images
training data. The results are from the training data with 300 images and the big bounding boxes.

Small
circles

Big
circles

Shape Background Synthetic
images

Train set 0.935 0.998 0.997 0.997 0.989
Test set 0.931 0.999 0.992 0.987 0.984
Validation set 0.899 1.000 1.000 1.000 0.990

Table 6.3: Accuracy results of the small circles, big circles, shape, background and synthetic
images training data. The results are from the training data with 79 images and the big bounding
boxes.

Small
circles

Big
circles

Shape Background Synthetic
images

Train set 0.878 0.989 0.989 0.971 0.974
Test set 0.865 1.000 1.000 0.974 0.959
Validation set 0.804 0.997 0.998 0.992 0.962
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Figure 6.2: The bounding boxes from the actual image are generated from the annotation file of
the big circles training data. The bounding boxes of the predicted image are generated by the
neural network that was trained with the big circles training data.

6.1.3 Influence of annotation

The mAP scores of the training set, test set and validation set of all training data for the big
bounding boxes are shown in Table 6.2, while the results for the small bounding boxes are given
in Table 6.4. In general, the big bounding boxes mAP scores are similar or better than the small
bounding boxes. The only exception is the test set for the background training data, which is
probably caused by the stochastic nature of the algorithm, the evaluation procedure and/or the
difference in numerical precision [18].

In addition, the mAP scores of small circles training data and synthetic images training data
show a larger difference between the small and big annotation than the other three training data.
This can be caused by the already lower scores for the big bounding box training data. Based
on the results, the training data with the bigger bounding boxes are used for further comparison.
Additionally, it is known that the detection of small objects can be challenging [26]. This research
has shown that increasing the bounding box size around small objects also increases the detection
rate.

Table 6.4: Accuracy results of the small circles, big circles, shape, background and synthetic images
training data. The results are from the training data with 300 images and the small bounding
boxes.

Small
circles

Big
circles

Shape Background Synthetic
images

Train set 0.755 0.997 0.996 0.991 0.985
Test set 0.780 0.999 0.987 0.998 0.946
Validation set 0.729 1.000 0.997 0.997 0.969
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6.1.4 Shape dependence

In Table 6.2, the mAP scores of the validation set of the big circles training data and the shape
training data both score 100%. The results of the training set and test set are also similar. This
shows that the detection algorithm does not have difficulties with the detection of different shapes.
In Figure 6.3, a result of the detection of an image of the validation set is shown, which indeed
shows that the detection algorithm does detect all the shapes within the image.

Figure 6.3: The bounding boxes from the actual image are generated from the annotation file of
the shape training data. The bounding boxes of the predicted image are generated by the neural
network that was trained with the big circles training data.

6.1.5 Influence of noise

Table 6.2, shows that the mAP scores of the validation set of the big circles training data and
background training data both score 100%. Additionally, the results of the training set and
test set are similar. This shows that the detection algorithm does not have difficulties with the
increased noise added to the background training data. In Figure 6.4, a result of the detection
of on an image of the validation set can be seen, where the detection algorithm detects all the
objects within the image. However, sometimes a wrong bounding box was generated as shown
in Appendix D in Figure D.1. In the actual image, three bounding boxes are created at the
coordinates of approximately (100, 760) around the three objects. In the resulting image, one
additional bounding box is generated around the three objects. This happens in more images of
the background training data. Additionally, this happens in some of the real images that already
had a background.
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Figure 6.4: The bounding boxes from the actual image are generated from the annotation file of
the background training data. The bounding boxes of the predicted image are generated by the
neural network that was trained with the background training data.

6.1.6 Detection on synthetic images by different trained neural net-
works

In Table 6.5, it can be seen that all training data mAP scores are above the 90%, which is in
general already a very good score for a detection algorithm [18]. The score increases with an
increasing resemblance to the real images, i.e. the lowest scores are achieved by the small circles
training data and the big circles training data, while the highest scores are achieved by the shape
training data and synthetic images training data. In addition, the addition of a background has
less effect on the detection than the different shapes of the agglomerates. Lastly, the synthetic
images score the best on the synthetic images training data.

Table 6.5: Accuracy results of the small circles, big circles, shape, background and synthetic images
training data. The results are from these training data tested on the images of the synthetic images
training data.

Small
circles

Big
circles

Shape Background Synthetic
images

Train set 0.913 0.955 0.965 0.949 0.989
Test set 0.902 0.939 0.950 0.930 0.984
Validation set 0.934 0.940 0.968 0.961 0.990
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6.2 Qualitatively

In this second part, the results will be scored visually based on the images, due to the lack of a
100% ground truth in the real images. Therefore, the results are based on the observation of the
creator. Some of the agglomerates within the images shown are hard to qualify as an agglomerate.
Depending on the deserver, it could be qualified as agglomerate or not, which could lead to different
results.

In this part, the results of the differences between different neural networks created will be
shown. Additionally, the robustness of the final detection algorithm on images without agglomer-
ates, images with different particles, and images with increased brightness.

6.2.1 Detection algorithm on real images

In Figure 6.5, the result for the detection for one real image of the validation set is shown. In these
images, the detection algorithms seem to detect only agglomerates. The results will be discussed
based on the fact that detected agglomerates are considered to be correctly detected.

The neural networks can detect the same agglomerates as found with image processing (Figure
6.5a). Additionally, all five neural networks can detect other agglomerates within the image.
However, some of the detected objects might be too small to be an agglomerate. The average
number of detection, or the detection rate, of the validation set for all neural networks, is shown
in Table 6.6. The small circles neural network can detect more and smaller agglomerates than the
big circles neural network, as can be found by comparing Figure 6.5b and Figure 6.5c, respectively.
The background neural network detects more agglomerates than the shape neural network. While
previously the shape neural network scored higher on the synthetic images. Lastly, the synthetic
images neural network detects the most agglomerates. Therefore, the synthetic images neural
network is considered to be the best neural network. In the next results, the robustness of the
synthetic images detection algorithm will be discussed, as it will be the final detection algorithm
due to the highest mAP score on the synthetic images and the highest detection rate on the real
images.

Table 6.6: The average detection rate on the real images of the validation set, with the small
circles, big circles, shape, background and synthetic images neural networks.

Small
circles

Big
circles

Shape Background Synthetic
images

Detection rate
validation set

12.8 7.4 10.1 23.2 25.3
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: All images are identical and from the real images set. The bounding boxes from the
actual image as shown in Figure 6.5a are generated from the annotation file of the synthetic images
training data. The bounding boxes of the predicted images from Figure 6.5b, 6.5c, 6.5d, 6.5e and
6.5f are respectively generated with the small circles, big circles, shape, background and synthetic
images neural network.
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6.2.2 Robustness of the detection algorithm

Need of detection

In Figure 6.6, it can be seen that the final detection algorithm does not detect any object, as
desired. However, sometimes objects are detected as shown in Appendix D, in Figure D.2. There
is a large bounding box created, which happens in a small part of the dry images. This decreases
the robustness of the detection algorithm.

Figure 6.6: On the left is an image of the dry image set. On the right is the same image without
bounding boxes that were not generated by the final detection algorithm.
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Real images with increased brightness

When the image is brighter as in Figure 6.7, the detection algorithm is still able to detect agglom-
erates. However, in comparison to the real images, as shown in Table 6.7, the number of detected
agglomerates is decreased. This shows that the detection rate of the final detection algorithm is
dependent on the brightness of the images. In addition, this decreases the robustness of the final
detection algorithm.

Table 6.7: The average detection rate on the validation set of the real images and the brighter
real images. Both predictions are made by the synthetic images neural network.

Synthetic images
Synthetic images
increased brightness

Detection rate
validation set

25.3 17.2

Figure 6.7: Both images are the real images, but with increased lightness. The bounding boxes
from the actual image are generated from the annotation file of the synthetic images training data.
The bounding boxes of the predicted image are generated by the neural network that was trained
with the synthetic images training data.
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Images with Geldart D particles

In Figure 6.8, the result is shown of one of the images with the Geldart D particles. It is clear
that the final detection algorithm can detect the agglomerates of particles of this class as well.

Figure 6.8: Both are the same images from the set with the Geldart D particles. The actual image
is presented without bounding boxes. The bounding boxes of the predicted image are generated
by the neural network that was trained with the synthetic images training data.
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Conclusions

FBR’s are mainly used for reactions involving solid particles. One of the tailored reactor designs
is the injection of a liquid into the FBR. Depending on the process, the liquid is used as a
transportation medium, as a reactant or is used for heat removal. This introduced liquid gave
rise to the formation of agglomerates. These agglomerates may lead to a decrease of heat- and
mass-transfer, which can cause loss of reactor performance. To overcome these problems a good
understanding of the behaviour of these agglomerates is needed. The first step towards analysing
the behaviour of agglomerates is done in this work. In this work, it is analysed if it is possible to
design a robust detection algorithm with deep learning for computer vision, that is able to detect
agglomerates in a pseudo-2D fluidized bed.

Five detection algorithms were designed: small circles, big circles, shape, background and syn-
thetic images neural network. The neural networks were compared with each other to analyse the
resolution limitations, shape dependence and effect of noise. The accuracy scores were determined
on the validation set of their own training data and images of the synthetic images training data.
Furthermore, the detection rate was tested on the real images. Lastly, the robustness of the final
detection algorithm was tested.

First of all, it was found that increasing the size of the training data increased the detection
rate of the detection algorithms. In addition, detection algorithms with a training data of 300
images scored higher than 90% on their own training data. Furthermore, the detection of objects
smaller than 6 pixels was more challenging. Therefore, the small circles neural network scored
lower than the other four neural networks. By increasing the bounding box size the detection rate
increased by all neural networks. Especially the rate of detection of small objects increased. The
different shapes and added noise had no significant effect on the detection rate.

When the five neural networks were tested on the images of the synthetic images training data,
the neural network that was created with the most realistic images detected more accurately. For
example, the neural network trained on different shapes was more accurate than circles. The
synthetic images neural network scores the best on the images of the synthetic images training
data with a mAP score of 99%.

In the end, all five neural networks were able to detect agglomerates in real images. The shape
neural network detected slightly more objects than the big circles neural network. Contrary to
the images of the synthetic images training data the background neural network detected more
agglomerates in the real images than the shape neural network. The synthetic images neural
network detected the most agglomerates in the real images. Therefore, the synthetic images
neural network is the final neural network.

The final neural network was further assessed on robustness. In a set of dry images the
final neural network did sometimes detect an object. Additionally, the detection rate decreased
when the brightness of the real images increased. However, the final neural network is also able to
detect agglomerates when another particle size is used. In conclusion, the final detection algorithm
can detect agglomerates in a pseudo-2D fluidized bed. However, the robustness of the detection
algorithm is not perfect.
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Recommendations

The current detection algorithm is not as robust when the brightness of the image is changed, as
the detection rate of the images with increased brightness is decreased. To prevent this problem,
a training data with more images including images with different brightness should be created.
Again a detection algorithm can be trained with the new training data, which will result in a more
consistent detection rate than the synthetic images neural network.

Within the real images, it is hard to analyse if the object it finds is an agglomerate or not.
Therefore, a new procedure or tool should be developed to identify agglomerates. After this
procedure or tool is created the current detection algorithm can be tested and optimized even
further.

In this research, only the Mask R-CNN model is used to train and create a detection algorithm.
There are many other types of neural networks which could perform better. Therefore, additional
research could be done in testing different types of CNN’s such as Faster R-CNN and EfficientDet.
Within these models, multiple parameters such as the batch size and the number of epochs are
used. Additional analysis could be executed on the performance of the detection algorithm when
these parameters are changed. It is also possible to design a completely new detection algorithm
purely for the case of the detection of agglomerates. However, designing a completely new neural
network system is very challenging.

The first step in analysing the behaviour of the agglomerates is the detection of agglomerates,
which is executed in this work. Further research should focus on the determination of size dis-
tribution of the agglomerates, the velocity of the agglomerates and the probability density of the
position of the agglomerates in the bed. To do this, a tracking algorithm needs to be designed.
The tracking algorithm can use the developed agglomerate detection method.

Currently, a pseudo-2D fluidized bed is used to analyse agglomerates. However, the analysis of
agglomerates could be even better if the agglomerates could be analysed in a FBR. In neuroscience,
deep learning is used to detect tumors in brains with the help of Magnetic Resonance Imaging
(MRI) images. Deep learning can be used to detect tumors in 2D slices [27] or in full 3D brain
images [28]. A similar technique could be used to detect agglomerates in a FBR when it is possible
to create a 3D image where agglomerates are visible. The current Mask R-CNN model can only
be trained on the detection of agglomerates in the 2D slices. Another model needs to be used
to train on the detection of agglomerates in a 3D image. The 3D images can be made using a
high frame-rate MRI scan or a combination of high-speed video technique with the laser sheet
technique [29]. However, this laser is not able to penetrate the fluidized bed wall. Therefore, an
endoscope should be used to generate images of the fluidized bed.
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Appendix A

Examples of union over
intersection

Figure A.1: Visual examples of different overlappings between the ground truth bounding box and
the predicted bounding box. The increase overlap increases the IoU as shown from IoU is 0.4, 0.7
and 0.9. [5]
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Appendix B

Examples annotation file

Figure B.1: An example of annotation file with two agglomerate locations. This example image is
coupled to the 00001.jpg image. It has a depth of 372, height of 913 and depth of 1. The object it
detects is an agglomerate. The location of the two agglomerates is given with xmin, ymin, xmax
and ymax.
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Appendix C

Specifics of the camera’s

Table C.1: Some of the specifications of the Visual camera [30] and the IR camera [31].

Camera Visual IR
Brand pco. FLIR
Type pco.dimax HD+ FLIR X8400 sc
Wavelength range 290-1100 nm 1.5-5.1 µm
Maximum vertical resolution 1440 1024
Maximum horizontal resolution 1920 1280
Bits per pixel 12 14
Memory (maximum) 36 GB PC RAM
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Appendix D

Additional Results

Figure D.1: On the left is an image of the shape validation set. On the right the same image with
one wrongly generated bounding box generated with the neural network which was trained with
the shape training data. The wrongly generated bounding box is on the crossing of x-axis is 100
and y-axis is 760.
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Figure D.2: On the left is an image of the dry image set. On the right the same image with a
wrongly generated bounding box from the final detection algorithm.
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