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List of Symbols

Symbol Quantity Unit
q⃗ Orientation vector [−] Dimensionless
ϕ Relative angle of the projection of the orientation vector on the xy-plane from the y-axis [rad] Radians
θ Relative angle from the z-axis [rad] Radians
ρ Density [kg/m3] Kilograms per cubic meter
v Velocity [m/s] Meter per second
σ Stress [kg/ms2] Kilogram per meter second squared
b Sum of the body forces [kgm/s2] Kilogram meter per second squared
µ Kinematic viscosity [kg/ms] Kilogram per meter second
ηs Newtonian viscosity [kg/ms] Kilogram per meter second
p Pressure [kg/ms2] Kilogram per meter second squared
λ Internal relaxation time [s] seconds
τ Extra stress tensor [kg/ms2] Kilogram per meter second squared
α Non linear parameter [-] Dimensionless
ηp Polymer viscosity [kg/ms] Kilogram per meter second
v∞ Shear field [m2

/s] Meter squared per second
∆t Time step [s] Seconds
t Time [s] Seconds
γ̇ Flow rate [m/s] Meter per second
re Aspect ratio [-] Dimensionless
l Length [m] Meter
d Diameter [m] Meter
e Absolute error [-] Dimensionless
ωs Angular velocity [rad/s] Radians per second



1 Introduction
Nowadays, many products are made using polymers. The reasons for this are, that polymers are lightweight,
have low manufacturing cost, and are relatively easy to use during the manufacturing process. Polymers
tend to have less strength compared to their steel counterparts [1]. During the shaping process of a product,
adding hard fibers in the polymer melt can improve the total strength of the polymer product. These fibers
have good properties in the axial direction, but not in the direction perpendicular to that axial direction [2].
Figure 1 shows the stress strain curve for two different samples. The red sample has fibers which are aligned
with the load direction and the blue sample has fibers which are not aligned with the load direction. The
stress strain behavior of these two sample is very different. This is caused by the orientation of these fibers.

The orientation of these fibers therefore greatly impacts the physical properties of the end product. During
the processing of the polymer with the hard fibers, the local orientation of these fibers is determined by the
fluid flow. For that reason, it is important to predict the fiber orientation kinetics during processing. When
the orientation of the fibers is known, the mechanical properties can be predicted. A method to determine
the orientation of the fibers in a product is by simulating what happens with fibers in certain fluid flows.

Figure 1: Stress strain curve for two different orientations of fibers

The aim of this work is to study the motion of a single fiber in complex (non-Newtonian) fluids utilizing
Finite Element Method (FEM). The main focus is to find possible relations between the relevant polymer
flow variables and how they affect the orientation of a single fiber. During the research, both extensional
and shear flows are simulated around a hard fiber.

The report starts with a problem definition in Chapter 2. In Chapter 3 Jeffery orbits are introduced which
analytically describe the motion of a single fiber in a Newtonian fluid. These equations will be used for
the validation of the simulation software. In Chapter 4 the in-house FEM tool TFEM used to obtain the
orientation of a single particle for a viscoelastic fluid will be explained. In Chapter 5 the results from the
TFEM simulations will be validated with respect to the Jeffery orbits. In Chapter 6 the results of the
simulations will be discussed.
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2 Problem Definition
For most processing techniques of polymer melts are usually subjected to a combination of shear flows and
extensional flows. An example of a shear flow for polymer melts is in 3D printing [3]. In 3D printing
technology, parts are manufactured by the successively stacking of material layers. The material is deposited
layer by layer, forming an end product. During film blowing of polymer, an extensional flow is exerted on the
polymers [4]. During the film-blowing processes, pressurized gas is used to stretch the polymers. A typical
product made by a film blowing process is garbage bags. To simplify these complex flows, in this report
solely shear flow and uniaxial extensional flow are considered. Another simplification is that this report will
look at the orientation kinetics of a single fiber rather than multiple fibers.

The orientation of a rod-like fiber in three dimensions can be described using an orientation vector

q⃗ = qxe⃗x + qy e⃗y + qz e⃗z. (1)

Where e⃗x, e⃗y, e⃗z are the unit vector in x−, y− and z−direction respectfully, qx, qy and qz are arbitrary scalars
and q⃗ is the orientation vector, this vector has the property that the length is equal to 1.

Figure 2: Schematic representation of a rod-like fiber in three-dimensional space, together with the definitions
of the orientation angles ϕ and θ

The position of the fiber can also be described by using the orientation angles ϕ and θ. The angle ϕ describes
the relative angle between the y-axis and the projection of the orientation vector on the xy-plane. And the
angle θ describes the angle from the z-axis. These orientation angles are also shown in Figure 2. The
relationship between the angles ϕ and θ and the xyz-coordinate system is

q⃗ =
⎛

⎜

⎝

sin(θ) sin(ϕ)
sin(θ) cos(ϕ)

cos(θ)

⎞

⎟

⎠

(2)

where q⃗ is the orientation vector.

As mentioned before, polymer melts are subjected to shear flow and extensional flow. Describing these types
of flows on a polymer melt with a rod-like fiber is done on a boundary box. On this boundary box, the flow
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velocity profile corresponding with the flow is prescribed. For both simple shear flow and uniaxial extensional
flow, it holds that the flow is incompressible, meaning the volume of this boundary box stays constant. The
shear flow can be described in three unique planes, the xy-plane, the yz-plane, and the xz-plane. In this
report, a shear flow will be in the xy-plane, this is shown in Figure 3. In shear flow, adjacent layers of
fluid move parallel to each other with different velocities. The further away from the origin, the higher the
velocity of the layer is going to be. The uniaxial extensional flow considered in this report takes place in the
y-direction, this is shown in Figure 4. In uniaxial extension, the fluid is pulled from the top and the bottom.
The dimensions in both the width and depth direction, z and x in this case, will decrease while the height
direction, y, will increase. The resulting strain on the boundary box is a so-called Hencky strain [5].

Figure 3: Schematic representation of shear flow
Figure 4: Schematic representation of extensional
flow

The fiber is surrounded by fluid. The fluid flow is dependent on the fluid properties. An example of this is
that water flows differently compared to honey. The fiber orientation kinetics might be different for different
material parameters of the fluid. Therefore, the two main types of surrounding fluids considered in this
report are a Newtonian fluid and a viscoelastic Giesekus fluid.

2.1 Newtonian fluid

A Newtonian fluid has a viscosity that is not dependent on shear rate. Typical examples of Newtonian fluids
are water and air. The equations of motion describe the flow of a Newtonian fluid in steady-state [6] and
are given by

ρ
Dv

Dt
= ∇ ⋅σ + ρb + µ∇2v, (3)

where ρ is the density, v is the velocity vector, σ is the stress tensor, b is the vector containing all body
forces and µ is the dynamic viscosity. For incompressible flow, with low Reynolds numbers, no slip at the
boundaries and body forces are negligible compared to the viscous forces Equation 3 can be further simplified

∇ ⋅σ = 0, (4)

where 0 is the zero vector and σ is the stress tensor. This equation is an ordinary differential equation
(ODE). The stress tensor can be decomposed as

σ = −pI + 2ηsD (5)

with p is the pressure, I identity tensor, ηs is the Newtonian viscosity, and where D is the rate of deformation
tensor defined as

D =
1

2
(∇v + (∇v)T ). (6)
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Besides the equation of motion, the continuity equation [6] also governs the flow. The continuity equation
is an ordinary differential equation and reads as follows

∇ ⋅ v = 0. (7)

2.2 Viscoelastic Giesekus fluid

A Newtonian fluid is the most basic fluid model where the stress depends on the pressure, viscosity, and the
rate of deformation tensor. A polymer melt shows behavior that a Newtonian fluid can not capture. That is
why more complex models are required to describe the behavior of such polymer melts. Such polymer melts
consist of long chains which can move relative to each other, but the chains are so long that they can form
entanglements with each other. This results in more complex fluid behavior. This more complex behavior
is known as viscoelastic behavior [7].

A model which can describe such viscoelastic behavior is the Giesekus model. The Giesekus model [8] defined
as

λ
▿

τ + τ +
λα

ηp
τ 2
= 2ηpD (8)

where λ is the internal relaxation time, α is the non-linear dimensionless parameter, ηp is the viscosity, τ is

the extra stress tensor and
▿

τ is the time upper convected derivative of the extra stress tensor.

Similar to the Newtonian fluid, the equation of motion also describes the flow of this fluid. The difference
between a Newtonian fluid and a viscoelastic Giesekus fluid comes in the decomposition of the stress tensor.
The decomposition of the stress tensor for a Giesekus fluid is

σ = −pI + τ (9)

where τ is the extra stress tensor as mentioned in Equation 8. For the Giesekus fluid, this extra stress
tensor needs to be solved together with the ODE of the stress (Equation 4) and the continuity equation
(Equation 7).

The viscoelastic Giesekus fluid has several important parameters. These parameters are α, λ and ηp. Fur-
thermore, by means of scaling, it has been determined that α, Wi, and β are important parameters in
Giesekus fluid analysis. The dependency of λ and ηp are found in the Wi and in β. This results in the
following three important parameters: Wi, α, and β.

2.2.1 Wi

The Weissenberg number is a dimensionless number that looks at the velocity of the flow compared to its
internal relaxation time. The Weissenberg number is defined as

Wi = λγ̇ (10)

where λ is the internal relaxation time and γ̇ is the flow rate. When the Weissenberg number is much bigger
than one, it can be seen as a fast deformation, in which there is not enough time for internal relaxation to
occur. In fast deformation, the behavior of the fluid is the same as that of an ideal elastic solid. On the other
hand, when the Weissenberg number is much smaller than one it can be seen as slow deformation, in this
case, the internal structure rearranges to a lower stress state at every moment in time. In slow deformation,
the fluid will behave the same as an ideal viscous fluid. The Weissenberg number tells if the fluid behavior
is viscous or elastic.

2.2.2 α

The parameter α appears in the Giesekus model. This parameter is a non-linear parameter, its value lies
between 0 and 0.5. Outside these bounds, this definition of the Giesekus model does not describe the
polymer melt behavior. The α parameter is supposed to say something about the mobility of the fluid,
which in practice dictates how fast shear thinning will take place [8]. Shear thinning is a non-Newtonian
fluid behavior, where for increasing strain rate the viscosity goes down. In the Giesekus fluid model, the α
parameter is in front of the τ 2 part of Equation 8. A high value of α will increase the effect of the τ 2 part
of Equation 8. Likewise, a low value of α will decrease the influence of the second-order term.
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2.2.3 β

β is a dimensionless number that compares the ratio between the viscosity of the solvent and the viscosity
of the polymer.

β =
ηs

ηp + ηs
(11)

Where ηs is the viscosity of the solvent and ηp is the viscosity of the polymers. A high value of β means
that the total viscosity is dominated by the solvent, and a low value of β means that the total viscosity is
dominated by the polymer. The solvent viscosity is usually the viscosity of a Newtonian fluid.
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3 Jeffery orbits
The set of equations shown in Chapter 2 for the Newtonian fluid has an analytical solution. In order to
obtain this analytical solution, several assumptions need to be made. The set of equations for the Newtonian
fluid holds for any fluid and its corresponding geometry. For the analytical solution, the shape of the fiber is
the shape of an ellipse. This is the first assumption to obtain the analytical solution. The problem definition
showed a boundary box around the fiber. For the analytical solution, this boundary box is assumed to be
infinitely big. This is the second assumption to obtain the analytical solution. The analytical solution is
known for simple shear flow. Simple shear flow is when the velocity profile of shear flow looks like an upside
down triangle. This is the shear flow as shown in Figure 3. Since for this analytical solution there is no
boundary box, the shear field needs to be defined for simple shear. The shear field is

v∞ = γ̇ye⃗x (12)

where v∞ is the shear field, γ̇ is the shear rate and y is the height from the xz-plane.

3.1 Analytical Jeffery solution

The analytical solution of the Jeffery Orbits [9] consists of two evolution equations. These evolution equations
are

ϕ̇ =
γ̇

2

r2e − 1

r2e + 1
cos(2ϕ) (13)

θ̇ =
r2e − 1

r2e + 1

γ̇

4
sin(2θ) sin(2ϕ). (14)

Where γ̇ is the shear rate, ϕ and θ are the orientation angles, and re is the aspect ratio, which is defined as

re =
l

d
. (15)

Where l is the length of the ellipse and d is the diameter of the ellipse.

Using the following boundary conditions, the following equations are integrated with respect to time. The
boundary condition is that ϕ = 0 at t = 0. This angle ϕ is the tumbling angle in shear flow. This means
that this angle will for a positive shear flow increase indefinitely. When integration with respect to time, an
integration constant will appear. Together with the boundary conditions, this integration constant can be
solved. In this case, the integration constant C [10] is equal to

C = tan(
θ0

re(r2e cos
2
(ϕ0) + sin

2
(ϕ0))

−0.5
) (16)

where θ0 and ϕ0 are the initial angles of the fiber.

tan(θ) =
Cre

√

r2e cos
2
(ϕ) + sin2(ϕ)

(17)

tan(ϕ) = −re tan(
γ̇t

re + r−1e
) (18)

Where C is the integration constant, re is the aspect ratio, γ̇ is the shear rate and t is time. Equation 17
and Equation 18 are referred to as the analytical solution of the Jeffery’s orbit [10].

3.2 Numerical integral solution

The evolution equations ϕ̇ and θ̇ given in Equation 13 and Equation 14 can be used to determine the values
of ϕ and θ by means of numerical integration.

6



3.2.1 First order Euler integration scheme

The first method to determine the angle based on their first derivative is by means of Euler integration
scheme. The first-order Euler integration scheme is a method to determine the value based on the value of
the first derivative and time step.

ϕn+1 = ϕn +∆tϕ̇n (19)

Where ϕn is the angle at the current time step, ϕn+1 is the angle at the new time step, ∆t is the time step,
and ϕ̇n is the angular velocity of ϕ at that time step. The same methodology can be applied for the angle θ.

3.2.2 Second order Adam-Bashford integration scheme

Another intergration method is the second-order Adam-Bashford integration scheme. The second-order
Adam-Bashford integration scheme uses the time derivative of the first order of the last time step and the
time step before that. This makes this integration scheme precise while remaining fast.

ϕn+1 = ϕn +∆t(
3

2
ϕ̇n −

1

2
˙ϕn−1) (20)

Where ϕn is the current angle, ϕn+1 is the new angle, ∆t is the time step and ϕ̇n is the rotational speed of
ϕ at that time step. And ˙ϕn−1 is the rotational speed of the time step before the current one. The same
methodology can be applied for the angle θ.

The Jeffery Orbits show an enclosed orbit, which the ellipsoidal-shaped fiber will follow. These orbits show
the orientation of the ellipse during shear flow. An example of such an orbit is shown in Figure 5. The shear
has been applied in the xy-plane.

Figure 5: The Jeffery Orbit for a fiber with aspect ratio of 8 and an integration constant equal to 0.7
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4 FEM theory
For viscoelastic fluid such as the Giesekus fluid as described in Chapter 2.2 there is no analytical solution. For
this reason, another method needs to be used to obtain a solution to the flow problem. A method to obtain
such a solution for fiber kinetics is using FEM software. The in-house – FINITE ELEMENT METHOD
TFEM, will be used to obtain the orientation of a single fiber as a function of time. The remainder of this
chapter will discuss some fundamental theories about FEM.

In the Finite Element Method, the domain is divided into many small elements, which is called the mesh.
In Figure 6 the dashed lines represent the smaller elements of the big box. The more elements used, the
more accurate the result will be of the simulation. However, the more elements used, the more time the
computations will take.

Figure 6: Schematic representation of a meshed cube using squared elements

For each of these meshelements, the set of ODEs (Equation 4, Equation 8 and Equation 7) needs to be
solved. For the problem described in chapter 2.1, there remain three unknown fields. Namely, the velocity
field, the pressure field and the stress field. All these fields depends on the spatial position and time. For
the pressure and the stress field, this is done linearly, which is visibly shown by the blue circles at the corner
pieces in Figure 7. The red squares represent a quadratic linearization, which is used for velocity.

Figure 7: Schematic representation of the different discretization methods for squared elements. The linear
discretization (blue circles) and quadratic discretization (red squares) are shown for three consecutive ele-
ments

The FEM method used in TFEM is Discrete Elastic Viscous Split Stress-G/Streamline Upwind Petrov
Galerkin formulation [11–13] together representing the conformation tensor by a logarithmic expression
[14,15]. To stabilize the domain, a Newtonian solvent is assumed. This means that the stress tensor consist
out of three parts

σ = −pI + 2ηsD + τ . (21)

Here ηs is the viscosity of the Newtonian solvent. The stress tensor has a pressure part, a Newtonian viscosity
contribution and a extra viscous stress part. To be able to compare the values of the viscous viscosity and the
Newtonian viscosity β is used as defined in Equation 11. The bounding box is simulated as being periodic
on all sides. This will result in a tri periodic box with boundary conditions. Instead of simulating a bunch
of fibers, a single fiber is being simulated and is assumed to be spaced homogeneous over the whole domain.
When taking a significantly big size of the bounding box, the influence of the surrounding fibers will not be
dominating the movement of the single fiber.

From the TFEM package, the angular velocities are obtained. These angular velocities need to be integrated
using an integration scheme as discussed in Chapter 3.2 to obtain the orientation angles. With these resulting
orientation angles, the orientation vector can be computed and saved for every time step.
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5 Validation
To establish confidence in the TFEM simulations, the results will be compared to the analytical solution
for Newtonian flows. The analytical solution is shown in Chapter 3.1 and the numerical integral solution is
shown in Chapter 3.2. For the comparison with TFEM two types of convergence tests have been performed,
namely time convergence and mesh convergence.

5.1 Influence of integration schemes compared to analytical solution

During the TFEM simulation, both the mesh size and the time step contribute to the error. To remove
the influence of the mesh effect, the time convergence is done between the numerical integral solution, in
which the time step error occurs, and the analytical solution which does not have a time step error. The
comparison below is for the Jeffery Orbits and not the TFEM simulations.

Both the numerical integration scheme and the analytical solution are computed using MatLab. The code
for the analytical solution can be seen in Appendix B. The code for the integral solution can be seen in
Appendix C. The first step in time in the Adam-Bashford scheme is the Euler scheme. To check for the
error, the mean of the absolute distance between the direction vectors at any given time is looked at

e =
√

(xi − xa)
2
+ (yi − ya)2 + (zi − za)2. (22)

The index of i stands for the integration scheme and the index of a stands for the analytical solution. For
both integration schemes Euler (first order) and Adam-Bashford (second order) the difference is computed
for a range of different time steps shown in Figure 8.

Figure 8: Graphical representation of the error between numerical and analytical solution for decreasing
timesteps (re = 2)

For both integration schemes, the error decreases when taking a smaller time step. However, the main
difference is that for the first-order integration scheme (Euler) the reduction for each decade of a time
step is also a decade for the error, while for the second-order integration scheme (Adam-Bashford) a decade
reduction for the time step means a reduction of two decades for the error. For the simulations, it is desirable
to have a larger time step while keeping the error low. For this reason, the second-order Adam-Bashford
integration scheme with a time step of 0.01 will be used in the TFEM simulations. By doing this, the error
due to the time step is below 10−4 while still having the benefits of using a larger time step.
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5.2 Influence of box size and mesh sizes

After obtaining the effect of the error caused by the time step, the effect of the simulation parameters
needs to be done with a mesh convergence study. For the simulations using the TFEM package, two main
parameters were identified to have a big influence on the error. Firstly, the box size since the simulation
assumes a tri-periodic cube while the Jeffery Orbits is defined for a particle in an infinitely big space and the
mesh sizes. The code makes a difference between the mesh of the fiber and the mesh of the surrounding box.
The finer the meshes, the more precise the calculations will be. To determine the best set of parameters,
several simulations were done with different parameters.

To compare the analytical solution with the simulations, a single fiber has been simulated perpendicular to
the shearing direction. The angular velocities after solving for the first time are compared. By doing this,
the error caused by the time step is removed. The fiber has a radius of 0.11 in the simulations and an aspect
ratio of 4. For both cases, the angular velocity has been determined and compared by using

e = ∣ ˙⃗qa − ωs∣. (23)

The ˙⃗qa is derived from Equation 2, the full derivation can be seen in Appendix A and ωs is obtained from
the simulations. For this perpendicular case, the only significant rotation takes place in a single direction.
That is why only a comparison has been made between the main rotational direction.

5.2.1 Influence box size

For this comparison, the mesh size of the fiber has been kept constant (0.05) to check the influence of
the other two parameters. After comparing the angular velocity computed at the first time step and the
analytical solution for the same angular velocity, a comparison is made. The error is computed as defined
in equation 23. For different box sizes, the error has been determined, this is shown in Figure 9.

Figure 9: Graphical representation of the error in the mesh convergence between the box size and the coarse
mesh

Figure 9 shows that once a box size of 4 is used, increasing the box size does not significantly change the
error anymore. This means that from that moment on, the error is dominated by other parameters, such as
the fineness of the mesh sizes.

5.2.2 Influence mesh sizes

Equivalent to determining the right box size, one of the parameters has been kept constant. In this case,
the box size is set to 4x4x4. A comparison has been made between the angular velocity obtained from the
simulations and the angular velocity obtained from the analytical solution. The error is computed as shown
in Equation 23.
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Figure 10: Graphical representation of the error in the mesh convergence for the fine fiber mesh and the
coarse box mesh

Figure 10 shows that when the fiber mesh is set to 0.05 and the coarse box mesh is set to 2 the error
is significantly small. This will not disturb the simulation results while still reducing the simulation time
significantly.

In FEM methods, the error heavily depends on the number of elements that are contained by the mesh. The
error compared to the number of elements is shown in Figure 11. In this figure, the general trend has a -3
slope, with having on the x-axis the cubic root of the number of elements and the error on a log scale.

Figure 11: Graphical representation of the error based on the number of elements

To conclude this part of the validation, the following settings will be used for the TFEM software. The time
step is going to be 0.01 with a second-order Adam-Bashford integration scheme to obtain the orientation
angles. The box size is at minimum 4x4x4 for a fiber with a length of 0.11. The fine mesh of the fiber is set
to 0.05 and for the coarse box mesh the size is set to 2.

5.3 Difference between ellipsoidal shaped fiber and spherocylindrical fiber

The Jeffery Orbits are known for an ellipse. The shape of hard fiber is not the shape of an ellipse, but rather
of a long rod with rounded edges. For this reason, a cylinder with hemispheres at the ends can be used to
model the fiber. This shape is called a spherocylinder. Another problem with using an elipsoidal fiber is that
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for larger aspect ratios, the shape of the ellipsoidal fiber gives rise to numerical issues due to the sharp point
that will be at the endpoints. In the simulations, the radius and aspect ratio has been set to be constant for
both shapes, meaning that the volume will not be exactly the same for the two shapes.

(a) The angle ϕ as function of strain during a shear sim-
ulation

(b) The angle θ as a function of strain during a shear
simulation

Figure 12: Difference between an ellipsoidal-shaped fiber and a spherocylindrical-shaped fiber

As Figure 12a shows, the angular velocity of the spherocylindrical fiber is slightly larger compared to the
ellipsoidal shaped fiber. Figure 12b shows the angle θ as a function of shear rate. The amplitude of this
angle is larger for an ellipsoidal shaped fiber compared to a spherocylindrical shaped fiber. This variation in
the angle θ will cause for a different shaped orbit. The most significant change can be seen in the yz-plane,
which is shown in Figure 13. Here, it is visible that the orbit of the ellipsoidal shaped fiber is bigger than
the orbit of the spherocylindrical shaped fiber.

Figure 13: zy-plane indicating the difference in orbits between the spherocylindrical fiber and the ellipsoidal
shaped fiber
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6 Results
In this chapter, the results of the TFEM simulations are shown for the problem as discussed in Chapter
2. The fiber orientation is investigated for shear and uniaxial extensional flow. The end conditions for the
simulations have been set for shear flow to be at a time of 45 seconds, and for extensional flow until a Hencky
strain of 30 has been reached. The shear direction in the simulations is the xz-plane. The extension direction
in the simulations is the z-direction. The influence of α, Weissenberg number, and β are all studied as they
have been identified in Chapter 2.2 as the most important parameters. The study is performed considering
a fiber aspect ratio of 2 and a fiber with an aspect ratio of 8. On top of that, three different initial values
of orientation angle θ: 1, 45 and 89 degrees have been studied. The initial value for the orientation angle ϕ
is always 0. This means that the fiber initially is in the yz-plane. The initial orientations of the fiber are
shown in Figure 14. For visibility reasons, the 1-degree angle is shown as a 3-degree angle and the 89-degree
angle is shown as an 86-degree angle.

(a) Orientation of the fiber
when θ is equal to 3 degrees

(b) Orientation of the fiber
when θ is equal to 45 degrees

(c) Orientation of the fiber
when θ is equal to 86 degrees

Figure 14: The three different starting positions for the fiber used in the simulations

6.1 Influence of α

To investigate the influence of α other two parameters, have been set to a constant value (β = 0.01 & Wi = 1),
while the value of the α parameter has been varied. For α the values for the variation are 0.49, 0.05 and
0.005. In shear flow, the influence of α will be shown by means of three figures, one figure will show the
orientation of the fiber in a three-dimensional space, the other two figures will show the orientation angles
ϕ and θ as a function of strain. These three figures combined give a good overview of time effects as well as
the spatial effects that take place. The influence of α in shear flow with an aspect ratio of 2 can be seen in
Figures 15, 16 and 17.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 15: Influence of α for an initial orientation of θ = 1 and an aspect ratio of 2

Figure 15a shows the orientation of the fiber in three-dimensional space. Figure 15b shows the tumbling
angle ϕ as a function of strain. The higher the value of α, the higher the angular velocity is. Figure 15c
shows the angle θ as a function of strain. All three viscoelastic simulations show a drift towards the zero
value in z-direction. The higher the value of α is, the slower this drift goes.
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(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 16: Influence of α for an initial orientation of θ = 45 and an aspect ratio of 2

Figure 16a shows the orientation of the fiber in three-dimensional space. For the three viscoelastic simula-
tions, a spiral pattern is visible. Figure 16b shows the tumbling angle ϕ as a function of strain. Figure 16c
shows the angle θ as a function of strain. All three viscoelastic simulations show a drift towards the zero
value of the z-direction, and the orientation is moving towards the x-direction. This effect is not depending
on the value α.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 17: Influence of α for an initial orientation of θ = 89 and an aspect ratio of 2

Figure 17a shows the orientation of the fiber in three-dimensional space. Figure 17b shows the tumbling
angle ϕ as a function of strain. Figure 17c shows the angle θ as a function of strain. The angle of θ decreases
over strain for all three viscoelastic simulations. This indicated that this effect is not dependent on α.

A realistic hard fiber has a higher aspect ratio than 2. For this reason, the same set of simulations has been
performed using a higher fiber aspect ratio equal to 8. The influence of α in shear flow for a fiber aspect
ratio of 8 can be seen in Figures 18, 19 and 20.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 18: Influence of α for an initial orientation of θ = 1 and an aspect ratio of 8
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Figure 18a shows the three-dimensional orientation of the fiber. Figure 18b shows the tumbling angle ϕ. The
angular velocity of angle ϕ at the positions where the fiber aligns with the shear flow direction is much lower
compared to the rest of the orientations. The higher the value of α is, the lesser this effect is. Figure 18c
shows the angle θ as a function of strain. The amplitude of the angle θ decreases for a higher value of α.
Besides that, the higher the value of α is, the higher the angular velocity of the angle θ is.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 19: Influence of α for an initial orientation of θ = 45 and an aspect ratio of 8

Figure 19a shows the orientation of the fiber in three-dimensional space. Figure 19b shows the tumbling
angle ϕ. For this tumbling angle ϕ, the angular velocity around the shear flow direction is much lower than
for the other orientation directions of ϕ. This effect in angular velocity is higher for higher values of α.
Figure 19c shows the angle θ decreasing over strain for all three viscoelastic simulations. For higher values
of α, this effect goes faster.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 20: Influence of α for an initial orientation of θ = 89 and an aspect ratio of 8

Figure 20a shows the orientation of the fiber in three-dimensional space. Figure 20b shows the tumbling
angle ϕ. Figure 20c shows the orientation angle θ as function of strain. The angular velocity of the angle ϕ
goes faster for lower values of α. The higher α is, the longer the fiber stays aligned with the shear direction.

Uniaxial extensional flow

Now, simulations are performed to investigate the influence of the parameter α on the fiber kinetics for
uniaxial extensional flow. In uniaxial extension, the angle ϕ remains constant and is thus therefore not
considered in the analysis. Likewise, the three-dimensional orientation in extensional flow will, for the used
initial angles of θ always show the fiber aligning with the flow direction. For this reason, this figure is not
considered in the results. The initial angles of θ which are relevant for uniaxial extension are a starting
angle of 1 degree and 45 degrees. The initial angle for ϕ still remains zero degrees. The influence of α in
extensional flow for a fiber with an aspect ratio of 2 can be seen in Figure 21 and in Figure 22 with a fiber
aspect ratio of 8.
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(a) The angle θ with initial angle θ equal to 1 degree (b) The angle θ with initial angle θ equal to 45 degrees

Figure 21: Influence of α in extensional flow for a fiber with aspect ratio 2

Figure 21a shows the angle θ as a function of strain when the fiber was initially orientated 1 degree for the
angle θ. The higher the value of α, the higher the angular velocity is. Figure 21b shows the angle θ as a
function of strain when the fiber was initially orientated to be 45 degrees for the angle θ. This figure shows
that all three viscoelastic simulations have a lower angular velocity compared to the angular velocity the
fiber would have in a Newtonian fluid. This effect is not dependent on the value of α.

(a) The angle θ with initial angle θ equal to 1 degree (b) The angle θ with initial angle θ equal to 45 degrees

Figure 22: Influence of α in extensional flow for a fiber with aspect ratio 8

Figure 22a shows the angle θ as a function of strain when the fiber was initially orientated 1 degree in the
direction of the angle θ. The three viscoelastic simulations show a higher angular velocity than the angular
velocity for the Newtonian fluid simulation. The angular velocity is at the beginning of the experiment
lower than the angular velocity at the end of the experiment. This change in angular velocity results in a
curvature that initially increases slowly, in the middle section the curvature is steeper and in the end section,
the curvature becomes less steep. The angular velocity is higher for higher values of α. Figure 22b shows
the angle θ as a function of strain when the fiber was initially orientated 45 degrees in the direction of the
angle θ. All three viscoelastic simulations show a lower angular velocity than the angular velocity of the
Newtonian fluid. In this simulation, there is no influence of the parameter α.
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6.2 Influence of Weissenberg number

This section of the report will focus on the influence of the Weissenberg number on the kinetics of the fiber.
To isolate the influence of the Weissenberg number (Wi) the parameters α and β are kept at the constant
values of 0.05 and 0.01 respectfully. For the Weissenberg number, the values of 0.1, 1, and 10 have been
studied. The influence of the Weissenberg number is for shear flow with a fiber aspect ratio of 2 shown in
Figure 23, Figure 24 and Figure 25.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 23: Influence of the Weissenberg number for an initial orientation of θ = 1 and an aspect ratio of 2

Figure 23a shows the orientation of the fiber in three-dimensional space. Figure 23b shows the tumbling
angle ϕ during the shear simulation. For a Weissenberg number equal to 0.1 this tumbling angle ϕ has a
similar angular velocity as for the Newtonian fluid. For a Weissenberg number equal to 1 the angular velocity
is higher. For a Weissenberg number of 10 the angle ϕ seems to remain more or less constant. Figure 23c
shows the angle θ during the shear simulations. When the Weissenberg number is equal to 1 or 0.1 drifting
takes place, while for a Weissenberg number equal to 10 the θ angle increases over strain.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 24: Influence of the Weissenberg number for an initial orientation of θ = 45 and an aspect ratio of 2

Figure 24a shows the orientation of the fiber in three-dimensional space for different Weissenberg numbers.
A Weissenberg number equal to 1 results in a spiraling pattern for the orientation of the fiber. For a lower
Weissenberg number, this spiraling is happening at an angular velocity, resulting in more spirals before
reaching alignment with the x-axis. For a Weissenberg number equal to 10 this spiraling does not happen,
rather it moves very slowly toward the y-axis. In Figure 24b and Figure 24c the angles ϕ and θ are shown
as a function of strain.
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(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 25: Influence of the Weissenberg number for an initial orientation of θ = 89 and an aspect ratio of 2

Figure 25a shows the orientation of the fiber in three-dimensional space. Figure 25b and Figure 25c show
the angles ϕ and θ respectfully as a function of strain. For a Weissenberg number equal to 0.1 the movement
of the fiber is similar to the Newtonian fluid. For a Weissenberg number equal to 1, the fiber slowly spirals
down toward the x-axis. For a Weissenberg number equal to 10, the fiber orientates very slowly towards the
y-axis.

A realistic hard fiber has a higher fiber aspect ratio than 2. For this reason, the same set of simulations has
been performed using a higher fiber aspect ratio equal to 8. The influence of the Weissenberg number in
shear flow for the fiber with an aspect ratio of 8 can be seen in Figure 26, Figure 27 and Figure 28.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 26: Influence of the Weissenberg number for an initial orientation of θ = 1 and an aspect ratio of 8

Figure 26a shows the orientation of the fiber in three-dimensional space for the different Weissenberg numbers.
For a Weissenberg number equal to 10, the fiber slowly rotates towards the y-direction. Figure 26b shows
the angle ϕ for the different Weissenberg numbers. A lower Weissenberg number results in faster angular
velocities. Furthermore, for a Weissenberg number equal to 1 the fiber has a lower angular velocity around
the shear flow direction, this is not the case for the Weissenberg number equal to 0.1 which has a similar
speed as for the Newtonian fluid. Figure 26c shows the orientation angle θ as a function of strain for the
different Weissenberg numbers. The higher the Weissenberg number is, the higher the peak value of θ is.
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(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 27: Influence of the Weissenberg number for an initial orientation of θ = 45 and an aspect ratio of 8

Figure 27a shows the orientation of the fiber in three-dimensional space for the different Weissenberg numbers.
Figure 27b shows the angle ϕ as a function of strain for the different Weissenberg numbers. Figure 27c shows
the angle θ as a function of strain for the different Weissenberg numbers. A lower Weissenberg number results
in faster angular velocities. Furthermore, for a Weissenberg number equal to 1 the fiber has a lower angular
velocity around the shear flow direction, for the Weissenberg number equal to 0.1 the angular velocity is
similar to the angular velocity of the Newtonian fluid. For a Weissenberg number equal to 10, the fiber
slowly rotates toward the y-axis.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 28: Influence of the Weissenberg number for an initial orientation of θ = 89 and an aspect ratio of 8

Figure 28a shows the orientation of the fiber in three-dimensional space for the different Weissenberg numbers.
Figure 28b shows the angle ϕ as a function of strain for the different Weissenberg numbers. Figure 28c shows
the angle θ as a function of strain for the different Weissenberg numbers. For a Weissenberg number equal
to 0.1, the angular velocity is faster than for the Newtonian fluid. For a Weissenberg number equal to 1 the
fiber has a lower angular velocity around the shear flow direction. For a Weissenberg number equal to 10,
the fiber aligns perpendicular to the flow direction.

Uniaxial extensional flow

Now, simulations are performed to investigate the influence of the Weissenberg number on the fiber kinetics
for uniaxial extensional flow. In uniaxial extension, the angle ϕ remains constant and is thus therefore not
considered in the analysis. Likewise, the three-dimensional orientation in extensional flow will, for the used
initial angles of θ, always show the fiber aligning with the flow direction. For this reason, this figure is not
considered in the results. The initial angles of θ which are relevant for uniaxial extension are a starting
angle of 1 degree and 45 degrees. The initial angle for ϕ still remains zero degrees. The influence of the
Weissenberg number in extensional flow for a fiber with an aspect ratio of 2 can be seen in Figure 29 and in
Figure 30 with a fiber aspect ratio of 8.
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(a) The angle θ with initial angle θ equal to 1 degree (b) The angle θ with initial angle θ equal to 45 degrees

Figure 29: Influence of the Weissenberg number in extensional flow for a fiber with aspect ratio 2

Figure 29a shows the angle θ during the extension experiment with an initial orientation of 1 degree. For
a Weissenberg number equal to 10 the angular velocity is higher up to a certain strain value, after which
the angular velocity will decrease again. For the other two values of the Weissenberg number, there is no
dependency. Figure 29b shows the θ angle during the extension experiment with an initial orientation of 45
degrees. For a Weissenberg number equal to 10 the initial angular velocity is faster and will decrease over
strain. A Weissenberg number of 0.1 has a higher angular velocity than when the Weissenberg number is
equal to 1.

(a) The angle θ with initial angle θ equal to 1 degree (b) The angle θ with initial angle θ equal to 45 degrees

Figure 30: Influence of the Weissenberg number in extensional flow for a fiber with aspect ratio 8

Figure 30a shows the angle θ as a function of strain for the extensional simulation with a fiber aspect ratio
equal to 8 and with the initial orientation of 1 degree. Both for a Weissenberg number of 1 and 10 at the
start, the initial angular velocity is higher. For the Weissenberg number is equal to 10 this angular velocity
will decrease, and for the Weissenberg number of 1 this does not happen. Figure 30b shows the angle θ as
a function of strain for the extensional simulation with a fiber aspect ratio equal to 8 and with the initial
orientation of 45 degrees. In these simulations, the influence of the Weissenberg number is not apparent.

6.3 Influence of β

This next section will investigate the influence of β. As explained in Chapter 4, a Newtonian solvent is added
to stabilize the simulations. The parameter β is the ratio between the solvent viscosity and the total sum of
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the viscosity as defined in Equation 11. This implies that for low values of β, the solvent viscosity is merely
a fraction of the viscosity of the viscoelastic fluid itself. To isolate the influence of the effect of changing the
β parameter, the other parameters α and Wi are kept constant. The values of β that have been studied
are 0.001, 0.01, and 0.09. In shear flow the influence of this ratio β will be shown by means of three figures,
one figure will show the orientation and two other figures will show the orientation angles as a function of
strain. The influence of β in shear flow with a fiber aspect ratio of 2 can be seen in Figure 31, Figure 32 and
Figure 33.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 31: Influence of the β for an initial orientation of θ = 1 and an aspect ratio of 2

Figure 31 shows the influence of β in shear flow with initial angle θ equal to 1 for a fiber aspect ratio of 2.
In these simulations, there is no dependence of β.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 32: Influence of the β for an initial orientation of θ = 45 and an aspect ratio of 2

Figure 32 shows the influence of β in shear flow with initial angle θ equal to 45 degrees and a fiber aspect
ratio equal to 2. The higher the value of β, the slower the spiraling toward the x-direction goes. Taking a β
value of 0.01 and 0.001 results in the same simulation results for the orientation of the fiber.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 33: Influence of the β for an initial orientation of θ = 89 and an aspect ratio of 2
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Figure 33 shows the influence of β for an initial angle θ of 89 degrees with a fiber aspect ratio of 2. Taking
a β value of 0.01 and 0.001 results in the same simulation results. This implies that when the value of β is
below 0.01 no influence of β is in the simulation compared to the other viscoelastic behavior.

A realistic hard fiber has a higher aspect ratio than 2. For this reason, the same set of simulations has been
performed using a higher fiber aspect ratio of 8. The influence of β with an aspect ratio of 8 for the fiber is
shown in Figure 34, Figure 35 and Figure 36.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 34: Influence of the β for an initial orientation of θ = 1 and an aspect ratio of 8

Figure 34 shows the simulation results for the different values of β. This figure shows that there is no
dependence of β.

(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 35: Influence of the β for an initial orientation of θ = 45 and an aspect ratio of 8

Figure 35 shows the influence of β during shear simulation with a fiber aspect ratio of 8 and the initial angle
θ equal to 45 degrees. Taking a β value of 0.01 and 0.001 results in the same simulation results. Taking a
higher value of β results in a faster angular velocity. This implies that when the value of β is below 0.01 no
influence of β is in the simulation compared to the other viscoelastic behavior.
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(a) Orientation of the fiber (b) The angle ϕ as a function of strain (c) The angle θ as a function of strain

Figure 36: Influence of the β for an initial orientation of θ = 89 and an aspect ratio of 8

Figure 36 shows the influence of β during shear simulation with a fiber aspect ratio of 8 and the initial angle
θ equal to 89 degrees. The higher the value of β is, the higher the angular velocity is. Taking a β value of
0.01 and 0.001 results in the same simulation results. This implies that when the value of β is below 0.01
no influence of β is in the simulation compared to the other viscoelastic behavior.

Uniaxial extensional flow

Now, simulations are performed to investigate the influence of the ratio β on the fiber kinetics for uniaxial
extensional flow. In uniaxial extension, the angle ϕ remains constant and is thus therefore not considered in
the analysis. Likewise, the three-dimensional orientation in extensional flow will, for the used initial angles
of θ, always show the fiber aligning with the flow direction. For this reason, this figure is not considered in
the results. The initial angles of θ which are relevant for uniaxial extension are a starting angle of 1 degree
and 45 degrees. The initial angle for ϕ still remains zero degrees. The influence of β in extensional flow for
a fiber with an aspect ratio of 2 can be seen in Figure 37 and in Figure 38 with a fiber aspect ratio of 8.

(a) The angle θ with initial angle θ equal to 1 degree (b) The angle θ with initial angle θ of 45 degrees

Figure 37: Influence of the β ratio in extensional flow for a fiber with aspect ratio 2

Figure 37a shows the simulation results for extensional flow with initial orientation angle of θ equal to 1
degree. The higher the value of β, the higher the angular velocity is. Figure 37b shows the simulation results
with an initial orientation of 45 degrees for the angle θ. In these simulations, no dependence of β is apparent.
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(a) The angle θ with initial angle θ equal to 1 degree (b) The angle θ with initial angle θ of 45 degrees

Figure 38: Influence of the β ratio in extensional flow for a fiber with aspect ratio 8

Figure 38a shows the simulation results for the different values of β with initial orientation of 1 degree for
the angle θ. Figure 38b shows the simulation results for the different values of β with initial orientation of
45 degrees for the angle θ. For both of these simulations, no dependence of β is apparent.
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7 Conclusion
In this report, an investigation into the fiber orientation during the processing of fiber-filled polymer melts
has been performed. First, single ellipsoidal fiber simulations subjected to shear flow in a Newtonian fluid are
performed. These simulations are carried out using an in-house developed FEM package and are compared
to the Jefferys orbit, this is the analytical solution for a single ellipsoidal fiber subject in simple shear flow,
to obtain the error made in the simulations. Time convergence and mesh convergence studies are performed
using the Jefferys orbits. After that, single spherocylindrical fiber simulations subjected to shear and uniaxial
extensional flow have been performed to determine the influence of the characteristic fluid parameters on
the orientation and rate of the orientation of the single fiber. These characteristic values are the viscosity
ratio β, the non-linear parameter α, and the Weissenberg number.

The influence of the ratio β for the considered ratios is negligible compared to the other viscoelastic effects
in the simulation. This shows that the Newtonian solvent does not influence the obtained simulation results,
and thus the orientation kinetics observed are valid.

The α parameter has the most influence on the fiber orientation kinetics for fiber with larger aspect ratios in
shear flow. The effect α shows itself in the regime where the fiber aligns with the shear flow direction. For
higher value of α, the fiber will remain for less strain and thus less time at this aligned position. In Chapter
2.2 the effect of α was explained as how fast shear thinning takes place. For higher values of α more shear
thinning will take place, the more shear thinning takes place the lower the viscosity is and thus the rotation
of the fiber becomes easier. Allowing the fiber to move away from the shear flow direction faster.

The effect of the Weissenberg number is independent of the fiber aspect ratio for shear flow. For a high
Weissenberg number of 10, the fiber will very slowly orient towards the shear flow axis. For a low Weissenberg
number, the fiber will spiral toward the shear flow axis. These effects have also been observed by Geatanno
and Hulsen [16]. The spiraling effect for the low Weissenberg number they mention as “log-rolling”, was
found for high Deborah numbers, and the slow movement towards the shear flow axis they found for low
Deborah numbers. In extensional flow, the higher the Weissenberg number is, the faster the angular velocity
is at the lower strain. At higher strains, this angular velocity decreases.

Recommendations

This section will discuss improvements that can be made to the simulations to be able to predict the fiber
orientation more precisely during the processing of fiber-filled polymers. Both the extensional simulations
and the shear flow simulations can be further improved. Above that, several other scenarios should be
studied to be able to predict the fiber orientation during processing.

The effects in the extensional flow should be further investigated for higher strain values. The periodic
box in extensional flow increased in the y-direction and decreased in x- and z-direction. This is for higher
fiber aspect ratios a problem, since the box would decrease its dimensions further than the orientation of
the fiber would allow for. This not only caused these numerical errors but also gives rise to the effects of
neighboring fibers due to the assumed tri-periodic box. The rotation of the fiber at high strains could have
been influenced by the neighboring fibers.

In shear flow, there were two cases observed where longer simulations would have been beneficial. For fibers
with larger aspect ratios, the simulation should run for higher strain values to be able to capture more of the
movement of these long fibers. Similarly, for higher Weissenberg numbers the angular velocity of the fiber is
very low and should therefore the simulations should run for higher strain values. In the manufacturing of
fiber-filled polymers, these high levels of strain could be reached depending on the product and production
method.

Another improvement that can be made is simulating the orientation kinetics of the fiber for different
viscoelastic models. This report has focused on the effect of a Giesekus viscoelastic fluid, but several other
viscoelastic fluid models exist that describe the behavior of polymer melts. These different viscoelastic fluid
models each have a difference in the constitutive equation for the extra stress tensor, which could result in
different orientation kinetics and different important parameters.

When making fiber-filled polymer products, the interaction between multiple fibers could play a role in
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the orientation kinematics. A fiber-filled polymer contains many fibers, which are generally not uniformly
aligned. This is not considered in this report. The interaction of the fibers might also depend on the
characteristic viscoelastic properties, and that should be investigated to be able to precisely predict the
orientation of fibers in a production process.

The simulations have thus far not considered the influence of temperature. In the processing of polymers,
the polymers are heated up to have the polymers in fluid form. In the processing, the polymers will cool
down, resulting in the final end product. During this cooling down process, the orientation of the fibers
might be influenced further due to the anisotropic material behavior of polymers. This could result in the
end product having a different orientation once the polymer melt has been cooled down.

In polymer processing techniques, the polymer flow is obstructed in many ways. These obstructions guide
the flow and make sure that the polymer obtains the form of the desired end product. Obstructions will have
an influence on the flow of the fluid, and it is therefore likely to have an influence on the fiber orientation
kinetics.

With each of these above-motioned recommendations, the local fiber orientation of a fiber-filled polymer
product can be more accurately simulated. And will thus result in better predictability of the mechanical
properties of fiber-filled polymer products.
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A Derivation of ˙⃗q
To obtain the derivative of the orientation vector, the vector can be differentiated. Since the evolution
equation of θ and ϕ are known, Equation 14 and Equation 13 respectfully, the orientation vector can be
differentiated by

˙⃗q =
d

dt
q⃗. (24)

This leads to

˙⃗q =
⎛

⎜

⎝

θ̇ cos(θ) sin(ϕ) + ϕ̇ sin(θ) cos(ϕ)

θ̇ cos(θ) cos(ϕ) − ϕ̇ sin(θ) sin(θ)

−θ̇ sin(θ)

⎞

⎟

⎠

(25)

for the expression of ˙⃗q.
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B Matlab Code Analytical solution

1 %% De f i n i t i o n o f input v a r i a b l e s
2 gammadot = 1 ; % Shear ra t e
3 r = 2 ; % Aspect r a t i o
4 dt = 0 . 0 1 ; % Time step
5 tmax = 10 ; % End time
6 % Angle input
7 phi 0 = 0 ∗ pi / 180 ; % Sta r t i ng ang le
8 the ta 0 = 45 ∗ pi / 180 ; % Sta r t i ng ang le
9

10 % Vector input ( does not have to be normal ized )
11 l ambda start = [ 1 ; 0 ; 1 ] ; % Sta r t i ng po t i t i o n vec tor
12
13 Input used = ' vector ' ; % ' vector ' or ' angle ' to be used to s e l e c t
14
15 %% Quick c a l c u l a t i o n s
16 % For input being ang l e s
17 lambda 0 = [ s i n ( the ta 0 ) ∗ s i n ( ph i 0 ) ; s i n ( the ta 0 ) ∗ cos ( ph i 0 ) ; cos ( the ta 0 ) ] ;
18
19 % For input being d i r e c t i o n vec tor
20 lambda st = lambda start /norm( lambda start ) ; %Normalize the vec to r
21 t h e t a s t a r t = acos ( lambda st (3 ) ) ; %Finding the f i r s t ang le
22 ph i s t a r t = as in ( lambda st (1 ) / s i n ( t h e t a s t a r t ) ) ; %Finding the second angle
23
24 %% Se l e c t i o n o f input ( Angles or d i r e c t i o n a l vec to r )
25 % Picking the p r e f e r ed input − based on vector
26 Input used vec to r = strcmp ( Input used , ' vector ' ) ;
27 Input used ang l e = strcmp ( Input used , ' angle ' ) ;
28 i f I nput used vec to r == 1
29 l ambda in i t = lambda st ;
30 p h i i n i t = ph i s t a r t ;
31 t h e t a i n i t = t h e t a s t a r t ;
32 end
33 % Picking the p r e f e r ed input − based on ang l e s
34 i f Input used ang l e == 1
35 l ambda in i t = lambda 0 ;
36 p h i i n i t = phi 0 ;
37 t h e t a i n i t = the ta 0 ;
38 end
39
40 C = tan ( t h e t a i n i t ) /( r ∗( r ˆ2∗ cos ( p h i i n i t )ˆ2+s in ( p h i i n i t ) ˆ2) ˆ−0.5) ;
41
42 %% Ana ly t i ca l s o l u t i o n
43 s t ep s = nsteps ;
44 t = l i n s pa c e (0 , tmax , s t ep s ) ;
45
46 phi = atan ( r ∗ tan ( ( gammadot∗ t ) /( r+r ˆ(−1) ) ) ) ;
47
48 % Compensating f o r the i nv e r s e tangent not r e tu rn ing the f u l l domain
49 f o r index = 2 : 1 : s t ep s
50 i f phi ( index ) < 0
51 phi ( index ) = phi ( index ) + pi ;
52 end
53
54 i f phi ( index −1) − phi ( index ) > 0 .95∗ pi
55 phi ( index ) = phi ( index ) + pi ;
56 end
57
58 i f phi ( index ) − phi ( index −1) < −3
59 phi ( index ) = phi ( index ) − pi ;
60 end
61
62 end
63
64 theta = atan ( (C ∗ r ) . / ( ( r ˆ2∗ cos ( phi ) .ˆ2+ s in ( phi ) . ˆ 2 ) . ˆ ( 1/2 ) ) ) ;
65
66 lambda = [ s i n ( theta ) .∗ s i n ( phi ) ; s i n ( theta ) .∗ cos ( phi ) ; cos ( theta ) ] ;
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C Matlab Code Integration solution

1 %% De f i n i t i o n o f input v a r i a b l e s
2 gammadot = 1 ; % Shear ra t e
3 r = 2 ; % Aspect r a t i o
4 dt = 0 . 0 1 ; % Time step
5 tmax = 10 ; % End time
6
7 % Angle input
8 phi 0 = 0 ∗ pi / 180 ; % Sta r t i ng ang le
9 the ta 0 = 45 ∗ pi / 180 ; % Sta r t i ng ang le

10
11 % Vector input ( does not have to be normal ized )
12 l ambda start = [ 1 ; 0 ; 1 ] ; % Sta r t i ng po t i t i o n vec tor
13
14 Input used = ' vector ' ; % ' vector ' or ' angle ' to be used to s e l e c t
15
16 %% Quick c a l c u l a t i o n s
17 % For input being ang l e s
18 lambda 0 = [ s i n ( the ta 0 ) ∗ s i n ( ph i 0 ) ; s i n ( the ta 0 ) ∗ cos ( ph i 0 ) ; cos ( the ta 0 ) ] ;
19
20 % For input being d i r e c t i o n vec tor
21 lambda st = lambda start /norm( lambda start ) ; %Normalize the vec to r
22 t h e t a s t a r t = acos ( lambda st (3 ) ) ; %Finding the f i r s t ang le
23 ph i s t a r t = as in ( lambda st (1 ) / s i n ( t h e t a s t a r t ) ) ; %Finding the second angle
24
25 %% Se l e c t i o n o f input ( Angles or d i r e c t i o n a l vec to r )
26 % Picking the p r e f e r ed input − based on vector
27 Input used vec to r = strcmp ( Input used , ' vector ' ) ;
28 Input used ang l e = strcmp ( Input used , ' angle ' ) ;
29 i f I nput used vec to r == 1
30 l ambda in i t = lambda st ;
31 p h i i n i t = ph i s t a r t ;
32 t h e t a i n i t = t h e t a s t a r t ;
33 end
34 % Picking the p r e f e r ed input − based on ang l e s
35 i f Input used ang l e == 1
36 l ambda in i t = lambda 0 ;
37 p h i i n i t = phi 0 ;
38 t h e t a i n i t = the ta 0 ;
39 end
40
41 %% In t e r g r a l form
42 time = 0 : dt : tmax ;
43 nsteps = length ( time ) ;
44
45
46 % Bui ld ing empty ar rays
47 theta d=ze ro s ( nsteps , 1 ) ;
48 phi d=ze ro s ( nsteps , 1 ) ;
49 the ta dot=ze ro s ( nsteps , 1 ) ;
50 phi dot=ze ro s ( nsteps , 1 ) ;
51 phi d2=ze ro s ( nsteps , 1 ) ;
52
53 % In s e r t i n g i n t i a l value ' s i f app l i c ab l e
54 theta d (1) = t h e t a i n i t ;
55 phi d (1) = p h i i n i t ;
56 lambda d ( : , 1 )= lambda in i t ;
57
58 f o r i = 2 : nsteps
59
60 % update theta
61 the ta dot ( i ) = ( r ˆ2−1) /( r ˆ2+1)∗gammadot/4∗ s i n (2∗ theta d ( i −1) ) ∗ s i n (2∗ phi d ( i −1) ) ;
62
63 % 2nd order Adam−Bashford f o r theta
64 i f i == 2
65 theta d ( i ) = theta d ( i −1) + dt∗ the ta dot ( i ) ;
66 e l s e
67 theta d ( i ) = theta d ( i −1) + dt ∗(3/2∗ the ta dot ( i )−1/2∗ the ta dot ( i −1) ) ;
68 end
69
70 % update phi
71 phi dot ( i ) = gammadot/2∗(1+( r ˆ2−1) /( r ˆ2+1)∗ cos (2∗ phi d ( i −1) ) ) ;
72
73 % 2nd order Adam−Bashford f o r phi
74 i f i == 2
75 phi d ( i ) = phi d ( i −1) + dt∗ phi dot ( i ) ;
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76 e l s e
77 phi d ( i ) = phi d ( i −1) + dt ∗(3/2∗ phi dot ( i )−1/2∗phi dot ( i −1) ) ;
78 end
79
80 phi d2 ( i ) = wrapTo2Pi ( phi d ( i ) ) ;
81
82 % Computing lambda based on the new ang l e s
83 lambda d ( : , i ) = [ s i n ( theta d ( i ) ) ∗ s i n ( phi d ( i ) ) ; s i n ( theta d ( i ) ) ∗ cos ( phi d ( i ) ) ; ...

cos ( theta d ( i ) ) ] ;
84 end
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