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Abstract

The inverse Laplace transform of some functions can be performed using a hyperbola as an integ-
ration contour. An example of this is the Sheen Contour. It is important to set the five parameters
of this contour to a proper value to get an accurate inverse Laplace transform. In this thesis, a
fitting algorithm is explored while fixing three of the five parameters to see if this would result
in an accurate inverse Laplace transform. The specific fixed parameters are chosen by use of a
sensitivity analysis.
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Chapter 1

Introduction

The computational time for the calculation of time-dependent problems can take very long. This
is not favorable when working with a digital twin hooked up to a 3D printer since the digital twin
would take longer to compute than the experiment is taking for the heat conduction problem. This
computational time can be reduced significantly by making use of the inverse Laplace Transform
method to take the equations out of the time domain. This gives the possibility to calculate the
heat conduction problem while the experiment is performed. It is important to choose the correct
method for the inverse Laplace transform so the inverse Laplace transform is performed in the
correct way and with as little error as possible. With the method chosen, the parameters have
to be chosen carefully. Currently, the problem is that an inverse Laplace transform method used
for the heat conduction problem has parameters that have to be tuned according to the specific
problem. The goal is to find a method that can tune these parameters in order for a successful
inverse Laplace transform.
In this thesis, the parameters of the inverse Laplace transform contour proposed by Sheen in [13]
will be studied. This is also called the Sheen Contour. This will be done using a Sobol method,
which is a method to analyze the sensitivity of the parameters. The parameters are then optimized
by fitting the inversed Laplace transform to simulated experimental data with inspiration from
[16] in order to assess if the fitting can be done on already existing experimental data.

Optimizing the Sheen Contour for the Inversion of the Laplace Transform 1



Chapter 2

Laplace transform

The Laplace transform is a tool to reduce the computational time significantly for difficult prob-
lems. It converts a difficult problem into a simpler one. By applying the Laplace transform,
differential operators in time and space can be reduced to algebraic operators in the frequency
variable [3]. This allows the solution to be expressed in terms of the original independent variables.
However, an increase in the entropy of a system can not be taken into account with the inverse
Laplace transform. It is, therefore, important to only apply the inverse Laplace transform to a
function f with certain conditions. These conditions will be explained underneath.

The Laplace transform of a real function f : R → R with f(t) = 0 for t < 0 and its inversion
formula are defined as [10]

F (z) = L[f(t)] =

∫ ∞

0

e−ztf(t)dt (2.1)

f(t) = L−1[F (z)] =
1

2πi

∫ v+i∞

v−i∞
eztF (z)dz (2.2)

In this formula z = v + iw; v, w ∈ R.
v ∈ R is arbitrary but greater than the real parts of all the singularities of F (s). The integrals in
Equation 2.1 and Equation 2.2 exist for Re(z) > a ∈ R if

1. f is locally integrable

2. there exist a t0 ≥ 0 and k, a ∈ R, such that |f(t)| ≤ keat for all t ≥ t0

3. for all t ∈ (0,∞) there is a neighbourhood in which f is of bounded variation.

In this paper, it is assumed that all functions fulfill the above conditions and that there are no
singularities of F (z) to the right of the origin. Especially the second condition is important. This
condition namely means that the function must decay over time. If this is not the case, no inver-
sion of the Laplace transform can be applied successfully.
Besides this method, also called the Bromwich contour, there are multiple ways of inverting the
Laplace transform [15]. Previous methods involved expansion of the inverse in series of Laugerre
functions, as for example Widder, and Tricomi did. A more known method for this is Weeks
Method. Salzer in 1955 evaluated the inversion integral by Gaussian quadrature using an appro-
priate system of orthogonal polynomials. Most of the methods can be divided into two groups,
namely orthogonal series expansions, or weighted sums of values of the transform at a set of points,
usually complex points. The method described in this paper is a continuation of the work of Tal-
bot. Talbot made the number of points nz as one of several arbitrary parameters. This made little
to none preliminary computational work to be required. Talbot replaced the Bromwich contour
with an equivalent contour L for which L enclosed all singularities of F (z). The advantage is that
this contour can handle noise in data [4]. This contour is the basis of the Sheen Contour, which
will be explained in the next chapter.

2 Optimizing the Sheen Contour for the Inversion of the Laplace Transform



Chapter 3

Sheen Contour

In this chapter, the inverse Laplace transform by the Sheen Contour is explained according to [13].
The inverse Laplace transform by the Sheen Contour can, just as the Talbot method, handle noise
in data. First, the formulas are explained that will be used to perform the Sheen Contour. Next,
The effect of every parameter is shown in order to get a clear picture of what every parameter
does. Lastly, it is explained what the goal of selecting the right parameters is in order to get a
stable inverse Laplace transform.

3.1 The method of Sheen

As said in the chapter before, the inverse Laplace transform will be performed using the Sheen
Contour.

The first step in the approach of the Sheen Contour is to represent the inverse Laplace transform
solution f(t) as a contour integral of the form

f(t) =
1

2πi

∫
Γ

eztF (z)dz (3.1)

where, for Re(z) ≥ σ with σ sufficiently large, F (z) is the Laplace transform of f

F (z) = f̂(z) =

∫ ∞

0

e−ztf(t)dt (3.2)

In these equations, z is a complex number in the form z = v + iw, and t is time. Γ is the
deformed contour, which behaves asymptotically as a pair of straight lines in the left half-plane.
This means that it can be seen as two lines that go to Re(z) → −∞ with an opposite slope when
Im(z) → ±∞, forcing the factor ezt to decay exponentially towards both ends of the deformed
contour. Γ is permitted to cut the real axis either to the right of the origin or to the left, but
sufficiently close to the origin. The formula for the contour Γ is then

Γ = {z : z = φ(y) + isy, y ∈ R, y increasing} (3.3)

In this equation, s is a positive parameter, and φ : R → R is a fixed smooth function satisfying

φ(y) ≈ −|y| for large |y|, and φ(y) ≤ α− |y| for y ∈ R (3.4)

An example of this contour can be seen in Figure 3.1.

Optimizing the Sheen Contour for the Inversion of the Laplace Transform 3



3.1. THE METHOD OF SHEEN CHAPTER 3. SHEEN CONTOUR

Figure 3.1: Straight line Sheen Contour

In this contour, the two asymptotes of Γ have slope ±s, and from the point of view of enhancing
the exponential decay in Equation 3.1 s should be taken as small as possible. Quadrature will
now be applied to the contour integral because it was suggested by M. Crouzeix this has benefits
over the previous treatment. A choice for the function φ which is used in the calculation is then

φ(y) = α−
√
y2 + β2, for y ∈ R (3.5)

In this equation, the two parameters are α and β, with α ∈ R and β > 0. The curve Γ is then
the left-hand branch of a hyperbola, with asymptotes having slopes ±s, which crosses the real axis
at α− β. An example of this contour can be seen in Figure 3.2.

Figure 3.2: Hyperbolic Sheen Contour

It is important that the Laplace transform f̂(z) of a function f(t) must have an analytical
continuation, from Γ0 to the deformed contour Γ. Another requirement is that all singularities
of f̂(z) should lie to the left of Γ. With the quadratic contour represented in Equation 3.3, the
integral Equation 3.1 can be written as an infinite integral with respect to a real variable:

f(t) =

∫ ∞

−∞
v(t, y)dy, with v(t, y) =

1

2πi
ez(y)tF (z(y))z′(y), z(y) := φ(y) + isy (3.6)

In this equation, F (z) is the Laplace transform of f(t). The integrand in this integral decays
exponentially for large t, because of the assumed behavior of Re(z(y)) = φ(y). The approximate
solution will then be of the form:

F̃N (t) =

nz−1∑
j=−nz+1

ωjv(t, yj) =

nz−1∑
j=−nz+1

ω̂je
zjtF (zj), zj = z(yj), ω̂j =

1

2πi
z′(yj)ωj (3.7)

4 Optimizing the Sheen Contour for the Inversion of the Laplace Transform



CHAPTER 3. SHEEN CONTOUR 3.1. THE METHOD OF SHEEN

In this equation, yj are the quadrature points with yj ∈ R and the nonnegative weights ωj

depending on the particular quadrature scheme. The parameter nz is the number of quadrature
points. The particular quadrature scheme that now will be considered is obtained by mapping the
infinite integral of Equation 3.6 to (-1,1) and then applying the trapezoidal rule to the resulting
finite integral. Under appropriate conditions, the resulting quadrature formula has a high order of
accuracy. This is done by first changing the variables y = y(η) where y(η) is a smooth increasing
function mapping (-1,1) to R, to obtain, for v ∈ C(R;B) with B the Banach space. This results in

I(v) :=

∫ ∞

−∞
v(y)dy =

∫ ∞

−∞
V (η)dη, where V (η) = v(y(η))y′(η) (3.8)

Specifically, with τ a positive parameter, y(η) is chosen to be the odd function

y(η) = τ−1χ(η), where χ(η) = log((1 + η)/(1− η)) (3.9)

In the above equation, τ will play the role of a threshold in t, in that the approximate solution
will be accurate of order essentially t/τ for t > τ . An example of this quadrature contour can be
seen in Figure 3.3.

Figure 3.3: Sheen Contour after implementing τ

The difference between the previous contour, as displayed in Figure 3.2, and this contour is
the spacing of the quadrature points. In Figure 3.2, the quadrature points are all evenly spaced
apart, while in Figure 3.3 the quadrature points are more placed near the top of the hyperbola.
This is for the reason that it is found that these points are the most important for an accurate
Laplace transform [16]. In this paper, it was shown that no accuracy is lost by including only the
middle 75% of the nodes and discarding the outlying 25%.
The composite trapezoidal rule can now be applied with spacing 1/nz to the integral over (-1,1)
and assuming V (±1) = 0, the following equation is defined

QN,τ (v) =
1

nz

nz−1∑
j=−nz+1

V (ηj) =
1

nzτ

nz−1∑
j=−nz+1

µjv(yj)

where

(3.10)

ηj = j/nz, µj = χ′(ηj) = 2/(1− η2j ), yj = y(ηj) = τ−1χ(ηj)

Optimizing the Sheen Contour for the Inversion of the Laplace Transform 5



3.2. EFFECT OF THE PARAMETERS CHAPTER 3. SHEEN CONTOUR

The quadrature points are thus distributed over an interval with endpoints ±τ−1 log(2nz − 1).
Provided v(y) in Equation 3.8 vanishes appropriately fast at infinity, this formula is then of an
arbitrarily high order of accuracy.
The quadrature scheme can now be applied as an approximation of the exact solution f(t) =
I(v(t, ·)), where v(t, y) is given in terms of w by Equation 3.6. Explicitly, the approximation of
f(t) is given by

F̃nz,τ (t) = QN,τ (v(t, ·)) =
1

nzτ

nz−1∑
j=−nz+1

µ̃je
zjtF (zj), µ̃j =

1

2πi
z′(yj)µj (3.11)

where zj = z(yj) = φ(yj) + isyj , z
′(yj) =

−yj√
y2
j+β2

+ is, and where τ > 0 is the parameter in

the transformation in Equation 3.9. In cases when F (z) = F (z) (what will be the case in the
used functions), and the function φ is even, it is given that µ̃−j = µ̃j and z−j = zj , for which
Equation 3.11 can be rewritten as

Unz,τ (t) = 2Re

(
1

nzτ

nz−1∑
j=0

′µ̃je
zjtF (zj)

)
(3.12)

where the prime after the summation indicates that the term with j = 0 is to be halved.

3.2 Effect of the parameters

After giving every equation to perform the inverse Laplace transform by the Sheen Contour, the
effect of each of the five parameters α, β, nz, s, and τ on the Sheen Contour will be shown. This
will give a clearer insight into how the Sheen Contour, as seen in Figure 3.3, reacts to parameter
changes.

3.2.1 Effect of α

The parameter α is part of zj = z(yj) = α −
√

y2j + β2 + isyj . The effect of changing α can be

seen in Figure 3.4.

Figure 3.4: Sheen Contour for α = 1 and α = 2

In the above figure, it clearly can be seen that an increase in α will result in a shift to the
right of the Sheen Contour. It was already explained above that the Sheen Contour crosses the
real axis at α − β. In the case of the above figure β = 1, which means for α = 1 the real axis is
crossed at 0, and for α = 2 the real axis is crossed at 1.

6 Optimizing the Sheen Contour for the Inversion of the Laplace Transform



CHAPTER 3. SHEEN CONTOUR 3.2. EFFECT OF THE PARAMETERS

3.2.2 Effect of β

The parameter β is also part of zj = z(yj) = α −
√
y2j + β2 + isyj . The effect of changing β can

be seen in Figure 3.5.

Figure 3.5: Sheen Contour for β = 0, β = 1, and β = 2

In the above figure, it can be seen that an increase in β will result in a shift to the left of where
the Sheen Contour crosses the real axis. However, only the integration points that are close to the
real axis are shifted drastically, while the integration points further from the real axis only show
a small shift. A special case arises when β = 0. The integration contour is then the same as the
straight line Sheen Contour in Figure 3.1.

3.2.3 Effect of nz

The parameter nz is the number of integration points. nz is part of ηj = j/nz which comes back
in two parts of the Sheen Contour. The effect of changing nz can be seen in Figure 3.6.

Figure 3.6: Sheen Contour for nz = 2, nz = 5, and nz = 30

In the above figure, it can be seen that the Sheen Contour will not change in shape for a change
in nz. The value at which the contour crosses the real axis always stays the same. However, what
does change is of course the number of integration points itself. Another thing that changes with
this is how far the Sheen Contour will go on the negative real axis. If nz becomes smaller, the
Sheen Contour will reach less far on the negative real axis. This is for the reason that a lower nz

will result in a lower value for ηj in Equation 3.9 and Equation 3.10 which results in a lower real
part.

Optimizing the Sheen Contour for the Inversion of the Laplace Transform 7



3.2. EFFECT OF THE PARAMETERS CHAPTER 3. SHEEN CONTOUR

3.2.4 Effect of s

The parameter s is again part of zj = z(yj) = α−
√
y2j + β2 + isyj . The effect of changing s can

be seen in Figure 3.7.

Figure 3.7: Sheen Contour for s = 0, s = 1, and s = 5

In the above figure, it clearly can be seen that an increase in s will result that the Sheen
Contour will go further on the imaginary axis. For s = 0, there is no imaginary part of the Sheen
Contour and for a higher s, the maximum value of the imaginary part of the Sheen Contour will
increase. The maximum value for the imaginary part scales linearly with s and yj = τ−1χ(ηj).
This means that in this case it only scales linearly with s because yj is kept constant.

3.2.5 Effect of τ

The parameter τ is again part of zj = z(yj) = α −
√
y2j + β2 + isyj . The parameter τ comes

back in yj in
√
y2j + β2 and in the imaginary part isyj . The effect of changing τ can be seen in

Figure 3.8.

Figure 3.8: Sheen Contour for τ = 1, τ = 2, and τ = 5

In the above figure, it can be seen that increasing τ will change the distribution of the integ-
ration points to the top of the hyperbola. An increase in τ will also decrease how far the Sheen
Contour will go on the negative real axis. This is the opposite for nz since a decrease in nz will
have a similar result as increasing τ of how far the Sheen Contour will go on the negative real
axis. The reason for this trend is Equation 3.10 since a higher τ will mean a lower yj .

8 Optimizing the Sheen Contour for the Inversion of the Laplace Transform



CHAPTER 3. SHEEN CONTOUR 3.3. GOAL OF THE SHEEN CONTOUR

3.3 Goal of the Sheen Contour

As said before, all singularities of the Laplace transform F (z) of a function f(t) should lie to
the left of the integration contour Γ. The goal for a good inverse Laplace transform is to fit the
contour as close to these singularities as possible. This is done by tuning the five parameters α,
β, nz, s, and τ . An example of a Sheen Contour that follows this rule on the function f(t) = e−t2

with F (z) =
√
π
2 ez

2/4(1− erf( z2 )) can be seen in Figure 3.9 together with the result of this Sheen
Contour in Figure 3.10.

Figure 3.9: Sheen Contour for F (z) =√
π
2 ez

2/4(1− erf( z2 )) and nz = 30
Figure 3.10: Result of this Sheen Contour

A plot like Figure 3.9 is known as domain coloring [6]. Each color is given to a point of the
complex plane based on the argument. The brightness is based on the modulus. In this paper,
particular attention is paid to the white color. This indicates the singularities. The black color
indicates a pole. As can be seen in the figure, all singularities (white color) are to the left of the
Sheen integration Contour, which makes it a proper Contour. This Sheen Contour would result in
an absolute mean error of 0.006 in the first 20 seconds compared to the real function f(t) = e−t2 .
It even is stable after 1000 seconds, which makes it a good integration Contour.

An example of a bad Sheen Contour can be seen in Figure 3.11 together with the result in
Figure 3.12. The singularities of the function are lying to the right of the Sheen Contour. This
results in a very unstable inversed Laplace transform in which the absolute mean error equal to
1.8·1017 is for the first 20 seconds compared to the real function f(t) = e−t2 .

Figure 3.11: Bad Sheen Contour for F (z) =√
π
2 ez

2/4(1− erf( z2 )) and nz = 30

Figure 3.12: Result of this bad Sheen Con-
tour
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Chapter 4

Sensitivity analysis

In this chapter, the sensitivity analysis of the parameters α, β, nz, s, and τ is explored. This is
done using a variance-based sensitivity analysis named Sobol method. First, the Sobol method
is explained together with the parameter spaces. Next, the sensitivity analysis is done on the set
parameters and a conclusion is drawn.

4.1 Different types of sensitivity analysis

Before starting with a sensitivity analysis of any problem set, there needs to be determined which
sensitivity analysis is going to be used. Each problem set faces different challenges. In the case of
the inverse Laplace transform, there is known that it is nonlinear from Equation 3.9. Then there
is also known that there are interactions between parameters according to Equation 3.10. It is,
therefore, preferable to have a sensitivity analysis that captures these interactions. Now we set the
above constraints, four different methods will be discussed in order to assess if they are suitable
for the inverse Laplace transform [7]. It is important to notice that these are not all sensitivity
analysis methods. Some methods have not been taken into consideration at all for the reason that
they were directly seen as not suitable.

4.1.1 Nominal Range Sensitivity

The nominal range sensitivity method, also called the one-at-a-time method, is the most straight-
forward approach to performing a sensitivity analysis. This method is also known as a local
sensitivity analysis. In this method, all the parameters are fixed at one specific value except for
one. This is also where the term ’local’ comes from. This parameter will be changed in a certain
set range and the effect on the output will be analyzed. This method can be used for an unlimited
number of parameters. There are multiple ways to analyze the output. One way is to calculate
the sensitivity by dividing the percentage change in output by the percentage change in input for
each of the parameters. Another way is to do linear regression to analyze the output. A downside
of the nominal range sensitivity method is that it is unsuitable for nonlinear models. Besides, with
five input parameters that have a volume fraction of 1

5! , it means approximately only 0.8% of the
total parameter space is explored.

4.1.2 Regression analysis

Regression analysis can be approached as a probabilistic sensitivity analysis technique (Iman et al,
1985 in [7]). Before doing this sensitivity analysis, a relation between inputs and output should be
determined. For this, understanding the functional form of the model or scatter plots is needed.
Generally, a relationship between inputs and an output is fitted. This relationship is assumed,
which means that if the relationship is not met it lacks robustness. Another limitation is that
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regression analysis will not be optimal for input parameters with interactions (Devore and Peck,
1996 in [7]).

4.1.3 Scatter plots

The method of using scatter plots is a graphical sensitivity analysis. The method is to get scatter
plots of the output against the individual input variables. The correlation can then be measured
between the input and output from which a conclusion can be drawn about which parameter has
the most impact. As said in the subsection above, scatter plots must be used to do the regression
analysis. Scatter plots are, therefore, considered to often be the first step in the sensitivity analysis.
There is also a personal interpretation of scatter plots, which can result in different conclusions
retrieved from them from one person to another.

4.1.4 Variance-based analysis (Sobol method)

In the variance-based sensitivity analysis, the variance of the output is divided into fractions that
are attributed to individual inputs or sets of inputs. These fractions can be directly interpreted.
One way to perform the variance-based analysis is the Sobol method. This method will be ex-
plained later. One advantage of variance-based analysis is that no assumption is needed regarding
the underlying model, only the parameter spaces are needed. Another advantage of this method
is that it is useable for nonlinear systems and it deals with interactions. However, compared to
other sensitivity analyses, it can be computationally heavy for a large set of parameters.

4.2 Selecting sensitivity analysis

As stated before, the sensitivity analysis used needs to deal with the nonlinearity in the system.
The inverse Laplace transform is highly non-linear due to the spacing function for the quadrature
points. In Equation 3.9, it can clearly be seen from the logarithms. Therefore, the sensitivity
analysis must deal with very large nonlinearities. For this reason, the nominal range sensitivity
is not suitable. Another reason is that just 0.8% of the parameter space is explored with this
method, as calculated in the subsection. This means that a large part keeps being undiscovered.
The second condition for the sensitivity analysis of the inverse Laplace transform is that the
sensitivity analysis must capture interactions between parameters. This means that just using
scatter plots is not applicable to this system since these interactions will not be captured. Due to
this, it will also be difficult to perform a regression analysis on the system. This is for the reason
that understanding the functional form of the model or scatter plots are needed for the regression
analysis. The functional form is too hard to obtain for the inverse Laplace transform in the scope
of this project. Besides this, the regression analysis is not optimal for input parameters with
correlations. From this, it is concluded that regression analysis is not suitable as well. The last
method considered was the variance-based analysis. This method does deal with nonlinearity in
the system and it can handle interactions between the parameters [12]. The interactions between
parameters can even be retrieved from the calculated fractions. Therefore, this seems the best
sensitivity analysis method to be used on the inverse Laplace transform. The only downside is
that it can be computationally heavy for a large set of parameters. However, there are only dealt
with five parameters, which are not considered a ’large’ number.

4.3 Sobol method

As concluded above, the used sensitivity analysis will be a variance-based analysis. This is a global
sensitivity analysis, i.e. the entire parameter space is explored. This method is often to referred as
the Sobol method since this is the most used method of variance-based analysis. Another method
is the extended Fourier Amplitude Sensitivity Test method but this method was not considered.
In the Sobol method, two indices are calculated for every parameter [2]. The calculated indices are
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used for estimating the influence of variables on the model output. The indices are then ranked to
find which input parameter has the most influence on the output. These indices are computed by
Monte Carlo simulations [14]. Monte Carlo simulation uses random sampling in order to solve a
problem that might be deterministic. This should be the case for the Sobol indices if the parameter
spaces are kept constant. A schematic for global sensitivity is given in Figure 4.1.

Figure 4.1: Schematic for global sensitivity analysis

As seen in the figure above, global sensitivity analysis consists of five main steps in order to
perform the sensitivity analysis. These five steps for the Sobol method are as follows:

1. The model is known and developed and the individual parameters that want to be investig-
ated are selected. The parameter spaces are defined with a probability distribution.

2. From this parameter space together with the probability distribution, a set of random input
vectors is generated.

3. The set of random input vectors is inserted in the model and each solution is calculated.

4. The output distribution is analyzed and determined.

5. Variance decomposition according to the Sobol method to rank the input parameters followed
from the Sobol indices.

The first four steps listed above are the same for every global sensitivity analysis method. Only
the last step is different for the global sensitivity method chosen. As stated before, two Sobol
indices will be calculated. These indices are the first order effects (direct effects) and total effects.
In the end, especially the total effects are important since these include all interactions of that
parameter. With the parameters α, β, nz, s, and τ , the total effect of parameter α on the output
is:

TS(α) = S(α) + S(αβ) + S(αnz) + S(αs) + S(ατ) (4.1)

In this formula, TS(α) is the total sensitivity index of α, S(α) is the first order sensitivity index for
α, and S(αβ) is the second-order sensitivity index between α and β, i.e. the interaction between α
and β. This is also for the interactions between α and all other parameters. In order to calculate
the first order indices and total indices, the analysis of variances has to be computed. Assume
that the model is described by a function u = f(x), where the input x = (x1, ..., xn) is a point
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inside an n-dimensional box and u is a scalar output. The function f(x) can be represented into
summands of different dimensions by decomposition of the function where 1 ≤ i1 < ... < is ≤ n:

f(x) = f0 +
∑
i=1

fi(xi) +
∑
i<j

fij(xi, xj) + ...+ f1,2...n(x1, x2, .., xn) (4.2)

Equation 4.2 must satisfy∫ 1

0

fi1...is(xi1 , ..., xis)dxk = 0 for k = i1, ..., is (4.3)

It follows from Equation 4.3 that all members in Equation 4.2 are orthogonal and can be expressed
as integrals of f(x):

f0 =

∫
f(x)dx (4.4)

fi(xi) = −f0 +

∫
f(x)dx

∏
k ̸=i

dxk (4.5)

fij(xi, xj) = −f0 − fi(xi)− fj(xj) +

∫
f(x)dx

∏
k ̸=i,j

dxk (4.6)

Similar formulae can be obtained for higher-order terms. Assuming that f(x) is square integrable
means that all terms in Equation 4.2 are also square integrable. Following from this the total
variance D of f(x) is calculated:

D =

∫
f2dx− f2

0 (4.7)

The partial variances for each of the terms in Equation 4.1 are then:

Di1,...,is =

∫
f2
i1,...,isdxi1 · · · dxis (4.8)

In the above equation, 1 ≤ i1 < ... < is ≤ n and s = 1, ..., n. From this, the global sensitivity
indices are calculated

Si1,...,is =
Di1,...,is

D
for i ≤ i1 < ... < is ≤ k (4.9)

In this equation, Si is the first-order sensitivity index for factor xi. This will measure the direct
effects of xi on the output. There is also the possibility to calculate second-order sensitivity indices,
but this will not be looked at. The direct estimation of the global sensitivity indices is calculated
using values of f(x) only. This is done with the Monte Carlo algorithm. There are crude Monte
Carlo estimates obtained for the first-order effects and total effects. These are as follows:

D =

∫
f2dx− f2

0 ≈ 1

N

N∑
j=1

f2(xj)− f2
0 (4.10)

Di = D − 1

2
[f(x)− f(xi, x

′
−i]

2dxdx′
−i ≈ D − 1

2N

N∑
j=1

[f(xj)− f(xij − x′
−ij)]

2 (4.11)

Dtot
i =

1

2

∫
[f(x)− f(xi, x

′
−i]

2dxdx′
−i ≈

1

2N

N∑
j=1

[f(xj)− f(xij − x′
−ij)]

2 (4.12)

In these equations, N is the sampling size for Monte Carlo discretization, and x−1 = (x1, ..., xi−1,
xi+1, ..., xm) is the parameter combination complementary to xi.

Now the formulas are given and explained, the sensitivity analysis can be performed on the existing
model.
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4.4 Performing the Sobol method

The sensitivity analysis will be performed on the following function:

f(t) = e−t2 (4.13)

Figure 4.2: Function plot of f(t) = e−t2

The plot of this function can be seen in Figure 4.2 above. The Laplace transform F (z) for this
function is:

F (z) =
1

2

√
πez

2/4

(
1− erf(

z

2
)

)
(4.14)

As discussed in chapter 3, the sensitivity analysis of the above function will be done on the Sheen
Contour Laplace transform.

4.4.1 Defining parameter spaces

The first thing to do when performing the Sobol method is to define the parameter spaces used.
Every parameter space consists of a uniform distribution with a lower and upper bound. Only the
variable nz is set to be an integer always. The parameter space is defined in Table 4.1 below.

Lower bound Upper bound Distribution
α 0.00 2.00 ’Uniform’
β 0.00 2.00 ’Uniform’
s 0.00 7.00 ’Uniform’
nz 2 50 ’Uniform’
τ 0.5 5.00 ’Uniform’

Table 4.1: Parameter spaces used for the sensitivity analysis

The upper bounds for the parameter spaces are estimated out of literature on the Sheen
Contour. Now that the parameter space is defined, the number of model evaluations n must be
determined.
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4.4.2 Determining n

The number of model evaluations for the sensitivity analysis according to the Sobol method must
be determined in order to get an accurate result. The number of evaluations is preferred to be
as high as possible, but this would cost a lot of computational time. Therefore, the number of
evaluations has to be chosen such that the result is accurate with as less computational time as
possible. The formula used for the number of model evaluations (N) is as followed [9]

N = n · (M + 2) (4.15)

In this formula, n is the sample size and M is the number of uncertain inputs. This N is not the
same N as in Equation 4.10, since in Equation 4.10, it is also divided by the number of parameters.
For each sensitivity analysis, the number of uncertain inputs is known. Therefore, only factor n
needs to be determined. The factor n depends on the complexity of the model and since we are
dealing with a nonlinear model, the expected value is high. To determine the sample size n, first,
a sensitivity analysis is run three times with n = 100000 and M = 3 at t = 0 s. The value for
n was chosen this high to make sure convergence was reached and the value of M was chosen to
have it assessed on three parameters. The summation of the Sobol indices for each parameter will
be assessed with an accuracy of two decimals ranging in values from 0.00-1.00. For this reason,
the maximum allowed difference is 0.01 which coincides with an error of 1%. The result for the
first-order effects and total effects at t = 0 seconds can be seen in Table 4.2 for a large value of n
(n = 100000).

First-order effects indices Total effects indices
Run 1 0.94 1.08
Run 2 0.93 1.09
Run 3 0.93 1.08

Table 4.2: First-order effects indices and total effects indices for n = 100000 at t = 0 s

The value of n will now be reduced until the solution does not satisfy the accuracy that is set
above. This can be seen in Table 4.3.

First order effects indices Total effects indices
n = 10000 0.94 1.09
n = 8000 0.92 1.09
n = 7000 0.91 1.10
n = 6000 0.94 1.07

Table 4.3: First-order effects indices and total effects indices for different values of n at t = 0 s

As can be seen in the table above, the value of n will be set at 8000 in order to keep the results
within an error of 1%. The error at n = 7000 is namely 2% compared to the converged first order
effects.
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4.5 Results

The results of the performed Sobol method on the four parameters α, β, nz, and s can be seen in
Figure 4.3 and Figure 4.4. The reason τ is not included in the Sobol method is that for certain
combinations of s and τ , there would be no solution and, therefore, no Sobol index could be
calculated. For this reason, it was decided to leave τ out of the sensitivity analysis. It was first
tried to run the sensitivity analysis with τ included, but this did not work. Afterward, it was
indeed found that removing τ from the sensitivity analysis resolved the problem. The reason only
the Sobol indices at the first 5 seconds of the function f(t) = e−t2 are given, is that the value of
f(5) = 1.4 · 10−11. This value is already so close to 0, that it is not interesting anymore to look
at the influence of the parameters on the Laplace transform after this time. This convergence to
0 after 5 seconds can also be seen in Figure 4.2.

Figure 4.3: First order Sobol indices of the Laplace transform of the function f(t) = e−t2

As seen in Figure 4.3 above, the first order Sobol indices of the parameters reach a maximum
value of 0.35. This means that there is no parameter that has a large direct effect. A large direct
effect would namely mean a first order Sobol index that is close to 1. Furthermore, it can be seen
that for the first second, s has an approximately twice as large first order Sobol index than α,
β, and nz. After the first second, the first order Sobol index of nz increases three times in 0.5
seconds, while α, and β are only increasing by a factor of 1.5. It can also be seen that the first
order Sobol index of s decreases for the first two seconds, after which it slowly increases a bit
again. This increase is, however, very small. At t=5 seconds, β, and nz have the largest first order
Sobol indices, and α, and s the lowest. From the results of the first order Sobol indices, no real
conclusions can be made. This is for the reason that, as stated before, the interactions between
the parameters are not taken into account. It is, therefore, more interesting to look at the total
Sobol indices in order to draw clear conclusions. This result can be seen in Figure 4.4.
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Figure 4.4: Total Sobol indices of the Laplace transform of the function f(t) = e−t2

As seen in the figure above, the total Sobol indices of the parameters reach a maximum value
of 0.85. This value means a large total effect because the maximum total Sobol index is 1. The
sum of all of the total Sobol indices is equal to or grater than 1 [8]. It can be seen in the figure
above that s has the largest total effect for the first second. After the first second, the total Sobol
index of s decreases until it reaches a value of 0.3 after five seconds. For the first 0.5 seconds,
the total Sobol index of α is around 0.6, after which it drops down to 0.25 at t=1 second. The
total Sobol index of α then slowly increases until it reaches a value of 0.54 at t=5 seconds. For
parameter nz, the total Sobol index is at 0.44 for the first 0.5 seconds, after which it reaches a
maximum total Sobol index of 0.79 at t=1.5 seconds. It then slowly decreases till it reaches a
value of 0.59 at t=5 seconds. The total Sobol index of parameter β is significantly lower than the
rest for the first second. It then increases until it reaches a maximum total Sobol index of 0.82 at
t=3.5 seconds. It then decreases slightly.

The main conclusion of this figure that can be made, is that for the first second, s has the
largest influence on the variance of the output. After the first second, nz will have the largest
influence until the influence of β is almost equal at t=3 seconds. After 3 seconds, the influence of
β is the largest. Since the parameter optimization will be conducted, it will be investigated fixing
and leaving α, and s out of the optimization. Furthermore, it has been concluded from experience
that τ behaved similarly to s. For this reason, τ will also be left out of the optimization and is
fixed to an arbitrary value.
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Chapter 5

Parameter optimization

In this chapter, the optimization of the parameters α, β, nz, s, and τ is investigated. The sensitivity
analysis will be taken into account to only fit two of the parameters for optimization. First, it is
explained how the optimization will be performed and on which functions. After this, different
options for the optimization of the parameters are explored, and in the end, a guideline will be
presented to optimize the numerical inversion of the Laplace transform by the Sheen contour.

5.1 Optimization method

The parameters will be optimized in Matlab using the nonlinear least-squares solver on three
different functions. With the nonlinear least-squares solver, simulated experimental data with
noise will be compared to the already performed inverse Laplace transform by the Sheen contour.
The nonlinear least-squares solver will try to find the best set of parameters that will fit the
simulated experimental data the best. The first reason a nonlinear least-squares solver is chosen,
is that the inverse Laplace transform by the Sheen Contour is nonlinear because of Equation 3.9.
The second reason is that this type is a solver-based optimization problem setup, which is suitable
for functions or matrices. The third reason is that the least-squares solver can handle complex
data, which is the case in the inverse Laplace transform. A nonlinear least-squares solver solves
fitting problems of the form [5]

min
x

f(x) = ||f(x)||22 = min
x

(f1(x)
2 + f2(x)

2 + ...+ fn(x)
2) (5.1)

In this equation, f(x) is the function and n is the number of data points. It is then important to
find the nonlinear least-squares solver in Matlab that is most suitable for the numerical inversion
of the Laplace transform. The nonlinear least-squares solver that will be used is the function
’lsqnonlin’. This function can handle differences in the number of data points between simulated
experimental data and the data of the performed inverse Laplace transform. Just as dealing with
complex values.

The fitting algorithm used inside ’lsqnonlin’ is the Levenberg-Marquardt method [11]. This method
uses a search direction dk that is a solution of the linear set of equations

(J(xk)
TJ(xk) + λkdiag

(
J(xk)

TJ(xk)

)
)dk = −J(xk)

TF (xk) (5.2)

In this equation, J(xk) is the Jacobian of the function f(x),λk is a scalar, and diag(A) is the matrix
of diagonal terms in A. The algorithm tries to find a minimum. If the step is successful and a lower
value is found, the algorithm sets λk+1 = λk/10, if not the algorithm sets λk+1 = λk · 10. This
way, dk is changed until it will find a minimum unless a stopping criterion is met. An example of
the visualization of the algorithm with two parameters can be seen in Figure 5.1 (taken from [1]).
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Figure 5.1: Example of the Levenberg-Marquardt method

In the above figure, it can be seen that the Levenberg-Marquardt method on two parameters
can be visualized as a 3D space in which the algorithm will find a minimum. In the image to the
right of the 3D space, µ is equal to dk. The upper and lower bounds of the parameters that will
be fitted are the same as in Table 4.1.

5.2 Functions

The fitting technique will be applied to three functions to assess the error of the inverse Laplace
transform by the Sheen Contour. Each function will have noise added to the data in order to
simulate experimental data. The maximum noise is set to be approximately 10 % of the maximum
value of the functions. For all functions, this results in a maximum noise of 0.1 since the maximum
value of the functions is 1.0. The functions described below all satisfy the conditions described in
chapter 2.

5.2.1 Function 1: f(t) = e−t2

This function is the same on which the Sobol method is performed. The function plot can be seen
in Figure 4.2. This function is decaying rather quickly since the value of f(5) = 1.4 · 10−11. The
Laplace transform of this function is already described in Equation 4.14.

5.2.2 Function 2: f(t) = e−(t/5)2

This function is a variation of the above function. The reason a value of t/5 is chosen instead of
t is that this function does not decay so quickly. The function plot can be seen in Figure 5.2.
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Figure 5.2: Function plot of f(t) = e−(t/5)2

The Laplace transform F (z) of this function is as follows

F (z) =
5
√
π

2
e(25z

2)/4

(
1− erf

(
5z

2

))
(5.3)

5.2.3 Function 3: f(t) = e−t cos (10t)

The last function implements a cosine multiplied with an exponential function. The exponential
function is added to satisfy the conditions in chapter 2. The function plot can be seen in Figure 5.3.

Figure 5.3: Function plot of f(t) = e−t cos (10t)

The Laplace transform F (z) of this function is as follows

F (z) =
z + 1

(z + 1)2 + 100
(5.4)

20 Optimizing the Sheen Contour for the Inversion of the Laplace Transform



CHAPTER 5. PARAMETER OPTIMIZATION 5.3. FIXING PARAMETERS

5.3 Fixing parameters

As discussed in the result of the Sobol method, it will be investigated to fix parameters α, s,
and τ before performing the parameter optimization to see if every parameter is necessary to fit.
Fitting fewer parameters will namely mean less computational time is needed in order to fit the
parameters and the outcome of fitting with two parameters will be more accurate than fitting on
five parameters. This is for the reason that the Levenberg-Marquardt Algorithm only needs to
find the minima in a 3D space. With 5 parameters, this would be a 6D space. The possibility that
a global minimum is found in a 6D space is much smaller than in a 3D space. In real life, there will
not be much experimental data available to fit the functions onto. It is, therefore, chosen to fit the
parameters to the first 10 seconds. The mean absolute error will then be calculated for the first
second, the first 10 seconds, the first 50 seconds, and the first 100 seconds while fixing the three
parameters. It is also stated if the fitted parameter values differ from the initial guesses during
the fit since this could result in a wrong interpretation of the fit. Before going to the results, the
technique of selecting the fixed values for the other parameters α, s, and τ is explained. This
is done by making use of the same technique described in section 3.3. For every function, the
singularities can be plotted. It is then important to first make a Sheen Contour that complies
with the most important aspect of the Sheen Contour. Namely, all singularities of the Laplace
transform f̂(z) of a function f(t) should lie to the left of the integration contour Γ. Besides this,
it is preferable to have the contour as close to the singularities as possible.

5.3.1 Result of f(t) = e−t2

For the fitting of this function, the same parameter values were used that were found in section 3.3
in Figure 3.11. The Sheen Contour in this figure was already close to the singularities with all
the singularities to the left of the contour. The result of the mean absolute error for different t
without the fitting can be found in Table 5.1 below.

t=1 s t=10 s t=50 s t=100 s

f(t) = e−t2 0.082 0.009 0.002 0.001

Table 5.1: Mean absolute error for different t for the initial guess of f(t) = e−t2

The parameters β and nz are now fitted with the Levenberg-Marquardt algorithm. The new
value for β = 0.0158 and for nz = 31. The results of the fit can be seen in Table 5.2 below.

t=1 s t=10 s t=50 s t=100 s

f(t) = e−t2 0.030 0.005 6.705 4.6·104

Table 5.2: Mean absolute error for different t for the fitted parameters of f(t) = e−t2

It clearly can be seen that the inverse Laplace transform with the fitted parameters performs
better for the first 10 seconds. The reason for this is that the parameters are fitted to data of 10
seconds. However, after 10 seconds the solution of the inverse Laplace transform with the fitted
parameters blows up. This can be seen in Figure 5.4.
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Figure 5.4: Function plot of f(t) = e−t2 with the initial guess and fitted parameters

Before making conclusions, the next function f(t) = e−(t/5)2 is considered.

5.3.2 Result of f(t) = e−(t/5)2

There is again looked at the singularities of this function to come up with an initial guess for the
parameters. After trying different values, the contour was made that can be seen in Figure 5.5.

Figure 5.5: Sheen Contour of f(t) = e−(t/5)2 with nz = 30

The result of the mean absolute error of the above Sheen Contour with the parameters for
different t can be found in Table 5.3 below.

t=1 s t=10 s t=50 s t=100 s

f(t) = e−(t/5)2 0.043 0.005 0.001 0.013

Table 5.3: Mean absolute error for different t for the initial guess of f(t) = e−(t/5)2

The parameters β and nz are now fitted with the Levenberg-Marquardt algorithm. However,
the fitted values for β = 1 and for nz = 30, which is no different from the already guessed values.
This can also be seen in Figure 5.6. This means that fitting has not made a difference. In the
figure, there can also be seen that the larger mean absolute error for t = 100 s comes from the
solution of the inverse Laplace transform that blows up around t = 80 s.
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Figure 5.6: Function plot of f(t) = e−(t/5)2 with the initial guess and fitted parameters

5.3.3 Result of f(t) = e−t cos (10t)

For this function, it is more difficult to come up with an initial guess for the parameters. When
plotting the Laplace transform of the function, no singularities can be retrieved. However, when
looking at the function of the Laplace transform, it can be calculated that there is a singularity
at z = −1. This is namely a pole of the function, which is a special type of singularity. This
means that β − α > −1, as this is the point on which the Sheen Contour crosses the real axis.
Besides this, the initial guess of the parameters can not be done on the Laplace transform itself.
Therefore, the initial guess of the parameters will be done on the simulated experimental data.
The result of trial and error with the initial guess can be found in Figure 5.7.

Figure 5.7: Function plot of f(t) = e−t cos (10t) with the initial guess

The result of the mean absolute error of the above Sheen Contour with the parameters for
different t can be found in Table 5.4 below.

t=1 s t=10 s t=50 s t=100 s
f(t) = e−t cos (10t) 0.025 0.003 0.001 0.001

Table 5.4: Mean absolute error for different t for the initial guess of f(t) = e−t cos (10t)
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This fit is already pretty accurate. The parameters β and nz are now fitted using the Levenberg-
Marquardt algorithm. The new value for β = 1.1445 and nz stays at 50. The result of the fit can
be seen in Table 5.5 below.

t=1 s t=10 s t=50 s t=100 s
f(t) = e−t cos (10t) 0.049 0.007 0.002 0.001

Table 5.5: Mean absolute error for different t for the fitted parameters of f(t) = e−t cos (10t)

As can be seen in the table above, the inverse Laplace transform with the fitted parameters
performs worse than the initial guess. However, when plotting both inverse Laplace transforms,
there can be seen that the fitted parameters remove the random oscillation at t = 22 s. This can
be seen in Figure 5.8. The differences between the fitted inverse Laplace transformation and the
guessed one are for the oscillating part is very small.

Figure 5.8: Function plot of f(t) = e−t cos (10t) with the initial guess and fitted parameters

5.3.4 Conclusion of the fitting algorithm

From the above three functions, it can be seen that the fitting algorithm is reducing the absolute
mean error compared to the inital guess. For the function f(t) = e−t2 this is only for the first ten
seconds on which the inverse Laplace transform is fitted, and for the function f(t) = e−t cos (10t)

the fitted parameters are more stable as t → ∞. The function f(t) = e−(t/5)2 does not show any
difference between the initial guess and the fitted parameters. From this, it is concluded that it
depends on the function if the fitted parameters are better. Stability as t → ∞ is not guaranteed
when fitting the parameters. More complex functions should be explored to see if this fitting
algorithm works or if too many parameters are fixed.

5.4 Fitting technique

The next thing that is investigated, is the fitting technique. Currently, the inverse Laplace trans-
form by the Sheen contour is fitted to the entire experimental data set at once. This often results
in values for α, β, nz, s, and τ that are not fitting the experimental data well in the first few
seconds. It is, therefore, interesting to see if splitting the fit into multiple parts is beneficial. The
values retrieved from the first fit will then be the initial guesses for the second fit. It is namely
conducted out of experiments that the fitted parameter values returned by ’lsqnonlin’ depends
highly on the initial guesses. The investigation of the fitting technique will be done on the same
functions, as described in section 5.2. For the experimental data set, there is data from t=0
seconds to t=10 seconds. The data will be split into two different parts, namely from t = 0 to
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t = 10 seconds, and from t = 0 to t = 1 seconds. The fit will first be done on the data from t = 0
to t = 10 seconds, just like in section 5.3. Afterward, one more fit will be performed on the data
from t = 0 to t = 1 seconds with the initial guess taken from the previous fit. This will be called
the piece-wise method.

5.4.1 Result of f(t) = e−t2

The result of the first fit is exactly the same as Table 5.2 since it was the same fit from t = 0 to
t = 10 seconds. The result of the second fit on the simulated experimental data from t = 0 to
t = 1 seconds can be seen in Table 5.6. It can be seen in this table that the newly retrieved fit is
performing worse than the first fit. Even for the first second, the fit underperforms. The result of
the difference between the two fits and the exact function can be seen in Figure 5.9. In this figure,
little difference can be seen between the old fit and the new fit. However, from Table 5.6 it can
be concluded that the new fitting technique is not better.

t=1 s t=10 s t=50 s t=100 s

f(t) = e−t2 0.032 0.006 14.014 1.9·105

Table 5.6: Mean absolute error for different t for the piece-wise fit of f(t) = e−t2

Figure 5.9: Function plot of f(t) = e−t2 with the old fit and newly fitted parameters

5.4.2 Result of f(t) = e−(t/5)2

The result of the first and second fit kept the same as Table 5.3. Apparently, the algorithm already
finds a possible local minimum at the initial guess for both time frames, which results in getting
back exactly the same initial guess. Fitting the inverse Laplace transform twice would only result
in more time, from which it is concluded that the new fitting technique is not worth it.

5.4.3 Result of f(t) = e−t cos (10t)

The result of the piece-wise fit for f(t) = e−t cos (10t) did not make a significant difference. The
value of β went from β = 1.1445 to β = 1.1438. For the absolute mean error, it did not make
any difference at all and the figure still looked exactly the same as in Figure 5.8. From this, it
can be concluded that a piece-wise fitting method does not make any improvements to the fitted
parameters of the inverse Laplace transform by the Sheen Contour.
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Chapter 6

Conclusion and Future work

The inverse Laplace transform of a function f(t) that is locally integrable and has a decay over
time is performed using Equation 2.2. Talbot devised a method for the integration bounds that
also can handle noise in data, on which the Sheen Contour is based. The Sheen Contour replaces
the bounds of the integral, as in Equation 3.1. The Sheen Contour itself is given by Equation 3.3
which makes a hyperbolic shape. The inverse Laplace transform of a function f(t) can then be
calculated entirely using Equation 3.11. This formula has five different parameters that must be
tuned to the specific problem. These parameters are α, β, nz, s, and τ and each parameter has
a different effect on the hyperbola. The goal of this hyperbola is to have all singularities of the
Laplace transform F (z) of f(t) lay on the left of the Sheen Contour and to fit the contour as close
to the singularities as possible.

By making use of the Sobol method, the importance of the parameters α, β, nz, and s from
t = 0 to t = 5 seconds for an arbitrary function have been explored. The Sobol method gives each
parameter an index from 0-1 based on the influence on the variance of the output. The results
can be found in Figure 4.3 and Figure 4.4 from which it is retrieved that α and s will have the
lowest influence on the output for a longer time. Furthermore, τ behaved similar to s. For this
reason, the parameters α, s, and τ will be left out of the parameter optimization.

The parameter optimization has been done using a nonlinear least-squares solver using the Levenberg-
Marquardt algorithm on three different functions. It was found that the optimized parameters in
one case performed better only in the first ten seconds and in one case the optimized parameters
performed better as t → ∞ than the guessed fit. From this, it is conducted that it depends on the
function if the fit is better. The stability of the inverse Laplace transform is also not guaranteed
with the fitting algorithm. However, fitting the parameters two times while taking the parameters
from the first time as an initial guess for the second time will not make the fit better.

This gives still future work to do. One can test the fitting algorithm on even more complex
functions, such as the heat equation. It can then be really seen if this fitting algorithm can work
in a real-life setting, such as a 3D printer hooked up to a digital twin. Other possibilities are to
see if the fitting algorithm works if fewer parameters are fixed.
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