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Abstract

With big global changes, like the introduction of Industry 4.0, increasing demands and
fast market needs, manufacturing systems need to continuously evolve. These reasons
caused Signify to start thinking about 24/7 automation in manufacturing. To become
more automated, Signify introduced a new automated hybrid manufacturing system in the
winter of 2022, which includes a machine known as the box handler. The box handler is
an automated manufacturing and storing machine. Due to this change, a few challenges
have arisen: there is no clear view of the new system design, it is still in the prototype
phase, and there is no clarity about the number of required storage spaces. This study
aims to determine the design of an additive manufacturing (AM) facility when using Sig-
nify’s new automated hybrid manufacturing system. We define hybrid manufacturing as
the combination of AM and conventional manufacturing (CM). To evaluate the system’s
performance based on cost, service level, box handler capacity, and cycle time, we create
a model that uses discrete-event-simulation (DES). The model includes three production
units: box handler, quality control, and assembly & packaging. This study shows that the
low yield of some items leads to a high percentage of failed parts, requiring reprinting which
results in high waiting times at the AM machines. Because of this, the other parts of the
order need to wait in the box handler until everything is printed and checked. This causes
the box handler capacity to become full and block the system. Furthermore, we compare
the current and automated systems, and the results suggest that the automated system
is cheaper, since fewer workers are needed. We recommend that Signify should consider
automating its production process, increasing its box handler capacity, and focusing on
increasing the yield of its items to improve the overall efficiency of the new manufacturing
system.
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Executive Summary

Introduction
Changes like Industry 4.0 and increasing market demands have led to the rise of intelligent
manufacturing. As a result, organizations are turning to 24/7 automated manufactur-
ing systems, with the implementation of 3D printers becoming increasingly popular. 3D
printing, also known as Additive Manufacturing (AM), has many advantages for manufac-
turing, such as fast production, mass customization, and enhanced sustainability. Signify,
the world leader in lighting, has announced its focus on AM with its venture, Signify 3D
Printing, which creates 3D-printed luminaires. Signify 3D Printing (further referred to
as Signify) has introduced a new automated hybrid manufacturing system. Challenges
have arisen and Signify is interested in designing a printing facility that takes into account
demand, service, and cost levels. Hence, Signify’s interests lead to the following problem
statement: Signify intends to expand its operations by incorporating automation into its
business strategy. As a result, the company is transforming its manufacturing process. This
transformation raises questions regarding the required planning capacity of the AM facil-
ity and the level of efficiency that can be achieved compared to the current manufacturing
approach.

Research Design
Based on the interests of Signify, the main question of this study is: How to design and
analyse an automated hybrid additive manufacturing facility? To answer this question,
several steps need to be made: identifying the KPIs to evaluate the system, modelling the
system, performing numerical experiments to optimize the system’s design, and comparing
the current manufacturing process to the manufacturing process with the automated sys-
tem. The methods that are used in this study consist of a literature review, interviewing
experts, and using simulation modelling to calculate KPIs.

The Automated Hybrid Manufacturing System
An automated hybrid manufacturing system is defined as: “a manufacturing system that
consists of additive manufacturing in combination with conventional processes, where the
transfer of work parts between the machines are done without human operations” (Crooy-
mans, 2022; Morris & Morris, 1988; Savolainen & Collan, 2020). Signify’s automated
hybrid manufacturing system consists of three production units (PUs), storage places, and
production flows (Figure 1). The completed product, a customized luminaire, consists of
several parts that are created from raw materials. The printed parts are stored in the box
handler’s storage until needed for the PU quality control where parts are checked on their
quality. After checking, the parts arrive at the PU assembly & packaging, where the com-
pleted product is assembled and packaged. Signify manufactures with a Make-To-Order
system, which means that the products are made when an order arrives.

The PUs can be divided into several steps. The box handler PU can be divided into three
steps: preparing AM machine, AM, and retrieving the printed parts. The print jobs are
assigned to an AM machine based on the availability and the filament reel colour/material
of that machine. After printing, the box handler robot removes the box containing printed
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centring

Figure 1: Process diagram of the automated hybrid manufacturing system of Signify

parts and delivers it to the quality control PU. A worker checks all the parts required for an
order for defects, if the part is defective a rework is requested at the AM machines. Each
box handler has two quality control stations. The assembly & packaging PU is divided into
the assembly, testing of the product, and packaging. If a product fails at the testing, the
product needs to be checked again. If the product does not pass the test the second time
it goes back to the assembly and a check is performed to see where the defect lies.

We decided that due to the complex system, a simulation model is the best approach for
this study, specifically Discrete-Event-Simulation (DES). The Tecnomatix Plant Simulation
software is used to create the simulation model. Figure 2 shows the simulated automated
hybrid manufacturing system. Next, we identify the appropriate Key Performance Indi-
cators (KPIs) for evaluating the automated hybrid manufacturing system of Signify. The
KPIs are identified through examining relevant literature, consulting experts from Signify,
analyzing the initial design of the print facility and comparing with the research of Crooy-
mans (2022). The four KPIs of this study are: Cycle Time (CT ), Service Level (SL), Total
Manufacturing Costs (TC), and Box Handler storage Capacity.

Figure 2: Signify’s automated hybrid manufacturing system model in Plant Simulation

Results
To get results, we perform a numerical experiment. In the base experiment, we simulate
a realistic input scenario approved by Signify employees. The base experiment showed the
average CT of the model is 16 days and an SL of 0.73. The average cost per manufactured
luminaire is around €43. The maximum occupancy and thus the required capacity of the
box handler is 668 places. Additionally, per product 1.73 kg of filament reel is needed.
This is a large amount due to throwing away items after quality control, throwing away
items due to printer failures, and throwing away leftover filament due to premature change-
overs. Finally, the utilization rate of the assembly line is 32%, which is quite low. This
probably happens due to the box handler controlling the arrival of the parts. Hence, the
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utilization rate of the AM machines in the box handler is high (86%). It is found that the
box handler, particularly the AM machines, is the bottleneck due to high utilization rates
and long waiting times. The AM machines are slow compared to the rest of the system due
to the rework required when a printed part does not pass quality control. From the results,
we can conclude that the original box handler capacity needs to be increased to fulfil the
demand, and the high percentage of failed parts in quality control and long waiting time
at the AM machines are attributed to the low yield of some items.

Next, we perform experiments to understand the behaviour of the model. The experiments
aim to investigate the impact of changes in different aspects of the model on the four KPIs.
The first experiment is decreasing the lead time. We perform this experiment to see how
increasing the item yield will impact the system. Increasing yield improves costs, service
level, cycle time, and capacity. Higher yield means fewer failed parts, less waste, and more
orders fulfilled with the same cost. This leads to better system performance and customer
satisfaction. The next experiment is increasing the number of filament colours/materials.
This experiment is performed because in the real-world Signify uses more than 40 different
types of colours/materials. Introducing more filament colours and materials has a small
impact on KPIs. Differences between values for each number of colours/materials used are
small and do not significantly affect SL, box handler capacity or CT. However, adding more
colours/materials increases total costs per product due to the need for more filament reels.
Finally, we tested the amount of AM machines. This results in a trade-off between costs
and CT that affects the service level. Increasing the number of AM machines improves
service level and filament reel changeovers while decreasing the number of machines reduces
service level due to longer waiting times and higher CT.

Discussion, Recommendations & Conclusion
In conclusion, this study has presented a comprehensive examination of the implementa-
tion of automated hybrid manufacturing systems in Signify’s AM facilities. The research
questions focused on identifying the characteristics of the manufacturing system and the
key performance indicators for the model, modelling the system using a DES model, and
analysing the AM facility’s capacity using numerical experiments. The study also compared
Signify’s current manufacturing system to its new automated hybrid system.

The study has the potential to make significant contributions to both Signify and the ex-
isting literature on the topic. For Signify, the study and simulation model can provide
valuable insights into the benefits of using automated hybrid manufacturing systems com-
pared to their current manufacturing system, including increased efficiency of their lead
time, reduced costs, and improved cycle time. The report can also serve as a guide for
Signify looking to adopt modelling with Plant Simulation in other manufacturing systems.
Plant simulation is a useful tool for manufacturers to optimize production processes and
reduce costs. By making the model more realistic, the model could eventually become a
digital twin of the real-world system.

The report provides valuable insights into the benefits and challenges of using automated
hybrid manufacturing systems, as well as guiding companies looking to adopt these systems
and identifying areas for future research. Designing an AM facility that incorporates an
automated hybrid manufacturing system requires careful consideration of various factors,
including box handler capacity, the number of AM machines, demand, yield optimization,
and cost optimization. By addressing these factors, it is possible to design a facility that
is efficient, productive, and cost-effective.
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Chapter 1

Introduction

With big global changes, like the introduction of Industry 4.0, increasing demands and fast
market needs, manufacturing systems need to continuously evolve. Over many decades,
manufacturing systems have been evolving with advances in production, technology and
new materials (ElMaraghy et al., 2021). Industries all around are adapting to this trend
which has led to the rise of intelligent manufacturing. Intelligent manufacturing aims to
develop more efficiency, lower costs and more flexible workflows (Ashima et al., 2021; Lu et
al., 2020). Nowadays, manufacturing systems have to fulfil requirements to keep up with
intelligent manufacturing. At the same time, sensors, robots and 3D printers are becoming
more affordable and fewer workers are needed to do the manual work. All these benefits
cause organizations to think about 24/7 automated manufacturing systems (Clauer et al.,
2021; Guo et al., 2022; Jerman et al., 2020).

A new way to become more automated is by implementing 3D printers into the manufac-
turing system. In the 1980’s the first form of 3D printing was developed: rapid prototyping
(Wong & Hernandez, 2012). As its name suggests, this method was mostly used for creating
models and prototypes. Nowadays, additive manufacturing (AM) has many advantages for
manufacturing, like the possibility to create complex shapes, fast production, manufactur-
ing in mass customization, and enhancing sustainability (Campbell et al., 2011; Gibson et
al., 2021; Kruth et al., 1998). These advantages make AM now a popular option for orga-
nizations that want to evolve their manufacturing systems, by creating completed products
that are brought to the market with AM. Since AM is still very new, organizations prefer
to use AM in combination with conventional manufacturing (CM), which is called a hybrid
manufacturing process (Crooymans, 2022).

Currently, Signify is the world leader in lighting. In 2017, it announced to be focusing
on AM with the new venture: Signify 3D Printing (Signify, 2022). Signify 3D Printing
manufactures 3D-printed luminaires that, in comparison to other luminaires, use fewer
materials (Signify, 2022). It also offers a big variety of options by letting its customer
personalize the design of the luminaire to their liking. Like other organizations, Signify
wants to focus on the emerging trend of changing its manufacturing system from current to
automated procedures. The current manufacturing costs Signify a lot of time, while Signify
is also facing the problem of having a shortage of workers. Both these reasons caused Signify
to start thinking about 24/7 automatized systems. To become more automatized, Signify
introduced a new automated hybrid manufacturing system in winter 2022.

Due to the change that Signify wants to make in its manufacturing process, a few challenges
have arisen: there is no clear view of the new system design, it is still in the prototype
phase, and there is no clarity about storage spaces. Thus, Signify is interested in what
output could result from this system and the difference between the current and new
manufacturing systems. Hence, Signify wants to know how to design an AM facility which
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contains an automated hybrid manufacturing system, taking into account demand, service,
and cost levels.

In conclusion, with this research we try to answer the following main question:

How to design and analyse an automated hybrid additive manufacturing facil-
ity?

In the remainder of this chapter, the company Signify in Section 1.1 and its venture Signify
3D Printing (Section 1.2) are discussed. Additionally, in Section 1.3 and Section 1.4, a
background on AM and Signify’s manufacturing system is provided. Finally, the report
structure is outlined in Section 1.5.

1.1 Signify

Signify is a Dutch multinational lighting company that manufactures electric lights and
light fixtures (Signify, 2023). The company was founded by Philips in 1891, known as
Philips Lighting. Eventually, in 2016, Philips Lighting spun off from Philips, and in 2018
was named Signify (Signify, 2021).

Signify is currently leading the world in lighting, providing customers with high-quality
energy efficient lighting products, systems and services. In 2022, Signify made sales of 7.5
billion, employed 35,000 people, and had a presence in 70 countries (Signify, 2023). As
stated by Signify (2023, para.3), its purpose is to: “unlock the extraordinary potential of
light for brighter lives and a better world”. This is mainly achieved by innovation in the
company. In 2017, the 3D printer imposed a change in Signify’s company, a new venture:
Signify 3D printing. The venture has now grown into a team with more than 90 workers
(Signify, 2022).

1.2 Signify 3D Printing

Signify 3D Printing manufactures 3D-printed luminaires. 3D-printed luminaires use fewer
screws, fewer items, and no paint (Signify, 2022). Additionally, the 3D printed luminaires
are made from 100% recyclable polycarbonate, are designed to be circular, and reduce the
CO2 footprint up to 75% (Signify, 2022). Therefore as many items as possible are 3D
printed. Signify 3D Printing offers a big variety of options, the customer can create and
personalize the design of the luminaire to their liking.

The luminaires are only printed when the customer needs them, this helps with avoiding
large stock storage. 3D printing also gives the ability to manufacture small numbers of
luminaires or even a single luminaire, which is very flexible for customers. At the moment,
Signify 3D Printing has a variety of customers: individual consumers, other businesses, and
governments. The ability to print in large or small quantities makes the variety of customers
possible. Together with a diverse range of items, sustainable benefits and flexible service,
3D printing of luminaires is becoming a big contender (Signify, 2022). For ease of reading,
we will refer to Signify 3D printing as Signify hereafter.

1.3 Additive Manufacturing

The main manufacturing technique that is considered in this research is 3D Printing, also
referred to as AM. AM can be defined as “a process of joining materials to make objects
from 3D model data, usually layer upon layer, as opposed to subtractive/reductive manu-
facturing methodologies” (Frazier, 2014, p.1924). As stated by Jimo et al. (2019, p.5), AM
was first used around the 1980s for concept modelling and prototyping. Nowadays, it offers
much more possibilities than only rapid prototyping (Campbell et al., 2011). AM shows
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that it has emerged as an innovation-driven technology that can completely change the way
of manufacturing. According to Campbell et al. (2011), Rajaguru et al. (2020) and Zhang
& Liou (2021), AM requires a few steps before the completed product is manufactured:
creating a computer-aided design (CAD), preparing CAD-file for AM equipment, machine
setup, manufacturing, removal from AM equipment, post-processing and application. An
example of this technique is shown in Figure 1.1.

Figure 1.1: Example of additive manufacturing (Zhang & Liou, 2021)

The AM process starts with creating a 3D CAD Model by designing or scanning an item.
Next, slicing software is needed to prepare the model for the AM machine. The slicing
software slices the CAD Model into cross-sectional layers and turns it into G-codes that
an AM machine understands. Next, the AM machine starts printing the item by forming
each layer with filament. After the machine has finished printing, the excess material is
removed and cleaned. Finally, the item is printed and ready to be further assembled or
used.

1.4 Signify’s Manufacturing System

Currently, Signify has a hybrid manufacturing system, which combines AM and CM tech-
niques. A significant portion of the work in the hybrid manufacturing system is carried
out manually by personnel. In the 3D printing area, a large number of AM machines are
located in rows next to each other. The AM machines print the necessary parts that are
needed for production. Upon completion, the printed parts are accumulated in a cart,
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which can be collected by the workers. The carts are stored near the AM machines and
when ready brought to a separate quality station where the printed parts are checked and
weighed to see if they fit the standard. Next, the printed parts are temporarily stored
in a box on the floor. Between stations, workers are responsible for keeping track of the
number of printed parts by counting them regularly. Finally, the printed parts are taken
to an assembly station where they are combined with the non-printed parts to create the
final product, ready for delivery to the customer.

Under the new arrangement, multiple hybrid manufacturing systems, incorporating au-
tomation, are located within a single production facility. Signify aims to incorporate robots
to automate the hybrid manufacturing system, making the process more efficient.

The primary focus of the new situation is a machine known as the box handler. The box
handler is an automated manufacturing and storing machine. Figure 1.2 shows the box
handler system and all its main components, displayed within the indicated circles. The
box handler consists of 48 AM machines, these machines can all create AM-printed parts.
Filament, the material that is needed to create the AM prints, is stored in an oven below
the AM machine. When a refill is needed a worker comes to add a new reel of filament
into the oven. When the AM machine is finished printing, the parts are disposed of in the
box hanging near the 3D printing system. Next, the box with printed parts is stored in
the box handler system.

Figure 1.2: The box handler

To make sure that the quality of the printed parts is sufficient, the parts need to be
checked. When required, the box containing the printed parts is moved to the quality
control desk with the assistance of the box handler robot. There a worker retrieves the
parts and checks whether they fit the standard. Afterwards, the box is stored back in the
box handler system. Finally, when ready, the box continues to the assembly and packaging
line. This line consists of tables with workers that assemble parts of the final product, test
them, and puts them into packaging. The final product is then completed.

1.5 Report Structure

This study, specifically designed for Signify, is executed with the understanding that its
methods, outcomes, and conclusions can be adapted to different settings. In the following
chapters, we present the study fitting the context discussed earlier. In Chapter 2, we present
the problem statement, the corresponding methodology, the scope of this study and the
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contribution to literature. Chapter 3 discusses the manufacturing system at Signify, with
the relevant characteristics, and the most important key performance indicators. Next,
in Chapter 4, we present the simulated model for the manufacturing system. Then, in
Chapter 5, numerical experiments are discussed and executed. Additionally in Chapter 6,
we perform a comparison between the study of Crooymans (2022) and ours, to see the
difference between a current system and an automated system. And finally, in Chapter 7,
the discussion, conclusion and recommendations from this study are provided.
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Chapter 2

Research Design

This chapter provides the design of the research. First, in Section 2.1 the problem de-
scription is given followed by the main question in Section 2.2. Next, we state the other
research questions with the corresponding methodology in Section 2.3. In Section 2.4, the
scope of this study is described. Finally, the contribution of this research in literature is
mentioned in Section 2.5.

2.1 Problem Description

From the problem context in Chapter 1, it can be concluded that Signify needs to be
supported in the design, analysis and cost-effective configuration of an AM facility with
automated hybrid manufacturing systems. Therefore, it is needed to derive the required
planning capacity, while also looking at the current demand, service level, and costs. Hence,
Signify’s interests lead to the following problem statement:

Signify intends to expand its operations by incorporating automation into its
business strategy. As a result, the company is transforming its manufacturing
process. This transformation raises questions regarding the required planning
capacity of the additive manufacturing facility and the level of efficiency that
can be achieved compared to the current manufacturing approach.

2.2 Main Question

Based on the problem description, we formulate the main question as:

How to design and analyse an automated hybrid additive manufacturing facil-
ity?

To fully understand the main question, a few key terms need to be explained. In Chapter 1,
we already give a short introduction to this terminology. For this study, we define addi-
tive manufacturing (AM) as “a process of joining materials to make objects from 3D model
data, usually layer upon layer, as opposed to subtractive/reductive manufacturing method-
ologies” (Frazier, 2014, p.1924). Additionally, the term automated hybrid manufacturing
system is defined as: “a manufacturing system that consists of additive manufacturing in
combination with conventional processes, where the transfer of work parts between the
machines are done without human operations” (Crooymans, 2022; Morris & Morris, 1988;
Savolainen & Collan, 2020).
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2.3 Research Questions

To answer the main question, several research questions need to be answered first. For
each research question, the research method is explained shortly.

An automated hybrid manufacturing system involves a lot of different aspects. To answer
the main question, it is necessary to know what the newly automated hybrid manufacturing
system looks like. The first research question is:

RQ1: What does the automated hybrid manufacturing system look like?

To answer Research Question 1, knowledge and data about the automated hybrid manu-
facturing system are required. To gain this knowledge and data, we interviewed experts
that are part of the project team for the automated hybrid manufacturing system and
Research & Development. Additionally, we visited the system itself in Maarheeze and
Turnhout, where we took an in-depth look at the facility. Lastly, relevant literature was
reviewed to gather information about automated manufacturing systems, which serve as
a reference framework to provide deeper insights. By combining these steps, sufficient
knowledge and data are obtained to develop a conceptual model of Signify’s automated
hybrid manufacturing facility.

In the process of investigating the desired design of the system, it is crucial to identify
the key performance indicators (KPIs), which are the variables necessary to evaluate and
obtain as an output. We determine these KPIs with the following research question:

RQ2: What key performance indicators should be used to evaluate the auto-
mated hybrid manufacturing system?

To determine the appropriate KPIs to use, two steps are taken. The first step involves
analyzing the literature on KPIs for automated hybrid manufacturing systems. A compa-
rable analysis, performed by Crooymans (2022), is used to compile a list of crucial KPIs.
The second step involved conducting interviews with employees and experts who are part
of the project team for the automated hybrid manufacturing system, as well as those in
Research & Development, to determine the KPIs that should be used by Signify.

When we have an output, the values can be used to analyze and give a good representation
of the automated hybrid manufacturing system for Signify. We choose to use a simulation
model to calculate these KPIs. The study leads to the following research question:

RQ3: How do we model the automated hybrid manufacturing system?

The model is designed to represent an individual automated hybrid manufacturing system
that is formulated in research question 1 (RQ1). There are two methods for modelling a
manufacturing system: analytical calculations and data-based simulation. Both methods
aim to study the same systems and address similar issues. In Appendix A, we compare
these two modelling approaches and determine that simulation modelling is the appropriate
method for Signify’s manufacturing system. Signify’s manufacturing system has many
setups, returning orders, and complex processes that are difficult to model analytically,
which would make an analytical model less realistic and detailed.

The model returns the KPIs of the automated hybrid manufacturing system that are formu-
lated in research question 2 (RQ2). Each model depends on functional requirements that
must be satisfied within the given constraints. These are formulated based on literature
and data. Data is needed to gain a realistic view of the situation and to obtain the relevant
output. Additionally, the functional requirements were discussed with experts mentioned
earlier from Signify. Literature provides ample information on modelling manufacturing
systems and automating them, as well as the impact of AM on the supply chain. It is
crucial to conduct a thorough literature review to gain a deeper understanding of how to

7



model the automated hybrid manufacturing system. The literature review delved into this
subject in depth, providing insights into various concepts within a manufacturing system.
Together with the KPIs we decided upon in RQ2, the model gives thresholds for the design
of an automated hybrid manufacturing system.

To gain more knowledge of the behaviour of the automated manufacturing system, we per-
form numerical experiments. Numerical experiments help validate the model and estimate
the value for parameters. Additionally, we use numerical experiments to make the simula-
tion more coherent with the real-world system, by analyzing it under different conditions
and viewing its results. Thereby, the following research question is formulated:

RQ4: How can numerical experiments analyse the design of an AM facility
with an automated manufacturing system?

In collaboration with Signify’s Research department, we design several numerical experi-
ments. These experiments are assessed based on their expected outcome, significance, and
feasibility of implementation. Then, a subset of these experiments is carried out using the
model developed in Research Question 3.

To assess the efficiency of the automated hybrid manufacturing system, the system needs
to be compared to the current hybrid manufacturing system utilized by Signify. The
corresponding research question is as follows:

RQ5: How do the current manual and new automated manufacturing systems
compare?

This comparison reveals the potential advantages or disadvantages of using the new au-
tomated hybrid manufacturing system for Signify. The study conducted by Crooymans
(2022) is used to examine the current manufacturing system in Signify. However, different
assumptions are made in Crooymans (2022), making it impossible to directly compare the
two models. To overcome this, the input parameters from our model are utilized in the
model of Crooymans (2022), generating additional outputs. These results are analyzed and
compared with the findings from RQ3 in this research. The conclusions from this compar-
ison provide a comprehensive evaluation of Signify’s new AM facility, enabling Signify to
expand its operations and become 24/7 automated.

2.4 Scope

The study focuses on the hybrid manufacturing system for the production of customized
luminaires in an automated hybrid manufacturing system. The main research focuses on
three processes: 3D printing in the box handler, quality control, and assembly & packaging.
The process of supplying the non-printed parts and supplying the filament are not included
in the scope of this research. Hence, we assume that there is an infinite number of materials
and non-printed parts.

Signify’s 3D luminaires range from downlights, projectors, and pendants to fully customized
luminaires. Hence, there are a lot of different products that Signify manufactures (Philips
Lighting, 2022a,b). In this research, the focus lies on the Greenspace Downlight, as this is
the best-selling luminaire of Signify (Philips Lighting, 2022a). The Greenspace Downlight
is a luminaire that is designed for the circular economy while optimizing performance and
extending its lifetime by upgrades and integration possibilities (Philips Lighting, 2022a,b).
The downlight is easy to customize, recycle and disassemble (Philips Lighting, 2022a). To
keep this research specific, we concentrate on a particular type of Greenspace Downlight
which has four printed items: the Housing, Front Rim, Mixing Cup, and Mixing Cup
Holder. Additionally, we examine the non-printed items, including the LED module, LED
driver, and reflector, all of which are supplied by Signify. In Figure 2.1, the Greenspace
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Downlight for this research specific is shown.

Figure 2.1: The modelled Greenspace Downlight (Philips Lighting, 2022a)

2.5 Contribution to Literature

In the field of AM, a significant amount of research has been conducted, focusing primarily
on prototyping, AM materials, and understanding of the concept itself (Gibson et al., 2021;
Kruth et al., 1998; Thakar et al., 2022; Wong & Hernandez, 2012). However, more recent
studies show that the implementation of AM in specific industries has become an increas-
ingly important topic (Gibson et al., 2021). When searching for literature on AM in supply
chains and AM facilities, there is some literature on hybrid manufacturing, particularly in
recent studies (Strong et al., 2018).

Literature shows that several studies highlight the benefits of automated manufacturing
systems, but relatively few focus on automated hybrid manufacturing systems (ElMaraghy
et al., 2021; Hjorth et al., 2021). These studies tend to focus on small components of
manufacturing systems rather than the entire system. To the best of our knowledge, there
is limited research available that looks at automated processes in combination with hybrid
manufacturing facilities.

The literature is missing a comprehensive examination of the topic, which is what this
study aims to address by combining information on automated processes and hybrid man-
ufacturing production.
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Chapter 3

Analysis of the Automated Hybrid
Manufacturing System

Nowadays, nearly all industries are busy applying new technologies to their manufacturing
systems (Ashima et al., 2021). Examples of these techniques are automation and hybrid
manufacturing. Together these two concepts form the main subject for this chapter: auto-
mated hybrid manufacturing systems. In this chapter, we cover the characteristics of this
system in Section 3.1, where the three Production Units (PUs) are discussed. In the final
section, Section 3.2, the KPIs are presented and considered for this study. Ultimately, the
goal of this chapter is to address Research Questions 1 and 2.

3.1 System Characteristics

This section presents the PUs and a flow chart which answers the research question (RQ1):
What does the automated hybrid manufacturing system look like? Moreover, Section 3.1.2
discusses three PUs: box handler, quality control and assembly & packaging. This section
goes into detail about the manufacturing system’s flow, data, and assumptions of these
PUs. The whole manufacturing system is presented in Figure 3.4.

3.1.1 The Manufacturing System

The manufacturing system of Signify consists of three PUs, storage places and production
flows. In Figure 3.1, the general flow chart of the new automated hybrid manufacturing
system is displayed. The flow chart is configured after a visit to Signify’s AM facility in
Turnout and consultation with Signify’s experts. The Signify experts’ roles are: Project
Manager Research & Development, Manager Research, and Scientists.

The flow chart shows how the completed product, a customized luminaire, is processed from
raw materials. First, raw materials arrive and are transformed into filaments. Filament
reels are often made from a variety of thermoplastic materials, but could also be recycled
(Mikula et al., 2021). Filaments are used as a material by an AM machine to create parts.
Non-printed parts are supplied by external organizations as Signify does not construct
them, hence this is not included in the scope. The non-printed parts that have arrived are
stored until needed for the assembly & packaging PU.

The filament is supplied to the box handler PU with integrated AM machines, which return
printed parts of the product in boxes. The parts then continue to the quality control
PU, where the parts, either continue, go back to the box handler or leave the system.
Next, the printed parts are stored in the storage of the box handler until needed for the
assembly & packaging PU. After all the parts continue to the assembly & packaging PU,
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the completed product continues to a storage warehouse before being transported to the
customer. It should be noted that Signify manufactures a Make-To-Order (MTO) system,
which indicates that the products are made when an order arrives.

Figure 3.1: The general automated hybrid manufacturing system of Signify

3.1.2 Production Units

To gain a comprehensive understanding of the system, the three PUs are discussed in
greater detail. These three PUs are the most important units in the system for Signify
and show the biggest change compared to the current manufacturing system. The PUs
box handler and assembly & packaging can both be divided into several steps. Below the
steps are elaborated upon and more details are given.

Box Handler
The box handler PU can be divided into three steps: prepare AM machine, AM, and
retrieve printed parts. To perform these steps, an AM machine is needed. One box handler
contains 48 AM machines parallel connected, which can create products with measurements
no bigger than 250 x 250 mm. The AM machines require a specific raw material, filament,
which is supplied and created in-house by Signify at another plant. As this plant is located
in a different place (Maarheeze, The Netherlands), the production of the filament is left
out of scope. We assumed that there is an infinite amount of filament reels available for
the box handler. The box handler can store up to three filament reels per AM machine
and needs one reel to print parts.

In Figure 3.2, the flow chart specific to the box handler is shown. When an order arrives,
the AM machines in the box handler are prepared for printing. The filament is already
installed beforehand in an oven below the AM machine. The oven heats the filament to a
certain degree. Simultaneously, the print file of the part is loaded into the printer, which
checks if the settings are right for the AM machine. When everything is prepared, the AM
machine is ready to start the printing process. In the AM process, the AM machine prints
a part that is required for the order. A failure can happen during this process, such as the
first layer not sticking to the base or some other defect. If this happens, maintenance is
required and the machine needs to be attended to by a worker. The AM machine is again
prepared for the part and printed. When the AM machine completes the part, the part is
ejected by an automated system integrated into each of the AM machines, which slides the
part from the base into the box next to the AM machine. Since the box handler contains
48 AM machines with 192 storage places in total, this process described in the previous
paragraph is performed 48 times in parallel.
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Figure 3.2: Flow chart of the box handler PU

Once the parts have been retrieved, the box containing the parts is transported to the
storage area of the box handler. The box handler is capable of storing up to 192 boxes,
with a maximum of four boxes that can be stored above each AM machine. The fifth slot
in the box handler is used to interchange the boxes as needed. The box handler robot
can quickly move and swap the containers with the printed parts, at a speed of 500 mm
per second in the x, y, and z axes. The robot can complete a container change from one
location to another in around a minute and a half.

Quality Control
Once all the parts required for an order have been completed and are ready for assembly,
the box with the parts is retrieved from the storage area and transported to the quality
control station. In the quality control PU, the printed parts are all checked for defects.
This process is quick but very important. It determines if the part needs to be printed
again or if it can continue to assembly & packaging possibly with an intermediate storage
time in the box handler before. The box handler has two quality control stations, the
box handler robot delivers the box with the parts to one of these stations and lets the
workers determine whether the parts are correct. If the part is not correct, the part needs
to be printed again. Hence, the print job needs to go back to the preparation of the AM
machine. This can cost a lot of time since the whole order needs to wait for the new part
to be finished before assembly can start. The defective part is removed from the box and
then leaves the manufacturing system. After the part is checked and accepted, the box
with parts is ready to continue to the next PU: assembly & packaging.

Assembly & Packaging
The assembly & packaging PU is divided into four steps: Prepare Assembly stations, As-
sembly, Testing electronics, and Packaging (Figure 3.3). This process of the manufacturing
system is performed in a different area, close to the box handler. This area contains a line
of assembly tables followed by a computer system for electronics testing. A big order re-
quires five workers to run the line effectively. When a small order (e.g. one product) is
requested, then less than one or two workers are already sufficient for the operation.

The boxes with printed parts arrive from the box handler via an automated guided vehicle
(AGV) to the assembly & packaging area, the boxes are stored here until needed. When the
assembly & packaging process starts, first the assembly stations are prepared. This is done
by retrieving the non-printed and the printed parts from the storage and placing them on
the assigned spot. Next, the assembly of the product starts. The non-printed and printed
parts are combined into the product that is ordered by the customer. After the completed
product is assembled, the electronic parts are tested on whether they are performing as
intended. The testing takes about 1.5 minutes, if the part does not pass the test the whole
product is tested again. If the product does not pass the test the second time it goes back
to the assembly and a check is performed to see where the defect is. This defect can only be
in the non-printed parts since the printed parts were already checked in the box handler.
If a new non-printed part is needed, the worker retrieves a new part from storage. The
failed part leaves the system and does not return. When the product passes the test, the
product continues to the packaging. The worker can prepare the package during the testing
electronics process, hence it only takes a short time to place the completed product and
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close the package. After the product is packaged, it is ready to go onto a pallet and wait
until the complete order is processed. After the order is finished, the completed products
are stored in a warehouse until transportation to the customer has arrived.

Figure 3.3: Flow chart of the assembly & packaging PU

The final flow chart of the automated hybrid manufacturing system of Signify can be seen
in Figure 3.4. The red dotted line displays the scope of this research, inside the three main
PUs.

Figure 3.4: Automated hybrid manufacturing system of Signify

3.2 Performance Measures

In order to answer RQ2, we need to determine the appropriate KPIs for evaluating Sig-
nify’s automated hybrid manufacturing system. The first step involves identifying the most
critical performance metrics from relevant literature. Afterwards, the performance mea-
sures outlined in the research of Crooymans (2022) are examined and compared. Next, we
analyse the initial design of the print facility given by Signify. Finally, consultations with
experts from Signify were held to gain an understanding of their requirements.

To obtain the fundamental objective of organizations, the performance needed to be mea-
sured and evaluated (Hopp & Spearman, 2000). However, many organizations have been
working with the wrong measures or have incorrectly termed them (Hopp & Spearman,
2000; Parmenter, 2015). Therefore, we must give a clear definition of performance measures
that could be used in a manufacturing system. Since there is a broad range of production
environments and business strategies, there is not one single set of performance measures
for all the manufacturing systems (Hopp & Spearman, 2000). Hence, we have chosen for
KPIs, “A set of measures focusing on those aspects of organizational performance that are
the most critical for the current and future success of the organization” (Parmenter, 2015,
p.4). These performance measures are measured frequently, clearly indicate what action is
required and often have a significant effect on the organization (Parmenter, 2015).

When specifically looking for KPIs for an automated hybrid manufacturing system several
terms can be found. Studies about automation measures mention that monitoring and
continuous productivity improvement are very important due to the high investment and
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operating costs of automating a system (Mathur et al., 2011). While hybrid manufactur-
ing systems more often use sustainability as a KPI, environmental, social and economic
performance indicators are mentioned (Taddese et al., 2020). Below, the definition of the
KPIs is given with the studies from Groover (2016), Hopp & Spearman (2000) and Mathur
et al. (2011).

• Cycle time (CT): The average time from the release of a job at the beginning of the
routing until it reaches an inventory point at the end of the routing (i.e. the time the
product spends as work in process). CT is one of the most important KPIs, as it has a
big influence on both costs and revenue. A shorter CT indicates less Work-in-process
(WIP), better responsiveness, better forecasting, and cost reduction.

• Green House Gas (GHG) emissions: Total direct GHG during manufacturing
and post-processing stages which can be estimated as GHG emission per product or
per revenue. It also considers strategies or initiatives to minimize GHG emissions
through minimized overall energy consumption or utilization of renewable energy
sources.

• Inventory: The stock of any part or resource used in an organization. Inventory
consists of the Raw material inventory (RMI), WIP and Finished goods inventory
(FGI). The ideal situation would have a minimum RMI, everything would be delivered
just in time (JIT). Additionally, there would be minimal FGI, and the completed
product would be delivered to customer JIT. Only the minimum WIP is needed for
the given throughput based on Little’s Law.

• Lead time (LT): The time allotted for the production of an order on that routing
or line, should be as short as possible. When the organization uses make-to-stock
the LT is zero. However, when applying this to an MTO system, a zero target is not
realistic.

• (Total) Manufacturing cost (TC): The total costs (TC) of the manufacturing
system. Note that the TC consist of the fixed costs and the variable costs in relation to
the quantity created. When comparing automated and current production methods,
it is typical that the fixed cost of the automated method is high relative to the current
method and the variable cost of automation is low relative to the current method.
Consequently, the current method has a cost advantage in the low quantity range
while automation has an advantage for high quantities.

• Parts quality: The extent to which the parts are correctly made the first time by
the system. Hence, the parts quality efficiency can be calculated by the fraction of
parts that are made correctly the first time through the system. A scrape or rework
will decrease this value.

• Raw material waste: The efficiency or saving during material utilization. In 3D
printing, raw materials are used to efficiently build parts layer by layer. For the
printed parts, it is assumed that waste does not re-enter the system. Dematerializa-
tion is used to increase material efficiency, the higher the efficiency the better the
environmental performance.

• Service level (SL): The probability that the CT of an order is smaller or equal to
the LT. For an organization with a make-to-stock (MTS) system, this will be equal
to the fill rate, for MTO systems the service level is a fraction of the orders that are
filled within their LT.

• Throughput (TH): The average output of a production process (machine, work-
station, line, plant) per unit time (e.g. parts per hour). Only non-defective parts
created per unit of time are included in the TH. The TH can be defined in terms of
efficiency, of whether the output is adequate to satisfy demand.
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• Transport: Environmental impact of transporting products, other goods, and ma-
terials used for the organization’s operations and transporting members of the work-
force, etc.

• Utilization: The fraction of time the workstation is not idle. This includes the
fraction of time the workstation is working on parts or has parts waiting and is
unable to work on them due to a machine failure, setup, or other detractor. An
ideal situation would be when all the workstations have 100% utilization since there
is then no unused capacity and no excess costs (without variability). Moreover, the
ideal situation will also not be plagued by detractors and give a 100% rate.

When analysing the study of Crooymans (2022), it is noticeable that Porter’s Generic
Strategies and Treacy and Wiersema’s Value Disciplines are used to reason about the per-
formance measures. Crooymans (2022) describes how both suggest choosing one central
value discipline to excel at and performing acceptably at the other disciplines. Porter
presents the disciplines: cost leadership, differentiation, and a niche market (Porter, 1985).
While Treacy and Wiersema suggest: operational excellence, product leadership, and cus-
tomer intimacy (Treacy & Wiersema, 1995). With the help of experts from Signify, Crooy-
mans (2022) states that Signify strives for differentiation leadership, cost leadership, and
customer intimacy. For these disciplines, it is concluded that the study of Crooymans
(2022) focuses on the KPIs service level and total costs.

In Section 3.1.2, we researched and described the design of the automated hybrid manu-
facturing system. After analysing the current design of Signify’s automated hybrid manu-
facturing system, we think it could be interesting to see what the optimal storage capacity
of the box handler should be. Currently, the box handler storage design has a capacity of
192 boxes. We suspect this to be too little capacity for the box handler storage. However,
this is uncertain until tested. Hence, it could be interesting to see what optimal value can
be found in the design of the box handler storage capacity.

Finally, the concerning interviews for the determination of the KPIs were held with R&D
Project Manager, R&D Manager, and Scientific Employee. The interviewees were asked
to present the most important KPIs for the automated hybrid manufacturing system of
Signify, and to discuss the already found KPIs in literature and by Crooymans (2022). The
interviews showed that Signify wishes to strive for being cost-competitive, while also always
satisfying the needs of the customers as much as possible. Additionally, an interviewee
mentioned the interests of Signify lie with sustainability, reducing energy consumption
as much as possible. However, as this was only mentioned once, it is chosen that cost
competition and customer satisfaction are more important. Customer satisfaction can be
reached by aiming for a high service level and fulfilling all orders within the desired LT.
However, currently, the LT of Signify is around three weeks. Signify wants to reduce this
as much as possible and be able to manufacture even faster. Hence, it was mentioned in
interviews that the goal should be less than the current LT, thus minimizing the CT of the
manufacturing system.

To conclude, based on literature research, analysis of the study of Crooymans (2022), in-
terviews with experts, and analysis of the system, we have chosen to maintain the following
KPIs with corresponding definitions in the remainder of the research:

KPI 1. Cycle Time: The average time from the release of an order at the
beginning of the routing until it reaches an inventory point at the end of the
routing (i.e., the time the product spends as work in process).

KPI 2. Service Level: The probability that the cycle time of an order is
smaller than or equal to the desired lead time. Hence, the number of orders
delivered to the customer in time.
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KPI 3. (Total) Manufacturing Costs: The total costs of the manufactur-
ing system. Note that the total costs consist of the fixed costs and the variable
costs.

KPI 4. Box Handler storage Capacity: The total required storage capac-
ity of the box handler.
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Chapter 4

Modelling of the Automated
Hybrid Manufacturing System

In this chapter, our objective is to address Research Question 3: How do we model the auto-
mated hybrid manufacturing system? The most commonly used models for manufacturing
systems are prescriptive models (Hopp & Spearman, 2000; Ansari et al., 2019; Lepenioti
et al., 2020). These models are designed to optimize or prescribe a manufacturing system.
As mentioned in Section 2.3, we decided that a simulation model is the best approach for
this study. The simulation model that we use is Discrete-Event-Simulation (DES). DES
is a method in which states or events are changed at discrete points in time, where the
events take no time to occur (Banks & Carson, 1986; Varga, 2001).

The Tecnomatix Plant Simulation software version 2201, from Siemens Digital Industries
Software, is used to create the model (Siemens Plant Simulation, 2023). This simulation
software solution was recommended by Signify, as it is already used and applied in the
organization. Furthermore, Signify requested the simulation to be visual without compro-
mising the simulation, as that shows a realistic representation of the system. Hence, the
complete professional package was made available by Signify. Plant Simulation allows for
the modelling, simulation, and optimization of logistic systems and processes while ana-
lyzing material flow and resource utilization. It also has 3D modelling capabilities and is
object-oriented, providing clear visuals. For more complex scenarios, algorithms and script
programming can also be applied. Plant Simulation uses the built-in SimTalk 2.0 language
for scripting.

The DES in Plant Simulation starts simulation through the Event Controller, by initiating
a run, which acts as the timing controller of the simulation model. Signify receives its
business orders well in advance (often half a year), thus there is a long lead time. As
Signify does not want to deliver its luminaires too early to the customer, it is decided by
them to always start production three weeks in advance. In our model, we assume that
all orders arrive three weeks before the shipping date, all at the same time, which is 00:00
AM at the start of the day. After running the model for T time units, the model calculates
the desired performance measures. Figure 4.1 shows the automated hybrid manufacturing
system modelled in Plant Simulation. Figures 4.2 and 4.3 focus on the different processes
in the model.
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Figure 4.1: Signify’s automated hybrid manufacturing system model in Plant Simulation

Figure 4.2: The box handler and qual-
ity control in Plant Simulation

Figure 4.3: Assembly & packaging in Plant Sim-
ulation

We applied the DES method using the Process Interaction modelling perspective, as de-
scribed by Banks & Carson (1986). When using Process Interaction in Plant Simulation,
our focus is on the processes in the model and their effects on the behaviour. The first step
is creating a flow chart or network to clearly understand all the processes in the model. In
Figure 3.4, we created a flow chart of Signify’s automated hybrid manufacturing system
to identify the entities and attributes present in the model. Then, all the processes in
the model must be identified, including when they occur and how they change the objects
in Plant Simulation. These processes are discussed in Section 4.1.1. Finally, the perfor-
mance measures calculations can be implemented after finding all the processes, as we do
in Section 4.2.

4.1 Model Description

This section details the simulation model. First, the processes, decision rules and as-
sumptions of the model created in Plant Simulation are discussed in Section 4.1.1. The
decision rules are not known yet as the system is not in production yet, hence we de-
sign and implement these ourselves. Finally, the calculation of the KPIs is explained in
Section 4.1.2.

4.1.1 Production process

The Manufacturing System consists of three production processes: the AM (Additive Man-
ufacturing) of printed parts, quality control, and the assembly of non-printed parts with
printed parts. The completed product is then delivered to the warehouse and transported
to the customer. In the manufacturing system, we assume that there are no restrictions
on the availability of boxes, filament reels, non-printed parts, and packaging materials,
ensuring 100% stock availability for these supplies. Additionally, we assume that the
transportation time between the different machines and storage places is negligible with
exception of the box handler robot.

The three production processes can be divided into nine processing events, which are shown
in Figure 4.4. Additionally, the figure displays the times the event occurs in T . Note that
demand generation, creation of order queue, and print job assignment to AM machine all
occur at the same time directly after an order arrives. The next paragraphs explain the
nine processing events in more detail with the corresponding assumptions.
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Figure 4.4: Processing events in the AM facility

Demand Generation
The first step in the production process is the generation of demand. An order includes
the following order characteristics: start date, order number, product type, colour/mate-
rial, and quantity (e.g. 01-01-2023 00:00:00.00, 1, Down Light S, White, 35). The order
number is unique to that specific order, while the product type is determined by the type
distribution: Down Light S, 0.25, Down Light M, 0.45, and Down Light L, 0.30. The
colour/material is chosen based on the probabilities: White, 0.6, Black, 0.3, Blue, 0.025,
Green, 0.025, Yellow, 0.025, and Red, 0.025. Thus, the model consists of six different
colours/materials. The product type also specifies which parts need to be printed and
which non-printed parts need to be added to complete the product.

Demand generation is an ongoing event in the AM facility depending on the arrival of
orders. The number of generated orders at the end of the simulation model depends on
the number of days the model is run for. After generating the orders, the print job queue
is created, which occurs simultaneously with demand generation as these events do not
require simulated time.

Creation of Order Queue
The next event is the creation of the order queue for the model. The order queue determines
the sequence in which orders are processed and converted to print jobs to be sent to the
AM machines, as outlined in Figure 4.5. The first order in the queue is processed first.
Orders can be created in the normal way (from an order arrival) and the priority way
(from quality control). A priority order is created when a printed part is a defect and a
new one is required. The quality control creates an order and sends it back to the queue,
giving it priority over other orders in the queue. Normal orders are processed based on
the First-Come-First-Serve (FCFS) rules. After the order queue is created, the orders are
converted into print jobs and distributed to the AM machines.
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Figure 4.5: Decision rule for order assignment to the queue

Print Job Assignment to AM machine
An order consists of multiple print jobs, one for each part that needs to be printed for
that order. If an order is for a single product, the number of print jobs is equal to the
number of parts needed for that product. If an order is for five products, the number of
print jobs is five times the number of parts needed for one product. During the process
of converting orders to print jobs, additional characteristics such as item type and item
number are created. Item type refers to the type of printed part that the print job creates,
and the item number is a unique identifier for the instance of that part. Print jobs also have
characteristics such as order number, product type, ID number, and colour/material that
are copied from the order. Quality control, priority and corresponding box are additional
characteristics added later in the process.

After processing the order into a print job, the print job is assigned to an AM machine
in four steps. All the AM machines are checked in accordance with step one, and if that
assignment rule is not feasible, step two is applied, followed by step three and finally step
four. This decision rule can be seen in Figure 4.6.
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Figure 4.6: Decision rule for the assignment of a print job to the AM machine

Printing Process
When arriving at the machine, the print jobs must be evaluated to determine if they are
priority print jobs. If a print job has a priority, it is given priority placement in the
machine’s queue. However, if an order group with parts that belong together is being
printed, it is placed after that order group. Before processing the print job, the AM
machine checks if the filament reel has the colour/material and the amount of material
available for the part to be printed. In Section 3.1.2, we mentioned that a filament oven
consists of three filament reels. However, for the purpose of simplifying the model, we
assume the presence of only one filament reel in the filament oven. If the filament reel is
not the correct colour/material or there is not enough material, it is switched to a new
filament reel and the old one is discarded. This switch requires 10 minutes of setup time
and the assistance of a worker.

The model includes three types of skilled workers: Additive Manufacturing (AM) Workers,
Quality Control Workers, and Assembly Workers. It is assumed that all workers, regardless
of their skill, earn the same salary and that a worker cannot operate more than one machine
at a time. In the model, workers are only present on weekdays (Monday to Friday). The
AM facility operates on weekends (Saturday and Sunday), but without workers. Public
holidays and sick leave are not considered, and remote working is not supported in the
model. Workers work in two shifts, each consisting of 8 hours a day, with two breaks.
Furthermore, workers remain at their final location until they receive a new job order,
thus do not need to return to a specific place to receive one. The workers’ travel speed
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is assumed to be 1.3 m/s, based on the average walking speed of an adult, as stated by
Mohamed & Appling (2020).

After the printing process is completed, the part is created by adding all necessary char-
acteristics and saving important information. Once the printing process is complete, the
print job is finished and deleted. If the AM machine fails during the printing process, a
worker is called to fix the issue and the failed part is reprinted on the same machine. The
failure can only occur during processing, not during filament reel changing or when the
machine is idle. A failure can be caused by issues with the filament reel supply, printing
(misprint), nozzle, and more. The breakdown of the machine itself is not considered as it
could occur at any time. These steps of the decision rule are shown in Figure 4.7.

Figure 4.7: Decision rule for the printing process of a part

Box Assignment and Storage
When a part has been created by an AM machine, it must be placed in a box for storage
(refer to Figure 4.8). We assume that the boxes used to transport the printed parts are
filled with only one type of printed part. If the part is a priority item, the relevant box
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(the box used for the first printing) is retrieved from the box handler and used for the part.
If there is no box corresponding to the part (for example, if it is a new part that has not
been in the system before), a new box is created. When parts belong to the same order
group and are the same item type, they can be stored together in the same box. The boxes
also have a maximum number of parts that can fit inside, which is dependent on the type
of part. For some types, this could be 100, while for others it could be 5. When the box
is full (reaches its maximum capacity) or the next part belongs to a different order group,
the box is transferred to the box handler. Before the box is removed from the machine, it
is assigned the necessary characteristics. The box handler robot then transports the box
and its parts to the storage area in the box handler, where it remains until needed for a
quality check. In the simulation, the robot is modelled as four separate stations that work
as one, due to practicality. Together, the four robots can transport one box at a time, just
like the original box handler robot. It is assumed that it takes 1:30 minutes for the robot
to store or retrieve a box in/from the storage area. In the model, it is also assumed that a
box is first moved to the storage of the box handler and then, when located in the storage,
can be moved to another place. It should be noted that a box cannot be moved directly
from an AM machine to a quality control station.

Figure 4.8: Decision rule for the assignment of a part in a box

Quality Control Process
When a box arrives in the storage area of the box handler, it is immediately ready to
be transferred to one of two quality control stations (Figure 4.9). The box handler robot
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retrieves the box from storage and places it at an available quality control station. Once the
box arrives at a quality control station, it must wait for a worker to perform the check. If
a part is defective, it is removed and a new print job request is created and sent to the AM
machine as a priority print job, while the accepted parts remain in the box. The box and
its accepted parts are then returned to the box handler via the box handler robot.

Figure 4.9: Decision rule for the removal of a box from the box handler

Box Handler Removal
Figure 4.9 shows the decision rule for removing a box from the box handler. A box is
ready for assembly when all parts of the order are present in the box handler and have
been checked at a quality control station. As discussed and proposed before, the box is
conveyed from the box handler to the assembly via an AGV. However, we decided not to
include it in the model, as the AGV project still needs to start. Together with the time
constraints, we decided not to incorporate it into the model. When the box is ready for
assembly, the box is transported to the assembly storage by the box handler robot, where it
is stored until all boxes of the order are present and a worker is available to begin assembly.
We assume that there is unlimited storage for the boxes before the parts are assembled
into the completed product. In reality, this storage space can be seen as the floor in front
of the Assembly stations, which can temporarily hold boxes.

Assembly Process
When all boxes of an order are in the assembly storage, the product is created from all
necessary printed items (in this model, four printed items make up a product). It is assumed
in the model that once the parts are removed from the boxes, the empty boxes are deleted
from the model. The boxes are assumed to have 100% availability and do not affect the
output. A product has the following characteristics: Name, Order Number, and Color.
After the printed parts are assembled into the product, non-printed parts must be added
to complete the product. The reflector is added first, taking 1:30 minutes, followed by the
light-emitting-diode (LED) module (also taking 1:30 minutes), and finally, the LED driver
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is installed (taking 1:30 minutes). The completed product is then ready for testing.

Completed Product Testing
At the testing station, the completed product is evaluated for Reflector Yield, LED Module
Yield, and LED Driver Yield. If the product fails the test, it must be inspected again and
any failed parts must be repaired or replaced. Note that this failure could block the
assembly line. Once the completed product has reached the warehouse, it is stored until
delivery (which is outside the scope of this model). The transportation time of the finished
goods to the customers is not included in the lead time of this model.

4.1.2 Key Performance Indicator Measurements

In Section 3.2, we have selected four KPIs to measure the model’s performance. These
KPIs are used to evaluate the performance of the box handler and assembly line. This
section describes how the KPIs are calculated and modelled. The KPIs are calculated
only after the modelling time (T in hours), as all the data is available at that point.
Note that some of the values required for calculating the KPIs have been agreed upon in
consultation with Signify. The following sections provide details about the KPIs’ variables
and calculations.

KPI 1. Cycle Time
The CT is calculated based on the time it takes for an order to go through the production
process (CTo). An order is part of a set of orders (O). When all the finished products
have completed the production process and arrived at the warehouse, the CT can be
calculated by subtracting the start time of the order (tstart time

o ) from the end time of the
order (tend time

o ), as shown in Equation 4.1.

CTo = tend time
o − tstart time

o ∀o ∈ O (4.1)

KPI 2. Service Level
As described in Section 3.2, the SL is based on the CT, specifically, the probability that the
CT of an order is less than or equal to the desired lead time (LT). An order is considered
on time (αo) if the CT is less than or equal to the LT, as shown in Equation 4.2. The
LT is agreed upon with Signify beforehand. The SL can then be calculated as the ratio of
the number of orders that are finished on time and the total number of orders finished, as
shown in Equation 4.3. Note that if an order is not finished within the modelling time (T ),
it is not included in the SL calculation, as its completion time cannot be determined.

αo =

{
1, if CTo ≤ LT

0, otherwise
∀o ∈ O (4.2)

SL =

∑
o∈O αo

| O |
(4.3)

KPI 3. Total Manufacturing Costs
The TC can be divided into plant costs, the fixed costs, and operational costs, the variable
costs, as shown in Equation 4.4.

TC = Cplant + Coperational (4.4)
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The plant costs include all costs related to operating and maintaining the plant, such as
the costs of the facility, assembly line, and box handler. The facility costs (cf) encompass
expenses such as building, and land costs. The assembly line costs (ca) include costs from
assembly stations, packaging stations, testing equipment, and storage space. This cost is
variable and dependent on the number of assembly lines if there is more than one in the
AM facility. The box handler costs (cb) are expressed by the number of AM machines
(| M |), which is fixed at 48. In collaboration with Signify, we assume that the facility,
assembly line, and box handler can be amortized after five years, and thus the plant costs
are calculated over the modelling time (T ), as shown in Equation 4.5.

Cplant =
(cf + ca + cb)

5 · 365.25 · 24
· |T | (4.5)

For the operational costs, we consider worker costs and filament reel costs. These ongoing
costs are incurred from the normal day-to-day operations of the business and can be found
in Equation 4.6. The total worker costs are determined by multiplying the labour rate of
a worker (cw) by the amount of time worked by that worker (θw) and summing that for
all workers in the system. The filament reel costs are expressed as the cost per kilogram
of material used (cr), which must be multiplied by the amount of material used (R). The
material used includes all material used to create printed parts, including parts that fail at
quality control or fail a breakdown and material that is switched out before it’s completely
used.

Coperational =
∑
w∈W

(cw · θw) + cr ·R (4.6)

In collaboration with Signify, we decided that these costs need to be included in the KPI.
Hence, we can assume that the costs included in the model are sufficient enough to conclude
the model.

KPI 4. Box Handler Capacity
The box handler capacity (δ) is calculated based on the maximum number of boxes that
fit into the box handler storage at any point in time (M). When a box goes into the box
handler, the box handler stores it until it can continue to the next process in the system.
After a while, more boxes are added and the box handler storage fills up. φb is determined
by looking at the maximum number of boxes that is in the box handler within the modelling
time. In Equation 4.7 the formula for this KPI is found.

δ = M (4.7)

4.2 Model Verification

A model verification must be conducted to determine if the simulation model performs
correctly. The verification is performed by performing checks. These checks allow us to
assess the model’s behaviour and determine whether the model simulates as we expected
in Section 4.1. As stated by Kleijnen (1995) and Robinson (1997), the key concept of
verifying is sufficient accuracy. Since no model can be 100% accurate.

Based on the theorem by Robinson (1997), we are performing the method visual checks to
verify the model. The method Visual checks proves to be a powerful aid for verification,
namely, it can show both the logic and the behaviour of the model by running the model and
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watching how each element behaves (Robinson, 1997). A few potential approaches for this
method are: stepping through the model event by event, predicting what happens with the
model and checking it, and setting up conditions to force certain events. We have chosen
to use prediction as a visual check. In Chapter 6, we perform an additional verification
technique called: comparison with other models. For the first verification, three checks are
performed. We first describe the check, then we predict what happens and afterwards, we
check if the model behaves th7098e same way. The following paragraphs summarize the
verification checks that we performed:

1. Utilization Rates
The utilization rates of the workstations (i.e. the AM machines, box handler robot,
quality control stations, and assembly stations) measure the workload and produc-
tivity of the model. By adjusting the demand, we can see how the behaviour of
the utilization changes. With a low demand, we expect the utilization also to be-
come low, since the workstation needs to produce less. Subsequently, we expect a
high utilization rate with high demand, as the workstations need to produce more
demand. We can calculate the demand for the expected utilization by using the for-
mula: u = ra·te

m . However, this system is too complicated for this formula, we cannot
give an estimation of what the demand would be. Hence, we estimate by increasing
the model as much as possible.

The model shows that a low utilization is reached in case of low demand. The
utilization rate approaches 0.00, however, it never becomes 0.00 exactly (the model
always keeps producing demand). We do notice that some AM machines are not
used at all, because the amount of machines that belong to a box handler is large (48
AM machines). Vice versa, very high demand causes the utilization to become very
high. The workstations never reach 1.00 exactly but do approach it. The assembly
station’s utilization rate does not increase a lot, this happens because the assembly
needs to wait until the whole order is completed before it is removed from the box
handler. Note that when the demand is too high, the storage of the box handler
becomes full and blocks the process.

2. Stabilization over Time
The model simulates a certain timespan (i.e., simulation time T ). There are variables
dependent on this simulation time, but not all are. We check if the outcomes change
if simulation time T is altered. We expect that the outcomes that are not time-
dependent stay stable over time, while outcomes that are dependent on time and the
number of orders change. Running the model for several days, months or a year, the
time and order independent outcomes stay the same, while the outcomes dependent
on time and order amount do change. In conclusion, regardless of the simulation
time, a few days or a year, the outcomes stay stable.

3. Box Handler AM Capacity changes
Finally, we check how the model behaves when the capacity changes. When the
capacity of the box handler increases, it is expected that the orders go quicker through
the model. The other way around, if the capacity of the box handler decreases (fewer
AM machines, less storage, fewer quality controls), fewer orders are completed on
time.

With a higher box handler capacity, all the orders are finished in time, because
there are much more AM machines to print a part. However, this also influences
the utilization, which becomes lower. If the capacity of the box handler becomes
lower, the storage of the box handler becomes full and the boxes become stuck. The
demand is too much for the model to handle, hence no order can be processed.
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Chapter 5

Numerical Experiments

In Chapter 4, we modelled the production facility of Signify with Discrete-event Simulation.
In this chapter, we perform four experiments, to gain more knowledge and information
about the modelled production facility of Signify and to answer Research Question 4:
How can numerical experiments analyse the design of an AM facility with an automated
manufacturing system? Generally, numerical experiments are used to get a response of the
model over a range of parameters (Bowman et al., 1993). We start with a base experiment
followed by a set of numerical experiments. First, in Section 5.1, we discuss the base
experiment, what inputs it uses, and how it performs. Next, Section 5.2 shows the setup
and the results of the numerical experiments. Lastly, we present a conclusion of the base
experiment and numerical experiments in Section 5.3.

5.1 Base Experiment

We define a base experiment with which we compare the further numerical experiments.
This is done by simulating a realistic input scenario approved by Signify employees. It
should be noted that due to randomness in the model, the simulation consists of 100 runs
which leads to a 95% confidence interval that gives valid results of the model. Additionally,
a warm-up period is removed from the simulation run to make sure the results are not
influenced by waiting times at the start of the simulation. The precise calculations for
these values can be found in Appendix B.

In the following sections, the input for the base experiment is discussed in Section 5.1.1.
Table 5.1 presents all input parameters and provide a brief explanation. Afterwards, the
output measures are displayed and explained in Section 5.1.2. Finally, we discuss the
bottleneck of the base experiment in Section 5.1.3

5.1.1 Input Parameters

We explain in this section all the input parameters, we give an overview in Table 5.1. These
values were discussed with two Signify employees both with the role: Digital Workflow
Scientists. These employees actively participated in supporting the simulation model and
approving the final values. The input values are not historical data values, as some of
them are not yet available (box handler data) and some cannot be disclosed by Signify for
confidentiality reasons. In this section, we provide a more detailed explanation of some of
the input parameters.
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Table 5.1: Input parameters for the Base Experiment

Symbol Description Input Value

βib Maximum number of items i ∈ Ip in box b ∈
B

See Appendix C

γi Yield of a printed item i ∈ Ip See Appendix C
γi Yield of a non-printed item i ∈ In See Appendix C
λo Arrival rate of an order o ∈ O Uniform(8, 12)
ωr Weight of a new filament reel 10 kg
ωi Weight of a printed item i ∈ Ip See Appendix C
ρb Processing time of the box handler robot 1:30 min
ρp Processing time of the packaging 1:00 min
ρnp Processing time of a non-printed item 2:30 min
ρi Processing time of a printed item i ∈ Ip See Appendix C
ξp Inspection time of a product p ∈ P 1:30 min
ξi Inspection time of a item i ∈ Ip See Appendix C
Am Availability of AM machine m ∈ M 99.8%
C Number of colors/materials 6
ca Assembly costs €10,000
cb Box handler costs €75,000
cf Facility costs €100,000
cr Filament reel rate €10/kg
cw Worker rate €25/hour
| In | Number of non-printed items 3
| Ip | Number of printed items 4
LT Lead Time 21 days
| M | Number of AM machines 48
MTTR Mean-time-to-repair of an AM machine 5:00 min
| P | Number of product items 3
Qo Number of products in an order o ∈ O Erlang(0.5625, 0.0375)
s Changing time of a filament reel (setup time) 10:00 min
| T | Modelling Time 84 days (12 weeks)
| W | Number of workers 18

As described in Section 4.1, we have assumed that a box filled with parts can continue to
the box handler by reaching its box limit (βib). This limit can range from 10 to 100 parts,
depending on the type of part in the box. Hence, a box can hold more smaller parts than
larger parts. Note that the box is the same for all types of parts. Table 5.1 also shows two
different inspection times: ξp, which is the inspection time of a complete product at the
assembly stage, and ξi, which is the inspection time of a printed item at quality control.
The inspection time of a product is the same for all products, but the inspection time of
a printed item depends on its type.

Table 5.1 displays several cost values, which are used to calculate the KPIs. The assembly
costs (ca), facility costs (cf), and worker costs (cw) are based on the study of Crooy-
mans (2022) performed at Signify 3D Printing and checked with multiple employees at
Signify.

We have focused on three types of Greenspace Downlights (P), size S, M, and L, which
consist of four printed items (Ip) and three non-printed items (In). The number of products
in an order (Qo) is assumed to be an Erlang distribution with k =0.5625 and λ =0.0375,
which results in a µ of 15 and a σ of 20. The Erlang distribution gives an order size
distribution with a long tail and many small orders. These characteristics fit the order
quantity of Signify. The model has 18 workers, W, present, working in two shifts. Eight
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workers are performing tasks related to the AM machine (repair and setup), four are at
quality control, and six are assembling the product.

The simulation’s box handler storage capacity (δ) is a high value, to find the minimum
required capacity when using the realistic input of Signify. In Section 5.1.2, KPI 4. is
discussed and the capacity of the box handler is elaborated upon.

5.1.2 Result Measurements

In this section, the results of the base experiment are displayed and discussed in detail.
We start by discussing the results on the four KPIs: cycle time, service level, total costs,
and box handler capacity which were defined in Section 4.1.2. We also elaborate on results
that are not KPIs but provide insight into the behaviour of the model.

Cycle Time (CT)
We defined the CT as the time from when an order arrives until the moment a completed
product leaves the system for the warehouse. Figure 5.1 shows a Gantt Chart of the CT
of 100 orders in an example run from the base experiment. It is important to note that
the figure displays the start time (when an order arrives in the manufacturing system) and
the end time (when an order is completed).

Figure 5.1: Gantt Chart of the start time, end time and CT per order

The Gantt chart shows that the CT of the orders differ a lot. On average the CT is 16.04
days. The average maximum CT is 19.92 days. The example run in Figure 5.1, displays
a few orders that take much shorter to process than 16 days. This is especially the case
for part M orders, which could be expected as part M occurs the most and also needs a
printable item with a γi of 0.43.

Service Level (SL)
The SL is dependent on the CT and LT . The LT needs to be determined beforehand to
calculate the SL. According to Section 5.1.1, Signify currently has an LT of three weeks.
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We run the model for 12 weeks, which displays a SL of 0.73. We can explain the CT
by the variability in demand. With more demand, the system has more difficulty keeping
up with all the orders due to the high utilization of the AM machines, which is shown
later. This causes some orders to have to wait a long time to be processed. Additionally,
the low yield causes more rework parts, which have a priority over the normal parts. The
normal parts need to wait longer to be processed and this can again cause an order to
delay longer.

Total Costs (TC)
Next, the output of the costs can be found in Table 5.2. To better understand the cost
output, we also present the cost per completed product and the cost per kg. The cost per
completed product shows the average cost per created luminaire, which is around €43. In
Figure 5.2, a breakdown of the base experiment costs can be seen.

Table 5.2: Cost results of the base experiment

Total Costs Total Costs (per completed product)

€351,872 €43.16

Figure 5.2: Breakdown of the total costs per product

Box Handler Storage Capacity
As already mentioned in Section 5.1.1, we simulated the model with an unlimited amount
of box handler capacity, meaning that there should be no trouble putting the boxes in
the box handler. By doing this, we can now see how much capacity is needed for the
demand of Signify. In Chapter 3, we stated that the box handler designed by Signify
has 192 storage places for boxes, however, we assumed that this would be too little for
the average demand Signify gets. After simulating the base experiment, we have found
that the maximum number of boxes at the same time in the box handler for the demand
(Table 5.1) is 668. This amount is three times more than the 192 places chosen for the box
handler capacity. A box handler capacity of 668, means that there are 14 places needed
above an AM machine (668/48 ≈ 14). Furthermore, we notice that the storage occupancy
fills up slowly over time and reaches a steady state. This mainly happens due to large
orders that stay stuck in the box handler storage and have a low-yield item, which requires
many reworks. Hence, we can say that the original box handler capacity needs to increase
to fulfil the demand.

Extra Results
The extra results provide more insight into the behaviour of the simulation model. On
average 8,167 products are completed, which belong to 598 different orders. Additionally,
14,136 kg of filament reels is used, which means that per product a bit more than 1.73 kg is
needed. This is a large amount due to throwing away items after quality control, throwing
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away items due to printer failures, and throwing away leftover filament due to premature
change-overs. Hence, the average filament reel utilization is 0.44. Finally, a worker spends
448 hours in the system, however only 29% of the time the worker is actually busy. When
calculating the worker costs: 25 · 448 =€11,200 per worker, we notice that this is a large
part of the total costs.

Figure 5.3 shows the average number of parts that failed either during printing or quality
control. The figure also includes the average number of parts that are completed as a
reference. From the figure, we can conclude that half of the parts that are printed fail.
Additionally, we see that quality control causes many more failed parts than the other two
processes. This is because some parts have a yield lower than 40%, increasing the chance
of parts failing.

Figure 5.3: Number of failed parts in the system compared to the number of parts created

The utilization of the AM machines is displayed in Figure 5.4. The data shows that
the machines are mostly failing, working or blocking, with some machines having a high
percentage of waiting. We expect the failure percentage to be this high, because of failures
that happen during the weekend when no worker is around to fix them. Blocking also
occurs often, which is attributed to the box handler robot being occupied at the same
time as a box moving to storage. From this figure, we can conclude that the machines are
frequently busy and have a high utilization rate.
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Figure 5.4: Utilization rate per AM machine

The utilization rate of the two quality control checking stations on average is 0.44 and
0.45. The stations are mostly waiting. The utilization of the assembly line is 0.32, which
is again quite low. This probably happens due to the box handler controlling the arrival
of the parts. The assembly stations also show blocking signs. Here, the testing station
is the sole cause of blocking. Finally, the box handler robot displays a utilization rate of
0.87, which means that most of the time it is busy moving boxes from and to the box
handler.

5.1.3 Bottleneck

For further evaluation of the model, we find the bottleneck. In Section 3.2, we already
predicted that a box handler with the storage capacity of 192 places causes trouble. In
Section 4.2, we showed that increasing and decreasing the AM capacity of the box handler
does change the order flow. Hence, it is interesting to see how the box handler exactly be-
haves. In cases of high demand, the box handler gets full. Moreover, the higher utilization
rates in the box handler compared to the assembly line, even if the demand increases, show
that the box handler is a critical point in the model. A normal queuing theory responds
with long waiting times and too high utilization. This would mean that the box handler
with high utilization rates would cause long waiting times at the AM machines. Which is
the case for our model. The print job queue in the AM machines is long, but due to the
large amount of AM machines, the print jobs can be distributed over several queues. A
reason for the fast filling of the box handler storage is that the boxes need to wait in the
box handler until the order is complete and quality checked, before being transported to
the assembly line. Because of this, the box handler becomes full and only allows orders to
go to the assembly one by one. To make sure that we correctly interpret the trouble in the
box handler, we check how the model behaves when shifting the storage place (transporting
boxes without waiting on a complete order). Furthermore, we check the cycle times of an
order in the box handler and the assembly line. These checks help find the bottleneck of
this model.

1. Shifting the storage in the system
In the current model, we move the boxes from the box handler to the assembly, when
the whole order is checked and complete. This is changed to moving the boxes to
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the assembly already when a box is checked. When changing the way the boxes are
removed to the assembly line, we can see that the storage place shifts. Instead of filling
the box handler storage, the assembly storage is now becoming full. The utilization
rate of the assembly line does not increase, since the assembly still needs to wait
until all parts have arrived to start producing. If the model would start assembly
even though not all the parts of the order are available, the storage shifts to the
warehouse, where the completed products are waiting until the order is complete.
This test shows that storing the boxes/parts/completed products is a problem in the
model since they always need to wait on each other until the order is complete in the
model.

2. Cycle Time check
To check if the box handler is indeed the bottleneck of the model, we divide the cycle
time of an order into the time in the box handler and the time in the assembly line.
The division line is the moment the order arrives from the box handler robot to the
assembly storage. We observe that the box handler cycle time takes much longer
than the assembly line time. The box handler can on average manufacture a part in
5 days, while the assembly takes less than an hour. Thus, we can conclude that the
box handler takes longer than the assembly line.

We can conclude, that boxes/parts/completed products are always waiting until the AM
machines have finished printing the order. In our model, this happens in the box handler.
Thus, the bottleneck is the box handler, in particular the AM machines, on which the
system is always waiting. From the model, we can observe that the AM machines are slow
compared to the rest of the system, because of the rework that needs to happen when a
printed part does not pass the quality control. The rework returns to the AM machines,
then needs to wait until it can start printing. After printing on the AM machine, the part
goes into the corresponding box and needs to be checked at the quality control again. Since
the yield of some printed items is so low, it often happens that a part becomes reworked
more than two times. This happens especially with the item: Mixing Cup L, which has a
yield of 34%. From this bottleneck research, we can conclude that the AM machines are
having trouble keeping up with the number of print jobs because many items have a low
yield which requires rework.

5.2 The experiments

This section describes the setup of experiments that can be performed to test the limits
of the model presented in Chapter 4. Afterwards, we conduct the experiments and discuss
the outcomes. We perform a series of four experiments: Increase the item yield, decrease
the capacity of the box handler storage, increase the number of filament materials, and
adapt the number of AM machines. Each experiment is carefully chosen for its ease of
implementation, the potential for achieving valuable outcomes, and overall importance to
Signify’s business. In Appendix D, four more experiments can be found that could not be
executed due to lack of time.

In the experiments, we first explain the experiment itself and its necessity, then we describe
the expected outcome, and next, we discuss the implementation of the experiment. After-
wards, we show the outcomes of the experiment and discuss the most important outcomes.
Below, the numerical experiments can be found:

5.2.1 Increasing the item yield

A finding of the base experiment is that the yield of the items has a big influence on the
flow of the system. In Section 5.1.3, we concluded that the yield is one of the reasons

34



behind the AM machines being the bottleneck of the process. Hence, it is interesting to
see what happens with the system when we increase the yield of the items.

We expect that the increase will affect the number of reworks. If the yield of an item is
bigger, fewer parts fail at the quality control and this means less rework is needed. The
AM machine probably has fewer print jobs than the base experiment, we expect that the
utilization of the AM machines will decrease. Additionally, the CT becomes smaller, which
decreases the SL. Lastly, we expect that there will be fewer filament reels needed, as fewer
parts fail and are thrown out. This will also have a decreasing effect on the costs.

This implementation is not complicated since the yield of an item can be easily adjusted.
We analyze the model assuming the lowest yield in the base experiment 0.34 to 0.44, 0.54,
0.64, 0.74, 0.84, and 0.94. The other yields increase also increase with a 10 per cent point
until 1.00 is reached. Note this is only be done for the printed items since the bottleneck
occurs there. In Appendix E, we present the exact yield values of the items.

Table 5.3 presents the outcomes of this experiment. We notice that the costs per product
decrease when the yield becomes better. However, after a while, the costs do not change
that much anymore, and a steady state is reached. Figure 5.5 shows the Confidence Interval
(CI ) of the total costs per product. Here, we see the same steady state as shown in the
table. Additionally, we notice that the only significant difference happens between the
base experiment and the +10 per cent point yield experiment. Hence, not much difference
is seen between the increases in the yields in the costs. Next, the table shows that the
filament reels per completed product also decreases a little bit. We would expect that this
would give a larger difference. We suspect that because the AM machines need to print
less rework, there is more place for normal orders, which still cost filament reels of course.
Hence, with a higher item yield, more orders can be fulfilled. We do see a small increase
of the filament reels for experiment +20 per cent point yield, however, due to the big
variability in the system, we expect it to be a stochastic difference. Furthermore, we notice
that only after a small increase in the yield of the items, the SL increase immediately to
0.96. Subsequently, this happens for the CT and the box handler capacity. Both decrease
a lot after the first yield increase. In Figure 5.6, we can see the CI of the CT , it shows that
like the costs the CT goes to a steady state from +30 per cent point, where differences
between the yields do not matter much anymore.

Table 5.3: KPIs Experiment 1

Experiments Total Costs Total
Costs
(per
com-
pleted
product)

Filament
reels in
kg (per
com-
pleted
product)

Service
Level

Average
Cycle
Time (d)

Box han-
dler Ca-
pacity

Completed
Prod-
ucts

Base Experiment €351,872 €43.16 1.73 0.73 16.04 668 8,167
+10 per cent point yield €369,086 €34.89 1.50 0.96 9.00 437 10,603
+20 per cent point yield €389,446 €34.39 1.57 1.00 3.38 229 11,333
+30 per cent point yield €377,373 €32.62 1.44 1.00 2.75 163 11,578
+40 per cent point yield €370,046 €31.97 1.38 1.00 2.54 144 11,588
+50 per cent point yield €363,554 €31.10 1.31 1.00 2.46 137 11,700
+60 per cent point yield €359,972 €31.00 1.29 1.00 2.42 137 11,623
100 per cent point yield €359,239 €31.02 1.28 1.00 2.42 134 11,594
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Figure 5.5: Confidence Intervals of the To-
tal Costs (per completed product)

Figure 5.6: Confidence Intervals of the Av-
erage Cycle Time

5.2.2 Original capacity of the Box Handler storage

In Section 5.1.3, we noticed that the storage of the box handler fills up quickly, which could
become an issue over a longer period. Therefore we modelled an unlimited amount of box
handler capacity in the base experiment. The original box handler contains 192 storage
places. Hence, it is interesting to see how much demand can flow through the system with
the original capacity. The behaviour of the model could change and with that the results
as well. It is interesting to see how the model behaves with a box handler capacity of
192.

We expect that the box handler will fill more quickly since fewer boxes can fit in the storage.
Additionally, the quality control will have an easier time checking all the boxes since more
parts are available for quality control, thus the utilization of the quality control stations
will decrease. Therefore, we think the waiting time will shift more towards the box handler.
In general, the capacity decrease is expected to increase the cycle time of a product but
decrease the costs (due to additional expenses for the box handler storage).

The implementation of this experiment is not complicated, the model can easily be changed
to test this experiment. For this experiment, tests are performed to see the maximum
demand that can still fit into the box handler’s capacity. This is done by simulating
multiple times with different demands until we find the maximum box handler capacity of
192. Table 5.4 shows the results of decreasing the demand to get to 192 storage places in
the box handler.

Table 5.4: Maximum capacity of box handler for Experiment 2

λo Maximum number of boxes in the box handler

Base experiment 668
z uniform(7, 11) 588
z uniform(6, 10) 323
z uniform(5, 9) 170
z uniform(4, 8) 145
z uniform(3, 7) 141
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Figure 5.7: Confidence Intervals of the Maximum number of boxes in the box handler

From the results, we can see that the 192 capacity is reached at an arrival rate of z uniform(5,
9). This is nearly half the amount of demand compared to the base experiment. Hence,
we can say that the storage of the box handler decreases proportionally with the arrival
rate. Figure 5.7 shows the CI of the box handler capacity. We notice a big significant
difference between the first three demands, the difference between the final three demands
is not that big. In Table 5.5, we present the KPIs of the z uniform(5, 9) experiment. We
notice that the SL is much higher compared to the base experiment, namely 1.00. Hence,
we can conclude that, although a 192 storage has a higher service level, it can only handle
an average demand of 7 orders per day. If Signify wants to use this box handler capacity, it
should be thinking about adding more box handlers to process the larger demand.

Table 5.5: KPIs Experiment 2

Total Costs Total Costs
(per kg)

Service
Level

Average
Cycle
Time (d)

Box han-
dler Ca-
pacity

Completed
Prod-
ucts

µ €368,011 €47.31 1.00 3.66 170 7,781
CI Left bound €347,799 €43.79 1.00 3.38 114 7,581
CI Right bound €388,222 €50.82 1.00 3.92 226 7,981

5.2.3 Increase the number of Filament Materials

In Signify, the majority of the luminaires are printed in black or white. However, Signify
does offer customized luminaires in more than 40 colours/materials. For the base model,
we assumed six different colours/materials. For this numerical experiment, we are going
to see what happens if we add more colours/materials. By adding more filament colours/-
materials, Signify can gain insight into the effect of customized luminaires on the supply
chain.

The increase in filament colours/materials is expected to influence the number of filament
setups that are needed. The AM machines need to change the filament more often, hence
more setup time is required and more time from the workers is needed. This could make the
cycle time much longer. Additionally, the production costs could increase, as the filament
reels are changed more often, which means more useable material is thrown away, costing
Signify money and sustainability.

Not many adjustments need to be made to implement this experiment, which makes it
an easy experiment to apply. Currently, the base experiment assumes the probabilities of
white 0.60, black 0.30, and each of the other four colours 0.025. The model is adjusted
by changing the filament colours/materials from 6 (base experiment) to 12, 24, and, 48
colours/materials while keeping the probability ratio the same as the base model. Table 5.6
presents the results of the conducted experiments.
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Table 5.6: KPIs Experiment 3

Colours/
Materi-
als

Total Costs Total
Costs
(per
com-
pleted
product)

Filament
reels in
kg (per
com-
pleted
product)

Filament
used for
change
overs

Service
Level

Average
Cycle
Time (d)

Box han-
dler Ca-
pacity

Completed
Prod-
ucts

6 €351,872 €43.16 1.73 4,150 0.73 16.04 668 8,167
12 €375,397 €46.57 2.04 6,616 0.72 16.08 661 8,074
24 €389,295 €48.07 2.20 7,982 0.73 15.92 651 8,108
48 €395,565 €48.65 2.27 8,553 0.74 15.96 647 8,138

The results show that the differences between the values for each number of colours/ma-
terials used are relatively small. For example, the difference between the total costs per
product for 6 colours/materials and 48 colours/materials is only an increase of €5.49, which
is not a lot given the fact that there are 42 different colours/materials more. Figure 5.8,
displays the CI of the cost per product, we can see that the CI overlap does not make it
significant. Furthermore, we see that the filament reels increase when more colours/ma-
terials are added as we had expected. This is especially evident for the filament used for
changeovers. Surprisingly, the CT does not change much. However, in Figure 5.9, we see
that the CI overlap a lot, which does not make the CT significant.

Figure 5.8: Confidence Intervals of the To-
tal Costs (per completed product)

Figure 5.9: Confidence Intervals of the Av-
erage Cycle Time

5.2.4 Adapt the number of AM machines

The occurrence of blocking or starvation has a big impact on the production of Signify.
When blocking occurs in the production facility, it is likely that the production comes to
a halt and cannot continue until the blocking is solved. While starvation occurs when the
production facility is idle and has no jobs to perform. This can cost Signify a lot of money
since the workers and the machines are idle. Hence, it is interesting to see how many AM
machines are needed to prevent blocking and starvation from happening. We are testing
this by increasing and decreasing the number of AM machines in the box handler.

We expect that with fewer AM machines than in the base experiment (48), fewer parts
come into the box handler storage at the same time. This prevents the box handler from
blocking. However, this will decrease the service level since products will take more time to
manufacture. Vice versa, when more AM machines are added to the box handler starvation
will occur. If the orders can be easily completed with more AM machines, a few machines
will be idle and cost money instead of producing money. By increasing or decreasing the
number of AM machines, the whole system changes immensely, therefore it is important
to find the balance between AM machines and KPIs.
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This experiment mainly requires running the model multiple times with a different number
of AM machines to see where the blocking and starvation occur and what the optimal
number of machines is. To get a good view of the behaviour of the model, we analyze the
model with 12, 24, 36, 48 (base experiment), 60, 72, and 84. The results can be seen in
Table 5.7.

Table 5.7: KPIs Experiment 4

AM machines Total Costs Total
Costs
(per
com-
pleted
product)

Filament
reels in
kg (per
com-
pleted
product)

Service
Level

Average
Cycle
Time (d)

Box
Handler
Capacity

Completed
Prod-
ucts

12 €288,383 €76.26 2.57 0.32 32.42 229 3,133
24 €292,334 €59.58 2.15 0.32 29.21 423 3,883
36 €357,000 €53.56 2.32 0.47 21.92 541 6,363
48 €351,872 €43.16 1.73 0.73 16.04 668 8.167
60 €362,657 €42.03 2.07 0.86 12.96 756 8,629
72 €376,641 €50.33 2.19 0.88 12.42 992 7,483
84 €397,004 €53.42 2.47 0.98 8.38 803 7,432

The results show a trade-off between the costs and the CT when increasing the number of
AM machines. This balance has a big impact on the service level provided to customers.
As the number of AM machines increases, so does the service level. This increase is entirely
logical, as more machines mean that there are more spots for demand to be printed. The CI
of the costs per product and the CT are found in Figure 5.10 and Figure 5.11. We notice
that the bounds overlap quite a bit. Therefore it is difficult to say whether the changes
are significantly relevant. Finally, we see that the cheapest number of AM machines is 60.
If we compare this experiment with the base experiment, we notice that it shows better
results for the total costs, service level, and CT . However, when looking at the CI of the
costs and CT for these two experiments there is no significant difference.

Figure 5.10: Confidence Intervals of the
Total Costs (per completed product)

Figure 5.11: Confidence Intervals of the
Average Cycle Time

5.3 Conclusion

In this chapter, experiments are conducted on Signify’s AM facility to gain valuable insights
into how numerical experiments can enhance the base experiment. Through a range of
parameter tests in the numerical experiments, a deeper understanding of the system’s
behaviour is achieved. The base experiment serves as a foundation for exploring numerical
experiments and analyzing the additive manufacturing process. The key findings show that
the bottleneck is the box handler due to the many reworks on the AM machines.
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Four numerical experiments are performed to analyze the effects of different scenarios on
the production facility. Increasing the yield of printed items improves all the KPIs, however,
after adding the first 10 per cent point there are not many differences between the results
that can be seen. The original box handler capacity (192) can handle a maximum of 7
orders on average per day. The lower demand causes a higher service level of 1.00 and CT
compared to the base experiment. Increasing the number of filament colours and materials
had a relatively small impact on KPIs but did increase the costs and filament per product
a bit. Increasing the number of AM machines increased the SL, while vice versa decreasing
the number of AM machines caused the SL to become low. In both situations, the costs
per product increased. Surprisingly, we notice that 60 AM machines give the best results
for costs, SL, and CT .

From this chapter, we can recommend adding more AM machines to the setup to distribute
the demand and prevent such issues from arising. Alternatively, a highly impactful solution
would be to focus on improving product yield. We noticed a significant amount of rework,
which contributes to the demand for AM machines. By improving the yield, fewer parts
will fail the quality check, ultimately reducing the demand for AM machines. While this
solution may be more challenging to implement, it can lead to significant savings in terms
of machinery, material, energy costs, and space in the manufacturing facility.
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Chapter 6

Comparison of Signify’s
Manufacturing Systems

In this chapter, we answer research question 4: “How do the current manual and new auto-
mated manufacturing systems compare?” Now that we have modelled the new automated
hybrid manufacturing system of Signify in Chapter 4, it is important to see how it relates
to the current manufacturing system. The study by Crooymans (2022) is used to exam-
ine the current manufacturing system in Signify. Crooymans (2022) aimed to determine
the desired number of production facilities, while additionally finding the corresponding
capacity needed to serve a total demand area for a product that includes AM. The results
showed that multiple smaller production facilities are preferred compared to a few big ones
to minimize transportation and labour costs, with the capacity of each facility depending
on the demand rate. Specifically, the study showed an optimal solution of 10 production
facilities, each with 12 AM machines and 1 assembly line capacity. This composition gave
the lowest costs while also satisfying the chosen service level and utilization.

Before we start comparing the two systems, it is important that the model of this study is
verified, and thus accurate enough to make comparisons with. We already performed some
verification tests in Section 4.2. However, we have chosen to do an extra verification by
recreating the base model of Crooymans (2022) in our model. After the model is verified, we
compare the two manufacturing systems with each other. However, as different assumptions
are made by Crooymans (2022), it is not possible to compare the two systems directly. To
still make a comparison, the parameters in the study of Crooymans (2022) are estimated
to be as close to the situation as described in this study.

First, we verify our model by recreating the model of Crooymans (2022) in Section 6.1.
The implementation of this verification is discussed in Section 6.1.1, and the results in Sec-
tion 6.1.2. In Section 6.2, we adjust the parameters of Crooymans (2022) to represent the
assumptions made in this study. Here, we again discuss the implementation (Section 6.2.1)
and the results (Section 6.2.2). Finally, a conclusion comparing the models, which answers
research question 4 is given in Section 6.3.

6.1 Verification by comparison with another model

As previously explained in Section 4.2, the key concept of verifying is sufficient accu-
racy. We already verified the model based on visual checks, however, a final verification is
performed by using the technique comparison with other models (Robinson, 1997). This
technique is especially useful when no real system data is available, which is the case in
this study.

In the following paragraphs, the model is verified. First, in Section 6.1.1, the implementa-
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tion of the parameters of Crooymans (2022) is discussed. Lastly, the results are compared
and checked for interesting findings in Section 6.1.2.

6.1.1 Implementation

The optimal combination of AM machines, assembly lines and production facilities is 12, 1,
and 10, respectively. This is a completely different manufacturing system than the system
we created in this study. Therefore, we use these parameters of Crooymans (2022) in our
Tecnomatix Plant Simulation model. By doing so, we can verify our model with the results
of Crooymans (2022), and prove that the model in this study is accurate.

First, we changed the number of AM machines, assembly lines, and facilities in our model
to match the base model of Crooymans (2022). We also changed some other important
parameters of our model, which are discussed next. Because the study of Crooymans
(2022) uses a manual system, we removed the box handler and its corresponding attributes.
Additionally, we adapted the assumptions by Crooymans (2022) that 6 workers are needed
per facility of this size, 1 worker for the AM machines, and 5 workers for the assembly line.
We also change the demand input and machine assignment to match Crooymans (2022).
The precise input of this model can be found in Appendix F.

A big difference that can be noticed between Crooymans (2022) and our study is the
transportation costs and use of demand areas. Crooymans (2022) uses demand areas,
with a corresponding total demand rate (λ) that follows a Poisson distribution and is
uniformly distributed within the area. The demand areas are represented by circles with
an associated radius with a production facility in the centre. We applied the same demand
rate as Crooymans (2022) but we did not account for transportation as this is not included
in our study. To make the results of our model and the model by Crooymans (2022)
comparable, we excluded the transportation costs from the cost calculation of Crooymans
(2022).

Finally, like Crooymans (2022) does, we assume that a year consists of 260 days. This is
based on working days (i.e., no weekends and public holidays). Additionally, the workers
operate in two shifts, which makes a workday 16 hours. Hence, the model is run for 260
days with 16 hours per day.

6.1.2 Results

For final verification of our model, we compare the results of Crooymans (2022) and our
recreated model. Table 6.1 shows the results of Crooymans (2022) and the results from our
recreated model. We see that all the mean results are very similar to each other. There
are, however, a few small differences between the interval bounds of the values. This could
be explained by the randomness of the Poisson distribution, as a small change in demand
can have quite an effect on this complex model. Additionally, it could be possible that
mistakes are made with either the interpretation of the model of Crooymans (2022) or the
implementation of the model in Tecnomatix Plant Simulation.

With this verification, we conclude that the model we created in Chapter 4 is, as Robinson
(1997) puts it, sufficiently accurate, ensuring that the model meets its requirements and
specifications of Signify.
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Table 6.1: Comparison of the base experiment results of Crooymans (2022)

Crooymans (2022) Our model
µ CI Left bound CI Right bound µ CI Left bound CI Right bound

SL 1.00 1.00 1.00 1.00 1.00 1.00
Cycle Time (h) 50.89 46.14 54.45 52.88 50.62 54.16
CF (| T |= 260)∗ (Thousand €) 646 646 646 646 646 646
CT (| T |= 260)∗ (Million €) 7.46 7.46 7.46 7.46 7.46 7.46
Avg. Costs per Order* (€) 36.28 36.17 36.38 35.89 35.82 35.96
No. Order Produced 20,563 20,508 20,702 20,785 20,743 20,827
No. reels Produced 2,074 2,067 2,082 2,084 2,080 2,088
No. reels Ready if not C 0 0 0 0 0 0

Average WAM (h) 59.91 58.84 65.84 53.22 49.83 56.62

Average WAL (h) 0.16 0.11 0.21 0.16 0.15 0.16

UAM 0.82 0.82 0.83 0.83 0.83 0.84

UAL 0.82 0.82 0.83 0.83 0.83 0.83
*Without the total transportation costs

6.2 Comparison with the current manufacturing system of
Signify

To answer research question 4, we want to compare the current and the automated systems
with each other. However, the two models that are created for these systems differ too
much. The assumptions, parameters, assignment methods and much more, follow different
rules in Crooymans (2022) compared to this study. For us to take some kind of conclusions,
we adjust the parameters from Crooymans (2022) to be closer to the parameters and
assumptions of our study. This estimation is imprecise, therefore we cannot take any
hard conclusion from this analysis. However, it does give an idea of how the two systems
perform compared to each other. Additionally, an estimation comparison is made of 1
facility against 10 facilities. This comparison can be found in Appendix G. The next
paragraphs explain the implementation of the estimation of the parameters in Section 6.2.1.
Afterwards, the results are formed and discussed in Section 6.2.2.

6.2.1 Implementation

We need to adjust the parameters of Crooymans (2022) to the assumptions of this study.
This is done by performing ‘back of the envelope’ calculations. These are quick and informal
mathematical computations that are used to estimate results and get a general idea ‘a
ballpark estimate’ (Widerquist, 2017). To make these estimations of the parameters, we
need to know what differences there are between the model of Crooymans (2022) and this
study.

The models differ a lot from each other: facility capacity, demand rate, order size, product
size, printer assignment, breakdowns, processing times, colour/materials, quality control
yields, filament reel assignment, and some other minor differences. Obviously, the two
models differ in handling the parts (automated or manually), but this is the thing we want
to compare so this is kept as it is. As we cannot change the systems to be exactly the same,
there are a few large differences that we want to focus on. Demand has a big influence
on the models, as it decides the flow of the model. The order size of the demand is also
changed since Crooymans (2022) assumes one part per order, while we assume an Erlang
distribution with k =0.5625 and λ =0.0375 for the order size. Additionally, we want to
incorporate the multiple product and item types and their characteristics that occur in
this study (3 products, 4 items). These are, namely, of great importance for the processing
of products in the model. Lastly, the quality control check is a big difference that prevents
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the comparison of the two models. The study of Crooymans (2022) does not contain a
check, thus assuming a 100% yield.

Equations 6.1, 6.2, 6.3, and 6.4 show the ‘back of the envelope’ calculations that are made.
First, Equation 6.1 calculates the demand rate of the model, we multiply the average orders
per day by the average order size with the number of parts in a product. We do this to get
an accurate representation of the number of parts that are printed in our system. Finally,
we divide it by 16, to get the number of parts per hour for the Crooymans (2022) model.
The second equation (6.2), shows the average yield for the quality control, we first calculate
the average yield per product and then take the weighted average over the products, this
results in a 0.71 average yield. Next, the average processing time of the AM machines is
calculated in Equation 6.3 using the same method as the yield calculations. Lastly, we
calculate in Equation 6.4 again in the same manner and look at how many fit in a reel of
10 kg. The final input parameters can be found in Table 6.2.

λ = 10 · 7.5 · 4/16 = 18.75 parts.per.hour (6.1)

γ = 0.25 ·
(

0.98 + 0.5 + 0.78 + 0.64

4

)
+ 0.45 ·

(
0.79 + 0.43 + 0.99 + 0.55

4

)
+ 0.3 ·

(
0.78 + 0.34 + 0.87 + 97

4

)
= 0.71 (6.2)

P 3DP = 0.25 ·
(

60 + 20 + 15 + 80

4

)
+ 0.45 ·

(
90 + 30 + 20 + 100

4

)
+ 0.3 ·

(
120 + 45 + 30 + 140

4

)
= 63.2 minutes (6.3)

C = 10/(0.25 ·
(

0.1 + 0.02 + 0.01 + 0.2

4

)
+ 0.45 ·

(
0.2 + 0.04 + 0.02 + 0.4

4

)
+ 0.3 ·

(
0.4 + 0.08 + 0.04 + 0.8

4

)
= 52 parts.per.filament reel (6.4)

Table 6.2: Overview of Input Parameters for estimation comparison

Parameter Description Original input
of Crooymans
(2022)

Adjusted in-
put of Crooy-
mans (2022)

γ Quality control Yield 1 0.71
λ Total Demand Rate (products/hour) 50 18.75
C Maximum Capacity Filament reel (products) 10 52
F Number of Production Facilities 10 1
K Number of Possible Colors 1 6
LT Lead Time for Customer (days) 8 21
M Number of AM machines 12 48
N Number of Assembly Lines 1 1
P 3DP Average Processing Time on AM machine (hours) 2 1.05
PAL Average Processing Time on Assembly Line (min-

utes)
10 10

S Threshold for Latest Time to Start Assignment of
Filament reel of AM machine (days)

1 1

| T | Modelling/Simulation Time (days) 260 84
T change-over Change-over Time for AM machine (hours) 2 0.17
T check Intermediate Time Step to Check Status of Fila-

ment reel (hours)
1 1

W Amount of Workers in the system 6 11∗

*Consists of 4 AM, 5 assembly, and 2 quality control workers
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6.2.2 Results

As mentioned in Section 6.2.1, the new input parameters for the model of Crooymans
(2022) are not completely accurate, however, they give a good indication of the current
system. We run the model of Crooymans (2022) with the input parameters for two different
scenarios: λ = 18.75 and λ = 26.41. The first demand rate is calculated with Equation 6.1,
and the second demand rate is calculated by dividing the demand rate by the average yield
(0.71). By doing this, we account for the rework that has to be done on the AM machines
(λ = 26.41). For the assembly line, this rework should not be taken into account, thus the
results of λ = 18.75 are relevant for the KPIs concerning the assembly line. The results of
the adjusted parameters are found in Table 6.3. Here, we had to use the cost calculations
as proposed by Crooymans (2022) due to the assumptions made.

From the results, we can see that the current model can easily process all the demand that
flows through the system. The utilization rates are low for both the AM process and the
assembly line. We expect that the reason behind the higher utilization of the assembly
line is the congestion before the assembly line. The parts are printed on multiple AM
machines, which then need to go to one assembly line where they are waiting. Table 6.3
also shows the cost resulting from this input. We notice that the cost of workers is quite
high, compared to the original results of Crooymans (2022) as more workers are needed
for more AM machines (48).

6.3 Conclusion

Now that we verified the model completely, we can more strongly confirm that the model
from Chapter 4 is sufficiently accurate to retrieve results from and use for experiments.
Hence, we can compare our model with the model created in Section 6.2.

Table 6.3: Simulation results of Crooymans (2022) with adjusted input parameters

KPIs Results Crooymans (2022) Our model results
µ CI Left bound CI Right bound µ CI Left bound CI Right bound

SL 1.00 1.00 1.00 0.76 0.72 0.79
Total Costs (Thousand €) 527.60 527.60 527.60 460.70 460.70 460.70
Cost Facility (€) 100,000 100,000 100,000 100,000 100,000 100,000
Cost AM machines (€) 48,000 48,000 48,000 48,312 48,312 48,312
Cost Assembly Line (€) 10,000 10,000 10,000 10,000 10,000 10,000
Cost Workers (€) 369,600 369,600 369,600 302,400 302,400 302,400
Avg. Costs per Order (€) 50 47 53 52 40 63

UAM 0.45 0.45 0.45 0.86 0.86 0.87

UAL 0.62 0.61 0.62 0.32 0.31 0.33

The differences between the automatic- and current manufacturing systems can be seen in
Table 6.3. For the utilization, we see that all the utilization rates are relatively low and can
process the number of orders fairly easily, except for the AM machines on the automatic
manufacturing system. This can partly be explained by the downtime an AM machine can
have in the automatic system, whereas the current system assumes no downtime of the
machines. Additionally, set-up times are expected to be higher in the automatic manufac-
turing system as this system waits for a worker to be available again before a set-up can
be performed. The current system does have more workers decreasing this impact, but
nevertheless, we expect this to have some influence as well. Although the actual utilization
of the AM machines in the current system is expected to be a bit higher than the given
value, the utilization of the AM machines in the automatic system is too high. Further-
more, the utilization rate for the current system displays more issues at the assembly line,
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while contrariwise this is the case for the automated system. Presumably, this happens
due to the automated system having a storage space in the box handler, which stores all
the orders until needed at the assembly and causes congestion at the AM machines.

For the costs, we also notice differences, as fewer costs are made at the automated system.
The facility and assembly line costs are equal in both cases as there is 1 facility and 1
assembly line in both cases. The costs of the AM machines are higher in the automated
system since the box handler adds a bit more cost, but this difference is very small. The
real difference is seen between the cost of workers, which is less in the automated system
because fewer workers are needed. This is also the point where we expect the automatic
system to outperform the current system.

We tried to make the parameters in the two models as similar as possible, however, the
automated model still contains many more details than the current model (e.g. breakdowns,
assembly yield, transportation time in the facility). The fact that the automatic system
can keep up with the same demand as the current model for lower costs shows the possible
benefit of the automatic system. However, the high utilization at the AM Machines should
be kept in mind, as this might be problematic if demand has high variability. Finally, we
want to note again that this is an estimation comparison, which means that the results are
not precisely accurate and therefore we cannot conclude that one system is better than the
other.
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Chapter 7

Discussion, Conclusion &
Recommendations

We have explored the subject of how automated hybrid manufacturing can be implemented
in industrial settings to improve production efficiency and reduce costs. A main question
and five research questions were identified upfront and answered throughout this study,
including the characteristics of an automated hybrid system, the identification of key per-
formance indicators, the modelling of the manufacturing system, numerical experiments to
understand the behaviour of the model, and the comparison of an automated to a current
manufacturing system.

In this section, we examine the findings from the research about these research questions
and the main question. We provide a summary of the key results and explore their impli-
cations for future research and industrial practice. This chapter is organized into five main
parts. The first part (Section 7.1) gives a conclusion on the main finding of this study,
including an answer to the main question we formulated in Section 2.2. In Section 7.2, we
examine the contribution of the study to literature and Signify. Next, in Section 7.3 we
present the limitations of this study. We then explore several directions for future research
in Section 7.4. Finally, the main recommendations established for Signify are discussed in
Section 7.5.

7.1 Conclusion

In this section, we provide a concise summary of the most significant findings of this study.
Additionally, a reflection is given on the outcomes and shortly discussed. Finally, we answer
the main question: How to design and analyse an automated hybrid additive manufacturing
facility?

In Chapter 3, we addressed two research questions (RQ1 and RQ2): What does the auto-
mated hybrid manufacturing system look like? and What key performance indicators should
be used to evaluate the automated hybrid manufacturing system? The system consists of
three production units (box handler, quality control, and assembly & packaging), storage
places, and production flows. The box handler process involves printing parts from fila-
ments on an AM machine, which are then stored in an automatic system called the box
handler. Quality control checks the parts, and assembly & packaging assembles them into
the final product for transport to the customer. We also discuss the process of identifying
key performance indicators (KPIs) for the system, including cycle time, service level, and
manufacturing costs.

Next, in Chapter 4, we use a simulation model to answer research question 3: How do
we model the automated hybrid manufacturing system? We implemented the model using
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a discrete-event-simulation (DES) model. The model was created with Tecnomatix Plant
Simulation software. We evaluate the model by performing verification tests and identifying
bottlenecks, which we determine to be the AM machines.

We discuss the base experiment and numerical experiments in Chapter 5, to understand
Signify’s AM facility and answer RQ4: How can numerical experiments optimize the design
of an AM facility with an automated manufacturing system? We started with a realistic
base experiment approved by Signify. Based on the base experiment results, we proposed
four experiments to test the AM facility model’s limits. Results showed that increasing
item yield led to better system performance and customer satisfaction. Decreasing the
capacity of the box handler showed how much demand can fit into the system with the
original box handler. Introducing more filament colours/materials had a small impact on
KPIs but increased total costs per product. Adjusting the number of AM machines showed
a trade-off between the costs and the service level.

Finally, in Chapter 6, we compare Signify’s current manufacturing system and their new
automated hybrid system, addressing research question 5: How do the current manual and
new automated manufacturing systems compare? We use Crooymans (2022) to examine
the current system, verifying our model’s accuracy by comparing it to its base model.
By comparing the current and automated systems, we found that the automated system
handles the same demand with lower costs due to the reduction of the number of workers,
but has a higher utilization rate for the AM Machines.

In conclusion, we answer the main research question we defined in Section 2.2. Designing
an additive manufacturing facility that incorporates an automated hybrid manufacturing
system can be a difficult task. This can be challenging due to potential bottlenecks, such as
the box handler, which we identified as a crucial factor in determining the facility’s output.
To ensure smooth operations with Signify’s demand, a box handler with a capacity of at
least 668 boxes is essential. Another factor to consider is the number of AM machines
required. If the demand is high, it may be necessary to have more than 48 AM machines
to meet production targets. However, it is also important to evaluate the demand and
determine if decreasing it is a viable option. Furthermore, increasing yield is the key to
maximizing efficiency and productivity, by minimizing waste and improving service levels.
Additionally, cost optimization can be achieved by reducing labour and material costs, and
by decreasing the number of workers and filament reels used.

Using DES to design the facility provides flexibility in adapting to changes in demand and
production requirements. Simulating different scenarios allows for real-time evaluation
of the impact of changes and system adjustments. Ultimately, designing an AM facility
with an automated hybrid manufacturing system requires careful consideration of various
factors, including box handler capacity, the number of AM machines, demand, yield op-
timization, and cost optimization, leading to an efficient, productive, and cost-effective
facility.

7.2 Contribution of the study

Overall, the report can contribute to both Signify and the literature by providing valuable
insights into the benefits and challenges of using automated hybrid manufacturing systems,
as well as providing guidance for companies looking to adopt these systems and identifying
areas for future research.

For Signify, the study can provide valuable insights into the benefits of using automated
hybrid manufacturing systems compared to their current manufacturing system. The study
can help Signify understand the advantages of implementing these systems, including in-
creased efficiency of their lead time, reduced costs, and improved cycle time. Furthermore,
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it helps in making design decisions for the system by addressing the bottlenecks and poten-
tial problems in the system, such as the limited box handler storage and high utilization of
the AM machines. Next to these insights, the methodology used in this study can serve as
a guide for Signify, but also for other companies, for creating insights using a simulation,
optionally using Plant Simulation. We showed that Plant Simulation offers the possibility
to simulate a highly complex manufacturing system, even if the facility does not exist in
reality yet. Thanks to this, valuable insight into the behaviour of the system under differ-
ent scenarios can be created. Plant Simulation can help Signify and other companies to
optimize facility operations, reduce costs, and identify potential problems.

As we stated in Section 7.2, the field of Additive Manufacturing (AM) has seen a sig-
nificant amount of research focusing on prototyping, materials, and understanding of the
concept itself. However, recent studies indicate that the implementation of AM in spe-
cific industries, particularly in supply chains and AM facilities, has become an increasingly
important topic. Despite several studies highlighting the benefits of automated manu-
facturing systems, there is limited research available that looks at automated processes
in combination with hybrid manufacturing AM facilities. This study addresses this gap
by providing a comprehensive examination of the topic. This report provides insights into
how automated hybrid manufacturing systems can be integrated into existing supply chains
and AM facilities and sets possible directions for future research and development in this
area.

7.3 Limitations

Although effort has been made to ensure that the study was conducted with rigour and ac-
curacy, several limitations should be acknowledged. We can break down the limitations into
three different categories, namely general limitations during the study, model limitations,
and limitations about the comparison with the study of Crooymans (2022).

7.3.1 General Limitations

Firstly, it should be noted that in general all estimates of parameters used in the study
were not based on historical data but on assumptions, which may not be entirely accurate.
This may cause the model outcomes to be inaccurate in some cases. To prevent this as
much as possible, we chose these parameters in consolation with experts within Signify,
thus we can define the values as realistic and reliable. However, it is advisable to validate
the simulation once the additive manufacturing system is operating in reality.

Secondly, the results from this research are specific to the case of Signify. Therefore, results
may be different if there is a different facility setup, different parameter values, different
machinery, or different worker schedules. Although this prevents generalizing the outcomes
to some extent, this methodology is still reproducible for different situations which would
still lead to valuable insights.

Lastly, the use of Plant Simulation can be called a limitation of this research. Plant
Simulation clearly showed its worth in simulating a complex manufacturing environment
capturing a lot of aspects, benefiting the outcome of this study. This may not have been
possible using a common programming language (e.g., Python) or different simulation
software. However, we acknowledge that Plant Simulation might not be easily accessible
to everybody because of the software costs and necessary skills to use it.

7.3.2 Model Limitations

There are some assumptions in the model which determine the way of working or limit
the scope of this research. Some ways of working may impact the model outcomes while
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limiting the scope means that the model does not account for some parts of the process.
The most important of these assumptions are therefore discussed as limitations.

Firstly, stock limitations are out of the scope of this research. In the model, we assumed
that there are no restrictions on non-printed parts, boxes, filament reels, and packaging
materials. In practice, this cannot always hold, since it could occur that certain parts
are not available anymore. This could influence the production flow in the model, thus
affecting the model outcomes. However, if inventory control is on point, this should not be
a problem.

Secondly, to simplify the model, we assumed that only one part per AM machine could
be printed at the same time. In reality, Signfiy can print multiple parts at the same time
on a machine. Relaxing this assumption might speed up the printing process, decrease the
utilization of the AM machines, and thus improve the cycle time. However, we can not be
certain of the exact impact of this assumption.

Thirdly, we assumed a fixed number of workers at the start of this study. In Section 5.1.2,
the worker utilization rate was defined as 0.29. This is very low, which suggests that the
number of workers we determined beforehand where too many. The number of workers
has a big impact on the costs of this study. When reducing the number of workers, the
costs also change. This model with fewer workers should be further researched in the
future.

Next, the decision rule of only letting completely checked orders flow through to the as-
sembly line can be changed. Since there were no decision rules, we decided upon this
ourselves. This rule can influence the study’s findings. Another rule that we could have
used was cutting orders into smaller pieces and sending these pieces through the system.
This would have caused less blocking in the box handler storage and might also show good
results.

Finally, the way print jobs were assigned and scheduled to AM machines could have been
done differently, as we used a heuristic. This may have affected the study’s findings. The
printer assignment is a big decision rule as it determines how efficiently print jobs are
distributed over the AM machines. Hence, it is possible that a more efficient scheduling
method could give better results, and therefore the study’s results may not be as positive
as they could be.

We can conclude that we made various assumptions in our model. This makes the outcomes
of our study not exact, and the findings may not be entirely accurate. However, by carefully
deciding on the assumptions we believe that our findings are still useful and representative
of reality, despite the assumptions made.

7.3.3 Comparison Limitations

Lastly, we acknowledge that there are a few limitations in Section 6.2 about the comparison
with the study of Crooymans (2022). As already mentioned in that chapter, the compar-
ison between the automated and the current system is not very strong. The parameter
calculations are based on ‘back of the envelope’ estimations, therefore it may be difficult to
draw valid conclusions from them. We already noted that we cannot make hard conclusions
about the comparison. But since the models of the two systems were too different it was
difficult to perform a very accurate comparison. However, we can get a valid idea from
this estimation, which could be further researched in the future.

Lastly, we used the study of Crooymans (2022) for verification and comparison, however,
there is a possibility of implementation errors. For one there is a possibility of errors in the
current model made by Crooymans (2022). Since we make conclusions based on the study
of Crooymans (2022) if there are any errors they automatically are also implemented in
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our study. Furthermore, we could have wrongly integrated the conclusions of Crooymans
(2022) study. It is possible that we did not fully understand the study and therefore
wrongfully made conclusions which were not intended by Crooymans (2022).

In conclusion, despite the limitations outlined above, this research provides valuable in-
sights into the feasibility of automation and AM in a manufacturing environment. How-
ever, the limitations must be taken into account when interpreting the results and drawing
conclusions. Future research should address these limitations and further refine the re-
search.

7.4 Future Research

Based on the findings and limitations of this master thesis, we present directions for future
research. Future research focuses on improving the general understanding of automation in
a manufacturing environment, developing more realistic models, and conducting additional
experiments to test the system’s performance under different scenarios.

Firstly, as the study indicated, an automated AM system can be a more cost-effective
option. We saw in this study that a current system relies on workers to perform tasks and
transport parts. However, relying on workers has shown to be very expensive. However,
a 0.29 worker utilization rate was found, which indicates that the model can easily handle
worker reduction. The expenses for operational factors in a manufacturing system easily
outway the expenses for the plant itself. Therefore, future research could explore the
optimal degree of automation for different manufacturing environments and the cost-benefit
analysis of such a system. Additionally, we saw that many filament reels are changed,
which cost Signify a lot of money, workers, and production time. Another input for AM
machines is pellets, this reduces the setup time as it only needs to be added to the printer
and not dried in the oven. Furthermore, pellets are cheaper than filament reels, since the
filament reels need to be processed from pellets to reels. The pellet printers also show
some disadvantages, only limited details can be printed, and more printing defects could
occur. By modelling the pellet printers into the system, Signify could see how the defects
way out to the costs that it could save. Hence, it is interesting for Signify to evaluate the
possibility of pellet printers in a manufacturing system.

Secondly, plant simulation is a useful tool for manufacturers in this study. It is a valuable
tool for engineers and managers as it allows them to optimize production processes and
reduce costs. Although the tool is difficult to understand directly, as it can be a com-
plex and time-consuming process. We have shown in this study that it can help identify
bottlenecks, find areas where costs can be reduced, implement tests and evaluate different
scenarios, and be used to validate the design of a production process. By using this tool,
future research could focus on developing a model to become more realistic. This would
involve adding more attributes to the model to make them more accurate and reflective
of real-world conditions. Relaxing assumptions made during the research could help make
the models more accurate. Eventually, after creating a very realistic model, you could even
make the model a digital twin of the real-world system.

Thirdly, we saw in this study that the yield is a big cause of the high utilization of the
AM machines, the blocking of the box handler storage, and the overall CT . Hence, future
research should focus on finding ways to increase this yield. Furthermore, the yield could
also be increased when considering an additional post-processing machine (like sanding,
polishing, or coating) to improve the quality of the print (Zhang & Liou, 2021). This can
help remove defects and fewer printed parts will need to be thrown away. However, the
machine will cost an additional amount of money and maybe even workers. We suggest
future research to investigate to see if increasing the yield is worth the investment in this
system.
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Finally, additional experiments could be conducted to test the system’s performance un-
der different scenarios. We already explained four potential experiments in Appendix D.
These experiments include variations in print job assignment, different box-filling methods,
night/weekend print job queues, and including consumer demand. The findings from such
experiments would provide additional valuable insights into the system’s robustness and
help optimize the production process.

In conclusion, the findings of this study provide a starting point for future research into
the use of automated AM in a manufacturing environment. Further research in the areas
of automation, plant simulation, realistic modelling, and experiments will help refine the
findings and optimize the production process.

7.5 Recommendations for Signify

In this study, we looked at how automated hybrid manufacturing can be implemented in
industrial settings to improve production efficiency and reduce costs. This section provides
recommendations for how the findings of this study can be applied to improve Signify’s
manufacturing systems.

Firstly, plant simulation is a useful tool for optimizing manufacturing systems. There-
fore, Signify could consider implementing plant simulation software to model and analyze
its production processes. This would allow them to identify bottlenecks, optimize their
production line, and improve overall efficiency while offering visual insights into the man-
ufacturing systems.

Secondly, this study highlights the benefits of automated systems over current ones. There-
fore, Signify should consider automating its production process wherever possible. This
would help reduce labour costs and improve efficiency, while also reducing the risk of man-
ual errors. Using plant simulation, as stated before, can help with the right system design
for such automated systems.

Thirdly, the study identifies workers and filament reels as the biggest costs in the 3D
printing production process. Therefore, Signify should focus on strategies to reduce these
costs. For example, they could implement lean manufacturing techniques to reduce waste
and optimize their production line. They could also consider alternative sources for filament
reels or explore alternative materials that are more cost-effective.

Finally, from the analysis of the box handler capacity follows that the box handler capacity
is insufficient. Because the storage fills up, the system gets blocked and the AM machines
stop working as they cannot store the printed parts. Furthermore, the demand for AM
machines is too much, which can be derived from the high utilization. Having a high
utilization in combination with variable demand leads to high waiting times at the AM
machines, which in turn leads to a high cycle time. Therefore, we would recommend adding
more AM machines to the setup so the demand can be spread and this is prevented from
happening. An impactful alternative would be to focus on increasing the yield of products.
In this study, we found that the amount of rework is enormous, increasing the demand
for AM machines. If the yield can be improved, fewer parts will fail the quality check, in
turn decreasing the demand for the AM machines. This second solution may be harder to
implement but would save on machinery costs, material costs, energy costs and space in
the manufacturing facility.

In conclusion, the findings of this master thesis provide valuable insights into how manufac-
turing systems can be improved through the use of automation and AM. By implementing
plant simulation, automating the production process, reducing costs, and enhancing the
system, Signify can optimize its production line, reduce costs, and improve overall effi-
ciency.
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Jerman, A., Pejić Bach, M., & Aleksić, A. (2020). Transformation towards smart factory
system: Examining new job profiles and competencies. Systems Research and Behavioral
Science, 37 (2), 388–402.

Jimo, A., Braziotis, C., Rogers, H., & Pawar, K. (2019). Traditional vs additive manufac-
turing supply chain configurations: a comparative case study. Procedia Manufacturing ,
39 , 765–774.

Kleijnen, J. P. (1995). Verification and validation of simulation models. European journal
of operational research, 82 (1), 145–162.

Kruth, J.-P., Leu, M.-C., & Nakagawa, T. (1998). Progress in additive manufacturing and
rapid prototyping. Cirp Annals, 47 (2), 525–540.

Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). Prescriptive ana-
lytics: Literature review and research challenges. International Journal of Information
Management , 50 , 57–70.

Lu, Y., Xu, X., & Wang, L. (2020). Smart manufacturing process and system automation–
a critical review of the standards and envisioned scenarios. Journal of Manufacturing
Systems, 56 , 312–325.

Mathur, A., Dangayach, G., Mittal, M., & Sharma, M. K. (2011). Performance measure-
ment in automated manufacturing. Measuring business excellence.

Mikula, K., Skrzypczak, D., Izydorczyk, G., Warcho l, J., Moustakas, K., Chojnacka, K.,
& Witek-Krowiak, A. (2021). 3d printing filament as a second life of waste plastics—a
review. Environmental Science and Pollution Research, 28 (10), 12321–12333.

Mohamed, O., & Appling, H. (2020). Clinical assessment of gait. Orthot. Prosthet. Rehabil ,
4 , 102–144.

Morris, W., & Morris, M. (1988). Dictionary of word and phrase origins. In Dictionary of
word and phrase origins. Harper and Row, Publishers.

Parmenter, D. (2015). Key performance indicators: developing, implementing, and using
winning kpis. John Wiley & Sons.

Philips Lighting. (2022a). General lighting downlights greenspace by philips - philips lighting
company website. Retrieved from https://www.lighting.philips.com/main/prof/

indoor-luminaires/downlights/general-lighting-downlights/greenspace

Philips Lighting. (2022b). Greenspace - perfect fit by philips - philips lighting company web-
site. Retrieved from https://www.tailored.lighting.philips.com/en/TT-Series/

default.aspx

Philips Lighting. (2022c). Product Series - Philips Lighting Company Website. Retrieved
from https://www.tailored.lighting.philips.com/en/series.aspx

Philips: My Creation. (2022). Coastal breeze - Philips: My Creation Com-
pany Website. Retrieved from https://nl.mycreation.lighting.philips.com/en/

collections/coastal-breeze

Porter, R. (1985). The patient’s view. Theory and society , 14 (2), 175–198.

54

https://www.lighting.philips.com/main/prof/indoor-luminaires/downlights/general-lighting-downlights/greenspace
https://www.lighting.philips.com/main/prof/indoor-luminaires/downlights/general-lighting-downlights/greenspace
https://www.tailored.lighting.philips.com/en/TT-Series/default.aspx
https://www.tailored.lighting.philips.com/en/TT-Series/default.aspx
https://www.tailored.lighting.philips.com/en/series.aspx
https://nl.mycreation.lighting.philips.com/en/collections/coastal-breeze
https://nl.mycreation.lighting.philips.com/en/collections/coastal-breeze


Rajaguru, K., Karthikeyan, T., & Vijayan, V. (2020). Additive manufacturing–state of
art. Materials today: proceedings, 21 , 628–633.

Robinson, S. (1997). Simulation model verification and validation: increasing the users’
confidence. In Proceedings of the 29th conference on winter simulation (pp. 53–59).

Savolainen, J., & Collan, M. (2020). How additive manufacturing technology changes
business models?–review of literature. Additive manufacturing , 32 , 101070.

Siemens Plant Simulation. (2023). Plant simulation & throughput optimization.
Retrieved from https://www.plm.automation.siemens.com/global/en/products/

manufacturing-planning/plant-simulation-throughput-optimization.html

Signify. (2021). Home - Signify Company Website. Retrieved from https://www.signify

.com/nl-nl

Signify. (2022). 3D Printing by Signify - Signify Company Website. Retrieved from
https://www.signify.com/global/innovation/3d-printing

Signify. (2023). About us - Signify Company Website. Retrieved from https://

www.signify.com/global/our-company/about-us

Strong, D., Kay, M., Conner, B., Wakefield, T., & Manogharan, G. (2018). Hybrid
manufacturing–integrating traditional manufacturers with additive manufacturing (am)
supply chain. Additive Manufacturing , 21 , 159–173.

Taddese, G., Durieux, S., & Duc, E. (2020). Sustainability performance indicators for
additive manufacturing: a literature review based on product life cycle studies. The
International Journal of Advanced Manufacturing Technology , 107 (7), 3109–3134.

Thakar, C. M., Parkhe, S. S., Jain, A., Phasinam, K., Murugesan, G., & Ventayen, R. J. M.
(2022). 3d printing: Basic principles and applications. Materials Today: Proceedings,
51 , 842–849.

Treacy, M., & Wiersema, F. (1995). How market leaders keep their edge. Fortune, 131 (2),
52–57.

Varga, A. (2001). Discrete event simulation system. In Proc. of the european simulation
multiconference (esm’2001) (pp. 1–7).

Widerquist, K. (2017). The cost of basic income: Back-of-the-envelope calculations. Basic
Income Studies, 12 (2).

Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. International
scholarly research notices, 2012 .

Zhang, X., & Liou, F. (2021). Introduction to additive manufacturing. In Additive manu-
facturing (pp. 1–31). Elsevier.

Zhou, M., Pan, Y., Chen, Z., Yang, W., & Li, B. (2012). Selection and evaluation of green
production strategies: analytic and simulation models. Journal of cleaner Production,
26 , 9–17.

55

https://www.plm.automation.siemens.com/global/en/products/manufacturing-planning/plant-simulation-throughput-optimization.html
https://www.plm.automation.siemens.com/global/en/products/manufacturing-planning/plant-simulation-throughput-optimization.html
https://www.signify.com/nl-nl
https://www.signify.com/nl-nl
https://www.signify.com/global/innovation/3d-printing
https://www.signify.com/global/our-company/about-us
https://www.signify.com/global/our-company/about-us


Appendix A

Analytical vs. Simulation
Modelling

Both analytical and simulation modelling have important benefits for automated hybrid
manufacturing systems but also have critical drawbacks. The main difference between
these two modelling methods is complexity. Analytical models are often known to require
less effort and are easier to use but have less detail in the model (Hsieh, 2002; Zhou et
al., 2012). On the other hand, simulation models are more complex but offer a better
representation of the real world (Hsieh, 2002). However, because of their complexity, they
require more time and money to create. On the contrary, analytical models are cheaper
and take less time to complete. Therefore, an analytical model is a good choice for a simple
and quick model, while a simulation model is appropriate for a more complex system with
more time available (Banks et al., 2014). Input characteristics also reflect these differences
between the two methods. Analytical models require simple input characteristics with a
distribution pattern, while simulation models can handle more complex characteristics, but
are harder to solve. The choice between the two methods depends on the accuracy needed
and the available resources.

For this study, simulation modelling has been chosen for Signify’s printing facility. This
decision was based on four critical points in the system: filament change-over, prepara-
tion of the AM machine, rework/request for a new part, and assembly & packaging PU.
In the following paragraphs, the reasons behind this decision for these four points are
discussed.

As noted in Section 3.1.1, the box handler has an unlimited supply of filament reels as
the filament is created in-house at a separate facility. Nevertheless, the assignment of
filament to the AM machines within the box handler is included in the scope. Each AM
machine has an oven to dry the filament reels. Signify creates around 40 different luminaire
colours, such as recycled glossy white, transparent lime, or metallic blue (Philips Lighting,
2022c). Additionally, Signify has started producing filaments from recycled fishing nets
instead of the traditional polycarbonate material used for luminaire production (Philips:
My Creation, 2022). This results in a filament assignment problem within the box handler
as there are 40 different colours and materials to choose from for each order. To change
the filament reel in the oven, a certain amount of time is required for the reel to dry.
This leads to changeover times for filament reels and affects the setup time. Analytical
studies do not support setup times that vary per item. Assumptions need to be made to
make this possible for an analytical study, which changes the complete representation of
the manufacturing system.

Before the AM machine starts printing, the machine needs to be prepared. The setup
consists of several setting steps, like material type, layer thickness, and travelling speed.
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Subsequently, the base plate of the AM machine needs to be heated up to the right tem-
perature. Since the AM machine needs to be cooled off before removing the printed part,
the heating of the base plate needs to happen every time a newly printed part is printed.
Again an analytical study requires assumptions for the setup times. These assumptions
are not representative of the model.

Another important point is the return of parts to the Automated Hybrid Manufacturing
system, which occurs during two stages: the quality check and assembly. If a part fails
the quality check, a request for a new part is sent to the box handler and the entire order
must wait until the new part is printed and checked. The same process happens during
assembly, but with a non-printable part. If the non-printable part fails the test, it returns
to the assembly for a check to determine if it was incorrectly assembled. If not, a request
for a new part is made and the assembly & packaging process is stopped until the new part
is retrieved. The queuing theory (used for the analytical study) does not support returning
parts/orders in the system, which makes it difficult to perform an analytical study.

Lastly, the PU assembly & packaging is not a deterministic process, this process is fully
dependent on the workers. The workers are needed to assemble, test and package the
products. However, the workers are only available during the day, require breaks, and also
work in shifts. This makes the PU assembly & packaging a difficult process to analytically
calculate. It has many factors that need to be considered, which is difficult for a queuing
theory.

Although assumptions can be made to simplify these critical points, such as assuming
negligible setup times. However, these would make the model less realistic and detailed,
especially when multiple assumptions are used. For this reason, we have decided, together
with Signify, that a simulation model is the best approach for this study.
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Appendix B

Simulation Warm-up Period and
Runs

This section gives an overview of the simulation warm-up period and the number of runs
(n). First, we discuss the simulation run time. Next, we generate the number of runs
needed to receive accurate results.

The simulation run time (T ) is the modelling time of the system. At that moment, when
the simulation starts modelling some time is needed to reach a steady state. This time
can make a big difference in the model since it is a time in which the model does not show
accurate results. By determining a warm-up period the effects of the initialization can
be diminished and more representative values can result from the simulation. Therefore,
we have chosen to remove in the model the time it takes until the steady state phase is
reached. Figure B.1, shows the analysis that was performed to find the time to reach a
steady state for the simulation. The figure shows that in the first four days, the results
are not trustworthy and vary a lot. Hence, we can say that the warm-up period is during
the first three days of the simulation. This time is removed from the simulation run
time.

Figure B.1: Warm-up period for the Costs

Second, we use the central limit theorem (CLT) to determine the number of runs. The
model in this study contains many independent random variables, which causes its nor-
malized sum to tend towards a normal distribution (Boon et al., 2021). The CLT makes
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it possible to do a trade-off between execution time and result quality. We base the result
quality on the confidence intervals (CI ) of 95%. Based on the book of Boon et al. (2021),
Equation B.1, and Equation B.2 can calculate the CLT.

CI = (Z̄ − zα ·
√

S2

n
, Z̄ + zα ·

√
S2

n
) (B.1)

Z̄ =
Z1 + Z2 + ... + Zn

n
S2 =

1

n− 1
·

n∑
i=1

(Zi − Z̄)2 (B.2)

The software Tecnomatix Plant Simulation, which we use in this study, uses the tool
Experiment Manager. This tool can automatically evaluate the number of runs generated
for a model based on the CI. It applies the same equations of the CLT theory as stated
above. In Table B.1, we display the results of the KPI: Total Costs for 5, 25, 50, 75, and
100 runs.

Table B.1: The central limit theorem executed for the Total Costs with numerous runs

runs (n) µ σ Minimum Maximum Left interval bound Right interval bound

5 352,096 3,840 349,254 358,784 347,327 356,865
25 350,940 8,541 338,134 365,064 347,449 354,430
50 351,108 7,941 338,134 368,267 348,762 353,455
75 350,027 7,356 338,134 368,267 348,239 351,816
100 351,872 6,871 338,134 367,389 350,420 353,324

After generating these results for the different runs, we can conclude that the left interval
and right interval of the CI do not change a lot after 25 runs. From 5 to 25 runs a big
difference in the interval size can be seen, subsequently, this happens from 25 to 50 runs.
After the 50 runs, the interval sizes all become a little bit more precise but stay similar.
Running the model 100 times costs Plant Simulation 1.17 hours. At 100 runs, the size of
the CI is less than 1% of the mean, which is a good ratio. Therefore, we have chosen to
generate the results using the simulation of 100 runs (n). Table B.2 shows the results of
the KPIs with 100 runs.

Table B.2: The central limit theorem executed for n = 100

KPIs µ σ Minimum Maximum Left
interval
bound

Right
interval
bound

Total Costs 351,872 6,871 338,134 367,389 350,420 353,324
Cost per completed product 43.16 2.10 39.98 48.11 42.20 44.12
Service Level 0.73 0.08 0.57 0.86 0.69 0.77
Average Cycle Time (d) 16.04 1.92 13.04 19.92 15.17 16.92
Max box handler Capacity 668 54.44 582 796 642 694
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Appendix C

Base Experiment Detailed Input
parameters

Table C.1 and Table C.2, both present the detailed characteristics of the printable and
non-printable parts.

Table C.1: Detailed Printable Items Input parameters of the Base Model

Printable Item Weight
in kg(ωi)

Yield
(γi)

Processing
Time in
hours(ρi)

Inspection
Time in
min(ξp)

Box
Limit
(βib)

Front Rim S 0.10 0.98 1:00:00 1:00 75
Mixing Cup S 0.02 0.50 20:00 0:30 100
Mixing Cup Holder S 0.01 0.78 15:00 0:30 75
Housing S 0.20 0.64 1:20:00 1:00 50

Front Rim M 0.20 0.79 1:30:00 1:00 50
Mixing Cup M 0.04 0.43 30:00 0:30 75
Mixing Cup Holder M 0.02 0.99 20:00 0:30 50
Housing M 0.40 0.55 1:40:00 1:00 25

Front Rim L 0.40 0.78 2:00:00 1:00 25
Mixing Cup L 0.08 0.34 45:00 0:30 50
Mixing Cup Holder L 0.04 0.87 30:00 0:30 25
Housing L 0.80 0.97 2:20:00 1:00 10

Table C.2: Detailed Non-Printable Items Input parameters of the Base Model

Down Light S Non-Printable Item Yield (γi)

Led Module 0.97
Reflector 0.99
Led Driver 0.83

Down Light M Non-Printable Item Yield

Led Module 0.98
Reflector 0.99
Led Driver 0.57

Down Light L Non-Printable Item Yield

Led Module 0.98
Reflector 0.97
Led Driver 0.66
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Appendix D

Extra Numerical Experiments

Due to a lack of time, we could only conduct four numerical experiments. In Section 5.2,
we perform a series of four experiments: Decrease the LT , increase the capacity of the box
handler storage, increase the number of filament materials, and adapt the number of AM
machines. Each experiment is carefully chosen for its ease of implementation, the potential
for achieving optimal outcomes, and overall importance to Signify’s business. Below we
discuss four more experiments that could be performed to get more information about the
behaviour of the model.

Different assignment of Print Jobs
In our model, print jobs are defined as a part of an order that needs to be completed by
the AM machine. When an order has arrived, the print job is sent to the AM machine.
Currently, the print jobs are assigned to an AM machine through the available filament
material on the machine: First, if the AM machine has the same filament material as the
print job needs and the AM machine is available, the print job is assigned to this machine.
If that is not possible, next the print job is assigned to the AM machine which is available
(no matter what filament material is present in that machine). If such a machine is not
available, the print job is distributed to an AM machine, which has the right filament
material available in the machine (although the machine is not free). Finally, if the first
three methods are not possible, the print job is sent to the machine with the lowest amount
of print jobs in the queue. This distribution method gives priority to the availability of the
machines, it prefers an available machine before no filament material setup.

We predict that this method could decrease the number of idle machines, and possibly
decrease the LT . However, it also causes more setups, which means more workers are
needed. It could be interesting to see what changes in the model when distributing the
print jobs differently. This information is very interesting for Signify since it could change
the LT and the need for workers.

For this experiment, a distribution method needs to be changed, this will require a few
changes in the model’s code. For this experiment, we will change the distribution to:

• Filament Material focused assignment (as few setups as possible)

• Production-focused assignment (as few idle machines as possible)

Different filling method of the boxes
The boxes in the model can be filled in two different ways: per product, or per part. The
base model fills the boxes per part, hence with the same type of parts and stops when
it is full or when a new type of part is printed. The per-product method fills the box
by adding in all the parts that make the product. This method could fill the box with
only one product or even more products. The current method causes the boxes to move
as a complete order since all boxes are needed for the assembly of a product. While the
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per-product method could already start assembling even though a box is still being quality
checked. For Signify, it is interesting to see how both filling methods perform because
Signify has not determined exactly what filling method it wants to apply.

It is expected that the per-product method could cause blocking at the assembly station.
When waiting on the boxes, the assembly needs to stop and cannot continue unless the
other products in the box arrive. While the per-part method could have a bigger LT
because the boxes need to move in order through the manufacturing system.

This experiment will cost more time to implement, since the method of filling needs to be
changed completely. However, the comparison of these methods could show a big difference
in performance.

Night/Weekend queue for Print Jobs
At Signify the workers work during the week from 7:00 AM to 9:00 PM in two shifts. This
means that there are no workers present during the night and at the weekends. The AM
machines in the production facility need workers during setups of the filament materials
and when a breakdown of the machine occurs. A breakdown of the machine is defined by
Hopp & Spearman (2000) as a preemptive outage, the break the own occurs whether we
want it or not. A setup of the filament material is defined as a non-preemptive outage, this
is a breakdown that occurs, but we can control exactly when (Hopp & Spearman, 2000).
Hence, a preemptive outage cannot be prevented if it happens during the night/weekend.
When this occurs, the machine needs to wait until the moment a worker is available and
cannot create parts during this time. However, the non-preemptive outage can be planned
to not happen or happen as little as possible. A night/weekend queue for the print jobs can
be made to ensure this. In this queue only parts can be printed that do not need a filament
material change, hence, the model should form a print job queue when the final setups are
made by the workers before the night or before the weekend. The print job queue should
distribute the print jobs according to the filament material in the AM machine. Another
option could be to have only a few workers present at the night/weekend. These workers
will probably not be enough to maintain the whole AM facility. However, they could be
used to fix failures on the AM machines. Therefore, it is interesting to see how a few
workers that can fix AM failures and the night/weekend print job queue combined to
influence the system. We can perform four studies: a weekend print job queue, a night
print job queue, a night/weekend print job queue, and a few workers with a night/weekend
print job queue.

It is expected that the print job queue will cause the AM machines to manufacture during
the off hours. However, we expect that a problem will arise the next morning when the
box handler storage is full and the AM machines need to wait on space before continuing
printing. Additionally, the print job queue will automatically print the parts in the filament
material of the machines, which means that parts that need other filament material need
to wait until a worker is present, which can cause a long LT . Furthermore, we expect
that the combination of a few workers and the night/weekend print job queue will give the
shortest LT .

This experiment could be very interesting for Signify since it could enhance production
immensely. However, it would require a lot of changes in the base model, which can take a
lot of time. A separate method for creating the print job queue needs to be formed, which
is only activated at night and at the weekends. Additionally, the print job assignment
method needs to be changed, to a method that assigns a print job according to the filament
material.

Including consumer demand
For Signify, it would be valuable to understand how the model interacts with different
types of demand. Currently, the base case performs with only business orders, these orders
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are made a half year before being needed. This gives Signify a long LT to manufacture the
luminaires. Moreover, the luminaires are less customized and bought in bigger batches. A
different type of demand could be individual consumer orders. This differs from business
orders because consumers often want only one, but a more customized luminaire. Further-
more, the individual consumer also requests a shorter LT . When an order is placed by a
consumer, the consumer will want the luminaire as fast as possible. This issue changes the
model heavily, the consumer orders need to have a much shorter LT , which indicates that
they should have priority over business orders. However, often business orders create more
money, hence it is not clear how much priority should be given. Even though Signify’s
consumer orders are not very numerous, it is interesting to see how a change in the market
changes the production of 3D-printed luminaires.

We expect that with the additional consumer demand the model’s behaviour will change
immensely. To fulfil the LT of the consumer demand, the model will need to give priority
over those orders. This will decrease the service level of the business demand. Addition-
ally, more filament reel changes will be needed, as the consumer luminaires will use more
different colours/materials. We expect that more useable material is thrown away, costing
Signify money and sustainability. The reel changes also require workers, which means more
workers are needed to keep up with the setups. To conclude, it is expected that costs and
service levels will both increase due to the priority and filament reel changes.

Unfortunately, this experiment could take up a lot of time, due to the change in the
behaviour of the orders. The order generation needs to be changed completely, while also
adding a method to how consumer demand has priority over business demand. We expect
that this experiment will be complicated.
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Appendix E

Yield of items for Experiment 1

Table E.1: Yield of printable Items for experiment 1

Printable Item base ex-
periment

+10%
yield

+20%
yield

+30%
yield

+40%
yield

+50%
yield

+60%
yield

100%
yield

Front Rim S 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mixing Cup S 0.50 0.60 0.70 0.80 0.90 1.00 1.00 1.00
Mixing Cup Holder S 0.78 0.88 0.98 1.00 1.00 1.00 1.00 1.00
Housing S 0.64 0.74 0.84 0.94 1.00 1.00 1.00 1.00

Front Rim M 0.79 0.89 0.99 1.00 1.00 1.00 1.00 1.00
Mixing Cup M 0.43 0.53 0.63 0.73 0.83 0.93 1.00 1.00
Mixing Cup Holder M 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Housing M 0.55 0.65 0.75 0.85 0.95 1.00 1.00 1.00

Front Rim L 0.78 0.88 0.98 1.00 1.00 1.00 1.00 1.00
Mixing Cup L 0.34 0.44 0.54 0.64 0.74 0.84 0.94 1.00
Mixing Cup Holder L 0.87 0.97 1.00 1.00 1.00 1.00 1.00 1.00
Housing L 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Appendix F

Input for the verification in
Chapter 6

Table F.1: Overview of Input Parameters for the verification model of Crooymans (2022)

Symbol Description Value

λ Total Demand Rate 50 orders/hour
λF Demand Rate per Facility 5 orders/hour
C Maximum Capacity Filament Reel 10 orders
c3DP Purchase Costs per 3DP €1,000
cAL Purchase Costs per AL €10,000
cF Purchase Costs per Production Facility €100,000
cL Labor Costs per worker 25 €/hour
F Number of Production Facilities 10
K Number of Possible Colors 1
LT Lead Time for Customer 8 days
M Number of AM machines 12
N Number of Assembly Lines 1
P 3DP Average Processing Time on AM machine 2 hours
PAL Average Processing Time on Assembly Line 10 minutes
S Threshold for Latest Time to Start Assign-

ment of Filament Reel of AM machine
1 day

T change-over Change-over Time for AM machine 2 hours
T check Intermediate Time Step to Check Status of

Filament Reel
1 hours

T ∗ Modelling/Simulation Time 260 days
W Amount of Workers in the system 6

*Where, T is expressed in days which consist of 16 hours
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Appendix G

Comparison of 10 facilities against
1 facility

In this section, we obtain more information about the comparison of producing in multiple
facilities or one facility. We perform the comparison by using the base experiment (Sec-
tion 5.1) and the optimal facility design of Crooymans (2022). According to Crooymans
(2022), the optimal number of facilities is 10 with 12 AM machines and 1 assembly line.
We use these parameters as input for the comparison.

To simulate the 10 facilities of 12 AM machines and 1 assembly line, we use the input of
the base experiment but divide the input over 10 facilities. We adjust the model of the 48
AM machines to 12 and change the number of AM workers to 1 as is done in the study
of Crooymans (2022). The model now represents one of the ten facilities. In Table G.1,
the results are shown of one facility (from the 10 smaller facilities). Note, that for the 10
facilities together, the results should be multiplied 10 times.

We notice already that having 10 small facilities causes the costs to increase a lot compared
to one big facility with 48 machines. This is likely due to there being fewer completed
products, but still high fixed costs for the facility (€100.000 for the plant, €25 per worker
per hour). Furthermore, the SL of the smaller facility is nearly always 1.00, because there
is much less demand that needs to be fulfilled in one facility. Additionally, less filament
per facility is needed, this is again because of the small amount of demand that needs to
be finished. However, when looking at the filament reels for all 10 facilities, we see that
more is needed than for the base experiment. Finally, the table shows that the box handler
capacity is very low, only 20 places for boxes are required at the same time.

The balance between one or ten facilities can be found in the service level vs the costs. On
the one hand, by having multiple facilities, the service level becomes a lot better and can
even ensure an LT reduction to a few days. This could be a great solution if Signify wants
to promise its customers faster production. However, it does cost Signify a lot of money
by having more smaller facilities. The major costs are made by the workers needed at all
the facilities. Hence, the choice needs to be made between service level and costs.

We would like to add that this comparison is an estimation, as we did not include any
transportation costs, which could have a big influence on the results. Additionally, we
compared the two situations with the help of the optimal facility design of Crooymans
(2022), however, this optimal design might not be a perfect choice. Hence, the results are
not precisely accurate.
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Table G.1: Results of the model when using Crooymans (2022) optimal number of facilities

KPIs µ Left
interval
bound

Right
interval
bound

Total Costs 1,578,975 1,576,104 1,581,845
Cost per kg 91.30 89.97 92.68
Cost per completed product 151.46 136.97 165.94
Filament reels (kg) 17,294 17,006 17,581
Service Level 1.00 0.99 1.00
Average Cycle Time (d) 2.27 2.25 2.29
Max box handler Capacity (per facility) 19.61 19.20 20.02
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