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Abstract
Accurate workload forecasts for order pickers in warehouses are essential when basing capacity
planning of order pickers on these forecasts. Accurate forecasts provide the opportunity to tailor
the capacity planning to the present as well as to the future. This research presents a case study
on multi-step-ahead time series forecasting of incoming picking tasks in a warehouse, for picking
zones and departure buckets, on zero-inflated time series data. To forecast the number of incoming
picking tasks, three statistical models: exponential smoothing (ES), autoregressive integrated
moving average (ARIMA), and Croston method, and two machine learning models: multilayer
perceptron (MLP), and long short-term memory (LSTM), are compared to a benchmark. Features
are engineered from the time series data and included in the input for the forecasting models
that allow this. Furthermore, hyperparameter tuning and data preprocessing are performed
for each individual forecasting model. The forecasts of the models are evaluated by making
use of three different performance metrics. Overall, it is found that all the tested forecasting
models outperform the benchmark model in this thesis. Furthermore, statistical forecasting
models that include a seasonal component overall perform best on zero-inflated time series data.
ARIMAX is the forecasting model that performs best when one model is applied to all time
series together. When the best-performing forecasting models are applied to time series groups,
based on performance on aggregation levels in the data, a small improvement in forecasting
performance is achieved.

Keywords: Time series forecasting, Multi-step-ahead forecasting, Exponential smoothing,
ARIMA, Croston method, Neural networks, MLP, LSTM

ii



Executive summary
This master thesis compares different time series forecasting models that forecast the number of
incoming picking tasks in the warehouse of DHL. The time series data that is forecasted on, has
different aggregation levels which are the picking zones and departure buckets in the warehouse.
These aggregations cause the time series data to be zero-inflated.

Problem statement

Effective capacity planning of order pickers in warehouses is essential for delivery services to
thrive in current times. Including forecasts on the expected workload of order pickers, which is
equal to the number of incoming picking tasks, in the capacity planning can yield more effective
capacity planning as the planning can be tailored to the present as well as the future. However,
to achieve a more effective capacity planning when the forecasts are included rather than making
the capacity planning on the present workload, the forecasts on which the capacity planning is
based should be accurate. Currently, in the warehouse of DHL, forecasts of the incoming number
of picking tasks are made. This forecast model serves as the benchmark of this thesis. The
forecasts of this model are however not yet Incorporated in the capacity planning as DHL wants
to evaluate if the benchmark makes good quality forecasts or if other forecasting models could
provide better forecasting performance before including the forecasts in the capacity planning.
This thesis aims to improve the accuracy of the benchmark forecasting model by testing different
forecasting models on the time series data of incoming picking tasks. The main research question
of this thesis therefore is:

How can picking tasks in the warehouse of DHL be more accurately predicted by
using time series forecasting?

To give a grounded answer to this research question, a research methodology is constructed.
This involves all the steps needed such as reviewing literature, data preparation, analysis of the
time series, data preprocessing, and the selection and testing of forecasting models, that in the
end lead to answering the main research question.

Time series analysis

The need to preserve essential information in the forecasts causes the time series to be split up
into different aggregations. This causes the total number of time series on which is forecasted to
be 165. These time series are analyzed before the forecasting models are implemented to forecast
on them. This is done to identify any patterns or characteristics in the time series which can
require data preprocessing or alternating the setup of the forecasting models. The time series are
tested on stationarity which showed that some time series are non-stationary, which is handled
accordingly. Moreover, the time series showed seasonality on the hour per day and day of the
week, especially for time series with high mean number of incoming picking tasks. This is included
in the setup of the models that have a seasonal component. Furthermore, features are engineered
that represent this seasonality or that are believed to affect the number of incoming picking tasks.

Forecasting models

A literature review is performed to identify forecasting models for time series forecasting. This
resulted in the selection of three statistical models: exponential smoothing (ES), autoregres-
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sive integrated moving average (ARIMA), and Croston method, and two machine learning
models: multilayer perceptron (MLP), and long short-term memory (LSTM), to be tested
and compared to the benchmark in this thesis. Furthermore, the features engineered from the
time series are included in the forecasting models that allow these features to be included as input.

Results

As mentioned before, exponential smoothing (ES), autoregressive integrated moving average
(ARIMA), and Croston method, multilayer perceptron (MLP), and long short-term memory
(LSTM) models are applied to the zero-inflated time series data. In Figure 1, the RMSLE,
which is a performance metric to measure the forecasting error, for all the individual forecasting
models can be seen. In this figure, MLP wf is the MLP without features, MLP wsf is the
MLP with features, LSTM wf is the LSTM without features, and LSTM wsf is the LSTM with
features.

Figure 1: RMSLE of forecasting models

From the results, it can be observed that all the forecasting models that are tested outperform
the benchmark. Furthermore, the ARIMAX model, which is an ARIMA model which includes
features, performs best when the time series models are applied to all time series together.
Moreover, more generally, it is observed that statistical time series models that include a sea-
sonal component perform best on the time series data. After evaluating the results on the
different aggregation level it is observed that for these levels, which consists of picking zones and
departure buckets, there is not one specific model that performs best across all these picking
zones or departure buckets. Therefore, with the aim to increase forecasting performance, the
best-performing forecasting models per picking zone or departure bucket are used for the group
of time series corresponding to that picking zone or departure bucket. This yielded a small
improvement in the forecasting performance in comparison to the ARIMAX model being used
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on all time series together.

Conclusions and recommendations

As can be concluded from the results, all forecasting models outperform the benchmark forecasting
model that is currently in place in the warehouse of DHL. Specifically, ARIMAX is the best-
performing model when models are applied to all time series together. A small improvement
can be made when applying forecasting models on time series groups that are divided by the
aggregation levels of the time series.

It is therefore recommended to DHL to evaluate the performance of the forecasting models
in this thesis and test the forecasting model that is best fitting to their needs by evaluating,
apart from the forecasting performance, the running time of the models. Furthermore, it has
to be noted that there are limitations to this research. These limitations should be considered
when deciding to test or even implement the forecasting models that are tested in this thesis.
Additionally, it is recommended to DHL to continue exploring different models and approaches
that may lead to an increase in forecasting performance.
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CHAPTER 1 INTRODUCTION

1 Introduction
In this Chapter, the motivation for potentially improving the accuracy of forecasting incoming
picking tasks in the warehouse of DHL is given. After that, more information on DHL, the
picking process in the warehouse, and how the forecasts are computed, is provided. Then, the
problem statement and the research methodology are presented. Lastly, an overview which
explains how the rest of the thesis is structured is provided.

1.1 Motivation

Effective capacity planning of order pickers, which is the planning of order pickers based on
the workload in a warehouse, is essential for delivery services in current times. This is due to
customers expecting short-term delivery of their products, which means that orders have to be
picked efficiently. Additionally, in current times, the recruitment of order pickers is very hard
due to the tight labor market. This means that the workload in the warehouse has to be divided
among fewer order pickers. This is another reason why having an effective capacity planning is
highly valuable. One of the big players in the package delivery market is DHL. DHL has many
warehouses in which packages are stored and order pickers pick these packages for delivery to
customers. This thesis is performed in one of the warehouses of DHL. In this warehouse, order
pickers operate in different picking zones, in which different products are stored. The picking
zones are divided based on product characteristics. In total, there are 11 different picking zones
in the warehouse of DHL. The order pickers are distributed to pick orders in only one of the
picking zones which can then be packaged and sent to the customer.

In the warehouse, around 15,000 packages are shipped per working day. This implies that
sub-optimal capacity planning on the operational side can have large effects on the cost savings
in absolute amounts of money for DHL. Consequently, having more order pickers on the floor
than needed results in unnecessary costs. On the other hand, having too few order pickers on
the floor when the workload is high can result in lower rates of on-time delivery of products.
This means that the percentage of on-time delivery in the warehouse can decrease as a result
of sub-optimal capacity planning. Furthermore, sub-optimal capacity planning can result in
an additional drawback. This is observed in the warehouse of DHL where order pickers often
experience (too) high workload due to bad planning of order pickers among picking zones which
causes stress and has a negative effect on work satisfaction.

Currently, in the warehouse of DHL, forecasts for the future workload are made on the number
of incoming picking tasks that are expected during the coming hours, per picking zone. These
forecasts are however not yet used to base the capacity planning on. This means that the
capacity planning in the warehouse of DHL is solely based on the workload that is known. DHL
plans to, in the future, make the capacity planning of order pickers based both on the current
workload, as well as the expected future workload. Including the future workload can result in
more efficient capacity planning due to being able to better cope with changes in workload in the
future. When the capacity planning is partially based on forecasts of expected workload, however,
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forecasting errors may arise which can lead to the capacity planning of order pickers being made
on the wrong number of expected incoming picking tasks. This can lead to sub-optimal capacity
planning of which the negative effects have been discussed before. Therefore, improving the
forecast accuracy of the current forecasts, which means forecasting closer to the real number of
incoming picking tasks coming in per picking zone, can lead to improved effectiveness of the
capacity planning, when DHL implements the capacity planning on both current and future
workload. This thesis aims to improve the accuracy of the current forecasts of the expected
future workload in the warehouse of DHL, which will in the future be used to plan the capacity
of order pickers.

1.2 Company description

DHL, which is part of the Deutsche Post DHL Group, is one of the largest shipping companies
worldwide. In 2021, their revenue exceeded 81 billion euros. They have about 380,000 employees
in more than 220 countries and provide global sustainable trade flows, connecting people
and businesses all over the world. Furthermore, the Deutsche Post DHL Group makes a
positive impact on the planet by making use of sustainable business practices and by making
commitments to society and the environment. This comes forward in their aim to provide
net-zero emission logistics by 2050. Within the portfolio of DHL are services that include, but
are not limited to, national and international parcel delivery, e-commerce shipping and fulfillment
solutions, international express, road, air, and ocean transport, and supply chain management
solutions.

The warehouse of DHL, in which this research was conducted, provides warehousing and shipping
of electronic devices in a Business-to-Business (B2B) environment. In this warehouse, everything
from picking and packaging, to shipping the orders is done. This research focuses on the process
of picking the orders in the warehouse. In Section 1.3, the picking process is discussed in more
detail.

1.3 Picking process

In the warehouse of DHL, the picking process starts when an order is released from the planning
department to the warehouse. This order is received by the order pickers who will then go into
the warehouse to pick (a part) of that order, depending on if the order can be fully picked from
the picking zone to which the order picker is assigned, or not. If the order cannot be fully picked
in the zone of the order picker, another order picker in another zone also has to pick a part of
that order. After that (part of) the order is picked, the items are brought to the packaging zone
which further processes the order.

The order pickers in the warehouse of DHL work in specific zones which are divided based on
characteristics of products. For example, fast-moving or small products are stored in picking
zones located closer to the packaging zone and are often smaller in size. On the other hand,
slower-moving or larger products are grouped in picking zones that are further away from the
packaging zone but often bigger in size. This minimizes the total distance that order pickers
have to cover as they are less likely to pick an item from the zones that are further away. An
order picker works in one picking zone at a time but can be reassigned to another picking zone
at any time of the day.

The capacity planning of the order pickers in the warehouse of DHL is done per picking zone. As
mentioned before, order pickers can only be assigned to one zone. As the forecasts are planned
to be used in the capacity planning, for which the picking zone needs to be known, it is essential
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to also include information on the picking zone in the forecasts. Switching between picking zones
can happen at any time, but costs valuable time that could be used for picking. Furthermore,
acting in this reactive way rather than planning capacity proactively, which is desired, results
in, on the one hand, often switching too late to be able to handle an increase in workload in
a picking zone. On the other hand, acting in this reactive way means sometimes having more
order pickers than needed in a picking zone for the current and future workload, which leads to
unnecessary costs of employment.

Apart from these zones, orders also have specific time windows, which are referred to as departure
buckets, in which they need to be completed. Knowing when an order has to leave is vital
information for the capacity planning as picking tasks are prioritized based on the time when
the order, in which the picking tasks are, has to leave the warehouse. As DHL is planning to
include the forecasts in the capacity planning, this information also has to be included in the
forecasts on the picking tasks. More information on the aggregation levels of the forecasts that
are made is given in Section 1.4.

1.4 Forecasting of picking tasks

Currently, DHL has a forecasting model in production, of which the technical details are provided
later on in this thesis. This forecasting model has been implemented without any insights on how
good the forecast performance is in comparison to other forecasting models. As mentioned before,
having forecasting errors can lead to sub-optimal capacity planning, when forecasts are used to
plan the capacity on. Therefore, DHL is interested in investigating and comparing the forecast
performance of the current model to other forecasting models to test how well it performs,
before basing the capacity planning on the forecasts of the current model. The forecasting
model currently in production is the benchmark to which the performance of the other models
implemented in this research are compared. This research seeks to improve the performance
of the existing model, by implementing different time series forecasting techniques to the data
of DHL. Time series forecasting models are used because the data of DHL can be classified as
time series data. This is due to the fact that the data points are collected in a sequence, and in
a constant time interval, in the past (George E. P. et al. (2016)). The forecasting of picking
tasks is done on a short forecasting horizon, which consists of 2 days. Additionally, the forecasts
of picking tasks made in the warehouse of DHL are not used in the weekends, which implies
the forecasts are not used on Saturdays and Sundays. This is because the order pickers do not
work on these days as there are almost no incoming picking tasks. Intuitively this is caused by
the fact that this warehouse operates in a B2B environment, which causes customers to order
during work hours and therefore picking tasks to mostly come in during working days (Monday
until Friday) and during regular working hours (8 AM until 5 PM). It is however possible for a
picking tasks to come in at any time and any day of the week.

As described in Section 1.3, information on in which picking zone the picking task falls is essential
to preserve in the forecasts, as an order picker can only be assigned to one picking zone in
the capacity planning. Consequently, for the forecasts to be useful to include in the capacity
planning, the forecasts should be made per picking zone. Furthermore, for each order, the time
at which the order needs to leave the warehouse is collected in the data. This information is
also essential to preserve in the forecasts because when the tasks should be performed is largely
dependent on when it has to be completed. It can be understood that a picking task that is part
of an order that has to leave the warehouse within two hours has a higher priority than a task
that is part of an order that has to leave in two days. Therefore, to deal with the prioritization
of picking tasks well, information on the deadline for each picking task should be included in
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the forecasts. This implies that the time series of picking tasks on which is forecasted should
be categorized in departure times. In the warehouse of DHL, to categorize the deadlines of
picking tasks, so-called ”departure buckets” have been constructed. The deadline of a picking
task is categorized within one of the departure buckets that span 4 hours of time. Both the
picking zone and the departure bucket of picking tasks are present in the data. This implies that
for each unique picking zone and departure bucket combination, the time series is individually
analyzed and forecasted, in order to preserve this information in the forecasts. In reality, this
amounts to 11× 15 (picking zones × departure buckets) = 165 time series that are analyzed
and forecasted on. In Figure 2, the two aggregation levels, of the picking zones and departure
buckets are depicted.

Figure 2: Aggregation levels of picking tasks time series

In this research, the focus is on the forecasting of picking tasks in the warehouse of DHL. The
actual capacity planning of order pickers that is discussed in this Section is out of scope. However,
the context of the plans of DHL to include the forecasts in the capacity planning to make them
more efficient, and the importance of capacity planning in warehouses, puts emphasis on the
importance of possibly improving the accuracy of the forecasts for incoming picking tasks in the
warehouse of DHL.

1.5 Problem statement

The goal of the thesis is to investigate what time series forecasting methods could improve the
performance of picking task forecasting in the warehouse of DHL. The main research question of
this thesis is:

How can picking tasks in the warehouse of DHL be accurately predicted by using
time series forecasting?
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In order to be able to answer the main research question provided above, research sub-questions
have to be formulated. The insights and answers on these research sub-questions are the
underlying fundament on which the main research question is answered. First of all, the way in
which the dataset should be prepared to make it useful for training and testing the forecasting
models is determined. After that, data analysis on the time series is performed to identify
underlying characteristics of the time series. Insights from this analysis assist in making choices
for the time series models that are decided to be implemented. Additionally, to evaluate the
performance of the forecasting models, the performance metrics that best suit the case of DHL are
determined. Lastly, given the results of the performance metrics, the best-performing individual
forecast models are discussed.

All in all, the research sub-questions that are formulated to structure the thesis, and answer the
main research question are:

1. How should the dataset be prepared to make forecasts on?

2. What characteristics can be attributed to the underlying time series on different aggregation
levels and what does this imply for data transformations of time series?

3. Which time series models are available and which ones best suit the problem at hand?

4. Which performance evaluation metrics are relevant to be used?

5. What forecast models provide the best performance and how can the results on different
aggregation levels of the forecasts be explained?

1.6 Methodology

In this section, the research design that is used to structure this thesis is discussed.

The research design can be seen in Figure 3. This research design was constructed based on
the CRoss Industry Standard Process for Data Mining (CRISP-DM) framework which was
first introduced by Chapman et al. (2000). In Figure 3, the colors indicate what part of the
CRISP-DM framework relates to the research design constructed for this thesis.
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Figure 3: Research design

First of all, the business understanding phase of the CRISP-DM framework in the research
design model of this thesis corresponds to gaining business understanding. This was essential
throughout the project as constructing the problem statement, making modeling decisions, and
interpreting the results to draw conclusions, were all based on specific domain knowledge that
indicated what would be best to do in order to provide the most valuable results.

The next phase of the CRISP-DM framework, data understanding, consisted of two parts in this
thesis. These parts were the data collection and analysis on the time series. The data collection
phase ensured that the data on which the forecasting models would be tested, and the results
would be generated, was collected from DHL. Furthermore, the analysis on the time series that
was done provided necessary insights which were used to tailor the time series forecasting to
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the specific time series of incoming picking tasks and its properties. Moving on to the third
phase of the CRISP-DM framework, data preparation, which is named the same in the research
design constructed for the thesis. In this phase preparation, which involved cleaning as well as
transforming the dataset, was done which was vital in getting a clean and usable dataset on
which the forecasting models could be trained and tested.

The next phase of the CRISP-DM framework, the modeling phase, in the thesis consists of the
literature review, as well as the forecasting model selection and design, and the performance
metric design. The literature review provides the theoretical background on which the selection
and design of forecasting models and performance metrics is made. This implies that based
on the insights gained from the literature review, combined with the insights from the analysis
of the time series, performed in the previous phase, the selection and design of the forecasting
models and the performance metrics is done. Furthermore, apart from selecting the fitting
forecasting models, the model selection and design phase also involves designing how the model is
implemented. This phase therefore also includes, performing model-specific data transformations,
implementing the feature engineering, and designing the training and testing process.

The last phase of the CRISP-DM framework that is used in this thesis is the evaluation phase.
After the forecasting models had been selected and designed to fit the properties of the time series
of incoming picking tasks, the models were trained and tested on the dataset. After implementing
the different forecasting models in the training and testing process that is designed, results on the
performance of these models were computed by making use of the performance metrics designed
in the previous steps. After the results were obtained, conclusions and recommendations were
given in the last sections of the thesis.

1.7 Scientific contribution

In the case of DHL, for the forecasts to be useful, it is needed to keep the relevant information
about the picking zone and departure buckets in the data. Due to the information that is
preserved, the forecasts are made on highly granular data which causes the data to be zero-
inflated, and for multiple time series to be forecasted. Zero-inflated data implies that the data
contains a high percentage of zero values. The combination of a high percentage of zero values,
combined with scattered positive values might be hard to model for the forecasting models. The
different time series also have different statistics in terms of number of picking tasks coming in.
Some time series have a higher mean value of incoming picking tasks, with a lower amount of zero
values, while other time series have lower mean with higher amount of zero values. Furthermore,
in the case of DHL, the forecasts are made, for every hour, two days ahead, because short
forecast horizons are most useful. This research, therefore, involves forecasting a large amount
of time series, which are zero-inflated, on short time horizons. In most literature about time
series forecasting, the data contains only one or a few time series, with (almost) no zero values
but strictly positive values, which are forecasted over longer time horizons. Evaluating how the
different well-known individual forecast models perform when forecasting on many different time
series at the same time, with zero-inflated data, on short time horizons is a valuable scientific
contribution of this thesis. The thesis provides insights into how well the forecasting models
perform on the large amount of zero-inflated time series provided by DHL, including which
forecasting model performs best. Resulting from this, conclusions about how well the time
series forecasting models perform, and what forecasting model performs best, in the domain of
forecasting picking tasks in warehouses, and other domains with the same zero-inflated data
structure and large amount of time series, can be drawn.
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1.8 Outline thesis

The rest of this thesis is structured as follows. In Chapter 2, the theoretical background of
this thesis is provided. In this Chapter, the literature that is used to theoretically base this
thesis on is discussed. Furthermore, this provides information on the available time series
forecasting models and performance metrics used in literature. This information is used to
answer sub-research questions 2 and 3 provided in Section 1.5. In Chapter 3, the input that is
used to base the forecasts on, and the structure of the forecasts themselves are provided. In
Chapter 4, the dataset that is used for the time series forecasting is presented, including all
preparation that is performed. Furthermore, in this section, also data analysis is performed
to gain an understanding of the properties of the time series. Chapter 4 forms the basis to
answer sub-research questions 1 and 2. Then, in Chapter 5, the modeling and design of the
forecasting models that are used is explained. This includes the data preprocessing per specific
forecasting model, the training and testing process, and the performance metrics that are used.
Furthermore, in this part of the thesis, the results of the forecasting performance of the different
individual forecasting models are provided. All in all, this Chapter provides the information
with which sub-research questions 3, 4, and 5 can be answered. After the results have been
presented and discussed, in Chapter 6 the conclusions are given. This includes revisiting and
answering the research questions, providing scientific contributions, giving recommendations to
DHL, and possible limitations and future research of the thesis.
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2 Theoretical background
In this Chapter, a literature review on time series forecasting is provided. The first part of
the literature review goes into the analysis of time series data. After that, the main body
of the literature review goes into the various forecasting models that are used in literature
to predict time series data. Lastly, performance measurements are discussed. In this part,
the characteristics of these metrics, including in which situations these metrics can best be
used, is explained. In Chapter 2, only the high-level principles about the analysis, models,
and performance metrics are provided. This implies that no detailed, mathematical, elements
of any of these components are discussed. In the literature review that is performed as part
of this master thesis, more detailed information on any of the components in this Chapter,
including mathematical theories underlying the forecasting models, can be found (Braspenning
(2022)).

A systematic literature review protocol was applied to find relevant literature on the topics of
the literature review. The literature review that is performed as part of this master thesis is
referred to for further details on the literature search process (Braspenning (2022)).

2.1 Time series data analysis

The first part of the literature review will dive deeper into the data analysis that can be performed
on the time series. The goal of this data analysis is to identify characteristics underlying the
time series. These characteristics can then be modeled and used to predict future values of
picking tasks (Avishek and Pks (2017)).

2.1.1 Components of time series

In this section, the underlying components that make up a time series are given and further
explained. There are four main components of which a time series can consist. These are:

• general trend

• seasonality

• cyclical movements

• unexpected variations

(Avishek and Pks (2017), Lazzeri (2020), Li et al. (2019)).

A general trend is an upwards or downwards trend over a period of time. General trends are
often caused by fundamental shifts or systematic changes in a process. An example of a time
series with general trend is seen in Figure 4. In this figure, over the long term, a general
upward-sloping movement is seen. This is defined as an upward trend (Avishek and Pks (2017),
Lazzeri (2020)).
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Figure 4: Trend and seasonality (Avishek and
Pks (2017))

In Figure 4, also seasonality can be observed.
Seasonality is the repetitive and periodic fluc-
tuations seen in the time series. Seasonal-
ity can be observed as the repetition of cer-
tain patterns corresponding to periods (Schaf-
fer et al. (2021)). This implies seasonality
comes back every period, season, quarter, etc.
When trends are also present in the time se-
ries data, seasonality can be harder to iden-
tify as it is hard to distinguish what part of
the variation belongs to the trend and what
part belongs to the seasonality (Avishek and
Pks (2017), Lazzeri (2020)). Autocorrelation
Function (ACF) and Partial Autocorrelation
Function (PACF) plots can be used to quite
easily spot seasonality (Li et al. (2019)). These
plots will be discussed later in on. In Figure 4,
apart from an upward trend, the seasonality is
visualized in the yearly fluctuations that can
be seen in the plot. This plot shows that the
winter periods have higher CO2 concentrations than the summer periods.

Another component that can cause variations in time series data is cyclical changes. Cyclical
changes are comparable to seasonality but do not occur periodically. This implies that they do not
have a fixed time interval in which they occur but the interval can spread over longer or shorter
time periods. Furthermore, cyclical changes generally occur less frequently than seasonality
which means they need time series that spans over larger amounts of time to be observed. A
well-known example of cyclic change occurs in economics where there are macroeconomic periods
of regression followed by periods of boom (Avishek and Pks (2017), Lazzeri (2020)).

All variation that cannot be attributed to a systematic dependency on the time index, and is
random, is seen as unexpected variations. This unexpected variation is stochastic and cannot be
captured in a mathematical model. Unexpected variations are either due to unknown knowledge
about exploratory variables, which implies that it is not known that a variable has an effect on
a certain time series, or random noise in the time series data (Avishek and Pks (2017), Lazzeri
(2020)). Furthermore, time series without any seasonality, trends, or cyclical movements are also
called time series with white noise, where white noise corresponds to the unexpected variance in
the series (Hyndman and Athanasopoulos (2018), Schaffer et al. (2021)). When a time series
only consists of unexpected variance, it is assumed to be stationary. The concept of stationary
time series is discussed later on.

Types of plots that can help identify seasonality, as well as trends, are ACF and PACF plots.
These plots show the autocorrelations and partial autocorrelations between the value at a given
time and the so-called ”lagged” values in the time series. Just as normal correlation describes
the relationship between two variables, autocorrelation (or partial autocorrelation) describes
the relationships between the value at time y and yt−k where the values at time yt−k are the
”lagged” values (Hyndman and Athanasopoulos (2018), Schaffer et al. (2021)). Furthermore, in
contrast to the autocorrelations in the ACF plot, the partial autocorrelation in the PACF plot
controls for values of time series at all lags shorter than the lagged value (Schaffer et al. (2021)).
In other words, partial autocorrelation provides the relationship between a value at a given time
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and a value of a lagged time while removing all the relationships between these values, or the
correlation of the residuals. In Figure 5, an ACF and PACF plot can be seen.

Figure 5: ACF and PACF plots

As can be seen most clearly in the ACF plot on top, there is a seasonal pattern present in the
data. This can be seen because the correlation between the lagged values and the observed
value displays a clear period pattern. Furthermore, when autocorrelation in the ACF tend to
decrease, this can be an indicator of trend in the time series. Lastly, the dashed line indicates if
the correlation is significantly different from zero (Hyndman and Athanasopoulos (2018)). The
seasonal pattern that is observed in the ACF is not observed in the PACF plot. This is because
the relationships between the lagged values that are compared are removed.

2.1.2 Stationary time series

Stationary time series are assumed to only consist of unexpected variance. An important
assumption in statistical estimation theory is that to be able to analyze the data, the mean,
variance, and autocorrelation of the data does not shift over time. If the data is non-stationary,
these assumptions may not hold, and the results can be unreliable, which is why the time
series have to be made stationary to be used for forecasts. Stationary requires mean, variance,
and autocorrelation of the time series to not be dependent on the time of the observation.
Furthermore, there can be no trend or seasonality in the data, mean and variance has to be
constant over time, and autocorrelations need to have a constant structure (Avishek and Pks
(2017), Schaffer et al. (2021)). Cyclical fluctuations are not included because they do not occur
in fixed intervals and can therefore be explained by exogenous variables. A time series without
predictable patterns is, generally, considered a stationary time series. All in all, first, the
stationarity of time series has to be analyzed, and if concluded that they are not stationary,
then data transformations can be applied.
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Firstly, visualizations of time series can give an indication of whether the time series includes
trends, seasonality, and if they are stationary or not. For example, the decomposition of
time series or the ACF and PACF plots can provide information on the presence of trend or
seasonality (Li et al. (2019)), the structure of the autocorrelations in the time series (Schaffer
et al. (2021)), and if the time series is stationary or not (Zeroual et al. (2020), Schaffer et al.
(2021)). Furthermore, statistical tests can be done to verify if a time series is stationary, and
thus its mean, variance, and autocorrelations are not affected by trends or seasonality. Statistical
tests such as the Augmented Dickey-Fuller (ADF) test or the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) can be done to detect stationarity. In short, for the ADF test, the null hypothesis
is that the time series is non-stationary whereas the alternative hypothesis is the time series is
stationary. This implies that for the time series analysis, it is desired that the ADF test (and
thus the p-value) is significant as this would indicate a stationary time series. For the KPSS
test, however, the null hypothesis is that the time series is stationary. This implies that for the
time series analysis, it is desired that the KPSS test (and thus the p-value) is not significant as
this would indicate a stationary time series (Atwan (2022)). According to Afriyie et al. (2020),
when there is disagreement between the ADF and the KPSS tests, the KPSS test should be
used, based on the performance of the tests.

When time series are non-stationary, different data transformations can be performed to make
the time series stationary. Different transformation techniques can be used to transform the
time series into a stationary time series. The two most commonly used ones are differencing and
transforming. The idea of differencing is taking the difference between successive points of a time
series (δxt = xt − xt−1) which have constant mean and variance such that this time series can be
treated as a stationary time series after transformation (Avishek and Pks (2017)). This means
that a time series of (x1, x2, x3, ..., xn) becomes (x2 − x1, x3 − x2, ..., xn − xn−1) for first-order
differencing. Based on the order of the trend (linear or non-linear), higher order differencing
might be needed. In practice, a higher order than two is almost never needed. Furthermore, if
there is seasonality this can be made stationary with seasonal differencing (x

′
t = xt−xt−m) where

m is the period of seasonality (Avishek and Pks (2017)). Furthermore, transforming relates to
applying transformations to the variable that is displayed in the time series to test if it is possible
to make it stationary. Examples of these transformations are logarithmic transformations or
root transformations.

2.1.3 Multi-step-ahead time series forecasting

Forecasting on time series data is often done in a one-step-ahead approach. In some cases,
however, forecasts which forecast multiple steps ahead are desired. This is known as multi-
step-ahead time series forecasting and can be defined as an estimation on the future time series
ϕN+h, (h = 1, 2, ...H), where H is an integer number higher than one, given the current and
previous observation which are given by ϕt, (t = 1, 2, ..., N) (Bao et al. (2014)). The forecasts in
multi-step time series forecasting can be made in different ways. The five strategies that are
extracted from literature are: Direct (Dir), Recursive (Rec), Direct Recursive (DR), Multiple
Input Multiple Output (MIMO), and a combination of Dir and MIMO, called Direct Multiple
Output (DirMO) (Shu et al. (2022), Ahani et al. (2019)). In Dir strategy, for every estimation of
a future value, ϕN+h, a new model is constructed. This means that for a forecasting horizon H
periods ahead, H models should be constructed which independently make a prediction for every
forecast horizon at a certain point in time. In Rec strategy, a model is built to perform one-step
ahead forecasting. This model is then used to predict one step ahead, and the prediction is
put back as input into the model to predict the following value until all desired steps of the
forecast horizon are predicted. In comparison to the Rec strategy, the Dir strategy avoids the
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accumulation of prediction errors, as every forecast horizon has its own model. However, it can
be computationally more costly, as more models have to be constructed (Ferreira and da Cunha
(2020), Shu et al. (2022)). Moreover, a combination of Dir and Rec strategies, known as DR, can
also be used. In DR, for every new forecast horizon that is forecasted at a certain point in time,
a new model is constructed, just like in Dir. However, in contrast to Dir, the predicted values
of the previous models are used as input into the new model, in DR, which is a feature of Rec
strategy. This makes DR, a combination of Dir and Rec strategies (Shu et al. (2022)).

In addition to these strategies, MIMO, can also be applied to compute multi-step-ahead time
series forecasts. In this method, all the values for ϕN+h for all H are predicted, as a vector of
the predicted values is given as output. MIMO overcomes the limitations of both the direct and
iterated strategies because it avoids the accumulation of prediction errors while only needing
to construct one model. Furthermore, it also preserves the stochastic dependency which can
characterize a forecasted time series. However, a limitation of MIMO is that this strategy is
not implementable for all forecasting models, but only for ones that can output multiple values
(Ferreira and da Cunha (2020)). Lastly, a combination of Dir and MIMO strategies, DirMO
can be applied. In this strategy, a middle approach between Dir and MIMO is chosen. This
implies that, when there is a H step-ahead forecasting task, this is decomposed into n multiple
output forecasting tasks (n = H/s). Each with an output size of s (s ∈ (1, 2, ...H)) (Ahani et al.
(2019)). Consequently, in the DirMO strategy, multiple different models can be constructed, like
in Dir, with multiple output values, like in MIMO.

2.2 Time series forecasting models

To form an overview of the forecasting models that are present in literature, the literature of
Wang et al. (2018), Hyndman and Athanasopoulos (2018), Gasparin et al. (2022), which all
give an overview of different forecasting models were examined. From this literature, a division
between statistical methods, and machine learning models can be observed. This division is
depicted in Figure 6. Furthermore, hybrid models, that combine different models, are seen as
a separate category of forecasting models. First, in Section 2.2 the statistical methods and
machine learning techniques that can be applied to forecast time series are discussed. After
that, in Section 2.3, information from literature about hybrid models in time series forecasting
is given.

Statistical time series forecasting models

2.2.1 Exponential smoothing models

Exponential smoothing is one of the most well-known and has motivated some of the
most successful forecasting techniques. Furthermore, it offers a robust technique that is
widely used in many business applications (Kahraman and Akay (2022)). Exponential
smoothing predicts future values by weighing past observations, which decay over time
(Hyndman and Athanasopoulos (2018)). There are three different types of exponential
smoothing, Simple Exponential Smoothing (SES), Holt’s exponential smoothing (Holt’s),
and Holt’s-Winters exponential smoothing (Holt’s-Winters). First of all, SES is suited
for time series that do not include any trend or seasonality. In SES This setting the
smoothing parameter ensures decaying weights are assigned to the observations as they
are further in the past.

To be able to also take into account trend and seasonality components, the Holt’s linear
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trend method and Holt’s-Winters method of exponential smoothing were constructed.
In the Holt’s method, a trend component is added to the SES method to be able to
deal with an upward or downward trend. Additionally, this trend component can be
taken as additive or damped which ensures that forecasts on longer time horizons are not
over-forecasted.

In the Holt’s-Winters approach, both trend and seasonality components are included to be
able to capture both these components in the time series data. Just like in Holt’s the trend
components can be taken as no trend, additive trend, or damped trend. Furthermore, the
seasonal component can be taken as additive or multiplicative. The additive seasonal
component should be used when the seasonal variations are roughly constant. However,
when the size of the seasonal component is proportional to the trend level of the forecast,
the multiplicative method should be used.

2.2.2 Regression models

First of all, regression models can be used to predict the dependent variable. In regression
models, predictor variables, also known as independent variables, are used to predict the
dependent variable. In single linear regression, a single variable is used to predict the
variable. However, often there are multiple variables that partially predict the dependent
variable. In multiple linear regression, multiple predictors are formulated that predict the
dependent variable. Furthermore, relationships between the predictor variables and the
predicted variable may not be linear. When nonlinear relationships are present, nonlinear
regression models are probably more suitable to model the relationship between the
predictors and the predicted variable. Nonlinear regression models can simply be modeled
by applying transformations to the variables in the regression model.

With regards to using regression models for forecasting, two ways in which data on the
predictors can be used are possible. Ex-ante forecasts are predictions that are made with
the data that is available in advance. This implies that, for the regression models to make
predictions, also values of the predictors have to be predicted. This is due to the fact that
the values of the predictors at time t, which is the time for which the predicted value is
predicted, are not known as well. The other way in which the dependent variable can
be predicted is when the value of the predictors at time t is already known. Logically,
this type of prediction can not be done for future values in a model where the values of
the predictors are not constant or predetermined. However, this type of prediction can
provide more insights into the relationships between the predictors and the dependent
variable. This latter method is called ex-post forecasting (Hyndman and Athanasopoulos
(2018)).

2.2.3 Autoregressive and moving average models

In Autoregressive (AR) models, past values of the predicted variable are used in a linear
regression model, to predict the value of the predicted variable at time t (Ivanovski et al.
(2018)). The prediction is made by using a multiple regression of the lagged values of
the predicted variable (Pena-Sanchez et al. (2018)). Alternatively to AR models, Moving
Average (MA) models use the past error terms of the regression models instead of the
past values of predictions, to predict the next forecast. Just like in AR models however,
this is done in a regression model type manner where the past error terms are used as
predictor variables (Hyndman and Athanasopoulos (2018), Ivanovski et al. (2018)). In
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this model, the error terms are equal to the white noise in the time series data (Ivanovski
et al. (2018)). The term has previously been described in Section 2.1.

Autoregressive Integrated Moving Average (ARIMA) models are a combination of AR
and MA models and use differencing if the time series on which it is used is non-stationary.
This means that in ARIMA models, the prediction is made on both the lagged values
and the error terms of the forecast. Furthermore, ARIMA models make predictions on
stationary time series, which are differenced if needed. The concept of differencing has
been discussed in Section 2.1.2. Furthermore, ARIMA models are also able to model a
wide range of seasonal data. These models are called Seasonal Autoregressive Integrated
Moving Average (SARIMA) models. In these models, there is a non-seasonal part just
like in the ARIMA model, however, there is also a seasonal component added which takes
into account the prediction made on both the lagged value and error of forecast of the
last period and the lagged value and error of the forecast of the period a number of
seasonal cycles ago. The number of seasonal cycles that are taken into account can be
altered.

Lastly, exogenous variables can be included in both ARIMA, and SARIMA models. These
models are called Autoregressive Integrated Moving Average with Exogenous Variables
(ARIMAX) and Seasonal Autoregressive Integrated Moving Average with Exogenous
Variables (SARIMAX), respectively (Wanishsakpong and Owusu (2020)). As can be seen
above, in the ARIMA and SARIMA models, the lagged values and the forecast errors
are combined. In ARIMAX, and SARIMAX, the exogenous variables are added to the
models in a regression-like manner. This implies that these models are a combination
of lagged values, forecasting errors, and exogenous, which makes them a combination of
regression models, autoregressive models, and moving average models.

2.2.4 Croston method

The Croston method is a method that is specially tailored for dealing with zero-inflated
data. The method combines a prediction on the next non-zero value, with a prediction
on the time until the next arrival of a non-zero value to compute a forecast. Both these
forecasts are made in a way that is similar to simple exponential smoothing. This implies
that, for the next value of the non-zero occurrence, the past values of non-zero occurrences
are used to base the forecast on. In the same way, to predict the time until the next
non-zero arrival, the past times between non-zero arrivals are used. Furthermore, just like
in SES, the smoothing parameter α should be specified. This smoothing parameter is used
to determine the weights of the past values for the two forecasts that are computed. After
the two forecasts on the value of the next non-zero occurrence and the time until the next
non-zero occurrence are made, the ratio between these forecasts is the forecast that is com-
puted for the next period by the Croston method. This implies that the prediction of the
Croston method is the forecast of the value of the next non-zero occurrence divided by the
forecast on the time until the next non-zero arrival (Hyndman and Athanasopoulos (2018)).
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Machine learning time series forecasting models

2.2.5 Grey theory

Grey theory is best used in uncertain systems with limited or poor data. Furthermore, it
can also work well in situations with limited sample size (Zhao et al. (2012), Zhao and
Guo (2016)). It requires a limited amount of data to identify patterns and behaviors
in unknown systems. Furthermore, grey theory has proven to work best on forecasting
medium to long-term forecasts (Wang et al. (2018)). In practice, there are a lot of systems
that are uncertain or have limited or poor data available to use for forecasting. This
makes grey theory useful for a lot of applications (Liu et al. (2011)). A grey model can
be described as G(n,m), where n is the order of the differential equation, while m is the
number of variables in the model (Kayacan et al. (2010)). In stochastic processes, grey
theory introduces a so-called ”grey variable” which varies in a certain range and space
(Zhao and Guo (2016)). The G(1, 1), which thus has first-order differential equations and
one grey variable is most studied in research (Kayacan et al. (2010)).

2.2.6 Fuzzy time series

Fuzzy time series have been created to address the problem of dealing with vague, imprecise,
or linguistic historical time series data. In fuzzy time series, fuzzy relational equations
and approximate reasoning are used to make a forecast on time series data (Liu (2007)).
To compute forecasts by using fuzzy time series forecasting methods, first, the intervals
of the fuzzy model should be formulated. After that, the real value of the time series is
fuzzified by making use of these intervals. The predicted fuzzy value is computed based
on the rules and fuzzy relationships of the model. Lastly, the predicted fuzzy value is
fuzzified to get a real value for the forecast at time t (Liu (2007)).

2.2.7 Support vector regression

Support Vector Regression (SVR) is a non-parametric method for creating regression
functions. SVR are on average good at generalization performance which means that these
models do not tend to overfit the data set. In other words, often, SVR tend to perform
well on the test set (Wu and Akbarov (2011)). This is among the reasons why SVR models
are found to be a viable contender among various time series modeling techniques (Bao
et al. (2014)). In SVR, a kernel function maps the data points in a higher-dimensional
space. Then, the SVR method tries to create a hyperplane on the mapping of the data
into a feature space with the higher-dimensional space (Cankurt and SUBAŞI (2016)).
When the SVR model can separate the data point in the higher dimensional space in a
rather simple way, then the hyperplane can easily be created. When this is not the case,
the problem becomes more complex and overfitting might occur.

2.2.8 Neural networks

Neural networks are models that are based on simple mathematical models of the brain.
These models allow for complex non-linear relationships between the predicted variable
and the predictors (Hyndman and Athanasopoulos (2018)). There are different types
of Neural Network (NN) models that can be used. In the next section, the NN that
are commonly used for time series forecasting, will be discussed. First, Feed-forward
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Neural Networks (FNN), which only uses information in a forward-going manner, will be
discussed. Afterward, the different kinds of Recurrent Neural Networks (RNN), will be
explained. These kinds of NN can store memory which gives them the ability to also take
into account information of previous inputs.

A FNN, which is also known as Multilayer Perceptron (MLP), consists of a network of
neurons, and connections between neurons are organized in layers to transform input
into output. FNN consist of an input layer, hidden layer(s), and an output layer. The
number of hidden layers determines the depth of the FNN, while the number of neurons
per layer defines the complexity per layer. In this network of neurons and connections,
the output of each neuron is computed by the sum of the input into that neuron and
the transformation that is done in that neuron by using a non-linear activation function.
Furthermore, connections also can have weights that can strengthen or weaken the influence
of the output of the previous neuron on the input of the next neuron. These weights are
parameters of the model and are usually learned by using backpropagation (Gasparin et al.
(2022)). NN with multiple hidden layers are known as deep neural networks, these will
be discussed more elaborately later on. FNN can only have direct forward connections
between layers, which means there is no recursive feedback as in RNN (Gasparin et al.
(2022)), which is discussed in the next section.

As mentioned in the previous section, unlike FNN, RNN allows for previous outputs to
also be used as inputs into the neurons (Lazzeri (2020)). In this section, first, a basic
RNN, which is also known as Elman Recurrent Neural Network (ERNN), will be described.
After this, Long Short-term Memory (LSTM) and Gated Recurrent Units (GRU), which
are well-known extensions of the basic RNN will be discussed (Bianchi et al. (2017)).
ERNN allows for weighted connections within the same hidden layer. In ERNN, the
weighted connections in the same layer are only allowed in hidden layers, and thus not
in the input or output layers. Because these loops are included, the ERNN can store
information while also processing new input. This gives the ERNN the ability to store
internal memory, which makes it possible for the model to identify temporal behavior.
Among other applications, like natural language processing, this attribute can be very
useful for making time series forecasts.

An extension of the simple RNN is LSTM. RNN suffers from vanishing gradients when
solving problems that require learning longer temporal relationships. LSTM deals with the
problem of vanishing gradient, which can occur in simple RNN, by having a memory cell
structure. In LSTM, the same input and output as an ERNN is provided, but internally,
the LSTM implements a gated system that controls the processing of this information.
As LSTM can store internal memory unaltered for longer periods, by making use of this
gated system, it can deal with these vanishing gradients (Gasparin et al. (2022)). In
general LSTM makes use of the memory cell, also known as cell state. In this memory
cell, information flows unchanged. However, information can be added or removed from
this flow. This information adding or removing is regulated by the gates. These gates
decide which information enters and is removed from the memory flow (Ahmed et al.
(2022)). There are in total three gates in the LSTM. The forget gate, first decides what
information should be removed from the previous cell state, which is the memory of the
cell. Then, the input gate, decides how much of the new input should be added to the
memory of the cell. Lastly, the output cell decides what part of the state in the cell
should be provided as output. In this way, the LSTM only makes modifications to the
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existing information on the data, whereas, ERNN completely changes the existing data
by applying a function.

Another RNN, namely GRU, is discussed. GRU makes use, like LSTM, of a gated
structure that can add or remove information from the memory of the cell, also known as
the state. There are two gates in the cell structure. First of all, there is an update cell,
that deals with how the current information in the cell should be updated with the new
input information. Furthermore, there is a reset gate, which can reset all the information
in the memory of the cell, and makes the unit act as if the next input is the first input
into the model. As there are only two gates, and there is no output gate in GRU, the
full state is always exposed as output, because this is not controlled by a gate (Bianchi
et al. (2017)). Because GRU uses two gates instead of three gates in LSTM, it is seen as
the simplified version of LSTM as it has fewer gates and fewer training parameters. This
simplification allows GRU to use less memory, and train faster, than LSTM (Gasparin
et al. (2022)).

An NN with more than three layers, which implies multiple hidden layers as there is only
one input and output layer, is known as a deep neural network. Deep neural networks are
able to extract features directly from the data set without having to define these features
by making use of these hidden layers. This implies that deep neural networks can be
very effective for time series forecasting as they eliminate the need for performing feature
engineering, data scaling, or making the data stationary. On the other hand, to be able
to do this, deep neural networks need a lot of data to train, which means large datasets
are desired, and running time can be long (Lazzeri (2020)).

2.2.9 Supervised machine learning models

The models discussed until now are all frequently used in time series forecasting in
literature (Wang et al. (2018), Hyndman and Athanasopoulos (2018), Gasparin et al.
(2022)). These models use time series sequence data, time series data features, or both, to
predict the future values of the time series. However, it is also possible to extract (a lot
of) features from time series data, as well as use the lagged values as features. Feature
engineering on time series data can result in a data set in which there are a lot of features
engineered per observation in the time series. Consequently, machine learning models
that use features as input, rather than time series sequence data, can be used to make
predictions on the future values of the observation of which the features are put in. When
the features that come from the time series data, and are put into the models, are specified,
the time series forecasting problem can be transformed into a supervised machine learning
problem that has to predict the next value based on features of the current observation.
This transformation gives room for a range of supervised machine-learning models to be
implemented to predict these values. This approach is used less frequently in comparison
to the models that are discussed until now but is an interesting area to investigate. In
this next section, examples of supervised machine learning models that have been used in
literature to predict on features that are engineered from time series data will be described.
This implies that not all supervised learning models will be discussed, but only the ones
that are used in combination with time series data in literature.

First of all, in the paper of Bou-Hamad and Jamali (2020) a Random Forest (RF) model is
used to predict on features of time series. RF combines the output of randomly constructed
trees to get better performance than when a single tree is constructed. In the case of RF
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regression, the ensemble learning of RF boosts the predictive performance by averaging
the output (Bou-Hamad and Jamali (2020)). Furthermore, in literature, mostly types of
Gradient Boosted Machines (GBM) are implemented to solve supervised learning problems
for time series data. GBM are, just like RF, an ensemble-based regression method, that
combines weak learners, which are very often decision trees, to arrive at an accurate
model. The main difference between GBM and RF, is that in RF, the decision trees are
randomly generated while in GBM, the trees are built one at a time and not random.
GBM minimizes the inaccuracies of weak models by minimizing the loss function. This
means that the GBM tries to reduce the error of the weak learners in each iteration to
arrive at an accurate model. In GBM, the learning rate of each underlying decision tree
determines the predictive performance. This implies that a higher learning rate of the
underlying decision trees means fewer trees are needed to obtain the same predictive
power of the ensemble model.

In the paper of Zhang et al. (2021), a version of GBM, a Extreme Gradient Boosting
(XGBoost) machine learning model, is implemented on time series data. XGBoost is an
implementation of gradient boosting, where weak classifiers are combined into a strong
classifier in a linear way (Zhang et al. (2021)). Furthermore, compared to other gradient
boosting techniques, XGBoost can find a strong classifier among weak classifiers, while
also being good at dealing with missing value, avoiding overfitting, and reducing running
time (Luo et al. (2021)). In the paper of Zhang et al. (2020), Light Gradient Boosting
Machine (lightGBM), which is a gradient boosting technique just like XGBoost, has been
used to forecast. Due to its quickness and relatively high performance, it is often used to
solve regression, classification, and other machine learning tasks, and has also been used a
lot in data competitions in recent years (Zhang et al. (2020)). Compared to XGBoost,
lightGBM results in smaller and faster models.

2.3 Hybrid time series forecasting models

As the name suggests, hybrid models combine different forecasting models into one
framework to come to a single prediction. This is different from ensemble models because
ensemble models combine the predictions of multiple forecasting models to reduce the
variability of the forecast. The goal of hybrid models is to combine the strengths of the
forecasting models into one framework to overcome the limitations of the single models
and enhance forecasting accuracy. What is often observed is that hybrid models work
well in time series where there are both linear and non-linear components. As hybrid
models often consist of statistical and machine learning methods to handle linearity and
non-linearity, hybrid models perform better in these time series than other forecasting
models that have difficulty predicting either the linear or non-linear components (Xu
et al. (2019), Smyl (2020), Xiao et al. (2012)). A situation in which a hybrid model would
work better than a single forecast model is for example when the level and seasonality
of a time series are linear and can be predicted by the equations of a statistical model.
The trend observed in the time series, however, is not linear and can therefore not be
captured accurately by the equations of the statistical model. This can then be solved
by implementing another forecasting model, for instance, a NN that can capture the
non-linear behavior more accurately, to estimate the trend component of the time series.
This results in a better forecast because all the components of the time series are captured
accurately, whether these are linear or non-linear. Moreover, apart from using different
models to predict the components of the time series, different models can also be used
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to capture both information from the individual time series, as well as from the whole
dataset, which can enhance forecasting accuracy (Smyl (2020)).

A common procedure of the current hybrid models being implemented for time series data
in literature is to first implement a statistical model to estimate the linear information in
the time series, and then use the residuals to train a machine learning models that can deal
with the non-linear information in the time series data, just like explained above. These
results are then combined to obtain enhanced forecasting results compared to the single
models that are implemented. In all these papers, the hybrid model that was proposed,
outperformed the single models in a time series forecasting problem because it combines
linear and non-linear information of the time series data (Xu et al. (2019), Smyl (2020),
Xiao et al. (2012)).
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Figure 6: Overview of forecasting models discussed in the literature review
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Table 1: Overview with input, strengths, and weaknesses of forecasting models (Wang et al.
(2018))

Forecasting
model

Input Strength(s) Weakness(es)

Exponential
smoothing

(ES)

The input consist of
lagged values with

corresponding weights; it
can include trends or

seasonality

Forecasts in a simple but effective
way; more or less importance to
more recent lagged values can

easily be given

Lags behind the trend; it
does not respond too well to

dynamic environments

Regression
models

Predictor variables that
predict the dependent

variable

Provides insights into factors that
influence the dependent variable
and their weight; it is easy to

implement

Does consider the
understandability of certain
factor that influence the
dependent variable; it

cannot deal with periodicity

Autoregressive
models (AR)

A linear combination of
the lagged values of a

variable

Flexible at handling a lot of
different time series patterns

The time series data needs
to be stationary

Moving
average

models (MA)

Past forecasting errors Good at separating out random
errors; less prone to moving up
and down a lot due to temporal

changes

Does not respond quick to
very sudden changes in the

time series

Autoregressive
integrated
moving
average

(ARIMA)

A combination of lagged
values and past

forecasting errors; can be
extended with exogenous

variables

Combines the AR and MA
models to make use of both their
inputs to improve performance

Requires stationary data; it
cannot deal with non-linear

data

Grey models Small and incomplete
information

Can make high accuracy
predictions on small sample data

Does not take into account
the intrinsic mechanism;
cannot dynamically show

system changes

Fuzzy time
series

Can be numerical or
linguistic and is

computed by the fuzzy
rules to get output

Good in situations of uncertainty
or when qualitative knowledge is

used

Lack of prediction formulas;
cannot show the

relationship between
predictions and historical

data

Support
vector

regression
(SVR)

Lagged values and time
series features

Can solve machine learning and
non-linear problems with small
samples; has high generalization
performance; small amount of

parameters to solve

Cannot deal well with
missing data; hard to

implement on big training
samples

Neural
networks

Lagged values and time
series features

Can extract complex non-linear
relationships from the data by

itself; can handle multiple inputs
(and outputs); can deal with

long-term dependencies

Does not provide insights
into the process of

computing output or the
reasoning; cannot work with

small data samples

Supervised
learning
models

Time series features Can work well in situations where
there is little data on the

independent time series; can take
into account variables that might
influence the time series other

than lagged values

Might not be able to extract
the sequence information

from the time series
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2.4 Performance measurements

In the paper of Hyndman and Koehler (2006), an adequate overview of accuracy mea-
surements is given, and the measurements are discussed and compared with respect to
time series forecasting. Consequently, indications on in which situation to best use which
accuracy measurement are provided. Furthermore, the paper proposes a new method
that is argued to also work well for measuring forecasting accuracy. In this section,
the accuracy measurements that exist in the four different measurement categories are
described, and their characteristics are given. These four different measurement categories
are scale-dependent measures, measures based on percentage errors, measures based on
relative errors, and relative measures. After that, the new measurement metric proposed
by Hyndman and Koehler (2006), will be discussed.

First of all, the accuracy measurements which belong to the scale-dependent measures
will be discussed. These include, Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Median Absolute Error (MdAE).
These are measurements whose scale depends on the scale of the data. Consequently,
these measurements work well when comparing the accuracy of models which use the
same data set, but should not be used when using different data sets with different
scales (Hyndman and Koehler (2006)). MSE and RMSE have been very popular in the
past. RMSE is often preferred out of these two, as this is on the same scale as the data.
However, MSE and RMSE are more sensitive to outliers than MAE and MdAE which led
to some argumentation against using MSE and RMSE for measuring forecasting accuracy
(Hyndman and Koehler (2006)).

Moving on to the second category of accuracy measurements, measures based on percentage
errors. The first four metrics in this category are Mean Absolute Percentage Error
(MAPE), Median Absolute Percentage Error (MdAPE), Root Mean Squared Percentage
Error (RMSPE), and Root Median Squared Percentage Error (RMdSPE). These measures
have the big advantage that they are scale independent, unlike the metrics discussed
above, and can thus be used to compare the accuracy of models that use different scales
of data. However, these measures also have some disadvantages. The first disadvantage is
that they are infinite or undefined when the observed value is zero. Furthermore, they
have a very skewed distribution when the observed value is close to zero. Consequently,
in data where the observed value is often zero, these measurements should not be used.
Moreover, these metrics assume a meaningful zero which means they cannot be used
when forecasting temperature on a Celsius or Fahrenheit scale (Hyndman and Koehler
(2006)). Moreover, MAPE and MdAPE put heavier penalties on positive errors than on
negative errors. To overcome this problem, two new metrics have been defined, Symmetric
Mean Absolute Percentage Error (sMAPE), and Symmetric Median Absolute Percentage
Error (sMdAPE). Smaller values for the observed value in the data set may have a
less severe effect on the sMAPE and sMdAPE, but are still likely to include division by
zero, as the forecasted value is also expected to be close to zero. Furthermore, these two
metrics are formulated such that they can take negative values. Moreover, they are not as
symmetric as their name suggests as they still give heavier penalties to forecasts that are
low compared to forecasts that are high. Lastly, in general, measures based on percentage
error are often skewed, which means they might require transformations to make them a
stable accuracy measurement (Hyndman and Koehler (2006)).

Thirdly, measures based on relative errors are discussed. These measurements divide the
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error by another error that is computed by a standard forecasting method to make the
error relative. Often, this method is a random walk, which is that the last observation is
taken as the new forecast. The measures based on relative errors include Mean Relative
Absolute Error (MRAE), Median Relative Absolute Error (MdRAE), and Geometric
Mean Relative Absolute Error (GMRAE). A disadvantage of measures based on relative
errors is that the relative error can be small or even zero. This means that to compute
the relative error, the forecast error has to be divided by zero which is not possible, or
by a very small number which might cause the measures to penalize the forecast error
heavier than when working with bigger numbers (Hyndman and Koehler (2006)).

The last category of measures that is discussed in the paper of Hyndman and Koehler
(2006), is the relative measures. This category does not involve a certain amount of metrics
but is rather an idea that can be implemented to all the metrics described in the sections
above. The idea of relative measures is that the metric that is computed is divided by the
same metric computed for a benchmark method to provide a relative measure instead of
an individual metric that is computed. This can be done for all the metrics described.
This method can be used well in situations where comparisons to a benchmark method
are desired.

The last two categories, measures based on relative errors, and relative measures, both
try to remove the scale of the data. Both however have their disadvantages, as mentioned
above. The paper of Hyndman and Koehler (2006), proposes a new performance metric,
Mean Absolute Scaled Error (MASE), which gets rid of these disadvantages by scaling
the error based on the in-sample MAE. This method makes use of a scaled error.

Lastly, another metric that was not mentioned in the paper of Hyndman and Koehler
(2006), but can prove to be useful for evaluating time series forecasting models is Root
Mean Squared Log Error (RMSLE). RMSLE can be especially useful in situations when
it is desirable to avoid a huge effect on large differences in the predicted and actual values,
in the case when these values are higher (Mir et al. (2022)). Furthermore, this metric
provides performance in percentage errors but can still deal with zero values, unlike some
of the other metrics above.
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3 Forecast definition
In this Chapter, the forecasts that are made in this thesis, are defined. First, the input
that is used to base the forecasts on, is discussed. After that, the forecasts that are
computed for DHL are defined. This includes information on what the target variable
that is being forecasted is, what the forecast horizon is, on what interval is forecasted,
and how the information about the picking zone and departure bucket is preserved in the
forecasts.

As mentioned in Section 1.4, DHL wants to forecast the number of incoming picking tasks,
while preserving the information on the picking zones and departure buckets. To be able
to do this, the dataset does not only contain data on the number of incoming picking
tasks per hour but also information on the time at which the incoming task has to leave
and the picking zone that it falls in. Consequently, the time series are divided per picking
zone, and days to departure and departure time bucket combination. In Figure 7, an
overview of the different levels on which the time series are divided can be seen. In this
figure, the first level is all of the DHL data, the second level is the picking zones, the third
level are the days to departure, and the fourth level is the departure time buckets.

Figure 7: Different levels of time series

In this figure, it can be seen that the time series are used per picking zone, and per days
to departure and departure time bucket combination. In this figure, the lowest level is the
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level on which the time series are used and the forecast is made. Doing this ensures that
the information on the picking zones and departure buckets is preserved. Additionally, it
is good to note that there are 11 picking zones, that the days to departure are either 0, 1,
or 2, and that the departure buckets are divided in 4 hours time spans. More information
about these aggregation levels is given later on in this Chapter.

3.1 Input of forecasts

A snapshot of the data that is used as input to forecast on can be seen in Figure 8. In the
dataset of DHL, the number of picking tasks that come in are aggregated on one-hour
intervals. This implies that every whole hour, the number of picking tasks that have come
in during the past hour is added up and stored in the dataset.

In this snapshot, n tasks corresponds to the number of picking tasks that have come
in during the one-hour interval. This is the target variable that is forecasted in this
thesis.

Furthermore, Datetime closed corresponds to the hour at which the picking tasks have
come in. As mentioned before, these are added up in hourly intervals. This implies
that the hour in Datetime closed is equal to the end hour of the one-hour interval at
which the picking tasks are added up. For example, for the picking tasks that come in
between 7 AM and 8 AM, these picking tasks are added up and stored with the hour 8
AM in the Datetime closed feature, with the corresponding date. Allocated to zone is the
picking zone in which the picking task falls. The combination of departure time bucket
and days to departure indicates at which time range the picking task has to be completed.
The time at which the picking task has to be completed depends on the time at which
the order has to leave the warehouse, which depends on the time at which the order
has to be delivered to the customer. The combination of the values for these features in
the dataset defines the departure buckets that are used to categorize the time at which
the picking tasks have to be completed. First of all, every departure bucket contains a
days to departure value, as well as, a departure time bucket, which corresponds to a range
of 4 hours during the day. Every picking task that comes in also has a departure time at
which the task has to be completed. In which departure bucket a picking task is placed
depends on both the time at which the picking task comes in and when it has to depart.
If the picking tasks have to be completed on the same day as the picking task came in,
then the days to departure variable is 0 if it has to leave the following day, it becomes
1, and if it has to leave 2 days later, it becomes 2. Furthermore, the time at which the
picking tasks have to be completed is then placed in one of the time buckets that span
4 hours. The combination of the days to departure and the departure time bucket in
which the picking tasks are placed makes the unique combination of the departure bucket
in which the picking task is placed. For example, if the task that comes in has to be
completed on the same day at 6 PM, then this task has days to departure value 0 and
departure time bucket value (16, 20]. A task that has to be completed the day after it
comes in at 11 AM has days to departure value 1 and departure time bucket value (8,
12].
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Figure 8: Snapshot of dataset

The way in which the departure bucket work can more clearly be seen in Figure 8. In
this snapshot of the dataset it can be seen that on 2021-10-06, at 5 PM, in picking zone
”Pickabove”, there are 12 tasks that have to be completed on that same day between 4
PM and 8 PM. Furthermore, it can be seen that on 2021-10-06, at 9 PM, in picking zone
”Pickabove”, there are no tasks that have to be completed on that same day between
4 PM and 8 PM. In the dataset there are no tasks for which the last hour of the hour
interval at which the task has come in, is equal to or later than the last hour of the
departure time bucket with days to departure is 0 (has to be completed on the same day).
This is the case because it is not possible for a task to be completed at the same time, or
earlier than the picking task has come into the warehouse. Consequently, for these hours,
where the departure buckets are earlier than these hours, the number of picking tasks is
equal to 0.

The departure time buckets that exist in the dataset are (4, 8], (8, 12], (12, 16], (16, 20],
(20, 24], which correspond to the time periods each day from 4 AM till 8 AM, 8 AM till
12 PM, 12 PM till 4 PM, 4 PM till 8 PM, and 8 PM till 12 AM. Furthermore, the days to
departure can range from 0 until 2 which implies that tasks that have to be completed in
two days or less are included in the dataset. The tasks that fall in the departure time
bucket (0, 4], or that have days to departure longer than 2 days are not included in the
dataset as there are almost no picking tasks that have to leave between 12 AM and 4 PM
or that have longer than 2 days to be completed which why these are not interesting to
analyze and forecast on for DHL.

The information on the departure time and the picking zone is preserved by dividing
the different departure buckets and picking zone combinations into individual time series.
As mentioned in Section 1.4, this amounts to 165 time series that need to be analyzed
and forecasted on. The input on which the forecasts are made are the past values of
the number of incoming picking tasks, per departure bucket, and per picking zone. The
input consists of all the past values of incoming picking tasks, per departure bucket, per
picking zone, that are available until the point in time where the forecasts for the incoming
picking tasks are made from. In Figure 9, two snapshots of the time series of past values
of incoming picking tasks for a specific departure bucket, picking zone combination can
be seen.

27



CHAPTER 3 FORECAST DEFINITION

(a) (0, (12, 16]), Pickabove (b) (1, (12, 16]), Pickabove

Figure 9: Snapshots of time series

In Figure 9, the plot (0, (12, 16]) represents a snapshot of two days from the time series
with days to departure 0 (it has to leave on the same day as the picking task has come in),
departure time bucket (12, 16] (it has to leave between 12 PM and 4 PM), in the picking
zone called ”Pickabove”. The other plot, (1, (12, 16]), represents a snapshot of two days
from the time series with days to departure 1 (it has to leave on the next day with respect
to the day at which the picking task has come in), and departure time bucket (12, 16] (it
has to leave between 12 PM and 4 PM), in the picking zone called ”Pickabove”. What
can be concluded from these plots is, just like mentioned before, it is not possible for a
task to be completed at the same time, or earlier than the picking task has come into
the warehouse. As you can see from the plot with days to departure 0 and departure
time bucket (12, 16], there are no picking tasks that come in on or after 4 PM. This is
not possible because there cannot be tasks coming in at or after 4 PM that have to leave
before or at 4 PM. You can see that on the second day, there are picking tasks coming in
before 4 PM that have to leave between 12 PM and 4 PM on the same day. This implies
that, as mentioned before, when days to departure is 0, this corresponds to the tasks
having to leave in the respective departure bucket on the same day. On the other hand,
for the plot with days to departure 1 and departure time bucket (12, 16], there are picking
tasks that come in on, or after 4 PM. This is possible because this days to departure and
departure time bucket combination means that the picking tasks have to be completed
between 12 PM and 4 PM on the next day, with respect to the day that the picking task
has come in. Therefore, for this time series, it is possible to have picking tasks coming in
after 4 PM because these picking tasks have to be done on the next day between 12 PM
and 4 PM. Furthermore, what can be concluded from the plots is that virtually all the
picking tasks come in during working hours, between 8 AM and 5 PM. The distribution of
incoming picking tasks for hours of the day and days of the week is extensively discussed
in Section 4.4.

3.2 Forecasts

As mentioned in Section 3.1, the number of incoming picking tasks in the warehouse is
the target variable that is forecasted. The forecasts that are made predict the number
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of incoming picking tasks, per departure bucket, per zone, on a forecast horizon of 2
days. Furthermore, the number of picking tasks that come in is forecasted per hour.
Therefore, the forecast for one departure bucket and picking zone combination, from one
point in time, consists of 48 values, which correspond to the 48 hours that are forecasted
ahead.

As discussed in Section 3.1, the departure buckets are defined with respect to when the
picking task comes into the warehouse. For the forecasts, this implies that the departure
bucket is defined with respect to the time for which the forecast is made, and not the time
from which is forecasted. To further clarify this, a few examples are given. Suppose that
the number of incoming picking tasks is forecasted from 1 PM on a Monday, 48 hours
ahead. For the number of picking tasks predicted for 4 PM on a Monday, with days to
departure equal to 0 and departure time bucket (8, 12], in a certain picking zone, this
implies that the departure bucket corresponds to tasks that have to be completed between
8 AM and 12 PM on Monday for which the forecast is made. This value, when forecasted
correctly, should be 0, as there cannot be any tasks that arrive at 4 PM but have to be
completed between 8 AM and 12 PM. As the forecast is made from 1 PM on a Monday, 48
hours ahead, also values on Tuesday and Wednesday are forecasted. Furthermore, when
still forecasting from 1 PM on a Monday, for the number of picking tasks predicted for 4
PM on that Monday, with days to departure being 1 and departure time bucket being
(8, 12], in a certain picking zone, this implies that the departure bucket corresponds to
tasks that have to be completed between 8 AM and 12 PM on the next day, which is
Tuesday. This forecast can be higher than 0 as it is possible for picking tasks to come
in at 4 PM on a Monday and be completed between 8 AM and 12 PM on the next day,
which is Tuesday.

However, as the forecasts are made 48 hours ahead, when the forecasts are made from 1
PM on a Monday, this implies that also values for the number of incoming picking tasks
are predicted for Tuesday and Wednesday. When predicting the number of picking tasks
for 2 PM on a Tuesday, with days to departure 0 and departure time bucket (8, 12], in a
certain picking zone, this implies that the departure bucket corresponds to tasks that have
to be completed between 8 AM and 12 PM on the day for which the forecast is made,
which is on Tuesday. Furthermore, when predicting the number of picking tasks for 2 PM
on a Tuesday, with days to departure 1 and departure time bucket (8, 12], in a certain
picking zone, this implies that the departure bucket corresponds to tasks that have to be
completed between 8 AM and 12 PM on the next day with respect to the day for which
the forecast is made. This implies that this forecast corresponds to the number of picking
tasks coming in at 2 PM on a Tuesday, which have to be completed between 8 AM and
12 PM on a Wednesday. As mentioned before, this implies that the departure bucket,
which consists of a combination of the departure time bucket and the days to departure,
is defined with respect to the time for which the forecast is made, and not for the point in
time from which is forecasted.

As mentioned in Section 1.4, there are 11 picking zones and 15 departure buckets in which
a picking task can fall. This implies that a total of 165 (11 ∗ 15) individual time series are
forecasted on, as every picking zone and departure bucket combination is an individual
forecast. Furthermore, the forecasts consist of 48 values, corresponding to the 48 hours
that are forecasted. Consequently, for each point in time that is forecasted from, a total
of 7920 (165 ∗ 48) values have to be forecasted to provide a forecast spanning 2 days for
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every picking zone and departure bucket combination.
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4 Data preparation and understand-
ing

In Chapter 4, the data preparation that is done on the initial dataset is discussed.
Furthermore, the dataset is analyzed to provide insights on the characteristics of the
data that is forecasted on. In more detail, this implies that first the initial dataset and
the preparation are discussed. After this, the descriptive statistics of the dataset are
provided. Moreover, stationarity and seasonality in the time series data are analyzed.
Lastly, the feature engineering that is performed to extract features from the time series
data, including how this is used, is explained.

4.1 Dataset and preparation

A dataset including the picking tasks that have arrived in each hourly interval is provided.
In this dataset, per picking task, the hour at which the picking tasks have come in is
included. Furthermore, for every picking task, data on the time at which it has to be
completed (in whole hours), and the picking zone of the warehouse in which the picking
task has to be executed, is available.

The initial dataset should be prepared in order to get a dataset on which the forecasts
are made. First of all, the data before 1 July 2020 is removed. This is done because
DHL indicated that the data before this date was of low quality. Furthermore, tasks
that have a negative time to be completed, or more than 2 days time to be completed
are also removed from the dataset. Here, time to be completed is the difference between
the time the picking tasks come in and the time it has to be completed. A negative
time to completion is not possible for DHL to process and is therefore removed from the
dataset. This only occurs in approximately 30 rows, which is very minimal compared to
the around 2.5 million rows in the dataset. The cause of this is that the departure time
is wrongly inserted in these cases. Moreover, the tasks that have more than 2 days to
be completed are also removed from the forecasting. This is because these tasks make
up a small portion of all the picking tasks. Around 15% of all the picking tasks have
days to departure longer than 2 days. DHL wants to focus on forecasting the bulk of
the incoming picking tasks which are the tasks that have 2 days or less to be completed.
This is done to prevent including too many time series that have a higher proportion of
zero incoming tasks per hour, as the number of incoming picking tasks gets lower when
the time to completion rises, which is discussed in Section 4.2. Consequently, choosing a
cutoff point allows focusing on forecasting the biggest part of the incoming picking tasks
as accurately as possible, without giving too much importance to a small portion of the
data in which the non-zero values are very sparse.

In the dataset of DHL, the picking zones are aggregations of different areas of the warehouse
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of DHL. In the initial dataset, the labels of these individual areas are given. These areas
are aggregated into the 11 picking zones that are described earlier. This is done to
limit the number of time series on which has to be forecasted while retaining the needed
information on picking zones for DHL. As the order pickers are also assigned to these 11
different picking zones, for the capacity planning, the needed information is retained in
the forecasts that are made on these aggregated picking zones. Later on in this Section,
the effect of this aggregation on data loss is discussed. Another aggregation is performed
on departure time that is included in the dataset. The departure time is aggregated into
departure buckets that span 4 hours. With this operation, the number of time series is
reduced which improves the understandability of the forecasts, while retaining the needed
information level for DHL. Furthermore, in this process, the departure time bucket with
departure times between midnight and 4 AM is removed because there are virtually no
tasks that fall in these buckets. Like the reason for the cutoff point in the completion time,
this departure time bucket is not included to focus on the time series in which most picking
tasks arrive. The introduction of the departure buckets results in the transformation
of some features in the dataset. The features of the resulting dataset can be seen in
Table 2.

Table 2: Features in initial dataset

Feature Description Format Example

datetime closed The date and last whole hour of the one-
hour interval in which the picking tasks that
have come in, are counted.

Datetime 14/01/2021
01:00:00

days to departure Value that indicates which day the task has
to be completed in regard to when it comes
in (0 = today, 1 = tomorrow, 2 = in two
days)

Integer 0, 1, or 2

departure time bucket 4-hour time span in which the task has to
be completed

String (4, 8]

allocated to zone The picking zone of the warehouse in which
the picking task has to be executed.

String Pickabove

n tasks The number of picking tasks that have come
in, in the corresponding hourly interval, for
this departure time, and picking zone.

Integer 5

The dataset of DHL only includes an observation if the number of incoming tasks is
not zero. This implies that, in the hour intervals, per zone, per departure time, where
no picking task came in, there is no observation in the data. In time series data, every
interval on which the data is collected, which is hourly in the case of DHL, should be
included in the data in order to have a complete time series. This is why, for every hour,
zone, and departure bucket combination, where there is no observation, an observation
with zero number of incoming tasks is imputed.

Lastly, when aggregating the zones in one of the previous preparation steps, some
observations are mapped to the labels for picking zones ”Other” and ”-”. This indicates
that these individual areas are not part of any of the aggregated picking zones in the
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warehouse according to the aggregation mapping that is made at that moment in time.
This is likely caused by these individual areas being new in the warehouse, and therefore
not being mapped to the aggregated picking zones at that moment in time. Because
the forecasts are made on the aggregated picking zones for DHL, and these individual
areas are not yet part of an aggregated picking zone, these individual areas are removed
from the data. Furthermore, as can be seen in Table 3, the removal of these areas results
in a data loss of 0.01% which indicates that the areas that are not yet included in the
picking zone aggregations have a very small portion of the incoming picking tasks in the
dataset. In Table 3, the preparation steps, including what effect each of the steps has on
the number of observations in the dataset, are provided. Furthermore, between brackets,
the number of observations with respect to the initial dataset is given.

Table 3: Preparation steps and effect on number of observations in dataset

Preparation step Remaining observations

Initial dataset 1,626,039 (100%)

Filtering on data after 1st of July 2020 1,428,300 (87.8%)

Remove tasks with negative or >2 completion time 1,160,311 (71.4%)

Mapping of zones and removing zones ”Other” and ”-” 1,159,833 (71.3%)

Data loss with respect to the original dataset 28.7%

Introduction of departure buckets 377,925 (23.2%)

Impute observations with 0 tasks 2,628,210 (161.6%)

As can be seen in Table 3, due to the preparation steps, 28.7% of the initial data in the
dataset is lost. After the preparation steps that result in a loss of data, the data loss is
given in Table 3. Underneath the data loss percentage, the last two steps, that result
in the final dataset that is going to be used in this thesis, are provided. The reduction
of observations in the dataset due to the introduction of the departure buckets is not
included in the data loss calculation. This operation is not included because the data is
aggregated, which means that no observations are ”lost” but multiple observations are
aggregated into one observation. Furthermore, due to the aggregation and imputation of
zero values to complete the dataset, the dataset that is used for the time series forecasting
is bigger than the initial dataset. This is because of the large portion of zero values that
has to be imputed to complete the time series.

As explained in Section 1.4, it is important that the information on the departure
bucket and the picking zone of the picking tasks is conserved in the time series forecasts.
Consequently, the number of picking tasks per hour is forecasted per zone and per
departure bucket. This implies that the forecasts are made on every specific combination
of picking zones and departure bucket. After the preparation, there are 11 picking zones,
and 15 departure buckets in total, which results in 11× 15 (picking zones × departure
buckets) = 165 time series that are forecasted.

4.2 Descriptive statistics

In Table 4, the descriptive statistics for the whole dataset of incoming number of picking
tasks, per hour, per picking zone, and departure bucket, are given. Apart from the
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statistics for the whole dataset, the descriptive statistics per picking zone are also provided.
In this table, the number of observations, mean, median, standard deviation, minimum
value, first quartile, second quartile, third quartile, maximum value, skewness, and kurtosis,
are given. All these statistics are computed for the incoming number of picking tasks, per
hour.

Table 4: Descriptive statistics of number of picking tasks for whole dataset, and per zone

Zone Count Mean Med STD Min 25% 50% 75% Max % 0 Skew Kurt

Overall 2628210 2.03 0 11.83 0 0 0 0 1033 85.62 14.93 406.29

Pickabove 238965 0.82 0 7.80 0 0 0 0 895 88.78 42.68 2991.55

Pickbelt 238950 4.88 0 18.71 0 0 0 0 750 77.32 7.46 86.20

Pickbulk Above 238815 0.43 0 2.58 0 0 0 0 480 90.70 38.97 5310.47

Pickbulk Ground 238830 0.38 0 2.05 0 0 0 0 140 91.24 13.74 409.35

Pickconsolidation C 239025 3.84 0 18.14 0 0 0 0 1033 82.92 10.21 175.18

Pickconsolidation K 238830 0.60 0 2.88 0 0 0 0 124 89.36 9.42 142.80

Pickground 238995 4.69 0 19.42 0 0 0 0 974 78.17 8.71 141.34

Pickground Allegro 238995 3.63 0 17.51 0 0 0 0 848 81.43 12.16 249.23

Pickrobot 238950 1.34 0 5.79 0 0 0 0 416 86.40 9.40 231.72

Picksens 238830 0.51 0 2.91 0 0 0 0 312 90.12 21.34 1209.83

Pickshelves 239025 1.14 0 4.62 0 0 0 0 215 85.39 6.96 80.27

From Table 4, it can be observed that there are big differences in the mean number
of incoming picking tasks per hour, for the different zones. Furthermore, the zones
with higher mean number of incoming picking tasks per hour, also have higher standard
deviation. This implies that for the zones with higher mean number of incoming picking
tasks per hour, these values are more spread out, or on average further away from the
mean, than the values in the time series with picking zones that have lower mean number
of incoming picking tasks per hour.

From the third quartile statistics in Table 4, it can be observed that there are a lot of
observations that have zero incoming picking tasks. The third quartile is 0 for the whole
dataset as well as for all the separate zones. This implies that, in the whole dataset, and
in every zone, less than 25% has a value for the incoming picking tasks that is higher than
0. In more detail, as can be seen in Table 4, in the whole dataset 85.62 % of the values
are zero. Furthermore, also the percentage of zero values per zone can be seen in the % 0
column.

Moreover, the high values for both the skewness and kurtosis on the whole dataset, as
well as per zone, indicate that the distributions are heavily skewed to the right, and have
heavy tails. The fact that the distribution is highly skewed to the right is because the
number of tasks cannot be negative and is zero for most of the observations, with the
rest of the values all being higher than zero (or to the right when plotting). Furthermore,
the high kurtosis indicates that the distributions have heavy tails. The maximum value
of every distribution indicates that, although there are a lot of zero values in the data,
there are also some high values that are present in each of the distributions, for the whole
dataset, and per zone.
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It can be observed that the four zones, Pickbelt, Pickconsolidation C, Pickground, and
Pickground Allegro have higher mean incoming picking tasks than the other 7 picking
zones. Additionally, the zones with higher mean number of incoming picking tasks also
generally have a lower percentage of zero values in the time series, as can be seen in
Table 4. In Figure 12, the mean number of incoming picking tasks per hour, per zone
is visualized. The mean number of picking tasks per hour, per zone is computed by
aggregating the data per picking zone. In this figure, it can also clearly be observed that
the four picking zones, Pickbelt, Pickconsolidation C, Pickground, and Pickground Allegro
have significantly higher mean number of incoming picking tasks per hour than the other
7 zones. These four zones are highlighted in red.

Figure 10: Mean number of picking tasks per hour, per picking zone

Next to analyzing the mean number of picking tasks per hour on aggregation level of
picking zones, the differences in mean number of picking tasks per hour on the other
aggregation level, the departure buckets, are also analyzed. In Figure 11, the mean picking
tasks per hour, per departure bucket are visualized. The departure time buckets on the
x-axis represent buckets that span over 4 hours. As described in Section 4.1, only tasks
that have to leave within two days after coming into the warehouse are included in the
data. Consequently, on the x-axis in Figure 11, the departure buckets in which the tasks
in the data fall are included.
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Figure 11: Mean picking tasks per hour, per departure time bucket

From Figure 11, it can be seen that the time series with the highest mean number of
picking tasks fall into the departure time bucket of (16, 20] with 0 days to departure,
which implies most tasks that come in, have to be done between 4 PM and 8 PM on the
same day. What else can be deducted from the figure, is that almost all picking tasks
have to be done either on the day they arrive or between 8 AM and 8 PM the following
day. The fact that from 8 AM till 8 PM the following day contains quite some picking
tasks is very likely because these are the picking tasks that come in late afternoon or in
the evening and have to leave the next day in the morning or afternoon, which makes
them get days to departure is equal to 1. Moreover, it can be seen that between 4 AM
and 8 AM, almost no tasks have to be completed, especially when days to departure is
equal to 0. This makes sense as it is very unlikely that a picking task will come in before
8 AM, and has to leave at or before 8 AM again (especially when recalling that DHL
serves B2B). Lastly, it can also be seen that the probability of a task having to be done
on the same day is the highest, and this probability goes down as the days go on. This
implies that the number of tasks that come in goes down as the completion time of these
incoming tasks increases. As discussed in Section 3.1, only the picking tasks that come in,
and have to be completed within 2 days are analyzed and forecasted. In other words, only
picking tasks that fall in the buckets that are formed, are forecasted. The reason for this
is that there is only a very small amount of picking tasks that come in and have longer
than 2 days to be completed. This is in line with the conclusions drawn from Figure 11,
as the number of tasks that come in which have to be completed in 2 days is already very
small, and this amount only goes down further as the completion time increases.

4.3 Time series stationarity

As explained in Section 2.1.2, stationary time series requires the mean, variance, and
autocorrelation of the time series to not be dependent on the time of the observation. An
assumption of ARIMA models, is that the time series should be stationary in order to
provide reliable results (Lewinson (2020)). Consequently, to prevent unreliable results in
the ARIMA models, possible non-stationarity in the time series should be handled correctly.
Exponential Smoothing (ES) and Croston method are suitable for non-stationary data
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(Lewinson (2020)). In this section, first, an assessment of the stationarity of the time series
is made. After that, how the non-stationary time series are handled is discussed.

In Section 2.1.2, different methods for reviewing if time series are stationary or not, are
discussed. One of these methods is inspecting the ACF and PACF plots for every time
series to see if it is stationary or not. However, for the number of time series in the case
of DHL this is a very time-consuming task and is therefore not executed. Alternatively, a
statistical test is used to examine if the time series are stationary or not. As described
in Section 2.1.2, according to Afriyie et al. (2020), when there is disagreement between
the ADF and the KPSS tests, the KPSS test should be used, because this test performs
better. Consequently, to assess whether or not the time series is stationary, the KPSS
test is used.

In Table 5, the results of the KPSS test for each of the 165 time series can be seen. As
can be deducted from this table, for the KPSS test, some time series have a significant
p-value, a p-value lower than 0.05, which for this test indicates that the time series is
non-stationary. Most of the time series that are indicated to be non-stationary by the
KPSS test are time series with departure buckets that have days to departure of 0 or
1, or are in one of the four picking zones that have higher mean picking tasks per hour.
This is potentially caused by the fact that these time series also have a lower number
of zero values which means that the hourly and weekday seasonality discussed before is
more apparent by the non-zero values in these time series. This causes the KPSS test to
identify the time series as non-stationary.

Table 5: P-values of KPSS test for every time series

0 1 2

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

Pickabove 0.1 0.1 0.1 0.02 0.06 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.02 0.1 0.1

Pickbelt 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.1 0.01 0.02 0.01 0.1 0.1 0.09 0.1

Pickbulk Above 0.1 0.01 0.01 0.01 0.01 0.1 0.01 0.09 0.02 0.01 0.1 0.1 0.1 0.1 0.1

Pickbulk Ground 0.1 0.01 0.08 0.01 0.01 0.1 0.1 0.01 0.01 0.01 0.02 0.1 0.06 0.1 0.1

Pickconsolidation C 0.02 0.01 0.01 0.01 0.02 0.02 0.1 0.1 0.01 0.1 0.01 0.1 0.01 0.02 0.1

Pickconsolidation K 0.1 0.01 0.01 0.1 0.02 0.1 0.01 0.01 0.02 0.1 0.02 0.1 0.1 0.06 0.1

Pickground 0.1 0.08 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.1 0.01 0.01 0.02 0.1 0.1

Pickground Allegro 0.1 0.01 0.01 0.1 0.01 0.1 0.02 0.01 0.01 0.06 0.1 0.1 0.1 0.1 0.1

Pickrobot 0.1 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.01 0.1 0.1 0.01 0.02 0.1 0.1

Picksens 0.01 0.01 0.1 0.01 0.1 0.1 0.1 0.09 0.01 0.1 0.1 0.1 0.02 0.08 0.1

Pickshelves 0.08 0.01 0.1 0.02 0.1 0.1 0.1 0.07 0.1 0.1 0.1 0.1 0.01 0.1 0.1

As described in Section 2.1.2, differencing can be used to make these time series stationary.
The implementation of differencing only has to be applied to the ARIMA models as this
is the only type of model that assumes stationarity of the time series (Lewinson (2020)).
Differencing is applied to the time series which are non-stationary, according to the KPSS
test, to attempt to make these time series stationary as well. After applying first-order
differencing to the time series that were non-stationary before differencing, the KPSS
test was done again to evaluate if the first-order differencing was sufficient to make these
time series stationary. This showed that the time series that were non-stationary all
became stationary after first-order differencing. In Appendix A, the p-values of the KPSS
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test, after the non-stationary time series are first-order differenced, can be seen. As can
be observed from this table, this operation makes all the time series stationary, as all
p-values are higher than 0.05. Consequently, setting the differencing parameter (d) in the
ARIMA models to perform first-order differencing when the time series is non-stationary
originally, and to no differencing when the time series is already stationary originally,
proves to be sufficient to handle non-stationarity in the time series data for the ARIMA
models. More information on how this is implemented in the ARIMA models is provided
in Section 5.7.

4.4 Seasonality

After analyzing the time series data on seasonal patterns the following two insights were
extracted. First of all, the mean number of picking tasks per hour was plotted for every
hour of the day to investigate whether or not there is a pattern in incoming picking tasks
per hour of the day. In Figure 12, the mean number of picking tasks per hour, for each
hour of the day, for the whole dataset, are plotted.

Figure 12: Mean number of picking tasks per hour of the day

As can be seen in Figure 12, there are significant differences in incoming picking tasks
per hour of the day. In the figure, the bars for work hours, between 8 AM and 5 PM, are
colored in red. As can be deducted from Figure 12, most picking tasks come in during
these work hours, between 8 AM and 5 PM, especially in the morning. Consequently, this
repetitive pattern implies hourly seasonality in a day. This can be explained by the fact
that the warehouse of DHL serves B2B customers, which causes the customer to mostly
order between work hours, and therefore the picking tasks for these orders to come in
during working hours, as is also described in Section 1.4. However, as can be seen in
Figure 12, not all picking tasks come in during working hours. Customers can order at
any time which also makes it possible that picking tasks arrive at the warehouse of DHL
outside of working hours.

Furthermore, in the data analysis, also the mean number of picking tasks per hour, for
each day of the week was plotted. In Figure 13, the mean number of picking tasks per
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hour, for each day of the week, for the whole dataset, are plotted.

Figure 13: Mean number of picking tasks per hour, per day of the week

As can be seen in Figure 13, there are differences in the mean number of picking tasks
per weekday. What can be extracted from the figure is that virtually all picking tasks
come in during working days, which are Monday until Friday. Furthermore, the number
of incoming picking tasks already begins to decrease on Friday, after which it goes to
almost no incoming picking tasks in the weekend. This daily seasonality in the week, just
like the hourly seasonality, is likely caused by the warehouse of DHL serving in a B2B
environment, which makes the bulk of the picking tasks come in during working days. As
can be seen in the Figure 13 however, there is still a very small amount of picking tasks
that arrive during weekends. Furthermore, as a lot of businesses are less active on Fridays,
this can explain the decrease in incoming picking tasks on Fridays in comparison to the
other working days.

In Figure 14, the two figures above are combined in one plot. In Figure 14, the mean
number of picking tasks is plotted for every hour of the week, for the whole dataset.
This implies that the plot starts on Monday at 12 AM and ends on Sunday at 11 PM.
Furthermore, the x-axis is divided into 24-hour periods so that the different days can be
separated.
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Figure 14: Mean number of picking tasks for every hour during the whole week

From Figure 14, it can be concluded that, as was also extracted from the other two plots,
the mean number of picking tasks per hour is highest in working hours and working days.
Additionally, from this plot, the mean number of picking tasks for every hour and weekday
combination can be observed. This clearly shows that the combination of hours which are
both in working hours and in working days result in the highest mean number of picking
tasks per hour, and not the hours which are in working hours or in working days. Hours
that are in working hours, but in weekends, or that are during working days, but not
during working hours, result in significantly lower mean number of picking tasks coming
in. Consequently, from this section it can be concluded that the mean number of tasks
per hour coming in are highest during work hours, which is between 8 AM and 5 PM, on
working days, especially from Monday until Thursday.

The behavior that is seen in Figure 14, is non-stationary due to the seasonal pattern.
However, many of the time series underlying this plot are stationary as can be seen in
Table 5. This is because Figure 14 is an aggregation of all the individual time series,
which consist of stationary and non-stationary time series. It is possible that many of
the time series are stationary as individual time series, but the aggregated time series is
non-stationary. The main reason for this is that the time series with higher mean number
of incoming picking tasks have a bigger impact on this figure, as these time series include
a lot more picking tasks. As mentioned before, the time series with higher mean number
of incoming picking tasks are more often indicated to be non-stationary by the KPSS test
due to the seasonality being displayed by the non-zero values in these time series. This
combined with the fact that these time series have a much bigger impact on the plot in
Figure 14 than time series with low mean number of incoming picking tasks, makes this
plot show seasonal behavior and thus be non-stationary. After reviewing many different
individual time series, it was also concluded that the seasonal pattern seen in Figure 14
is far more often present in time series with higher mean number of incoming picking
tasks. Therefore, the plot in Figure 14 is more representative of time series with higher
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mean number of picking tasks than for time series with lower mean number of picking
tasks.

4.5 Feature engineering

Feature engineering is applied to extract additional variables from the dataset with the
aim to improve the forecasting performance. These additional variables in the input of the
forecasting models can enhance performance because the variables that are engineered are
believed to influence the number of picking tasks coming in. In Table 6, the features that
are engineered from the time series are provided. Furthermore, in this table, the features
are described. Furthermore, the variable type, minimum, maximum, mean, and Pearson’s
correlation coefficient with respect to the variable that is forecasted, of the feature are
given.

Table 6: Features engineering in dataset

Feature Description Type Min Max Mean Corr

Weekday The weekday of the week represented
by an integer.

Integer 0 6 3 -0.089

Hour The hour of the observation. Integer 0 23 11.50 0.024

Weekday hour
mean

Mean number of tasks for that weekday
and hour combination.

Float 0 535 30.01 0.767

Holiday Binary variable indicating if the day
of the observation is a holiday or not.
This includes national holidays of the
Netherlands, Germany, Great Britain,
France, Italy, and Spain.

Binary 0 1 0.09 -0.010

Holiday school Binary variable indication if the day
of the observation is a holiday for the
schools in the south of the Netherlands
or not.

Binary 0 1 0.26 -0.022

First of all, the first three features, Weekday, Hour, and Weekday hour mean are
engineered because, as shown in Section 4.4, the hour of the day, weekday, and especially
the combination between these two have an influence on the number of picking tasks
coming in. The correlation of the hour variable with the number of picking tasks does
not provide too much information because the relationship between the hour of the day
and the number of picking tasks coming in is not linear. As discussed in Section 4.4,
there are more picking tasks coming in during working hours, however, there is no linear
relationship as it is not necessarily the case that the latter or earlier the hour in the day,
the higher or lower the number of incoming picking tasks. The fact that the working hours
show higher number of picking tasks is not shown by the correlation but is the reason for
engineering this feature. Furthermore, the correlation of the weekday variable with the
number of picking tasks is negative as the days later in the week have lower number of
incoming picking tasks than the weekdays earlier in the week. This correlation is however
not that strong which could be caused by the fact that it is the combination between
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weekday and hour of the day that causes the higher number of incoming picking tasks.
This is shown in the Weekday hour mean variable which contains the combination of
these variables. This variable shows a strong correlation with the number of incoming
picking tasks. Including these features in the input of the forecasting models is believed
to be able to enhance forecasting performance as the models have more information on
variables that influence the forecasted variable.

Furthermore, the last two features in Table 6, are related to holidays. As can be seen
in the table, the correlations of these features with the forecasted variable are very low.
Nevertheless, these features are added to investigate whether or not these could help
enhance forecasting performance. The intuition behind engineering these features comes
from the fact that DHL serves customers in a B2B environment. Consequently, the bulk
of the picking tasks come in during work hours on working days, when the businesses are
operational. However, the behavior of the bulk of picking tasks coming in during work
hours on working days might be influenced when the businesses are not operational during
holidays. To capture this behavior, these two features, capturing the holidays during the
year, are included in the feature engineering. Testing the forecasting models with and
without using these features as input into the models provides the opportunity to assess
whether or not adding these features enhances forecasting performance in the warehouse
of DHL. This provides an indication of the potential of using features that are engineered
from the time series data to forecast picking tasks that are coming in.

The first two and last two features in Table 6 are engineered from the timestamp that is
available as datetime closed in the dataset (this variable is explained in Table 2). These
features, which can directly be engineered from the timestamp data, are also known as
datetime features. Moreover, the third feature in Table 6, Weekday hour mean, is an
expanding window feature. Expanding window statistics compute the statistics based on
all the information that is available until that point in time. This means as we move further
in time, more data on these statistics becomes available. For the weekday hour mean
variable, this implies that the mean is calculated on all data that is available until that
point in time.

All the features that are engineered, which are shown in Table 6, are used in the forecasting
models that allow for features as input. More information on how this is implemented in
the forecasting models is discussed per individual model in Chapter 5.
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5 Forecast models
In Chapter 5, the implementation of the forecasting models, and the results of the forecasts
that the models produce, are discussed. First, the explanation on selecting forecasting
models for implementation is given. Then, the performance metrics that are used to
evaluate the quality of the forecasts are given. In the hyperparameter tuning and testing
section, information on the setup of the hyperparameter tuning and testing is provided.
This includes the way in which the time series data is used, the types of hyperparameter
tuning that are used for the specific models, and how the forecasts are made. In the
sections after that, the implementation forecasting models are discussed and the results of
the forecasts made by the models are presented. Lastly, the performance of the individual
forecasting models is discussed and the forecast models are implemented per zone or per
departure bucket, instead of for all the time series together, with the aim to enhance
forecasting performance.

5.1 Model selection

In Chapter 2, the forecasting models that are used in literature are discussed. This resulted
in Figure 6, in which all the forecasting models that were extracted from literature are
shown. From these forecasting models, a selection on which models are implemented
is made. Forecasting models from the statistical forecasting model category and the
machine learning forecasting model category are selected to be able to provide insights
into the performance of these model categories on the case of DHL. From the statistical
forecasting models, the ES models, SES, Holt’s, and Holt’s-Winters, the ARIMA models,
ARIMA, SARIMA, ARIMAX, SARIMAX, and the Croston method have been selected to
be implemented. ES has been chosen because it is one of the most well-known forecasting
techniques and it offers a robust technique that is widely used in many business applications.
Furthermore, ARIMA models have been chosen because this is another renowned category
of forecasting models and it incorporates all other statistical methods, regression models,
autoregressive models, and moving average models, into one model, which means it can
use information on the past predicted values, past error terms, and predictive variables,
to produce forecasts. Lastly, the Croston method was selected because this method is
tailored to forecast on zero-inflated datasets with intermittent demand. As discussed
before, the dataset on which is forecasted is zero-inflated.

From the machine learning models, NN models have been selected to implement because
these models can deal with complex and non-linear data which makes them suitable
to deal with seasonal and multivariate data. Furthermore, NNs are the most widely
used machine learning model in time series forecasting and show promising results in
literature. Two types of NNs models are implemented, MLP and LSTM. MLP is chosen
because it is a more simple NN, which is easy to implement, and widely used in time
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series forecasting. Moreover, LSTM is chosen because, by making use of the gates system,
LSTM has control over the processing of information. Consequently, LSTM can include
long-term dependencies which makes it suitable for time series forecasting.

5.2 Performance metrics

To evaluate the forecasting performance of the models, performance metrics have to be
selected. In Section 2.4, performance metrics that are used in literature are explained.
From these metrics RMSLE is selected and used as the most important performance
metric because it provides advantages that are desired in the case of forecasting picking
tasks in the warehouse of DHL. In RMSLE, bigger differences are less penalized when
both the predicted and the actual values are big, and underestimates are penalized slightly
more than overestimates. This is desirable as a forecast can be quite good, even when the
absolute error is far off, when the actual values are also big. Furthermore, this discourages
the forecasting models from only predicting zero values for the zero-inflated data. On
top of that, RMSLE can also deal with zero values. This is essential as the dataset is
zero-inflated. How the RMSLE is calculated is shown in Equation 1. In the calculation,
yi is the actual value, and ŷi is the predicted value.

RMSLE =

√√√√ 1

n

n∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (1)

To evaluate the models more extensively, the RMSE is also used. The RMSE is computed
to gain more insight into the performance of the forecasting models using a metric that
does not differentiate between underestimation and overestimation and does not take into
account the magnitude of the actual values. Furthermore, in the results the MAE is also
provided. MAE is used to gain a better understanding of the forecasting error in absolute
terms. The way in which RMSE and MAE are calculated is shown in Equation 2 and
Equation 3.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

5.3 Forecasting

To perform the hyperparameter tuning and testing, cross-validation for time series with
expanding window is implemented. This means that all the data, until the point that
is forecasted from, can be used for training the forecasting model. As the point from
which is forecasted goes further in time, the models are trained again on the data that is
available until that forecast point. This implies that for every point that is forecasted
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from, and that is further in time than the previous point from which was forecasted, the
training data of the forecasting model consists of data that was already available for the
previous forecast point and newly available data that has become available because the
new point from which is forecasted is further in time. In Figure 15, cross-validation for
time series with expanding window is depicted.

Figure 15: Cross-validation for time series with expanding window (Vien et al. (2021))

In Figure 15, the training part relates to the training, which is all the data until the
point that is forecasted from. The testing part corresponds to the real number of picking
tasks for the 48-hour forecast time period for which the forecast is made. Comparing
the 48 forecasts of the forecasting models with the real values of the test set allows to
evaluate the model performance. In cross-validation for time series, unlike in other types
of cross-validation, it is essential to conserve the time dependency of the data. This is
done to prevent training the forecasting models on data that has a timestamp after the
point from which is forecasted. This is not allowed as the training data may contain
information that is not known at the time of forecasting.

Furthermore, the forecast that is made consists of a forecast, 48 hours ahead, with a
one-hour interval. This implies that the forecast consists of 48 values which means that a
multi-step-ahead time series forecasting method is required. As described in Section 2.1.3,
there are different methods available to perform multi-step-ahead time series forecasting.
The multi-step-ahead time series forecasting method implemented in the forecasting
models is MIMO. In MIMO the number of forecast values that is desired is forecasted at
once by the model. This method was chosen because it does not have accumulation of
forecasting errors, as in the Rec method. Furthermore, it also allows for one forecasting
model, instead of 48 different models for every individual forecast value, as in the Dir
method, which makes the training process a lot less cumbersome.

5.4 Hyperparameter tuning and testing

Hyperparameter tuning is performed to find the optimized hyperparameters for each
forecasting model. Finding the optimal hyperparameters is essential for the forecasting
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models to be able to produce the most accurate forecasts. As explained in Section 5.3,
the forecasts are made from a specific point, 48 hours ahead, and can be evaluated by
comparing the forecasts to the test set of 48 actual values for the number of incoming
picking tasks. Each time series is tuned on either three or five test sets in the cross-
validation, depending on the running time of the forecasting models. These five (or three)
test sets, and corresponding points from which is forecasted, are selected in the following
way. First of all, the last twenty weeks of the dataset are reserved for testing the models.
The five weeks (or three weeks in some models with longer running time) prior to these
twenty weeks are selected for the parameter tuning. This leaves a bit more than 1 year
of data to train the models on. In these five (or three) weeks, which are reserved for
the parameter tuning, one point is randomly selected between Monday 00.00 AM and
Thursday 00.00 AM to forecast from. These forecast points, which are randomly chosen,
are uniform for all forecasting models. This interval is chosen to ensure that the models do
not have to forecast on weekends which is not desired, as described in Section 1.4. These
five (or three) points from which is forecasted make up the five (or three) cross-validation
points on which the hyperparameter tuning is done. This implies that, for the five (or
three) points from which is forecasted, the forecasting model is trained every time, with
every hyperparameter combination that is tested and makes forecasts from these points.
The forecasts are then reviewed corresponding to the actual values in the test set and the
hyperparameter combination with the best performance over the five (or three) forecasts
is chosen to be used in the testing phase. To decide what hyperparameter combination
provides the performance in the forecasting models, the hyperparameter combination with
the lowest RMSLE for that time series is chosen.

The hyperparameters of the models are tuned per individual time series and not on all
time series aggregated. The result of this is that each individual time series has its own
tuned hyperparameters which is assumed to enhance the performance of the forecasts per
time series. Furthermore, per forecasting model category, different hyperparameter tuning
methods are applied which fit the characteristics of the forecasting models. In Table 7,
every forecasting model, including what type of hyperparameter tuning was applied, and
on how many cross-validation test sets it was tuned on, is given.

Table 7: Parameter tuning of forecasting models

Model Parameter tuning Forecasting points

SES Grid search 5

Holt’s Grid search 5

Holt’s-Winters Grid search 5

ARIMA Grid search 5

SARIMA Grid search 5

ARIMAX Grid search 3

SARIMAX Grid search 3

Croston Grid search 5

MLP Bayesian optimization 5

LSTM Bayesian optimization 3
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In Table 7, it can be seen that for the ES, ARIMA, and Croston models, grid search is
used as hyperparameter optimization method. Grid search is chosen because either there
are not too many hyperparameters to be tuned in the model, or the hyperparameters do
not have many different values that are appropriate to test. Therefore, for these models,
the grid search, which tests all the possible combinations of the values of hyperparameters
that are put in, does not become too large. For the NNs however, Bayesian optimization
is applied to tune the hyperparameters because in the NNs a lot of hyperparameters,
which can take a lot of different possible values, are tuned. Bayesian optimization can
tune hyperparameters more efficiently and can reach good results without having to do an
exhaustive search of the hyperparameter combinations, which is why it is implemented for
the NN models. Furthermore, as can be seen in Table 7, for the ARIMAX, SARIMAX,
and LSTM models, only three points from which is forecasted are used in the parameter
tuning instead of five. This is done to keep the running time of the parameter tuning
within acceptable limits.

After the best hyperparameter combinations are found in the hyperparameter tuning, for
each time series, for every model, the forecasting models are tested on unseen data. The
testing of the forecasting models is done in the same way, by making use of cross-validation
with expanding window, as the hyperparameter tuning. However, to ensure that the data
is tested on unseen data, the test set is constructed from the last twenty weeks of the data,
which is after the test points on which the parameter tuning is done. From these twenty
weeks, the first ten weeks are used to construct the test set for the individual forecasting
models, and the last ten weeks are used to test the implementation of the forecast models
per zone or departure bucket. In this last phase, the forecast models are implemented
per zone or departure bucket based on the performance of the individual models on the
picking zone and departure bucket aggregation levels. Consequently, to ensure that there
is no data leakage between the individual forecasting models and the implementation on
the aggregation levels, these two test sets are separated. For both the test sets, just like
in the parameter tuning, in each of the ten weeks, one point is randomly selected between
Monday 00.00 AM and Thursday 00.00 AM to forecast from. These ten points are used
to make the cross-validation test sets, just like in Figure 15. The testing set consists
of two times 10 test points which is quite large relative to the parameter tuning which
consists of 3 or 5 forecasting points. This is due to the fact that for testing the models
already have tuned hyperparameters. Consequently, the model only needs to run once,
with these hyperparameters, instead of running for different hyperparameter combinations.
Therefore, the model can be tested on more forecasting points than the hyperparameter
tuning while keeping the running times or the models acceptable.

5.5 Benchmark

Currently, in the warehouse of DHL, a forecasting model is already in production to forecast
the number of picking tasks coming in. This forecasting model is used as benchmark
method to compare the chosen forecast models to, in terms of performance. The current
forecasting model that is implemented is a lightGBM model that is also discussed as one
of the supervised machine learning models in Section 2.2.9. This supervised machine
learning model uses a combination of weak learners, which are often decision trees, to get
an accurate forecasting model. Furthermore, this model predicts the number of picking
tasks based on the input features that are engineered from the time series data, without
directly taking the past values of the target variable, which is the number of incoming
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picking tasks, into account. Indirectly, features like the mean over a certain period, or
lagged values, provided as features, can (partly) be used instead of having the past values
of the target variable as input. In Appendix B, the features that are engineered, and used
as input to the benchmark forecasting model, are described. Apart from these engineered
features, also the departure bucket, and picking zone, which were already available as
features in the dataset, are used as input features.

The benchmark method thus aims to forecast the number of picking tasks based on time
series features, engineered from the time series data, without directly using the past
values of number of picking tasks. Furthermore, the data that is used as input to the
benchmark model consists of all the data for all the different picking zones and departure
buckets, which are added as features in the dataset. This is a fundamental difference to
the approach of the forecasting models that are implemented with the aim to improve
the forecasting performance of the benchmark. These forecasting models, all use the
past values of number of picking tasks as a sequence, as input, either with or without
selected time series features that are engineered. The data that is used as input for
these forecasting models consist of the data on past values, and optionally the engineered
features, only on the picking zone and departure bucket for which the forecasts are made.
This implies that these two features are not used in the forecast of the implemented
forecasting models as the picking zone and departure bucket are the same for all the input
data on which is forecasted. The input data of the implemented forecasting models are
filtered per picking zone and departure bucket in the data preprocessing of each model.
Consequently, the performance of the different approaches in use of time series data can
also be compared. In Table 8, the performance metrics RMSLE, MAE, and RMSE, on
the whole dataset, for the benchmark model, can be observed.

Table 8: Performance metrics of Benchmark

Model RMSLE MAE RMSE

Benchmark 1.63 6.65 14.82

Furthermore, in Table 33, in Appendix D, the results of the benchmark per picking
zone, and per departure bucket can be seen. This is done to gain more insights into the
performance of the different models across different picking zones and departure buckets.
As can be concluded from these results, the benchmark performs quite consistently across
zones and departure buckets by reviewing the RMSLE. However, there are differences
in zones and departure buckets when reviewing the MAE and RMSE. Noticeable is that
the RMSLE seem to be consistent across zones and buckets, but the MAE and RMSE
seem to be higher for time series with higher mean number of picking tasks. This can
be explained by the fact that RMSLE evaluates the performance by making use of a
log that punishes differences when actual values are bigger, less compared to MAE and
RMSE. To gain more insights into how the benchmark makes the forecasts, a wide range
of different individual forecasts for different time series were evaluated to see how these
perform with respect to the actual values. The insights that were obtained from this
analysis are explained by the two forecasts that are depicted in Figure 16. One of these
forecasts represents the insights gained for time series with high mean number of picking
tasks and one of these forecasts represents the insights gained for time series with low
mean number of picking tasks. In this figure, the grey line represents the actual number of
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incoming picking tasks and the red line represents the forecast made by the model.

(a) Benchmark, Pickbelt, (0,(16, 20]) (b) Benchmark, Pick Above, (1,(16, 20])

Figure 16: Forecasts of Benchmark

First of all, the plot with Pickbelt, (0,(16, 20]), is a forecast for the time series in zone
”Pickbelt”, with days to departure equal to 0 and departure time bucket (16, 20]. the plot
with Pick Above, (1,(16, 20]), is a forecast for the time series in zone ”Pick Above”, with
days to departure equal to 1 and departure time bucket (16, 20]. The former is a time
series with high mean number of tasks and the latter is a time series with lower mean
number of picking tasks. This can also be seen by the y-axis of these plots which are of
different magnitudes.

As can be seen in Figure 16a, the benchmark does not forecast the seasonality in this
time series, with high mean number of tasks, well. In the more extensive analysis, it
came forward that for some time series with high mean number of incoming picking tasks,
the benchmark was sometimes able to forecast the seasonality reasonably well, but in
other instances was not able to do this. For the biggest portion of the time series with
high mean number of incoming picking tasks, the benchmark was unable to forecast this
seasonality well. Furthermore, as can be seen in Figure 16b, for this time series, with low
mean number of picking tasks, the forecast is too high relative to the actual values. In the
extensive analysis, for almost all time series with low mean number of incoming picking
tasks, the benchmark overestimated the actual number of incoming picking tasks as in
this plot. Both these insights indicate why the benchmark can be improved.

5.6 Exponential smoothing

Three ES forecasting models are chosen to be implemented in this thesis. These are
SES, Holt’s, and Holt’s-Winters. In Section 2.2.1, these three ES models are defined. To
optimize the performance of the models, hyperparameter tuning is performed as described
in Section 5.4. As mentioned in this section, the hyperparameter tuning method used for
the ES techniques is grid search. The values that were tested in the grid search were set
with the aim to test a range of possible values, which are reasoned to possibly provide
good results, while also keeping the running time of the grid search acceptable. Grid
search tests each of the hyperparameter combinations that can be made by the values
that are set to be tested for each hyperparameter. Consequently, a model with a smaller
number of hyperparameters that are tested can have more test values per hyperparameter
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to arrive at an equal level of hyperparameter combinations that need to be run. Due
to this the SES model has more values that are tested for its only hyperparameter, α,
than the other two models. Furthermore, not all hyperparameters that can be set in the
models are tuned in the grid search. Certain hyperparameters are set by reviewing the
time series to limit the running time of the grid search. In Table 9, the values that are
tested, per hyperparameter, per ES model, are provided.

Table 9: Test values of hyperparameters that are tuned for every ES model

Model Hyperparameters tuned Test values

SES α 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9

Holt’s α 0.05, 0.9

β 0.01, 0.2, 0.9

Trend Additive, None

HW α 0.05, 0.2, 0.9

γ 0.01, 0.2, 0.9

For SES, the only hyperparameter that needs to be specified is α. The values that are
tested in the grid search for this hyperparameter can be seen in Table 9. In Holt’s, the
hyperparameters that can be set are α, β, ϕ, trend parameter, and damping parameter.
The hyperparameters ϕ and the damping parameter are related to damping the trend in
the model. As there is no indication that this is needed in the time series data, these
hyperparameters are set to no damping. The other hyperparameters, α for the level, and
β and the trend parameter for the trend, are tuned by the grid search, as can be seen in
Table 9. The trend hyperparameter is set to none or additive for the model to be able
to test whether or not adding a trend component provides better results for individual
time series. As there is no clear indication of a trend in the time series data however,
apart from setting the trend component to additive, there is also a possibility for the
Holt’s model to specify no trend, which would make it equal to SES, if this provides the
best results. Lastly, for Holt’s-Winters, the hyperparameters α, β, ϕ, γ, trend parameter,
damping parameter, seasonal parameter, and seasonal period can be set. As there is no
clear indication of a trend in the time series data, the trend components are set to no
trend, to test the Holt’s-Winters without trend, but only with the seasonal component,
that is present in the dataset as discussed in Section 4.4. This implies that β, ϕ, the trend
parameter, and the damping parameter do not have to be included in the grid search.
Furthermore, it is not observed in the data that the magnitude of the seasonal components
change over time. Therefore, the seasonal parameter is set to additive. Moreover, the
seasonal period is set to 168 (24 ∗ 7) which corresponds to the seasonal pattern which
comes back on the same hour on the same weekday, which means that the seasonal period
comes back every 168 (24 ∗ 7) hours for hourly demand. This seasonal period relates to
the hourly and daily seasonality discussed in Section 4.2. Setting this hyperparameter
to 24 would indicate hourly seasonality, but would not include the fact that the day of
the week is also important to take into account in the seasonality. The α and γ variables
are included in the grid search as can be observed in Table 9. In Appendix C, the tuned
parameters per forecasting models are given. In Table 10, the results on the performance
metrics for the models SES, Holt’s, and Holt’s-Winters, on the whole dataset, are provided.
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Furthermore, the results of the benchmark are added to be able to compare the results of
the ES models to the benchmark.

Table 10: Performance metrics of ES models

Model RMSLE MAE RMSE

SES 0.88 3.28 13.62

Holt’s 0.99 5.94 98.30

Holt’s-Winters 0.64 2.24 10.89

Benchmark 1.63 6.65 14.82

What can be seen from the results on the performance metrics of the three ES models
in Table 10 is that for all three performance metrics, the Holt’s-Winters model performs
the best. After the Holt’s-Winters model, the SES model performs best on all three
metrics. When comparing to the benchmark, it can be seen that the RMSLE and MAE
are significantly better for all three ES models, when compared to the benchmark. Only
the RMSE for the Holt’s model is higher when compared to the benchmark. This is due
to the fact that Holt’s model on average has a lower absolute error than the benchmark,
but has some errors that are very large compared to the benchmark which gets punished
harder in the RMSE metric.

In Table 34, Table 35, and Table 36, in Appendix D, the results of the forecasting models,
per picking zone, and per departure bucket can be seen. This is done to gain more insights
into the performance of the different models across different picking zones and departure
buckets. Unlike in the benchmark, the RMSLE is significantly higher for time series with
higher mean number of picking tasks. Higher errors in time series with higher mean
number of picking tasks can also be seen in the MAE and RMSE of all three ES models.
An anomaly to this is the results for the departure bucket (2, (8,12)) which are high for all
three models, and all three performance metrics, while the mean number of picking tasks
in this departure bucket is relatively low. As for the benchmark, an extensive analysis of
the individual forecasts was done for different time series. The insights that were obtained
from this analysis are explained by the two forecasts of every model that are depicted in
Figure 17. One of these forecasts represents the insights gained for time series with high
mean number of picking tasks and one of these forecasts represents the insights gained for
time series with low mean number of picking tasks. In this figure, the grey line represents
the actual number of incoming picking tasks and the red line represents the forecast made
by the model.
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(a) SES, Pickbelt, (0,(16, 20]) (b) SES, Pick Above, (1,(16, 20])

(c) Holt’s, Pickbelt, (0,(16, 20]) (d) Holt’s, Pick Above, (1,(16, 20])

(e) Holt’s-Winters, Pickbelt, (0,(16, 20]) (f) Holt’s-Winters, Pick Above, (1,(16, 20])

Figure 17: Forecasts of Exponential smoothing models

The plots of the forecasts were made on the same time series as for the benchmark in
Section 5.5. What can be concluded from these plots is that SES and Holt’s forecast
(almost) the same value for each of the 48 hours ahead. This implies that these models are
not able to deal with the seasonality which can be seen, especially in the time series with
high mean number of tasks. This potentially causes these models to perform worse than
the Holt’s-Winters model that can deal with seasonality by forecasting different values
for the 48 hours ahead. As can be seen in Figure 17e, the Holt’s-Winters forecasts the
seasonality in the time series with high mean number of tasks a lot better than the SES
and Holt’s models. Furthermore, in Figure 17f, it can be seen that the Holt’s-Winters
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models also try to forecast the seasonality in the time series with low mean number of
tasks. It distinguishes the times of the day in which the number of incoming picking tasks
is likely to be zero or non-zero pretty well, but forecasting this accurately is hard since it
is only very few picking tasks that come in. Being able to forecast the seasonality in the
time series is the main reason why the Holt’s-Winters performs better than the other two
ES models.

5.7 ARIMA

Four ARIMA models are selected to be tested in this thesis. These are ARIMA, SARIMA,
ARIMAX, and SARIMAX. In Section 2.2.3, these models are explained. To tune the
hyperparameters of these models, hyperparameter tuning, as discussed in Section 5.4, is
performed. To tune the hyperparameters of the ARIMAmodels, grid search is implemented.
As in the ES models, the values that were tested in the grid search were set with the aim
to test a range of possible values, which are reasoned to may be able to provide good
results, while also keeping the running time of the grid search acceptable. As a result,
a model with a smaller number of hyperparameters that are tested can have more test
values per hyperparameter to arrive at an equal level of hyperparameter combinations
that need to be run. Due to this, the ARIMA and ARIMAX models have more values
that are tested for the two hyperparameters that are tuned in these models, than the
other two models, SARIMA and SARIMAX for the four hyperparameters that are tuned
in these models. Furthermore, not all hyperparameters that can be set in the models are
tuned in the grid search. Certain hyperparameters are set by reviewing the time series
to limit the running time of the grid search. In Table 11, the values that are tested, per
hyperparameter, per ARIMA model, are provided. In Appendix C, the tuned parameters
per forecasting models are given.

Table 11: Test values of hyperparameters that are tuned for every ARIMA model

Model Hyperparameters tuned Test values

ARIMA p 0, 1, 2

q 0, 1, 2

SARIMA p 0, 1

q 0, 1

P 0, 1

Q 0, 1

ARIMAX p 0, 1, 2

q 0, 1, 2

SARIMAX p 0, 1

q 0, 1

P 0, 1

Q 0, 1

Apart from the tuned parameters, for all of the ARIMA models, the differencing order
d needs to be specified. As discussed in Section 4.3, the KPSS test showed that not
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all time series are stationary without differencing. However, after applying first-order
differencing (i.e. d = 1) to the time series that are non-stationary, these become stationary.
Consequently, in all ARIMA models, the d parameter is set to 0, if the time series is
stationary according to the KPSS test, and the d parameter is set to 1, if the time series
is non-stationary according to the KPSS test, making this time series stationary after
first-order differencing.

Additionally, in the seasonal ARIMA models, SARIMA and SARIMAX, the seasonal
differencing parameter D and the seasonal period s need to be specified. First of all, the
seasonal differencing order D is set to 0 for both models, as the differencing parameter
d has already ensured stationarity. Furthermore, the seasonal period s is set to 168
(24 ∗ 7) which corresponds to the seasonal pattern which comes back on the same hour,
on the same weekday, which means that the seasonal period comes back every 168 (24 ∗ 7)
hours for hourly demand. This seasonal period relates to the hourly and daily seasonality
discussed in Section 4.2.

Lastly, for the ARIMAX and SARIMAX models, selected features are also included in a
regression-like manner. The features that are included, including why these are included,
is explained in Section 4.5. These features are: weekday, hour, holiday, school holiday,
and mean number of picking tasks for the specific weekday and hour combination until
that point in time. In Table 12, the results of the ARIMA models on the whole dataset,
compared to the benchmark, are shown.

Table 12: Performance metrics of ARIMA models

Model RMSLE MAE RMSE

ARIMA 0.89 3.23 14.15

SARIMA 0.68 2.46 12.04

ARIMAX 0.56 1.96 10.33

SARIMAX 0.57 2.02 10.40

Benchmark 1.63 6.65 14.82

As can be seen in Table 12, all the ARIMA models outperform the benchmark on all
three performance metrics. Furthermore, the ARIMAX model performs best, followed
by the SARIMAX model, the SARIMA model, and the ARIMA model. This indicates
that including the features in the ARIMAX and SARIMAX models improves performance
significantly. Furthermore, the seasonal effect included in the SARIMA models also
provides a significant enhancement in comparison to the ARIMA model. In Table 37,
Table 38, Table 39, and Table 40, in Appendix D, the results of the ARIMA models can
be observed, per zone and departure bucket. From these results, it can be concluded that
all the ARIMA models have higher errors for the time series with high mean number of
picking tasks. The ARIMAX and SARIMAX models, however, outperform the SARIMA
model, especially on the time series with high mean number of incoming picking tasks.
Additionally, the ARIMA model scores poorly in comparison to SARIMA, ARIMAX, and
SARIMAX models on all time series.

To evaluate the forecasts made by the ARIMA models more extensively, an analysis of
the individual forecasts was done for different time series. The insights that were obtained
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from this analysis are explained by the two forecasts of every model that are depicted in
Figure 18. These plots are of the same two time series as in the previous sections. In this
figure, the grey line represents the actual number of incoming picking tasks and the red
line represents the forecast made by the model.
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(a) ARIMA, Pickbelt, (0,(16, 20]) (b) ARIMA, Pick Above, (1,(16, 20])

(c) SARIMA, Pickbelt, (0,(16, 20]) (d) SARIMA, Pick Above, (1,(16, 20])

(e) ARIMAX, Pickbelt, (0,(16, 20]) (f) ARIMAX, Pick Above, (1,(16, 20])

(g) SARIMAX, Pickbelt, (0,(16, 20]) (h) SARIMAX, Pick Above, (1,(16, 20])

Figure 18: Forecasts of ARIMA models
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What can be concluded from these plots is that the ARIMA models cannot deal with the
seasonality in the time series with picking zone ”Pickbelt”, days to departure equal to
0, and departure time bucket (16, 20]. The SARIMA does forecast the seasonality but
cannot fully estimate the magnitude of the peak values in the seasonality. Furthermore,
the ARIMAX and SARIMAX models do forecast the seasonality but are able to forecast
the magnitude of the seasonality better. This phenomenon is observed across all the time
series with high mean number of picking tasks. As mentioned before, in the results per
zone and per departure bucket, the ARIMAX and SARIMAX especially outperform the
SARIMA model on the zones and departure bucket with high mean number of tasks.
This confirms the claim that ARIMAX and SARIMAX are better able to forecast the
magnitude of the seasonality in the time series with high mean number of tasks than the
SARIMA model. Adding the features to the ARIMAX and SARIMAX models causes
these models to be able to forecast the magnitude of the actual values better.

In the time series with picking zone ”Pick Above”, days to departure equal to 1, and
departure time bucket (16, 20], it can be seen that the ARIMA and SARIMA model
predict a value close to zero for all 48 values in the forecast. On the other hand, the
ARIMAX and SARIMAX models still try to predict the seasonality in this time series
with a lot less non-zero actual values. As observed before this is more difficult than
forecasting the seasonality in the time series with high mean number of tasks. This can
also be seen in the results because the performance of the SARIMA models is comparable
to the performance of the ARIMAX and SARIMAX models for time series with low mean
number of incoming picking tasks. Therefore, forecasting values close to zero for all
48 hours ahead, as the SARIMA model or trying to forecast the seasonality, which is
hard as non-zero values do not occur frequently, does not matter too much in terms of
performance, in the time series with low mean number of incoming picking tasks. The
ARIMA model seems to forecast a value a little bit further away from zero for the time
series with low mean number of incoming picking tasks which is why, for these time series,
the performance of this model is quite poor.

5.8 Croston method

Apart from the well-known statistical models, ES and ARIMA, also a statistical method
that is specially made for forecasting zero-inflated data is implemented. In Section 2.2.4,
the theoretical background on this method is provided. As described in Section 5.4,
the hyperparameter tuning for the Croston method is done by grid search. The only
hyperparameter that needed to be tuned was the smoothing parameter α. In Table 13,
the values that were tested in the grid search to tune the smoothing parameter are
shown.

Table 13: Test values of hyperparameter that are tuned for Croston method

Model Hyperparameters tuned Test values

Croston α 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9

In Appendix C, the tuned smoothing parameter per time series of the Croston method are
given. Furthermore, in Table 14, the results of the performance metrics for the Croston
method, on the whole dataset, are provided.
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Table 14: Performance metrics of Croston method

Model RMSLE MAE RMSE

Croston 0.86 3.24 13.30

Benchmark 1.63 6.65 14.82

As can be seen in Table 14, the Croston performs considerably better on all three
performance metrics compared to the benchmark. In Table 41, in Appendix D, the results
of the Croston method can be seen per zone and departure bucket. From these results
can be conducted that the Croston method performs better on all three performance
metrics for zones and departure buckets with lower mean number of incoming picking
tasks. In Figure 19, two examples of forecasts that are made by the Croston method are
depicted. In Figure 19a, a forecast for a time series with higher mean number of tasks
is shown. In Figure 19b, a forecast for a time series with lower mean number of tasks is
shown. In these figures, the grey line is the actual number of incoming picking tasks for
each hour, whereas the red line is the forecasted number of incoming picking tasks per
hour. Furthermore, the y-axis, which represents the number of incoming picking tasks,
are on different scales. To gain more insights into how the Croston method makes the
forecasts, several different forecasts for different time series were evaluated. The insights
that were obtained from this analysis are explained by the two forecasts of every model
that are depicted in Figure 19. Just like in the previous sections, One of these forecasts
represents the insights gained for time series with high mean number of picking tasks and
one of these forecasts represents the insights gained for time series with low mean number
of picking tasks. In this figure, the grey line represents the actual number of incoming
picking tasks and the red line represents the forecast made by the model.

(a) Croston, Pickbelt, (0,(16, 20]) (b) Croston, Pick Above, (1,(16, 20])

Figure 19: Forecasts of Croston method

The same two time series are evaluated as in previous sections. As can be seen in Figure 19,
the forecasts that are made by Croston method are the same for all 48 values of the
forecast. As can be seen from Figure 19a, the Croston method does not forecast the
seasonality that can be seen during the day in the plot for the high mean number of
picking tasks. Furthermore, for time series with a low mean number of incoming picking
tasks, like the one in Figure 19b, the Croston method forecasts values really close to 0 for
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all the 48 values. As the actual value is often zero, and sometimes a low number, this
prediction is often close to the actual value.

5.9 Neural networks

Four NN models are selected to be tested for the case of DHL. These are MLP and LSTM,
both with and without features. In Section 2.2.8, these models are explained. As discussed
in Section 5.4, the method that was used to tune the hyperparameters of these models is
Bayesian optimization. Bayesian optimization tries to select the hyperparameters with the
best performance in a range of hyperparameter values by making use of the performance
of the previous hyperparameter set. Bayesian optimization is often more efficient than grid
search in terms of running time as it selects the next set of hyperparameters to evaluate
based on the performance of the previous hyperparameter set, reducing the number
of evaluations needed, while grid search evaluates all combinations of hyperparameters
exhaustively. In Table 15, the hyperparameters that are tuned for each of the NN models
are given, including the range of values that can be tested. In Appendix C, the tuned
parameters per forecasting models are given.

Table 15: Test values of hyperparameters that are tuned for every ARIMA model

Model Hyperparameters tuned Test value range

MLP Dropout 0.01 - 0.5

Learning rate 0.00001 - 0.005

Neurons 10 - 50

Epochs 5 - 20

Layers 1 - 2

LSTM Dropout 0.01 - 0.5

Learning rate 0.00001 - 0.000011

Neurons 10 - 50

Epochs 5 - 10

Layers 1 - 2

First of all, all the test value ranges that are shown for the MLP model, are used for both
the MLP with features and the MLP without features. In the same way, the test value
ranges that are shown for the LSTM model, are used for both the LSTM with features
and the LSTM without features. As can be seen in Table 15, the test value ranges of
the MLP and LSTM are different for the hyperparameters learning rate and epochs. The
lower range of test values for the learning rate in LSTM is to avoid that the model predicts
nan values, as was sometimes the case with higher learning rate. Furthermore, the range
of test values for the number of epochs is lower for LSTM to keep the running time of the
Bayesian optimization reasonable. Moreover, the number of iterations that the Bayesian
optimization runs for, needs to be set. One iteration corresponds to one hyperparameter
combination that can be tested for the models. The number of iterations is set to 10 for
the MLP models and 3 for the LSTM models, again with the aim to keep the running
time reasonable.
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To help the learning process of the NN models, normalization is applied to the input
data. This implies that all the values in the input data were scaled between 0 and 1.
Normalization is chosen over standardization as the data on the number of incoming
picking tasks does not follow a Gaussian distribution. Furthermore, in the NN models,
vectors with past values are put in, on which the NN models predict the number of
picking tasks for the next 48 hours. To train the NN models, multiple input vectors and
corresponding output vectors (of 48 values which correspond to the 48 hours ahead) have
to be constructed. As mentioned in Section 5.4, there is a bit more than 1 year of data.
To train the NN models, vectors with past values of the last 70 days are made. The first
vector is of the first 70 days of the train set, the next vector then shifts one day further to
create a new vector on which is trained. This results in a total of 333 vectors on which
can be trained. 70 days of data is chosen as the length of the vector because it is believed
that it provides enough data per vector for the NN model to make decent predictions,
while also being able to construct enough vectors to train the NN models on.

For the MLP and LSTM models without features, the vectors of past values for the last
70 days are the input that is provided to these models. For the MLP and LSTM models
with features however, also the values of the features are used as input. The features that
are used as input can be found in Section 4.5. The values of the features that are desired
as input for these models are the values that correspond to the 48 hours for which the
incoming tasks are predicted. For example, it is relevant for the model to know for which
days of the week, or hours of the day, the predictions are made, instead of knowing the
day of the week, or hour of the day, for the past values in the input vectors. Consequently,
the length of the input vectors, which contain the values of the features, is 48 values,
corresponding to the 48 hours that are forecasted. However, as described before, the input
vector for the past values of incoming picking tasks contains values of the last 70 days.
As the values are on an hourly interval, the length of this input vector is 1680 (70*24).
However, to use these values as input to the NN, a matrix has to be formed. To form this
matrix, the length of the vectors of past values of incoming picking tasks, and feature
values, need to be equal to each other. To make this possible, padding and masking are
used. First of all, nan values are added to the vectors that contain the features values
to make the length of these vectors equal to the length of the vector of past values of
incoming picking tasks. This is also known as padding. After that, the input matrix
is made by combining these equally sized vectors. Lastly, a masking layer is added to
the NN models that takes out the nan values. This makes sure that only the feature
values are used in the NN, and that the nan values are not included in the rest of the
calculations. This is known as masking. In Table 16, the results of the NN models on the
whole dataset, including the results on the benchmark model, are shown.

Table 16: Performance metrics of NN models

Model RMSLE MAE RMSE

MLP without features 0.94 3.35 14.26

MLP with features 0.93 3.22 13.93

LSTM without features 0.92 2.90 14.67

LSTM with features 0.92 2.91 14.67

Benchmark 1.63 6.65 14.82
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As can be seen in Table 16, the NN models outperform the benchmark on all three
performance metrics. Especially for the RMSLE and MAE, the differences in performance
between the NN models and the benchmark model are large. Furthermore, it can be
observed that the LSTM models outperform the MLP models on RMSLE and MAE but
the MLP models outperform the LSTM on the RMSE. This indicates that on average
the error in the LSTM is lower, however, the LSTM models more often have bigger
differences between the prediction and the actual value. Furthermore, it can be concluded
that adding the features to the MLP model improves the forecasting performance by
a small margin. In the LSTM model, however, adding the features did not improve
the forecasting performance. The fact that the addition of features does not provide a
substantial improvement for the NN models is potentially caused by the NN models not
being able to link the added features to the number of incoming picking tasks. This can
be caused by the fact that the NN are unable to detect relations between the features and
the number of incoming picking tasks, or the feature value set on which the NN are trained
being too small, as there are only 48 feature values trained on every time In Table 42,
Table 43, Table 44, and Table 45, in Appendix D, the results of the NN models are given
per zone and departure bucket. From these results, it can be concluded that, as for the
other forecasting models, the NN models perform better in terms of performance metrics
on time series with lower mean number of picking tasks. Like for the other forecasting
models, an extensive analysis of the forecasts of the NN models for different time series
was done. The insights that were obtained from this analysis are explained by the two
forecasts of every model that are depicted in Figure 20. The plots of the forecasts that
are shown are made on the same time series as was done for the other forecasting models.
In this figure, the grey line represents the actual number of incoming picking tasks and
the red line represents the forecast made by the model.

61



CHAPTER 5 FORECAST MODELS

(a) MLP wihout features, Pickbelt, (0,(16, 20]) (b) MLP wihout features, Pick Above, (1,(16, 20])

(c) MLP with features, Pickbelt, (0,(16, 20]) (d) MLP with features, Pick Above, (1,(16, 20])

(e) LSTM without features, Pickbelt, (0,(16, 20]) (f) LSTM without features, Pick Above, (1,(16, 20])

(g) LSTM with features, Pickbelt, (0,(16, 20]) (h) LSTM with features, Pick Above, (1,(16, 20])

Figure 20: Forecasts of Neural network models
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What can be concluded from Figure 20 is that there are big differences between the MLP
models and the LSTM model when making forecasts. First of all, when reviewing the
forecasts made for the time series with picking zone ”Pickbelt”, days to departure equal
to 0, and departure time bucket (16, 20], it can be seen that the MLP models forecast
the seasonality in this time series with high mean number of incoming picking tasks well,
opposed to the forecast of the LSTM model which forecasts only values close to zero.
This is also reflected by the results in Appendix D because on the zone and departure
bucket with the highest mean number of tasks, the MLP models perform better in terms
of RMSLE than the LSTM models. The fact that the LSTM cannot identify the seasonal
pattern well could be caused by several factors. In some time series problems certain
NN models have shown to be unable to model the seasonality (Zhang and Qi (2005)).
Furthermore, the size of the training set can also cause the NN models to perform poorly
on multi-step ahead forecasting (Sánchez-Sánchez et al. (2020)).

When evaluating the time series with picking zone ”Pick Above”, days to departure equal
to 1, and departure time bucket (16, 20], again the MLP aims to forecast the seasonality
in the time series, whereas the LSTM predicts a value close to zero every time. Due to
the little portion of non-zero values in this time series, it is hard for the MLP to predict
the times when the number of incoming picking tasks is going to be non-zero as shown in
the plots. For this forecast, LSTM provides better accuracy because the values are often
zero.

The higher MAE for the MLP models compared to the LSTM model indicate that the
MLP models have on average a higher absolute error. This is potentially caused by the
fact that there is a larger number of time series with low mean number of incoming picking
tasks, that have actual values which are often zero. As shown in Figure 20, the LSTM is
better at predicting these because the LSTM often predicts values close to zero. On the
other hand, the lower RMSE for the MLP models compared to the LSTM model indicates
that the MLP can handle the variability in the time series better and has less large
errors, as RMSE punishes larger errors harder. This can also be observed in Figure 20
because the MLP models can forecast the variability of large values in the time series
with picking zone ”Pickbelt”, days to departure equal to 0, and departure time bucket
(16, 20], better.

5.10 Discussion on performance of forecast models

In this section of the report, the performance of the forecasting models is discussed and
compared. In Figure 21, the RMSLE for all the forecasting models, per picking zone,
and per departure bucket is visualized. RMSLE is displayed because this performance
metric best suits the case of DHL as explained before in Section 5.2. In this figure, the
different forecasting models are displayed as different colored line plots, and the zone and
departure buckets are on the x-axis. Furthermore, the MLP wf and LSTM wf are the
MLP and LSTM models without engineered features. The MLP wsf and LSTM wsf are
the MLP and LSTM models with selected features.
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Figure 21: RMSLE of all forecasting models, per zone, and departure bucket

As can be seen in Figure 21, for virtually all picking zones and departure buckets, in
terms of RMSLE, the implemented forecasting models outperform the benchmark. The
forecasting models especially outperform the benchmark in zones and departure buckets
with low mean number of incoming picking tasks. The forecasting models have lower
RMSLE for the time series in zones and departure bucket with low mean number of
incoming picking tasks, whereas the RMSLE of the benchmark stays reasonably constant.
This is potentially caused by the approach which is used to make the forecasts. The
benchmark treats the forecasting as a regression on the different picking zones and
departure buckets while the forecasting models implemented in this thesis approach it
more as a classical time series forecast. Because of this approach, the predictions of the
implemented forecast models are made on data that is divided per individual time series,
instead of the benchmark, which uses all the data of all zones and departure buckets
together to make forecasts. Because of this, the benchmark can have a harder time
distinguishing between the different zones and departure buckets compared to the other
forecasting models, for which this division is already made in the data preprocessing.

Furthermore, it can be observed that the RMSLE is for which this is already done higher
for the zones and departure buckets that have higher mean number of tasks. It is not the
case that certain models clearly perform better on certain zones or departure buckets.
Instead, it is observed that the forecasting models that perform best overall, perform
among the best on all zones and departure buckets, both with low and high mean number

64



CHAPTER 5 FORECAST MODELS

of incoming picking tasks. What can also be observed is that the difference in performance
on the RMSLE is highest on the zones and departure buckets with high mean number of
incoming picking tasks. This is caused by the fact that some forecasting models cannot
deal with the seasonality that is present in the time series for these zones and departure
buckets which implies these forecast models perform poorly on forecasting these time
series. Moreover when actual values are higher, as on average in the time series with
zones and departure buckets with higher mean number of picking tasks, being a certain
percentage away from the actual value results in a higher error than for time series with a
lower average actual value.

When evaluating the performance of the implemented forecast models in more detail, it
becomes clear that the best-performing models are the models that can deal with the
seasonality in the time series. Being able to forecast the weekday and hourly seasonality,
which is discussed more extensively in Section 4.4, accurately proved to be an important
factor for good forecasting performance, especially in time series with high mean number of
incoming tasks. Additionally, the statistical methods that included a seasonal component
outperformed the NN in terms of forecasting performance. The poor performance of
the NN models compared to the statistical methods that included a seasonal component
is potentially due to the fact that in some time series problems NN models are unable
to model the seasonality (Zhang and Qi (2005)). This can especially be seen in the
predictions of the LSTM models in time series with high mean number of incoming picking
tasks. Furthermore, the size of the training set can also cause the NN models to perform
poorly on multi-step ahead forecasting (Sánchez-Sánchez et al. (2020)).

Additionally, adding the features to the forecasting models significantly improved the
forecasting performance of the ARIMA models. For the MLP and LSTM model, including
the features provided little to no improvement in forecasting performance. For the MLP
model, adding the features provided a very minimal improvement in the forecasting
performance. The fact that the addition of features does not provide an improvement
for the NN models can be caused by the fact that the NN are unable to detect relations
between the features and the number of incoming picking tasks, or the feature value
set on which the NN are trained being too small. For the ARIMA models, adding the
features in the ARIMAX and SARIMAX models provided significant improvements in
forecasting performance compared to the ARIMA and SARIMA models. The ARIMAX
model provided the best overall forecast performance, closely followed by the SARIMAX
model.

Apart from the performance, the running time of the forecasting models is also given as
this might be a factor when implementing forecasting models. In Table 17, the running
time of all the forecasting models, including the benchmark, is provided.
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Table 17: Running time of forecasting models

Model Running time

Benchmark (lightGBM) 31 minutes, and 52 seconds

SES 30 minutes and 30 seconds

Holt’s 42 minutes and 26 seconds

Holt’s-Winters 21 minutes and 16 seconds

ARIMA 43 minutes and 3 seconds

SARIMA 1 hour, 32 minutes, and 17 seconds

ARIMAX 7 hours, 13 minutes, and 42 seconds

SARIMAX 20 hours, 54 minutes, and 38 seconds

Croston 38 minutes and 18 seconds

MLP without features 49 minutes and 39 seconds

MLP with features 1 hour, 23 minutes, and 47 seconds

LSTM without features 3 days, 10 hours, 12 minutes, and 29 seconds

LSTM with features 4 days, 12 hours, 8 minutes, and 42 seconds

As can be seen in Table 17, there are differences in the running time of the forecasting
models. The benchmark, ES models, ARIMA and SARIMA, Croston, and MLP models,
all have reasonably short running times. The running time of the ARIMAX and SARIMAX
models consist of multiple hours. However, the models that take by far the longest to run
are the LSTM models. Both with and without features these models take multiple days
to run. This should be taken into consideration when deciding on what model to put into
production in the environment of DHL.

5.11 Applying forecast models to time series groups

In Appendix D, the results of the forecast models per zone and per departure bucket
are shown. From these results, it can be seen that there is not one forecast model that
performs best for every zone and every departure bucket. Rather, for specific zones and
departure buckets there are different forecasting models that provide the lowest RMSLE.
RMSLE is used because it provides the best fit for the case of DHL as also discussed
in Section 5.2. Because of this, applying the best performing model per specific zone,
or per specific departure bucket, on the time series that includes this picking zone or
departure bucket, instead of applying one forecast model on all the time series, could
improve forecasting performance. That is why, in this section of the report, two cases are
tested that apply different forecasting models per zone or per departure bucket. In one
case, the best-performing forecast model per zone is applied to all the time series that
include that zone. In the other case, the best-performing forecast model per departure
bucket is applied to all the time series that include that departure bucket. Which model
performs best on the zone or departure bucket is selected by evaluating which forecasting
model has the lowest RMSLE for that zone or departure bucket. Which models are applied
per zone or per departure bucket in these two cases can be seen in Appendix E.

To test these two cases, the same tuned hyperparameters that were used in the forecast
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models before, when one forecast model was applied to all time series, are used again
for each specific forecast model in these cases. Moreover, the two cases are tested on
new data which has a later timestamp than the data on which the individual forecast
models were tested to ensure there is no data leakage. This is also described before in
Section 5.4. In Table 18, the three performance metrics of the tested cases, along with
the best-performing individual model and the performance metrics of the benchmark can
be seen. Apart from that the running time when the models are applied per zone is 11
hours, 49 minutes, and 10 seconds. When the models are applied per departure bucket,
the running time is equal to 12 hours, 58 minutes, and 38 seconds.

Table 18: Performance metrics of tested cases

Model RMSLE MAE RMSE

Models applied per zone 0.56 2.06 10.04

Models applied per departure bucket 0.55 2.01 9.91

ARIMAX 0.56 1.96 10.33

Benchmark 1.63 6.65 14.82

As can be seen in this table, in terms of RMSLE, there is a minor improvement in the
case in which the forecasting models are applied per departure bucket. In terms of MAE,
both the new cases do worse than the ARIMAX model, however, in terms of RMSE, the
new cases both perform better than the ARIMAX model. This implies that the new cases
are worse in terms of absolute errors, but overall have fewer errors that are large. These
differences can be attributed to the different forecasting models that are applied per case.
It should also be noted that these new running times have slightly more running time
than the ARIMAX model. In Table 46 and Table 47, in Appendix D, the results of the
new cases per zone, and per departure bucket can be seen.
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6 Conclusions
In this section of the report, the conclusions that can be drawn from the thesis are given.
First of all, the research questions that are given in Section 1.5, are revisited, and answers
to these research questions are provided. After that, recommendations that can be given
based on the results of the report are described. Lastly, the limitations of the research
and indications for future research are discussed.

6.1 Answering the research questions

As mentioned before, in this section answers to the research questions, that are defined
at the start of the thesis, are given. The research questions can be found in Section 1.5.
First, the five research sub-questions are answered. After that, the main research question
of this thesis is answered.

RQ1: How should the dataset be prepared to make forecasts on?

In order to make the dataset appropriate to make forecasts on, preparation steps had to
be taken. These preparation steps were needed due to different reasons, with the aim
to get a clean dataset on which the forecasts can be made. First of all, several cleaning
steps were performed to ensure the data quality of the dataset. Furthermore, departure
buckets were introduced in the dataset. With this operation, the number of time series is
reduced, which improves the understandability of the forecasts, while retaining the needed
information level for DHL. Lastly, to complete the time series, the zero observations, which
were not in the initial dataset, had to be imputed. This implies that, for every picking
zone and departure bucket combination, for every hour where there is no observation, a
zero value had to be imputed.

RQ2: What characteristics can be attributed to the underlying time series on different
aggregation levels and what does this imply for data transformations of time series?

In Chapter 4, apart from describing the data preparation, data analysis was performed on
the dataset to identify characteristics of the time series data. First of all, the descriptive
statistics showed that the dataset was zero-inflated, which means that most of the values
in the dataset are zero. Furthermore, this analysis showed that there were big differences
between picking zones and departure buckets in terms of mean number of incoming picking
tasks and the percentage of zero values for incoming picking tasks.

Furthermore, the KPSS test was used to investigate whether or not the time series were
stationary. This showed that a considerable number of the time series were non-stationary
which implied that these needed to be differenced for them to be appropriate to use
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in the ARIMA models. For the other statistical and machine learning models this was
not needed (Lewinson (2020)). Moreover, the time series were analyzed to investigate if
seasonal patterns were detectable. From this analysis was concluded that the time series
of incoming picking tasks have seasonality in the combination of the hour of the day and
day of the week. This led to the engineering of time series features that were believed
to capture this seasonality. These features were included in various models that allowed
for the inclusion of time series features. Apart from the features that were engineered
based on the seasonality analysis, two features that indicated if it is a holiday or a school
holiday by making use of a binary variable were also engineered and used as input into
the forecasting models.

RQ3: Which time series models are available and which ones best suit the problem at
hand?

To identify time series models that are available, a literature study on time series models
was performed. The most vital information of this literature study on time series forecast
models can be found in Section 2.2. An overview of the forecasting models that were
found in literature and are discussed in the theoretical background of the thesis can be
found in Figure 6. The forecasting models that were selected to be implemented were
the ES models, SES, Holt’s, and Holt’s-Winters, the ARIMA models, ARIMA, SARIMA,
ARIMAX, and SARIMAX, the Croston method, and the NN models, MLP and LSTM,
both with and without added time series features. First of all, the ES models were chosen
to be implemented because these models are very well-known to offer robust performance
in many business applications. Furthermore, the ARIMA models were chosen because
these are also very renowned and incorporate the statistical methods, regression models,
autoregressive models, and moving average models, into one model. This implies that
the ARIMA models use information on the past predicted values, past error terms, and
predictive variables, to produce forecasts. The last statistical method that was chosen
was the Croston method. This method was chosen because it is designed to be able to
handle zero-inflated datasets like the one used in this thesis.

Apart from the statistical methods, machine learning methods were implemented to
forecast the number of picking tasks in the warehouse of DHL. These consisted of the NN
models MLP and LSTM, both with and without features. MLP was chosen because it is
one of the simpler NN models, with decent computing speed, which is often used in time
series forecasting problems. Furthermore, LSTM was chosen because this NN model can
include long-term dependencies which makes it suitable for many time series forecasting
applications.

RQ4: Which performance evaluation metrics are relevant to be used?

The three metrics that are used to measure forecast performance are RMSLE, MAE,
and RMSE. RMSLE best suits the case of DHL to measure forecasting performance.
This is why RMSLE is chosen as the metric on which the hyperparameters are tuned,
and on which the modification of the individual models is based. RMSLE best fits the
case of DHL because it penalizes bigger differences less when both the predicted and
the actual values are big, and penalizes underestimates slightly more than overestimates.
These properties fit the case of DHL because although the absolute error is relatively
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big, the forecast can still be quite good relative to the magnitude of the actual value.
Furthermore, penalizing underestimates slightly more than overestimates discourages the
forecasting models to only predict zero values, especially in time series with low mean
number of incoming picking tasks. On top of that, the RMSLE allows for zero values in
the prediction and actual value which is essential as the dataset is zero-inflated.

Additionally, RMSE and MAE are calculated to measure the performance of the forecasting
models. RMSE is used to gain more insight into the performance of the forecasting models
using a metric that does not differentiate between underestimation and overestimation
and does not take into account the magnitude of the actual values when calculating the
error. Furthermore, the MAE is provided to gain a better understanding of the forecasting
error in absolute terms, which is easy to understand.

RQ5: What forecast models provide the best performance and how can the results on
different aggregation levels of the forecasts be explained?

The forecast model that overall provides the best forecast performance is the ARIMAX
model, closely followed by the SARIMAX model. Furthermore, all the forecasting models
that were chosen to be tested in this thesis outperformed the benchmark in terms of
RMSLE. The cause of this might be the fact that the models that were tested all
approached the forecasting problem as a time series problem, in which the time series data
is divided and then used as input. The benchmark, however, approaches this forecasting
problem as a regression in which the data on all the time series together is used to make
predictions.

The forecast models show higher errors for time series which have higher mean number
of picking tasks. The time series with higher mean number of picking tasks are more
important for DHL as these are the time series where the bulk of the incoming picking
tasks are in. Overall, the best performing models are the statistical models that include a
seasonal component because these models showed to be able to deal with the seasonality
in the time series well. These models outperformed the NN models, which in literature
often perform really well in time series forecasting. Lastly, adding the engineered features
to the input data improved the forecasting performance of the NN models by a small
margin. In the ARIMA models however, adding the engineered features to the input
data improved the forecasting performance by a considerable amount, which lead to the
best-performing forecasting model, ARIMAX.

In the results of the forecasting models that were applied to all time series, it can be
observed that there is not one forecasting model that performs best across all picking
zones and departure buckets. Therefore, with the aim to improve forecast performance,
the best-performing forecast model for each picking zone, or each departure bucket, were
applied to the time series that included that picking zone or departure bucket. This
resulted in two new cases that were tested. One case in which different forecasting models
were applied to groups of time series based on picking zone, and one case in which different
forecasting models were applied to groups of time series based on departure bucket. This
showed that a minor improvement to the forecast performance, in terms of RMSLE, can
be realized when applying the best performing forecast models per departure bucket, in
comparison to the ARIMAX model, which is the best performing forecast model when
models are applied to all time series together.
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How can picking tasks in the warehouse of DHL be more accurately
predicted by using time series forecasting?

To conclude, all the forecasting models that were tested in this thesis outperformed the
benchmark method of DHL. This is potentially caused by the approach of the time series
models that were tested, which use the time series per picking zone, and per departure
time, as input data. Furthermore, including a seasonal component in the forecasting
models or using engineered time series features improved forecasting performance in the
case of forecasting incoming picking tasks in the warehouse of DHL. All in all, ARIMAX
was the forecasting model that provided the best performance when one forecasting model
was applied to all time series. This performance was enhanced by a small margin when the
best forecasting models were implemented on time series that were grouped by departure
bucket.

6.2 Conclusions on scientific contribution

As described in Section 1.7, the scientific contribution of this thesis is to show how different
well-known forecasting techniques perform on short-term time series forecasting with
zero-inflated time series data. From the results, it can be concluded that the models that
include a seasonal component perform best because these models can forecast the time
and magnitude of the seasonality in the time series data well. It can be concluded that
these models perform well on the zero-inflated data because the occurrence of the zero and
non-zero values are largely predictable by the seasonality that is present in the time series
data and is therefore not random. Furthermore, because the seasonality is on the hour
in the day and weekday interval, the forecasting models with the seasonal components
can use this seasonality to their advantage when performing short-term forecasting that
spans 48 hours. All in all, based on the results of this thesis, when performing short-term
time series with zero-inflated data it is important to assess if the non-zero and zero values
in the zero-inflated data can be predicted or are random. When these values can be
predicted, for example by seasonal effects, the predictors of the zero values and non-zero
values should be included in the time series models to get satisfactory results.

6.3 Recommendations for DHL

As mentioned above, the forecast models in this thesis outperform the benchmark of DHL
in forecasting performance. It is therefore recommended to evaluate if there would be a
possibility to test the approach followed in this thesis, in the warehouse of DHL, to forecast
the incoming picking tasks. If this provides satisfying results, the implementation of this
approach, instead, or along side, the benchmark could be the next step. It has to be noted
that there are limitations in this thesis that are discussed in Section 6.4. These limitations
should be considered when deciding to test or implement the forecasting models tested in
this thesis. Furthermore, in Section 5.10, the running times of the forecasting models are
provided. These running times also should be taken into account when choosing which
model would best fit the case of forecasting picking tasks in the warehouse of DHL.

Another recommendation for DHL is to continue to investigate ways in which the forecast-
ing performance can be improved. Improving forecasting performance might be possible
through the exploration of new forecasting models, trying different approaches in the use
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of data, or using different multi-step-ahead forecasting techniques.

6.4 Limitations and future research

First of all, the main limitations of this research are caused by the many time series that
are forecasted. Consequently, to keep the running time reasonable, only a few different
points from which the forecasts are made were trained and tested for every time series.
This limited number of forecasting points for training and testing might cause these points
to not fully represent other forecasting points in the time series. Consequently, this could
cause the hyperparameter tuning to not be able to find the optimal hyperparameters for
the total time series based on these forecasting points. Furthermore, the results of testing
the forecasting models on these forecasting points might not fully represent forecasting
from other points in time in the time series.

Another limitation of this research is that only the multi-step-ahead forecasting technique
MIMO is applied to make forecasts. Other multi-step-ahead forecast techniques, which are
discussed in Section 2.1.3, could provide better forecasting performance. An interesting
topic for future research would be testing whether or not different multi-step-ahead
forecasting techniques would provide better results than the MIMO technique applied in
this thesis.

Thirdly, when grouping the time series to apply different forecast models to each of these
groups, the time series were grouped by picking zone or departure bucket. However,
making a different division of the groups of time series, for example by combinations
of both picking zone and departure bucket, could provide better results. It would be
interesting to further research if there are different groupings of time series, on which
forecasting models can be applied, that provide better results in terms of forecasting
performance.

Lastly, the exploration of other forecasting models and other features that can potentially
enhance forecasting performance on zero-inflated time series data would be an interesting
topic for future research. When exploring other models to forecast on zero-inflated time
series, it would be especially interesting to explore other forecasting models that allow
for the predictors of the zero and non-zero values to be included. Furthermore, exploring
and including other features that provide more information on the structure of the time
series can also potentially enhance the forecasting performance of the models that are
implemented in this thesis.
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APPENDIX A KPSS TEST FOR TIME SERIES

Appendices

A KPSS test for time series

Table 19: P-values of KPSS with non-stationary time series differenced

0 1 2

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

Pickabove 0.1 0.1 0.1 0.1 0.06 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Pickbelt 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.1

Pickbulk Above 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Pickbulk Ground 0.1 0.1 0.08 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.06 0.1 0.1

Pickconsolidation C 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Pickconsolidation K 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.06 0.1

Pickground 0.1 0.08 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Pickground Allegro 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.06 0.1 0.1 0.1 0.1 0.1

Pickrobot 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Picksens 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.1 0.1 0.1 0.1 0.1 0.08 0.1

Pickshelves 0.08 0.1 0.1 0.1 0.1 0.1 0.1 0.07 0.1 0.1 0.1 0.1 0.1 0.1 0.1

In Table 19, the p-values of the KPSS test for all the time series, after the time series
that were non-stationary, were first-order differenced. As can be seen in the table, now
all p-values of the KPSS test are higher than 0.05 which indicates stationarity for all the
time series.
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APPENDIX B FEATURES FOR BENCHMARK

B Features for benchmark

Table 20: Features engineered and used as input to benchmark

Feature Description Feature
type

Mean Min Max

Year The year of the observation
as integer

Datetime 2020.9 2020 2022

Quarter The quarter of the year of
the observation as integer

Datetime 2.56 1 4

Month The month of the year as
integer (1 = January, etc.)

Datetime 6.64 1 12

Day The day of the month as
integer

Datetime 15.63 1 31

Weekday The weekday of the week as
integer (0 = Monday, etc.)

Datetime 3 0 6

Hour The hour of the observa-
tion

Datetime 11.50 0 23

Weekend Binary variable indicating
if it is weekend (Saturday
or Sunday) at the time of
the observation (0 = not
weekend, 1 = weekend)

Datetime 0.29 0 1

Holiday Binary variable indicating
if it is a holiday or not (0 =
not holiday, 1 = holiday).
This includes national hol-
idays of the Netherlands,
Germany, Great Britain,
France, Italy, and Spain

Datetime 0.09 0 1

Holiday school Binary variable indication
if it is a holiday for the
schools in the south of the
Netherlands (0 = not holi-
day, 1 = holiday)

Datetime 0.26 0 1

Weekday mean Mean number of tasks for
that weekday

Expanding
window

1.99 0 84

Day mean Mean number of tasks for
that day of the month

Expanding
window

1.97 0 114

Hour mean Mean number of tasks for
that hour in the day

Expanding
window

2.00 0 441
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APPENDIX B FEATURES FOR BENCHMARK

Month mean Mean number of tasks in
that month

Expanding
window

2.02 0 78.67

Quarter mean Mean number of tasks in
that quarter

Expanding
window

1.97 0 78.67

Weekday hour mean Mean number of tasks for
that weekday and hour
combination

Expanding
window

2.01 0 441

Day hour mean Mean number of tasks for
that day of the month and
hour combination

Expanding
window

2.01 0 487

Month day mean Mean number of tasks for
that month and day of the
month combination

Expanding
window

1.70 0 409

Month weekday mean Mean number of tasks for
that month and weekday
combination

Expanding
window

1.93 0 185

Quarter weekday mean Mean number of tasks for
that quarter and weekday
combination

Expanding
window

1.97 0 87

Sum today Sum of tasks that have
come in, in that day

Rolling
window

21.33 0 2731

Mean last 7 days Mean number of tasks of
the last 7 days

Rolling
window

2.028 0 70.8

Mean last 30 days Mean number of tasks of
the last 30 days

Rolling
window

2.03 0 70.8

Mean last 365 days Mean number of tasks of
the last 365 days

Rolling
window

2.00 0 70.8

lag t-hour Lagged values for t-1 (one
hour earlier) until t-24 (24
hours / one day earlier)
with an interval of one hour
are engineered

Lag 2.03 0 1033
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APPENDIX C TUNED PARAMETERS OF FORECASTING MODELS

C Tuned parameters of forecasting
models

Table 21: Tuned hyperparameters SES

0 1 2

4,
8
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16

16,
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20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

Pickabove 0.3 0.01 0.9 0.01 0.01 0.5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1 0.01

Pickbelt 0.01 0.01 0.7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1 0.9

Pickbulk Above 0.9 0.01 0.9 0.01 0.01 0.01 0.01 0.01 0.01 0.5 0.05 0.9 0.01 0.3 0.05

Pickbulk Ground 0.5 0.7 0.9 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9 0.7 0.5 0.01

Pickconsolidation C 0.01 0.5 0.7 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.9 0.01 0.3 0.1

Pickconsolidation K 0.3 0.5 0.7 0.01 0.01 0.01 0.01 0.01 0.1 0.3 0.05 0.9 0.05 0.3 0.01

Pickground 0.01 0.01 0.9 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.3 0.1

Pickground Allegro 0.01 0.01 0.05 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.5 0.01 0.01 0.3 0.9

Pickrobot 0.01 0.05 0.1 0.01 0.01 0.01 0.01 0.3 0.01 0.01 0.01 0.1 0.05 0.5 0.9

Picksens 0.9 0.1 0.01 0.01 0.01 0.01 0.01 0.1 0.01 0.3 0.7 0.01 0.01 0.01 0.01

Pickshelves 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9
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Table 22: Tuned hyperparameters Holt’s

0 1 2

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

Pickabove (0.9,
0.9,
add)

(0.05,
0.01,
add)

(0.9,
0.01,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.2,
add)

(0.9,
0.9,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
add)

(0.05,
0.01,
add)

Pickbelt (0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
add)

(0.9,
0.01,
add)

Pickbulk Above (0.05,
0.01,
add)

(0.05,
0.01,
None)

(0.9,
0.9,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
add)

(0.9,
0.9,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
add)

(0.05,
0.01,
add)

Pickbulk Ground (0.05,
0.01,
add)

(0.9,
0.01,
add)

(0.9,
0.9,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.9,
add)

(0.9,
0.01,
add)

(0.9,
0.01,
None)

(0.9,
0.01,
add)

(0.05,
0.01,
add)

Pickconsolidation C (0.05,
0.2,
add)

(0.9,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
add)

(0.05,
0.01,
add)

Pickconsolidation K (0.05,
0.01,
add)

(0.9,
0.9,
add)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
add)

(0.05,
0.01,
add)

(0.9,
0.01,
None)

(0.05,
0.01,
add)

(0.05,
0.01,
add)

(0.05,
0.01,
add)

Pickground (0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.9,
add)

(0.05,
0.01,
None)

(0.9,
0.01,
add)

(0.05,
0.01,
add)

Pickground Allegro (0.05,
0.01,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
add)

(0.9,
0.9,
add)

(0.05,
0.01,
None)

(0.9,
0.01,
add)

(0.05,
0.01,
add)

Pickrobot (0.05,
0.01,
add)

(0.05,
0.01,
None)

(0.05,
0.2,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
add)

(0.9,
0.9,
add)

(0.05,
0.01,
add)

(0.9,
0.01,
add)

(0.05,
0.01,
add)

Picksens (0.05,
0.01,
add)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.2,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
add)

(0.05,
0.01,
add)

Pickshelves (0.05,
0.01,
add)

(0.9,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.9,
add)

(0.05,
0.01,
None)

(0.05,
0.01,
None)

(0.9,
0.01,
add)

In Table 22, for each time series three values are given. The first value corresponds to the
tuned α parameter, the second value corresponds to the tuned β parameter, and the last
value corresponds to the tuned trend parameter, for each time series.

81



APPENDIX C TUNED PARAMETERS OF FORECASTING MODELS

Table 23: Tuned hyperparameters Holt’s-Winters

0 1 2

4,
8

8,
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12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

Pickabove (0.2,
0.01)

(0.05,
0.2)

(0.9,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.2,
0.2)

(0.05,
0.9)

(0.05,
0.01)

(0.05,
0.9)

(0.05,
0.01)

Pickbelt (0.9,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.2)

(0.05,
0.01)

(0.9,
0.01)

(0.2,
0.2)

(0.05,
0.2)

(0.05,
0.01)

(0.9,
0.01)

(0.2,
0.01)

(0.2,
0.01)

(0.05,
0.9)

Pickbulk Above (0.05,
0.9)

(0.05,
0.2)

(0.05,
0.01)

(0.05,
0.01)

(0.2,
0.01)

(0.05,
0.01)

(0.05,
0.2)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.2)

(0.05,
0.2)

(0.9,
0.01)

(0.05,
0.2)

(0.05,
0.2)

(0.05,
0.01)

Pickbulk Ground (0.05,
0.9)

(0.2,
0.2)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.2)

(0.05,
0.2)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.9)

(0.9,
0.01)

(0.2,
0.01)

(0.2,
0.01)

(0.05,
0.01)

Pickconsolidation C (0.9,
0.01)

(0.9,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.2)

(0.05,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.01)

Pickconsolidation K (0.9,
0.01)

(0.9,
0.01)

(0.9,
0.01)

(0.05,
0.2)

(0.05,
0.01)

(0.9,
0.01)

(0.9,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.9,
0.01)

(0.9,
0.01)

(0.2,
0.01)

(0.05,
0.2)

(0.05,
0.01)

Pickground (0.05,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.2)

(0.2,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.2)

(0.2,
0.01)

(0.05,
0.9)

Pickground Allegro (0.05,
0.01)

(0.05,
0.01)

(0.2,
0.01)

(0.05,
0.01)

(0.05,
0.2)

(0.05,
0.9)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.9)

(0.05,
0.01)

(0.2,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.2)

(0.05,
0.2)

Pickrobot (0.05,
0.01)

(0.05,
0.2)

(0.2,
0.01)

(0.05,
0.2)

(0.05,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.05,
0.2)

(0.2,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.05,
0.2)

(0.9,
0.01)

(0.05,
0.2)

Picksens (0.05,
0.01)

(0.2,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.2,
0.01)

(0.9,
0.01)

(0.2,
0.01)

(0.05,
0.01)

(0.2,
0.2)

(0.05,
0.2)

(0.9,
0.01)

(0.9,
0.01)

(0.9,
0.01)

(0.05,
0.01)

Pickshelves (0.05,
0.9)

(0.05,
0.2)

(0.05,
0.2)

(0.2,
0.01)

(0.05,
0.01)

(0.9,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.2,
0.01)

(0.05,
0.2)

(0.05,
0.01)

(0.2,
0.01)

(0.05,
0.01)

(0.05,
0.01)

(0.2,
0.2)

In Table 23, for each time series two values are given. The first value corresponds to the
tuned α parameter, and the second value corresponds to the tuned γ parameter, for each
time series.

Table 24: Tuned hyperparameters ARIMA

0 1 2

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

Pickabove (0, 0) (1, 1) (0, 0) (2, 2) (1, 1) (0, 0) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (0, 0) (0, 0)

Pickbelt (1, 2) (2, 2) (2, 0) (2, 2) (2, 2) (0, 2) (2, 0) (2, 2) (2, 2) (2, 2) (0, 2) (1, 1) (2, 1) (0, 0) (0, 0)

Pickbulk Above (0, 0) (0, 1) (0, 0) (2, 2) (2, 2) (1, 1) (2, 2) (1, 2) (1, 2) (2, 2) (1, 2) (1, 1) (2, 1) (0, 0) (0, 0)

Pickbulk Ground (0, 0) (0, 0) (0, 0) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (1, 2) (1, 1) (0, 0) (0, 0) (0, 0)

Pickconsolidation C (2, 2) (1, 2) (1, 0) (2, 2) (2, 2) (2, 2) (1, 2) (1, 2) (0, 2) (2, 1) (0, 2) (2, 0) (2, 2) (0, 0) (0, 0)

Pickconsolidation K (0, 0) (0, 0) (0, 1) (0, 2) (2, 2) (1, 2) (2, 1) (2, 2) (2, 2) (1, 2) (2, 1) (1, 1) (2, 1) (0, 0) (0, 0)

Pickground (0, 0) (1, 2) (1, 0) (2, 2) (2, 2) (0, 1) (2, 1) (2, 2) (2, 2) (1, 2) (2, 2) (1, 1) (2, 2) (0, 0) (0, 0)

Pickground Allegro (0, 0) (2, 1) (1, 2) (2, 1) (2, 2) (2, 2) (2, 1) (2, 2) (2, 2) (2, 0) (0, 0) (2, 1) (1, 1) (0, 0) (0, 0)

Pickrobot (0, 0) (2, 1) (1, 2) (1, 1) (2, 1) (0, 0) (2, 1) (0, 0) (2, 2) (0, 0) (0, 0) (0, 2) (0, 0) (0, 0) (0, 0)

Picksens (0, 0) (0, 2) (0, 0) (2, 2) (0, 1) (2, 2) (2, 2) (1, 2) (2, 2) (2, 2) (0, 0) (2, 2) (1, 1) (0, 0) (0, 0)

Pickshelves (0, 0) (2, 2) (0, 1) (2, 1) (0, 2) (2, 2) (2, 1) (1, 2) (2, 1) (1, 2) (1, 0) (1, 2) (1, 2) (0, 0) (0, 0)

In Table 24, for each time series two values are given. The first value corresponds to the
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tuned p parameter, and the second value corresponds to the tuned q parameter, for each
time series.

Table 25: Tuned hyperparameters SARIMA

0 1 2

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

Pickabove (0, 0,
0, 0)

(1, 1,
1, 1)

(0, 1,
1, 1)

(0, 1,
1, 1)

(1, 0,
1, 1)

(0, 0,
0, 0)

(0, 1,
1, 1)

(0, 0,
1, 1)

(0, 0,
1, 1)

(1, 1,
1, 0)

(1, 1,
1, 1)

(1, 1,
0, 0)

(0, 1,
0, 1)

(0, 0,
0, 0)

(0, 0,
0, 0)

Pickbelt (0, 1,
0, 0)

(0, 0,
1, 1)

(0, 0,
1, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(0, 1,
1, 1)

(1, 0,
1, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(1, 1,
0, 0)

(1, 0,
1, 1)

(1, 1,
1, 1)

(0, 0,
1, 1)

(0, 0,
0, 0)

Pickbulk Above (0, 0,
0, 0)

(0, 1,
0, 1)

(0, 0,
1, 1)

(1, 0,
1, 1)

(0, 0,
1, 1)

(1, 1,
0, 0)

(1, 0,
1, 1)

(1, 0,
1, 1)

(1, 1,
0, 0)

(0, 1,
0, 0)

(1, 1,
0, 0)

(1, 1,
0, 0)

(1, 1,
1, 1)

(0, 0,
0, 0)

(0, 0,
0, 0)

Pickbulk Ground (0, 0,
0, 0)

(0, 0,
0, 0)

(1, 0,
1, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(0, 0,
1, 1)

(0, 1,
1, 1)

(0, 1,
1, 1)

(1, 1,
0, 1)

(0, 1,
0, 1)

(0, 0,
0, 0)

(1, 1,
0, 0)

(0, 0,
1, 1)

(0, 0,
0, 0)

(0, 0,
0, 0)

Pickconsolidation C (0, 1,
0, 0)

(0, 0,
1, 1)

(0, 0,
1, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(0, 1,
1, 0)

(1, 0,
1, 1)

(0, 0,
1, 1)

(0, 1,
1, 1)

(0, 1,
1, 1)

(1, 1,
0, 1)

(0, 0,
0, 0)

(1, 1,
0, 0)

(0, 0,
0, 0)

(0, 0,
0, 0)

Pickconsolidation K (0, 0,
0, 0)

(0, 0,
0, 0)

(1, 0,
1, 1)

(0, 0,
1, 1)

(1, 1,
1, 1)

(1, 1,
0, 1)

(0, 1,
1, 1)

(1, 1,
0, 0)

(0, 1,
1, 1)

(0, 0,
1, 1)

(1, 1,
0, 0)

(1, 1,
1, 1)

(1, 1,
1, 1)

(0, 0,
0, 0)

(0, 0,
0, 0)

Pickground (0, 0,
0, 0)

(0, 1,
1, 1)

(0, 0,
1, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(0, 1,
1, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(0, 1,
1, 1)

(0, 1,
0, 0)

(1, 1,
0, 0)

(0, 1,
0, 0)

(0, 0,
1, 1)

(0, 0,
0, 0)

Pickground Allegro (0, 0,
0, 0)

(0, 0,
1, 1)

(0, 1,
1, 1)

(0, 0,
1, 1)

(1, 1,
1, 1)

(0, 0,
0, 0)

(0, 0,
1, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(1, 0,
1, 1)

(0, 0,
0, 0)

(1, 0,
1, 1)

(1, 1,
1, 1)

(0, 0,
0, 0)

(0, 0,
0, 0)

Pickrobot (0, 0,
0, 0)

(0, 1,
1, 1)

(0, 1,
1, 0)

(1, 1,
1, 1)

(0, 0,
1, 1)

(0, 0,
0, 0)

(1, 0,
1, 1)

(0, 0,
0, 0)

(1, 1,
1, 1)

(0, 1,
1, 1)

(0, 0,
0, 0)

(1, 1,
1, 1)

(0, 0,
0, 0)

(0, 0,
0, 0)

(0, 0,
0, 0)

Picksens (0, 0,
0, 0)

(0, 1,
1, 0)

(1, 0,
1, 1)

(1, 1,
1, 1)

(0, 1,
1, 1)

(0, 0,
0, 0)

(1, 0,
1, 1)

(0, 1,
1, 1)

(0, 1,
1, 1)

(0, 1,
1, 1)

(0, 0,
0, 0)

(0, 0,
1, 1)

(0, 1,
0, 1)

(0, 0,
0, 0)

(0, 0,
0, 0)

Pickshelves (0, 0,
0, 0)

(0, 1,
1, 1)

(0, 0,
1, 1)

(0, 0,
1, 1)

(0, 0,
1, 1)

(0, 0,
1, 1)

(1, 0,
1, 1)

(1, 0,
1, 1)

(1, 0,
1, 1)

(0, 0,
1, 1)

(1, 0,
0, 0)

(1, 1,
1, 1)

(0, 1,
1, 1)

(0, 0,
1, 1)

(0, 0,
0, 0)

In Table 25, for each time series four values are given. The first value corresponds to the
tuned p parameter, the second value corresponds to the tuned q parameter, the third
value corresponds to the tuned P parameter, and the fourth value corresponds to the
tuned Q parameter, for each time series.

Table 26: Tuned hyperparameters ARIMAX

0 1 2

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

Pickabove (0, 0) (0, 0) (1, 0) (0, 2) (1, 2) (1, 2) (2, 2) (0, 0) (2, 2) (1, 2) (2, 2) (1, 1) (1, 2) (1, 0) (1, 0)

Pickbelt (0, 0) (1, 2) (0, 0) (1, 2) (2, 1) (1, 0) (0, 1) (1, 2) (2, 0) (1, 1) (1, 2) (0, 0) (2, 2) (0, 0) (0, 2)

Pickbulk Above (0, 0) (1, 2) (2, 1) (2, 2) (0, 0) (1, 1) (1, 2) (1, 0) (2, 2) (0, 1) (0, 0) (1, 1) (1, 2) (0, 0) (1, 1)

Pickbulk Ground (0, 0) (0, 1) (0, 0) (2, 1) (0, 1) (0, 0) (0, 0) (1, 2) (1, 2) (2, 1) (0, 1) (2, 1) (2, 1) (1, 2) (2, 0)

Pickconsolidation C (1, 0) (2, 0) (0, 0) (1, 1) (1, 0) (1, 2) (0, 0) (1, 2) (0, 2) (2, 0) (0, 2) (1, 1) (2, 2) (1, 2) (0, 0)

Pickconsolidation K (2, 1) (0, 0) (0, 0) (0, 0) (2, 2) (0, 0) (2, 1) (2, 2) (2, 1) (2, 2) (1, 1) (0, 1) (1, 1) (2, 2) (2, 0)

Pickground (2, 1) (1, 2) (0, 0) (0, 1) (1, 2) (0, 2) (0, 2) (1, 2) (1, 1) (2, 2) (1, 2) (1, 1) (1, 2) (0, 0) (0, 0)

Pickground Allegro (0, 0) (2, 2) (2, 1) (2, 2) (2, 1) (0, 0) (1, 2) (1, 2) (0, 1) (2, 1) (0, 2) (2, 2) (2, 1) (0, 0) (0, 0)

Pickrobot (1, 0) (1, 2) (0, 2) (2, 2) (2, 2) (0, 0) (2, 1) (1, 1) (2, 2) (2, 1) (0, 0) (0, 1) (0, 0) (2, 1) (0, 2)

Picksens (0, 1) (1, 2) (2, 2) (2, 2) (2, 1) (0, 1) (0, 0) (1, 2) (0, 2) (1, 2) (0, 0) (2, 2) (0, 0) (2, 2) (2, 0)

Pickshelves (1, 2) (0, 2) (2, 2) (0, 1) (2, 2) (1, 2) (2, 0) (1, 2) (1, 1) (2, 2) (2, 2) (2, 1) (1, 2) (2, 1) (0, 0)
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In Table 26, for each time series two values are given. The first value corresponds to the
tuned p parameter, and the second value corresponds to the tuned q parameter, for each
time series.

Table 27: Tuned hyperparameters SARIMAX

0 1 2

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

Pickabove (0, 0,
0, 0)

(0, 0,
1, 1)

(0, 1,
1, 0)

(0, 1,
0, 1)

(1, 1,
0, 0)

(0, 0,
1, 0)

(1, 1,
0, 0)

(0, 0,
0, 1)

(1, 1,
0, 0)

(1, 1,
0, 0)

(0, 0,
0, 0)

(0, 1,
1, 0)

(0, 1,
0, 0)

(0, 0,
1, 1)

(1, 0,
0, 0)

Pickbelt (0, 0,
0, 1)

(1, 1,
1, 1)

(0, 0,
1, 1)

(0, 1,
0, 0)

(1, 1,
0, 0)

(1, 0,
0, 0)

(0, 1,
0, 0)

(1, 1,
0, 0)

(1, 0,
1, 0)

(0, 1,
1, 1)

(0, 1,
1, 0)

(0, 0,
0, 0)

(1, 1,
0, 1)

(0, 0,
0, 0)

(0, 0,
0, 1)

Pickbulk Above (0, 0,
0, 0)

(0, 1,
1, 1)

(0, 0,
1, 1)

(0, 1,
0, 0)

(0, 0,
0, 1)

(1, 1,
0, 1)

(0, 1,
1, 1)

(1, 0,
1, 0)

(0, 1,
0, 0)

(0, 1,
0, 0)

(0, 0,
0, 0)

(1, 1,
0, 0)

(1, 1,
1, 1)

(0, 0,
0, 0)

(0, 0,
0, 1)

Pickbulk Ground (0, 0,
0, 0)

(1, 1,
1, 0)

(0, 1,
1, 1)

(0, 1,
1, 1)

(0, 1,
0, 0)

(0, 0,
1, 0)

(0, 0,
0, 0)

(0, 1,
0, 0)

(0, 1,
0, 1)

(1, 1,
0, 0)

(0, 1,
0, 0)

(0, 0,
1, 1)

(1, 0,
0, 1)

(1, 1,
1, 1)

(1, 0,
0, 0)

Pickconsolidation C (1, 0,
0, 1)

(1, 0,
1, 0)

(0, 0,
1, 1)

(1, 1,
0, 0)

(1, 0,
1, 0)

(0, 1,
0, 0)

(0, 0,
1, 0)

(1, 0,
0, 0)

(1, 1,
1, 0)

(1, 1,
1, 0)

(0, 1,
0, 1)

(1, 1,
0, 0)

(0, 1,
0, 0)

(0, 1,
1, 0)

(0, 0,
0, 0)

Pickconsolidation K (0, 0,
1, 1)

(0, 0,
0, 0)

(0, 0,
1, 0)

(0, 0,
1, 1)

(0, 1,
0, 0)

(0, 0,
0, 0)

(0, 0,
1, 1)

(1, 0,
1, 0)

(1, 1,
0, 0)

(1, 1,
0, 0)

(1, 1,
0, 1)

(0, 1,
0, 0)

(1, 1,
1, 0)

(1, 1,
0, 0)

(1, 0,
0, 0)

Pickground (0, 0,
0, 0)

(1, 0,
1, 1)

(0, 0,
0, 0)

(0, 1,
0, 1)

(0, 1,
1, 1)

(0, 1,
1, 1)

(0, 1,
1, 0)

(0, 1,
0, 1)

(1, 1,
1, 1)

(1, 1,
1, 1)

(0, 1,
1, 0)

(0, 1,
0, 1)

(0, 1,
0, 0)

(0, 0,
1, 0)

(0, 0,
0, 0)

Pickground Allegro (0, 0,
0, 0)

(1, 1,
1, 0)

(1, 1,
1, 1)

(1, 0,
0, 0)

(0, 1,
1, 1)

(0, 0,
0, 0)

(0, 1,
1, 0)

(0, 1,
1, 1)

(0, 1,
0, 1)

(0, 0,
1, 1)

(1, 1,
1, 1)

(1, 1,
0, 1)

(1, 1,
1, 1)

(0, 0,
0, 0)

(0, 0,
0, 0)

Pickrobot (1, 0,
0, 0)

(1, 1,
1, 1)

(1, 1,
1, 1)

(1, 1,
0, 1)

(1, 1,
1, 1)

(0, 0,
0, 0)

(1, 1,
1, 0)

(1, 0,
0, 1)

(1, 1,
0, 1)

(1, 1,
1, 1)

(0, 0,
0, 0)

(0, 1,
0, 0)

(0, 0,
1, 1)

(1, 1,
1, 1)

(0, 0,
0, 1)

Picksens (0, 1,
0, 1)

(0, 1,
1, 0)

(1, 1,
0, 1)

(0, 0,
1, 1)

(0, 0,
1, 1)

(1, 0,
1, 0)

(0, 0,
0, 0)

(1, 1,
0, 1)

(0, 1,
0, 1)

(1, 1,
1, 0)

(1, 1,
1, 0)

(1, 0,
1, 1)

(0, 0,
1, 1)

(1, 0,
0, 0)

(1, 0,
0, 0)

Pickshelves (0, 1,
0, 0)

(0, 1,
0, 1)

(0, 1,
1, 1)

(0, 0,
1, 1)

(1, 1,
1, 1)

(1, 0,
0, 0)

(1, 1,
1, 1)

(0, 0,
1, 0)

(1, 1,
0, 1)

(1, 1,
0, 0)

(1, 1,
0, 0)

(1, 1,
1, 1)

(0, 1,
1, 0)

(0, 0,
1, 0)

(0, 0,
0, 0)

In Table 27, for each time series four values are given. The first value corresponds to the
tuned p parameter, the second value corresponds to the tuned q parameter, the third
value corresponds to the tuned P parameter, and the fourth value corresponds to the
tuned Q parameter, for each time series.
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Table 28: Tuned hyperparameters Croston method

0 1 2

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

4,
8

8,
12

12,
16

16,
20

20,
24

Pickabove 0.7 0.7 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.3 0.5 0.05 0.01 0.9 0.01

Pickbelt 0.9 0.05 0.9 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Pickbulk Above 0.9 0.1 0.05 0.01 0.05 0.01 0.05 0.01 0.01 0.05 0.01 0.01 0.05 0.7 0.01

Pickbulk Ground 0.01 0.05 0.05 0.01 0.05 0.1 0.01 0.01 0.01 0.1 0.3 0.01 0.05 0.01 0.01

Pickconsolidation C 0.5 0.01 0.9 0.01 0.01 0.01 0.01 0.01 0.1 0.01 0.01 0.05 0.01 0.05 0.5

Pickconsolidation K 0.3 0.01 0.05 0.01 0.05 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01

Pickground 0.1 0.05 0.05 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.05 0.9

Pickground Allegro 0.01 0.05 0.3 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.7 0.05 0.01 0.01 0.1

Pickrobot 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.01

Picksens 0.01 0.9 0.01 0.01 0.01 0.3 0.01 0.01 0.01 0.05 0.3 0.01 0.3 0.05 0.01

Pickshelves 0.9 0.01 0.05 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.9

In Table 28, for each time series one value is given. This values corresponds to the
smoothing parameter, α, for each time series.
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Table 29: Tuned hyperparameters MLP without features

0 1 2

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

Pickabove (0.39,
0.004243,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

(0.14,
0.004382,
27, 11,
2)

(0.02,
0.002669,
40, 12,
2)

(0.01,
0.00001,
27, 7,
2)

(0.28,
0.004914,
27, 8,
2)

(0.01,
0.005,
10, 12,
2)

(0.5,
0.005,
27, 7,
1)

(0.01,
0.00001,
29, 10,
2)

(0.06,
0.001734,
26, 8,
2)

(0.24,
0.00066,
38, 6,
1)

(0.5,
0.005,
25, 8,
2)

(0.5,
0.005,
33, 14,
2)

(0.06,
0.001734,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

Pickbelt (0.06,
0.001734,
26, 8,
2)

(0.05,
0.004008,
38, 18,
2)

(0.05,
0.004995,
41, 12,
2)

(0.02,
0.00232,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.03,
0.000549,
23, 6,
2)

(0.5,
0.005,
31, 11,
1)

(0.28,
0.004914,
27, 8,
2)

(0.08,
0.004255,
28, 9,
2)

(0.05,
0.004008,
38, 18,
2)

(0.28,
0.004914,
27, 8,
2)

(0.05,
0.004008,
38, 18,
2)

(0.46,
0.001107,
27, 11,
2)

(0.5,
0.005,
24, 7,
1)

(0.28,
0.004914,
27, 8,
2)

Pickbulk Above (0.47,
0.003685,
33, 9,
2)

(0.08,
0.004255,
28, 9,
2)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.03,
0.001135,
27, 9,
1)

(0.21,
0.000011,
22, 16,
1)

(0.06,
0.003471,
26, 7,
2)

(0.05,
0.004008,
38, 18,
2)

(0.02,
0.00232,
26, 8,
2)

(0.06,
0.003377,
25, 6,
1)

(0.12,
0.004421,
10, 7,
2)

(0.28,
0.003588,
37, 16,
2)

(0.21,
0.000011,
22, 16,
1)

(0.15,
0.000889,
33, 16,
1)

Pickbulk Ground (0.41,
0.002219,
18, 5,
1)

(0.01,
0.003649,
27, 6,
2)

(0.05,
0.004008,
38, 18,
2)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.04,
0.00269,
26, 8,
1)

(0.08,
0.004255,
28, 9,
2)

(0.2,
0.004245,
33, 19,
1)

(0.05,
0.004008,
38, 18,
2)

(0.5,
0.005,
33, 5,
2)

(0.03,
0.000415,
28, 9,
1)

(0.49,
0.003478,
25, 8,
2)

(0.39,
0.004243,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

Pickconsolidation C (0.5,
0.005,
40, 10,
2)

(0.5,
0.005,
19, 9,
1)

(0.18,
0.004508,
26, 8,
2)

(0.26,
0.000271,
26, 6,
2)

(0.06,
0.001734,
26, 8,
2)

(0.39,
0.004243,
26, 8,
2)

(0.46,
0.002651,
26, 9,
2)

(0.16,
0.002935,
40, 12,
1)

(0.16,
0.002935,
40, 12,
1)

(0.05,
0.004008,
38, 18,
2)

(0.06,
0.001734,
26, 8,
2)

(0.39,
0.003664,
25, 9,
2)

(0.33,
0.001313,
35, 13,
1)

(0.06,
0.001734,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

Pickconsolidation K (0.45,
0.003772,
41, 9,
2)

(0.46,
0.004502,
23, 15,
2)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.01,
0.00001,
20, 9,
2)

(0.08,
0.004255,
28, 9,
2)

(0.01,
0.00001,
34, 11,
2)

(0.21,
0.000011,
22, 16,
1)

(0.33,
0.002581,
22, 6,
1)

(0.01,
0.00001,
40, 16,
2)

(0.46,
0.001391,
24, 9,
2)

(0.21,
0.000011,
22, 16,
1)

(0.01,
0.005,
30, 16,
2)

(0.21,
0.000011,
22, 16,
1)

Pickground (0.5,
0.004924,
47, 17,
1)

(0.16,
0.002935,
40, 12,
1)

(0.18,
0.003586,
26, 8,
2)

(0.24,
0.00066,
38, 6,
1)

(0.08,
0.004255,
28, 9,
2)

(0.39,
0.003664,
25, 9,
2)

(0.5,
0.005,
37, 11,
1)

(0.08,
0.004255,
28, 9,
2)

(0.08,
0.004255,
28, 9,
2)

(0.01,
0.00001,
20, 16,
2)

(0.21,
0.000011,
22, 16,
1)

(0.2,
0.004245,
33, 19,
1)

(0.08,
0.004255,
28, 9,
2)

(0.37,
0.000488,
37, 15,
2)

(0.21,
0.000011,
22, 16,
1)

Pickground Allegro (0.21,
0.000011,
22, 16,
1)

(0.16,
0.002935,
40, 12,
1)

(0.06,
0.001734,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.01,
0.00001,
20, 20,
2)

(0.5,
0.005,
34, 5,
2)

(0.06,
0.001734,
26, 8,
2)

(0.08,
0.004255,
28, 9,
2)

(0.07,
0.003822,
40, 12,
1)

(0.39,
0.004243,
26, 8,
2)

(0.39,
0.004243,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

(0.39,
0.004243,
26, 8,
2)

(0.28,
0.004914,
27, 8,
2)

(0.5,
0.005,
27, 7,
2)

Pickrobot (0.21,
0.000011,
22, 16,
1)

(0.05,
0.004008,
38, 18,
2)

(0.39,
0.004243,
26, 8,
2)

(0.33,
0.001313,
35, 13,
1)

(0.2,
0.004245,
33, 19,
1)

(0.21,
0.000011,
22, 16,
1)

(0.27,
0.002171,
21, 5,
2)

(0.5,
0.005,
39, 14,
2)

(0.32,
0.001347,
22, 16,
1)

(0.07,
0.003822,
40, 12,
1)

(0.21,
0.000011,
22, 16,
1)

(0.47,
0.000023,
26, 9,
2)

(0.21,
0.000011,
22, 16,
1)

(0.34,
0.000199,
25, 8,
2)

(0.5,
0.005,
10, 5,
2)

Picksens (0.39,
0.004243,
26, 8,
2)

(0.24,
0.00066,
38, 6,
1)

(0.08,
0.004255,
28, 9,
2)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.5,
0.005,
23, 9,
2)

(0.5,
0.005,
32, 15,
2)

(0.12,
0.004421,
10, 7,
2)

(0.08,
0.004255,
28, 9,
2)

(0.05,
0.004008,
38, 18,
2)

(0.03,
0.000414,
28, 7,
2)

(0.5,
0.004723,
41, 17,
1)

(0.28,
0.004914,
27, 8,
2)

(0.33,
0.001313,
35, 13,
1)

(0.21,
0.000011,
22, 16,
1)

Pickshelves (0.31,
0.001869,
25, 5,
2)

(0.21,
0.000011,
22, 16,
1)

(0.16,
0.002935,
40, 12,
1)

(0.24,
0.00066,
38, 6,
1)

(0.24,
0.00066,
38, 6,
1)

(0.29,
0.001641,
50, 20,
2)

(0.46,
0.000774,
24, 9,
2)

(0.08,
0.004255,
28, 9,
2)

(0.21,
0.000011,
22, 16,
1)

(0.01,
0.002024,
27, 7,
2)

(0.32,
0.001347,
22, 16,
1)

(0.2,
0.004245,
33, 19,
1)

(0.39,
0.004243,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.5,
0.005,
22, 5,
2)

In Table 29, for each time series five values are given. The first value corresponds to
the tuned dropout parameter, the second value corresponds to the tuned learning rate
parameter, the third value corresponds to the tuned number of neurons, the fourth value
corresponds to the tuned number of epochs, and the fifth value corresponds to the tuned
number of layers in the LSTM, for each time series.
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Table 30: Tuned hyperparameters MLP with selected features

0 1 2

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

Pickabove (0.41,
0.001471,
19, 5,
2)

(0.5,
0.005,
42, 20,
1)

(0.38,
0.001711,
15, 5,
2)

(0.21,
0.000011,
22, 16,
1)

(0.05,
0.004008,
38, 18,
2)

(0.5,
0.005,
39, 11,
2)

(0.39,
0.004243,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.42,
0.000317,
27, 7,
1)

(0.5,
0.005,
48, 18,
2)

(0.39,
0.004243,
26, 8,
2)

(0.39,
0.004243,
26, 8,
2)

(0.5,
0.005,
41, 20,
2)

(0.3,
0.000412,
46, 5,
1)

(0.5,
0.005,
40, 20,
2)

Pickbelt (0.02,
0.001305,
50, 15,
2)

(0.05,
0.004008,
38, 18,
2)

(0.21,
0.000011,
22, 16,
1)

(0.24,
0.00066,
38, 6,
1)

(0.24,
0.00066,
38, 6,
1)

(0.5,
0.005,
42, 9,
1)

(0.39,
0.004243,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

(0.06,
0.001734,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

(0.5,
0.005,
15, 5,
1)

(0.21,
0.000011,
22, 16,
1)

(0.44,
0.005,
43, 16,
2)

(0.01,
0.005,
25, 8,
2)

(0.11,
0.003317,
44, 17,
2)

Pickbulk Above (0.06,
0.001734,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.06,
0.001734,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

(0.06,
0.001734,
26, 8,
2)

(0.41,
0.002948,
45, 8,
1)

(0.06,
0.001734,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.27,
0.001921,
49, 12,
2)

(0.17,
0.003672,
10, 6,
1)

Pickbulk Ground (0.47,
0.005,
31, 8,
1)

(0.5,
0.005,
33, 5,
2)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.1,
0.004926,
28, 10,
2)

(0.24,
0.00066,
38, 6,
1)

(0.24,
0.00066,
38, 6,
1)

(0.21,
0.000011,
22, 16,
1)

(0.5,
0.005,
42, 15,
2)

(0.5,
0.005,
10, 5,
2)

(0.06,
0.001734,
26, 8,
2)

(0.2,
0.002057,
50, 10,
1)

(0.3,
0.000412,
46, 5,
1)

(0.5,
0.005,
10, 20,
2)

Pickconsolidation C (0.01,
0.005,
36, 20,
1)

(0.06,
0.001734,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

(0.06,
0.001734,
26, 8,
2)

(0.21,
0.000011,
22, 16,
1)

(0.5,
0.005,
33, 5,
2)

(0.32,
0.001347,
22, 16,
1)

(0.05,
0.004008,
38, 18,
2)

(0.08,
0.004255,
28, 9,
2)

(0.21,
0.000011,
22, 16,
1)

(0.5,
0.005,
39, 19,
2)

(0.5,
0.005,
35, 20,
2)

(0.26,
0.001346,
32, 8,
1)

(0.06,
0.001734,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

Pickconsolidation K (0.01,
0.005,
26, 20,
2)

(0.01,
0.00001,
10, 5,
2)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.5,
0.005,
33, 5,
2)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.39,
0.004243,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.22,
0.00025,
24, 7,
2)

(0.3,
0.000412,
46, 5,
1)

(0.5,
0.005,
34, 5,
2)

(0.5,
0.005,
10, 20,
2)

Pickground (0.5,
0.004449,
50, 20,
2)

(0.5,
0.005,
33, 5,
2)

(0.06,
0.001734,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.03,
0.004559,
50, 20,
1)

(0.5,
0.005,
23, 9,
2)

(0.06,
0.001734,
26, 8,
2)

(0.02,
0.00232,
26, 8,
2)

(0.03,
0.000024,
10, 19,
2)

(0.5,
0.005,
43, 18,
2)

(0.06,
0.001734,
26, 8,
2)

(0.01,
0.005,
10, 17,
2)

(0.39,
0.004243,
26, 8,
2)

(0.5,
0.005,
49, 5,
1)

Pickground Allegro (0.5,
0.005,
10, 20,
2)

(0.05,
0.004008,
38, 18,
2)

(0.21,
0.000011,
22, 16,
1)

(0.24,
0.00066,
38, 6,
1)

(0.21,
0.000011,
22, 16,
1)

(0.5,
0.005,
10, 20,
2)

(0.5,
0.005,
32, 12,
2)

(0.39,
0.004243,
26, 8,
2)

(0.05,
0.004008,
38, 18,
2)

(0.49,
0.004112,
33, 10,
1)

(0.45,
0.004037,
32, 11,
2)

(0.5,
0.005,
35, 5,
2)

(0.39,
0.004243,
26, 8,
2)

(0.06,
0.001734,
26, 8,
2)

(0.4,
0.000165,
42, 8,
2)

Pickrobot (0.46,
0.005,
10, 13,
2)

(0.05,
0.004008,
38, 18,
2)

(0.01,
0.005,
50, 12,
2)

(0.05,
0.004008,
38, 18,
2)

(0.24,
0.00066,
38, 6,
1)

(0.32,
0.00311,
39, 20,
2)

(0.06,
0.001734,
26, 8,
2)

(0.5,
0.002645,
31, 14,
1)

(0.08,
0.004255,
28, 9,
2)

(0.05,
0.004008,
38, 18,
2)

(0.13,
0.004288,
50, 20,
2)

(0.21,
0.000011,
22, 16,
1)

(0.42,
0.004112,
50, 20,
1)

(0.42,
0.000317,
27, 7,
1)

(0.5,
0.005,
10, 5,
2)

Picksens (0.14,
0.00128,
50, 18,
2)

(0.5,
0.005,
38, 20,
2)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.21,
0.000011,
22, 16,
1)

(0.5,
0.005,
38, 10,
2)

(0.5,
0.005,
33, 5,
2)

(0.39,
0.004243,
26, 8,
2)

(0.18,
0.001878,
50, 20,
1)

(0.21,
0.000011,
22, 16,
1)

(0.5,
0.005,
33, 5,
2)

(0.41,
0.001218,
27, 5,
2)

(0.5,
0.005,
34, 5,
2)

(0.06,
0.001734,
26, 8,
2)

(0.18,
0.001878,
50, 20,
1)

Pickshelves (0.41,
0.001471,
19, 5,
2)

(0.05,
0.004008,
38, 18,
2)

(0.21,
0.000011,
22, 16,
1)

(0.24,
0.00066,
38, 6,
1)

(0.24,
0.00066,
38, 6,
1)

(0.32,
0.002172,
41, 20,
1)

(0.24,
0.00066,
38, 6,
1)

(0.24,
0.00066,
38, 6,
1)

(0.01,
0.005,
29, 18,
2)

(0.24,
0.000869,
23, 6,
2)

(0.5,
0.001431,
38, 14,
2)

(0.43,
0.003421,
48, 19,
2)

(0.28,
0.002757,
50, 16,
1)

(0.24,
0.004841,
50, 13,
1)

(0.06,
0.001734,
26, 8,
2)

In Table 30, for each time series five values are given. The first value corresponds to
the tuned dropout parameter, the second value corresponds to the tuned learning rate
parameter, the third value corresponds to the tuned number of neurons, the fourth value
corresponds to the tuned number of epochs, and the fifth value corresponds to the tuned
number of layers in the LSTM, for each time series.
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Table 31: Tuned hyperparameters LSTM without features

0 1 2

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

Pickabove (0.06,
0.00001,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.32,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.06,
0.00001,
26, 6,
2)

(0.32,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.43,
0.00001,
25, 5,
2)

(0.16,
0.000011,
40, 7,
1)

(0.09,
0.000011,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

Pickbelt (0.37,
0.00001,
37, 8,
2)

(0.16,
0.000011,
40, 7,
1)

(0.5,
0.000011,
24, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.32,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.37,
0.00001,
37, 8,
2)

(0.32,
0.00001,
22, 9,
1)

(0.5,
0.000011,
23, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.09,
0.000011,
26, 6,
2)

(0.16,
0.000011,
40, 7,
1)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

Pickbulk Above (0.16,
0.000011,
25, 6,
1)

(0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.32,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.32,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.37,
0.00001,
37, 8,
2)

(0.09,
0.000011,
26, 6,
2)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.23,
0.000011,
26, 6,
2)

Pickbulk Ground (0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.5,
0.000011,
23, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.32,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.16,
0.000011,
40, 7,
1)

(0.01,
0.000011,
28, 5,
1)

(0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

Pickconsolidation C (0.16,
0.000011,
40, 7,
1)

(0.37,
0.00001,
37, 8,
2)

(0.32,
0.00001,
22, 9,
1)

(0.11,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.5,
0.000011,
26, 10,
1)

(0.09,
0.000011,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.32,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.22,
0.000011,
26, 5,
1)

Pickconsolidation K (0.43,
0.00001,
22, 8,
1)

(0.06,
0.00001,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.01,
0.00001,
43, 9,
2)

(0.32,
0.00001,
22, 9,
1)

(0.22,
0.000011,
26, 6,
1)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

Pickground (0.19,
0.00001,
22, 9,
1)

(0.01,
0.000011,
20, 10,
2)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.5,
0.000011,
25, 10,
1)

(0.06,
0.00001,
26, 6,
2)

(0.01,
0.00001,
21, 10,
2)

(0.21,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.1,
0.00001,
22, 9,
2)

(0.21,
0.00001,
22, 9,
1)

(0.01,
0.00001,
27, 8,
2)

(0.09,
0.000011,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

Pickground Allegro (0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.21,
0.00001,
22, 9,
1)

(0.5,
0.000011,
24, 9,
1)

(0.01,
0.00001,
24, 10,
2)

(0.32,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.09,
0.000011,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

Pickrobot (0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.16,
0.00001,
26, 5,
1)

(0.16,
0.000011,
40, 7,
1)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.24,
0.00001,
26, 6,
1)

(0.16,
0.000011,
40, 7,
1)

(0.16,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.01,
0.00001,
24, 5,
2)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

Picksens (0.09,
0.000011,
26, 6,
2)

(0.16,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.5,
0.000011,
18, 10,
1)

(0.37,
0.00001,
37, 8,
2)

(0.37,
0.00001,
37, 8,
2)

(0.13,
0.00001,
26, 6,
1)

(0.06,
0.00001,
26, 6,
2)

(0.15,
0.00001,
26, 6,
1)

(0.31,
0.00001,
24, 5,
1)

(0.21,
0.00001,
22, 9,
1)

Pickshelves (0.44,
0.000011,
29, 5,
2)

(0.43,
0.00001,
22, 8,
1)

(0.32,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
21, 9,
2)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.01,
0.00001,
23, 9,
2)

(0.37,
0.00001,
37, 8,
2)

(0.5,
0.00001,
24, 9,
1)

(0.24,
0.00001,
22, 8,
1)

(0.09,
0.000011,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

In Table 31, for each time series five values are given. The first value corresponds to
the tuned dropout parameter, the second value corresponds to the tuned learning rate
parameter, the third value corresponds to the tuned number of neurons, the fourth value
corresponds to the tuned number of epochs, and the fifth value corresponds to the tuned
number of layers in the LSTM, for each time series.
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Table 32: Tuned hyperparameters LSTM with selected features

0 1 2

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

4, 8 8,
12

12,
16

16,
20

20,
24

Pickabove (0.06,
0.00001,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.5,
0.00001,
24, 9,
1)

(0.01,
0.00001,
22, 9,
1)

(0.09,
0.000011,
26, 6,
2)

(0.23,
0.000011,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.09,
0.000011,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

Pickbelt (0.23,
0.000011,
26, 6,
2)

(0.37,
0.00001,
37, 8,
2)

(0.32,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.01,
0.000011,
13, 10,
2)

(0.32,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.16,
0.000011,
40, 7,
1)

(0.37,
0.00001,
37, 8,
2)

(0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.01,
0.000011,
25, 5,
2)

Pickbulk Above (0.06,
0.00001,
26, 6,
2)

(0.37,
0.00001,
37, 8,
2)

(0.21,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.13,
0.000011,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.32,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.16,
0.000011,
40, 7,
1)

(0.06,
0.00001,
26, 6,
2)

(0.16,
0.000011,
40, 7,
1)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

Pickbulk Ground (0.37,
0.00001,
37, 8,
2)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.16,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.16,
0.000011,
40, 7,
1)

(0.06,
0.00001,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.24,
0.000011,
26, 5,
2)

(0.09,
0.000011,
26, 6,
2)

(0.28,
0.000011,
27, 5,
2)

Pickconsolidation C (0.23,
0.000011,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.46,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.16,
0.000011,
40, 7,
1)

(0.16,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.16,
0.000011,
40, 7,
1)

(0.37,
0.00001,
37, 8,
2)

(0.01,
0.00001,
28, 8,
2)

Pickconsolidation K (0.09,
0.000011,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.15,
0.00001,
28, 8,
2)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

Pickground (0.06,
0.00001,
26, 6,
2)

(0.32,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.21,
0.00001,
22, 9,
1)

(0.01,
0.000011,
21, 9,
2)

(0.37,
0.00001,
37, 8,
2)

(0.5,
0.000011,
24, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.09,
0.000011,
26, 6,
2)

(0.21,
0.00001,
22, 9,
1)

(0.09,
0.000011,
26, 6,
2)

Pickground Allegro (0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.32,
0.00001,
22, 9,
1)

(0.5,
0.000011,
22, 9,
1)

(0.32,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.01,
0.000011,
20, 10,
2)

(0.21,
0.00001,
22, 9,
1)

(0.01,
0.000011,
20, 10,
2)

(0.16,
0.000011,
40, 7,
1)

(0.01,
0.00001,
26, 7,
2)

(0.17,
0.000011,
31, 5,
1)

(0.09,
0.000011,
26, 6,
2)

(0.01,
0.00001,
29, 7,
2)

(0.09,
0.000011,
26, 6,
2)

Pickrobot (0.11,
0.00001,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.22,
0.000011,
26, 6,
2)

(0.32,
0.00001,
22, 9,
1)

(0.21,
0.00001,
22, 9,
1)

(0.01,
0.00001,
29, 7,
2)

(0.16,
0.000011,
40, 7,
1)

(0.09,
0.000011,
26, 6,
2)

(0.2,
0.00001,
38, 5,
2)

(0.21,
0.00001,
22, 9,
1)

(0.01,
0.00001,
27, 8,
2)

(0.09,
0.000011,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.25,
0.00001,
26, 6,
2)

Picksens (0.05,
0.000011,
26, 6,
2)

(0.37,
0.00001,
37, 8,
2)

(0.06,
0.00001,
26, 6,
2)

(0.37,
0.00001,
37, 8,
2)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.09,
0.000011,
26, 6,
2)

(0.22,
0.000011,
26, 6,
1)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.06,
0.00001,
26, 6,
2)

(0.01,
0.00001,
26, 7,
2)

(0.06,
0.00001,
26, 6,
2)

Pickshelves (0.01,
0.00001,
28, 8,
2)

(0.21,
0.00001,
22, 9,
1)

(0.01,
0.00001,
22, 8,
1)

(0.16,
0.000011,
40, 7,
1)

(0.21,
0.00001,
22, 9,
1)

(0.37,
0.00001,
37, 8,
2)

(0.16,
0.000011,
40, 7,
1)

(0.37,
0.00001,
37, 8,
2)

(0.01,
0.00001,
20, 10,
2)

(0.21,
0.00001,
22, 9,
1)

(0.06,
0.00001,
26, 6,
2)

(0.16,
0.000011,
40, 7,
1)

(0.37,
0.00001,
37, 8,
2)

(0.37,
0.00001,
37, 8,
2)

(0.26,
0.00001,
26, 5,
2)

In Table 32, for each time series five values are given. The first value corresponds to
the tuned dropout parameter, the second value corresponds to the tuned learning rate
parameter, the third value corresponds to the tuned number of neurons, the fourth value
corresponds to the tuned number of epochs, and the fifth value corresponds to the tuned
number of layers in the LSTM, for each time series.
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D Extended results of forecasting
models

Table 33: Performance metrics of benchmark

Mean tasks RMSLE MAE RMSE

Overall

2.03 1.63 6.66 14.82

Zone

Pickabove 0.83 1.61 5.52 14.53

Pickbelt 4.88 1.68 9.12 18.74

Pickbulk Above 0.43 1.59 4.77 6.60

Pickbulk Ground 0.38 1.59 4.85 6.59

Pickconsolidation C 3.83 1.72 8.77 20.38

Pickconsolidation K 0.6 1.6 5.16 7.27

Pickground 4.69 1.72 10.73 24.81

Pickground Allegro 3.63 1.65 8.15 22.4

Pickrobot 1.34 1.60 5.68 8.34

Picksens 0.51 1.59 4.98 7.01

Pickshelves 1.14 1.60 5.49 7.85

Departure bucket

(0, (4, 8)) 0.005 1.60 4.48 6.04

(0, (8, 12)) 0.96 1.62 5.64 9.44

(0, (12, 16)) 3.49 1.66 8.05 18.56

(0, (16, 20)) 12.05 1.73 16.49 36.01

(0, (20, 24)) 3.52 1.51 6.87 10.48

(1, (4, 8)) 0.17 1.62 4.82 6.67

(1, (8, 12)) 4.78 1.67 9.68 21.8

(1, (12, 16)) 2.17 1.65 7.22 15.45

(1, (16, 20)) 1.99 1.64 6.86 12.20

(1, (20, 24)) 0.29 1.61 4.88 6.76

(2, (4, 8)) 0.08 1.62 4.86 13.73

(2, (8, 12)) 0.66 1.67 5.76 12.07

(2, (12, 16)) 0.14 1.65 5.01 7.09

(2, (16, 20)) 0.05 1.63 4.71 6.42

(2, (20, 24)) 0.001 1.61 4.51 6.10

90
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Table 34: Performance metrics of SES

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.88 3.28 13.62

Zone

Pickabove 0.83 0.68 1.57 13.25

Pickbelt 4.88 1.19 6.83 17.93

Pickbulk Above 0.43 0.50 0.61 2.16

Pickbulk Ground 0.38 0.56 0.81 2.44

Pickconsolidation C 3.84 1.27 6.91 21.13

Pickconsolidation K 0.60 0.72 1.36 4.29

Pickground 4.69 1.26 8.41 23.62

Pickground Allegro 3.63 0.96 4.92 21.08

Pickrobot 1.34 0.72 1.96 5.62

Picksens 0.51 0.56 0.90 3.30

Pickshelves 1.14 0.73 1.79 4.95

Departure bucket

(0, (4, 8)) 0.005 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.88 2.24 7.51

(0, (12, 16)) 3.49 1.37 6.72 20.76

(0, (16, 20)) 12.05 1.53 15.94 34.23

(0, (20, 24)) 3.52 1.10 4.71 8.77

(1, (4, 8)) 0.17 0.41 0.42 1.79

(1, (8, 12)) 4.78 1.19 7.03 20.73

(1, (12, 16)) 2.17 1.09 4.20 14.12

(1, (16, 20)) 1.99 1.07 3.95 10.50

(1, (20, 24)) 0.29 0.47 0.57 1.82

(2, (4, 8)) 0.08 0.28 0.34 12.36

(2, (8, 12)) 0.66 0.98 2.62 11.96

(2, (12, 16)) 0.14 0.40 0.42 2.50

(2, (16, 20)) 0.06 0.06 0.01 0.08

(2, (20, 24)) 0.001 0.00 0.00 0.00
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Table 35: Performance metrics of Holt’s

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.99 5.94 98.3

Zone

Pickabove 0.83 0.82 2.34 16.43

Pickbelt 4.88 1.28 7.16 18.13

Pickbulk Above 0.43 0.67 1.48 10.37

Pickbulk Ground 0.38 0.59 0.81 2.53

Pickconsolidation C 3.84 1.32 6.94 20.98

Pickconsolidation K 0.60 0.73 1.33 4.18

Pickground 4.69 1.50 32.03 322.52

Pickground Allegro 3.63 1.10 6.07 23.88

Pickrobot 1.34 0.84 2.58 9.63

Picksens 0.51 0.59 0.91 3.34

Pickshelves 1.14 0.97 3.66 20.76

Departure bucket

(0, (4, 8)) 0.005 0.07 0.02 0.15

(0, (8, 12)) 0.96 0.88 2.10 7.45

(0, (12, 16)) 3.49 1.37 6.36 20.14

(0, (16, 20)) 12.05 1.63 16.70 35.12

(0, (20, 24)) 3.52 1.19 4.85 9.03

(1, (4, 8)) 0.17 0.39 0.36 1.76

(1, (8, 12)) 4.78 1.35 7.79 21.10

(1, (12, 16)) 2.17 1.18 4.46 14.35

(1, (16, 20)) 1.99 1.11 4.05 10.61

(1, (20, 24)) 0.29 0.52 0.63 1.94

(2, (4, 8)) 0.08 0.27 0.33 12.36

(2, (8, 12)) 0.66 1.69 40.93 377.14

(2, (12, 16)) 0.14 0.44 0.45 2.53

(2, (16, 20)) 0.06 0.08 0.01 0.12

(2, (20, 24)) 0.001 0.01 0.00 0.01
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Table 36: Performance metrics of Holt’s-Winters

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.64 2.24 10.89

Zone

Pickabove 0.83 0.62 1.55 13.61

Pickbelt 4.88 0.83 4.57 13.72

Pickbulk Above 0.43 0.42 0.53 2.09

Pickbulk Ground 0.38 0.42 0.59 1.95

Pickconsolidation C 3.83 0.88 4.41 16.87

Pickconsolidation K 0.60 0.57 1.06 3.96

Pickground 4.69 0.88 5.17 16.12

Pickground Allegro 3.63 0.70 3.58 18.08

Pickrobot 1.34 0.50 1.38 4.20

Picksens 0.51 0.45 0.68 2.64

Pickshelves 1.14 0.48 1.06 3.28

Departure bucket

(0, (4, 8)) 0.05 0.08 0.02 0.18

(0, (8, 12)) 0.96 0.71 1.86 6.91

(0, (12, 16)) 3.49 0.74 3.77 13.93

(0, (16, 20)) 12.05 0.83 8.36 23.44

(0, (20, 24)) 3.52 0.58 2.29 5.18

(1, (4, 8)) 0.17 0.45 0.53 3.98

(1, (8, 12)) 4.78 1.06 6.57 19.26

(1, (12, 16)) 2.17 0.90 3.65 13.57

(1, (16, 20)) 1.99 0.73 2.55 8.96

(1, (20, 24)) 0.29 0.39 0.46 1.64

(2, (4, 8)) 0.08 0.32 0.43 12.72

(2, (8, 12)) 0.66 0.97 2.63 11.77

(2, (12, 16)) 0.14 0.40 0.43 2.40

(2, (16, 20)) 0.05 0.06 0.02 0.07

(2, (20, 24)) 0.001 0.01 0.00 0.01

93



APPENDIX D EXTENDED RESULTS OF FORECASTING MODELS

Table 37: Performance metrics of ARIMA

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.89 3.23 14.15

Zone

Pickabove 0.83 0.67 1.38 13.27

Pickbelt 4.88 1.23 7.44 20.61

Pickbulk Above 0.43 0.46 0.52 2.11

Pickbulk Ground 0.38 0.52 0.70 2.38

Pickconsolidation C 3.84 1.16 5.95 20.36

Pickconsolidation K 0.60 0.71 1.22 4.33

Pickground 4.69 1.27 8.50 23.72

Pickground Allegro 3.63 1.10 5.13 22.76

Pickrobot 1.34 0.74 1.93 5.74

Picksens 0.51 0.60 0.85 3.40

Pickshelves 1.14 0.87 1.84 5.78

Departure bucket

(0, (4, 8)) 0.05 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.84 2.05 7.33

(0, (12, 16)) 3.49 1.38 6.61 20.79

(0, (16, 20)) 12.05 1.75 17.10 37.03

(0, (20, 24)) 3.52 1.19 4.68 8.85

(1, (4, 8)) 0.17 0.38 0.35 1.77

(1, (8, 12)) 4.78 1.26 7.48 21.82

(1, (12, 16)) 2.17 1.05 3.74 14.43

(1, (16, 20)) 1.99 1.07 3.86 10.45

(1, (20, 24)) 0.29 0.46 0.45 1.85

(2, (4, 8)) 0.08 0.26 0.31 12.36

(2, (8, 12)) 0.66 0.72 1.38 10.46

(2, (12, 16)) 0.14 0.36 0.36 2.49

(2, (16, 20)) 0.06 0.04 0.00 0.06

(2, (20, 24)) 0.001 0.00 0.00 0.00
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Table 38: Performance metrics of SARIMA

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.68 2.46 12.04

Zone

Pickabove 0.83 0.54 1.19 13.21

Pickbelt 4.88 0.92 5.66 17.17

Pickbulk Above 0.43 0.45 0.53 2.06

Pickbulk Ground 0.38 0.43 0.59 2.08

Pickconsolidation C 3.83 0.89 4.55 17.46

Pickconsolidation K 0.60 0.52 0.93 3.62

Pickground 4.69 1.04 6.42 19.34

Pickground Allegro 3.63 0.73 3.56 19.25

Pickrobot 1.34 0.59 1.57 5.04

Picksens 0.51 0.42 0.65 2.99

Pickshelves 1.14 0.59 1.42 4.59

Departure bucket

(0, (4, 8)) 0.05 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.62 1.54 7.02

(0, (12, 16)) 3.49 0.84 3.96 14.43

(0, (16, 20)) 12.05 1.21 12.00 29.72

(0, (20, 24)) 3.52 0.87 3.51 7.34

(1, (4, 8)) 0.17 0.37 0.33 1.77

(1, (8, 12)) 4.78 1.10 6.85 20.93

(1, (12, 16)) 2.17 0.81 3.17 13.46

(1, (16, 20)) 1.99 0.88 3.04 9.39

(1, (20, 24)) 0.29 0.39 0.43 1.77

(2, (4, 8)) 0.08 0.26 0.31 12.36

(2, (8, 12)) 0.66 0.68 1.39 10.42

(2, (12, 16)) 0.14 0.37 0.36 2.49

(2, (16, 20)) 0.05 0.04 0.00 0.06

(2, (20, 24)) 0.001 0.00 0.00 0.00
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Table 39: Performance metrics of ARIMAX

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.56 1.97 10.33

Zone

Pickabove 0.83 0.54 1.32 13.10

Pickbelt 4.88 0.71 3.88 12.52

Pickbulk Above 0.43 0.39 0.48 2.02

Pickbulk Ground 0.38 0.37 0.54 1.84

Pickconsolidation C 3.83 0.75 3.76 16.04

Pickconsolidation K 0.60 0.44 0.78 3.23

Pickground 4.69 0.79 4.62 15.25

Pickground Allegro 3.63 0.60 3.27 17.45

Pickrobot 1.34 0.46 1.30 4.07

Picksens 0.51 0.40 0.64 2.60

Pickshelves 1.14 0.46 1.03 3.28

Departure bucket

(0, (4, 8)) 0.05 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.66 1.70 6.83

(0, (12, 16)) 3.49 0.71 3.57 13.12

(0, (16, 20)) 12.05 0.76 7.61 22.54

(0, (20, 24)) 3.52 0.62 2.36 5.27

(1, (4, 8)) 0.17 0.34 0.35 1.71

(1, (8, 12)) 4.78 0.94 5.86 18.64

(1, (12, 16)) 2.17 0.79 3.10 12.96

(1, (16, 20)) 1.99 0.68 2.30 8.08

(1, (20, 24)) 0.29 0.35 0.43 1.62

(2, (4, 8)) 0.08 0.24 0.33 12.35

(2, (8, 12)) 0.66 0.62 1.46 10.13

(2, (12, 16)) 0.14 0.33 0.37 2.35

(2, (16, 20)) 0.05 0.06 0.03 0.08

(2, (20, 24)) 0.001 0.00 0.00 0.00
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Table 40: Performance metrics of SARIMAX

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.57 2.02 10.40

Zone

Pickabove 0.83 0.54 1.32 13.10

Pickbelt 4.88 0.72 4.12 13.17

Pickbulk Above 0.43 0.39 0.48 1.96

Pickbulk Ground 0.38 0.37 0.53 1.80

Pickconsolidation C 3.83 0.75 3.65 15.61

Pickconsolidation K 0.60 0.54 1.02 4.10

Pickground 4.69 0.79 4.62 15.30

Pickground Allegro 3.63 0.60 3.26 17.48

Pickrobot 1.34 0.45 1.28 4.05

Picksens 0.51 0.45 0.75 2.95

Pickshelves 1.14 0.53 1.20 3.58

Departure bucket

(0, (4, 8)) 0.005 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.64 1.67 6.82

(0, (12, 16)) 3.49 0.69 3.25 11.96

(0, (16, 20)) 12.05 0.89 8.49 23.44

(0, (20, 24)) 3.52 0.62 2.37 5.29

(1, (4, 8)) 0.17 0.33 0.34 1.71

(1, (8, 12)) 4.78 0.97 6.05 18.86

(1, (12, 16)) 2.17 0.82 3.21 13.01

(1, (16, 20)) 1.99 0.68 2.29 8.04

(1, (20, 24)) 0.29 0.36 0.44 1.62

(2, (4, 8)) 0.08 0.24 0.33 12.35

(2, (8, 12)) 0.66 0.62 1.46 10.13

(2, (12, 16)) 0.14 0.33 0.37 2.35

(2, (16, 20)) 0.05 0.06 0.03 0.08

(2, (20, 24)) 0.001 0.00 0.00 0.00
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Table 41: Performance metrics of Croston method

Mean tasks RMSLE MAE RMSE

overall

2.03 0.86 3.24 13.3

Zone

Pickabove 0.83 0.70 1.66 13.25

Pickbelt 4.88 1.22 6.95 17.53

Pickbulk Above 0.43 0.44 0.55 2.06

Pickbulk Ground 0.38 0.52 0.78 2.34

Pickconsolidation C 3.83 1.20 6.35 20.03

Pickconsolidation K 0.60 0.63 1.17 3.90

Pickground 4.69 1.24 8.41 23.08

Pickground Allegro 3.63 0.98 4.99 20.97

Pickrobot 1.34 0.72 2.01 5.53

Picksens 0.51 0.55 0.91 3.27

Pickshelves 1.14 0.74 1.81 4.91

Departure bucket

(0, (4, 8)) 0.05 0.07 0.02 0.15

(0, (8, 12)) 0.96 0.90 2.27 7.37

(0, (12, 16)) 3.49 1.31 6.61 19.32

(0, (16, 20)) 12.05 1.56 16.1 33.86

(0, (20, 24)) 3.52 1.12 4.77 8.65

(1, (4, 8)) 0.17 0.39 0.43 1.77

(1, (8, 12)) 4.78 1.20 7.06 20.62

(1, (12, 16)) 2.17 1.09 4.22 14.07

(1, (16, 20)) 1.99 1.08 3.99 10.46

(1, (20, 24)) 0.29 0.44 0.56 1.8

(2, (4, 8)) 0.08 0.27 0.35 12.36

(2, (8, 12)) 0.66 0.75 1.73 10.38

(2, (12, 16)) 0.14 0.35 0.38 2.49

(2, (16, 20)) 0.05 0.11 0.07 0.13

(2, (20, 24)) 0.001 0.00 0.00 0.00
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Table 42: Performance metrics of MLP without features

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.94 3.35 14.26

Zone

Pickabove 0.83 0.87 2.01 13.49

Pickbelt 4.88 1.27 6.83 18.75

Pickbulk Above 0.43 0.51 0.58 2.16

Pickbulk Ground 0.38 0.61 0.83 2.93

Pickconsolidation C 3.83 1.22 6.08 20.85

Pickconsolidation K 0.60 0.71 1.19 4.11

Pickground 4.69 1.35 8.65 25.28

Pickground Allegro 3.63 1.07 5.60 22.77

Pickrobot 1.34 0.82 2.17 6.3

Picksens 0.51 0.64 0.94 3.48

Pickshelves 1.14 0.84 1.90 5.28

Departure bucket

(0, (4, 8)) 0.05 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.95 2.23 7.68

(0, (12, 16)) 3.49 1.29 6.06 20.16

(0, (16, 20)) 12.05 1.77 17.48 37.66

(0, (20, 24)) 3.52 1.32 4.88 9.51

(1, (4, 8)) 0.17 0.43 0.42 1.79

(1, (8, 12)) 4.78 1.34 7.67 21.23

(1, (12, 16)) 2.17 1.17 4.34 15.00

(1, (16, 20)) 1.99 1.08 3.67 10.87

(1, (20, 24)) 0.29 0.50 0.55 1.86

(2, (4, 8)) 0.08 0.46 0.59 12.48

(2, (8, 12)) 0.66 0.82 1.76 10.55

(2, (12, 16)) 0.14 0.43 0.43 2.56

(2, (16, 20)) 0.05 0.18 0.08 0.30

(2, (20, 24)) 0.001 0.01 0.00 0.01
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Table 43: Performance metrics of MLP with features

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.93 3.22 13.93

Zone

Pickabove 0.83 0.77 1.68 13.36

Pickbelt 4.88 1.26 6.60 18.22

Pickbulk Above 0.43 0.52 0.58 2.17

Pickbulk Ground 0.38 0.59 0.76 2.51

Pickconsolidation C 3.83 1.24 5.97 20.33

Pickconsolidation K 0.60 0.70 1.14 4.09

Pickground 4.69 1.33 8.36 24.75

Pickground Allegro 3.63 1.10 5.42 22.10

Pickrobot 1.34 0.81 2.13 6.57

Picksens 0.51 0.62 0.91 3.43

Pickshelves 1.14 0.84 1.86 5.25

Departure bucket

(0, (4, 8)) 0.05 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.91 2.06 7.61

(0, (12, 16)) 3.49 1.25 5.31 18.61

(0, (16, 20)) 12.05 1.78 16.93 36.77

(0, (20, 24)) 3.52 1.30 4.79 9.49

(1, (4, 8)) 0.17 0.40 0.38 1.77

(1, (8, 12)) 4.78 1.34 7.66 21.21

(1, (12, 16)) 2.17 1.17 4.17 14.76

(1, (16, 20)) 1.99 1.13 3.89 11.01

(1, (20, 24)) 0.29 0.5 0.57 1.84

(2, (4, 8)) 0.08 0.29 0.35 12.36

(2, (8, 12)) 0.66 0.83 1.76 10.48

(2, (12, 16)) 0.14 0.38 0.35 2.51

(2, (16, 20)) 0.05 0.14 0.06 0.21

(2, (20, 24)) 0.001 0.01 0.00 0.01
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Table 44: Performance metrics of LSTM without features

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.92 2.90 14.67

Zone

Pickabove 0.83 0.67 1.37 13.35

Pickbelt 4.88 1.33 6.36 20.01

Pickbulk Above 0.43 0.47 0.46 2.15

Pickbulk Ground 0.38 0.57 0.65 2.53

Pickconsolidation C 3.83 1.15 5.07 20.72

Pickconsolidation K 0.60 0.67 0.97 4.15

Pickground 4.69 1.32 7.68 26.43

Pickground Allegro 3.63 1.11 4.99 23.36

Pickrobot 1.34 0.87 1.95 6.63

Picksens 0.51 0.59 0.78 3.48

Pickshelves 1.14 0.84 1.62 5.58

Departure bucket

(0, (4, 8)) 0.05 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.81 1.64 7.56

(0, (12, 16)) 3.49 1.12 4.43 19.00

(0, (16, 20)) 12.05 1.96 16.50 39.9

(0, (20, 24)) 3.52 1.38 4.64 10.21

(1, (4, 8)) 0.17 0.33 0.27 1.74

(1, (8, 12)) 4.78 1.40 6.95 22.18

(1, (12, 16)) 2.17 1.04 3.45 14.78

(1, (16, 20)) 1.99 1.06 3.29 11.35

(1, (20, 24)) 0.29 0.45 0.43 1.85

(2, (4, 8)) 0.08 0.26 0.31 12.36

(2, (8, 12)) 0.66 0.67 1.30 10.45

(2, (12, 16)) 0.14 0.33 0.26 2.51

(2, (16, 20)) 0.05 0.05 0.01 0.06

(2, (20, 24)) 0.001 0.00 0.00 0.00
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Table 45: Performance metrics of LSTM with features

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.92 2.91 14.67

Zone

Pickabove 0.83 0.67 1.39 13.35

Pickbelt 4.88 1.32 6.37 20.01

Pickbulk Above 0.43 0.47 0.46 2.15

Pickbulk Ground 0.38 0.57 0.66 2.53

Pickconsolidation C 3.83 1.15 5.09 20.71

Pickconsolidation K 0.60 0.67 0.98 4.14

Pickground 4.69 1.35 7.70 26.47

Pickground Allegro 3.63 1.10 5.00 23.33

Pickrobot 1.34 0.88 1.98 6.62

Picksens 0.51 0.60 0.78 3.48

Pickshelves 1.14 0.84 1.63 5.57

Departure bucket

(0, (4, 8)) 0.005 0.09 0.03 0.16

(0, (8, 12)) 0.96 0.81 1.65 7.55

(0, (12, 16)) 3.49 1.11 4.43 18.99

(0, (16, 20)) 12.05 1.97 16.49 39.92

(0, (20, 24)) 3.52 1.38 4.65 10.22

(1, (4, 8)) 0.17 0.34 0.29 1.74

(1, (8, 12)) 4.78 1.40 6.95 22.16

(1, (12, 16)) 2.17 1.05 3.48 14.79

(1, (16, 20)) 1.99 1.06 3.30 11.34

(1, (20, 24)) 0.29 0.45 0.43 1.85

(2, (4, 8)) 0.08 0.30 0.36 12.36

(2, (8, 12)) 0.66 0.67 1.31 10.45

(2, (12, 16)) 0.14 0.34 0.29 2.50

(2, (16, 20)) 0.05 0.08 0.03 0.10

(2, (20, 24)) 0.001 0.03 0.01 0.03
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Table 46: Performance metrics of case where models are applied per zone

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.56 2.06 10.04

Zone

Pickabove 0.83 0.53 1.30 9.59

Pickbelt 4.88 0.68 3.88 12.31

Pickbulk Above 0.43 0.40 0.52 1.93

Pickbulk Ground 0.38 0.38 0.56 1.98

Pickconsolidation C 3.83 0.74 4.03 17.06

Pickconsolidation K 0.60 0.43 0.82 3.37

Pickground 4.69 0.84 5.22 16.63

Pickground Allegro 3.63 0.60 3.22 15.53

Pickrobot 1.34 0.49 1.26 4.05

Picksens 0.51 0.42 0.75 3.03

Pickshelves 1.14 0.45 1.08 3.40

Departure bucket

(0, (4, 8)) 0.005 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.68 1.54 5.88

(0, (12, 16)) 3.49 0.75 3.67 14.71

(0, (16, 20)) 12.05 0.67 7.36 22.19

(0, (20, 24)) 3.52 0.62 2.73 7.29

(1, (4, 8)) 0.17 0.35 0.41 3.43

(1, (8, 12)) 4.78 0.97 6.65 20.25

(1, (12, 16)) 2.17 0.80 3.52 12.86

(1, (16, 20)) 1.99 0.62 2.25 7.21

(1, (20, 24)) 0.29 0.41 0.53 1.98

(2, (4, 8)) 0.08 0.21 0.14 0.66

(2, (8, 12)) 0.66 0.62 1.36 5.94

(2, (12, 16)) 0.14 0.41 0.67 5.93

(2, (16, 20)) 0.05 0.07 0.03 0.09

(2, (20, 24)) 0.001 0.01 0.00 0.01
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Table 47: Performance metrics of case where models are applied per departure bucket

Mean tasks RMSLE MAE RMSE

Overall

2.03 0.55 2.01 9.91

Zone

Pickabove 0.83 0.54 1.30 9.59

Pickbelt 4.88 0.66 3.77 12.07

Pickbulk Above 0.43 0.38 0.49 1.85

Pickbulk Ground 0.38 0.38 0.55 1.93

Pickconsolidation C 3.83 0.71 3.78 16.43

Pickconsolidation K 0.60 0.43 0.80 3.37

Pickground 4.69 0.82 5.18 16.62

Pickground Allegro 3.63 0.59 3.18 15.54

Pickrobot 1.34 0.48 1.22 4.07

Picksens 0.51 0.43 0.76 3.02

Pickshelves 1.14 0.45 1.07 3.37

Departure bucket

(0, (4, 8)) 0.005 0.07 0.01 0.15

(0, (8, 12)) 0.96 0.61 1.32 5.59

(0, (12, 16)) 3.49 0.74 3.43 13.88

(0, (16, 20)) 12.05 0.67 7.36 22.20

(0, (20, 24)) 3.52 0.58 2.53 6.53

(1, (4, 8)) 0.17 0.35 0.34 3.45

(1, (8, 12)) 4.78 0.97 6.65 20.25

(1, (12, 16)) 2.17 0.80 3.51 12.86

(1, (16, 20)) 1.99 0.62 2.25 7.21

(1, (20, 24)) 0.29 0.41 0.53 1.98

(2, (4, 8)) 0.08 0.21 0.14 0.66

(2, (8, 12)) 0.66 0.62 1.35 5.93

(2, (12, 16)) 0.14 0.41 0.67 5.93

(2, (16, 20)) 0.05 0.04 0.00 0.07

(2, (20, 24)) 0.001 0.01 0.00 0.01
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E Models applied per zone or depar-
ture bucket

Table 48: Forecast models applied per zone

Zone Forecasting model applied

Pickabove SARIMAX

Pickbelt ARIMAX

Pickbulk Above SARIMAX

Pickbulk Ground SARIMAX

Pickconsolidation C SARIMAX

Pickconsolidation K ARIMAX

Pickground SARIMAX

Pickground Allegro SARIMAX

Pickrobot SARIMAX

Picksens ARIMAX

Pickshelves ARIMAX

Table 49: Forecast models applied per departure bucket

Departure bucket Forecasting model applied

(0, (4, 8)) ARIMAX

(0, (8, 12)) SARIMA

(0, (12, 16)) SARIMAX

(0, (16, 20)) ARIMAX

(0, (20, 24)) Holt’s-Winters

(1, (4, 8)) LSTM without features

(1, (8, 12)) ARIMAX

(1, (12, 16)) ARIMAX

(1, (16, 20)) ARIMAX

(1, (20, 24)) ARIMAX

(2, (4, 8)) ARIMAX

(2, (8, 12)) SARIMAX

(2, (12, 16)) ARIMAX

(2, (16, 20)) ARIMA

(2, (20, 24)) ARIMA
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