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Abstract

Quantum computing and neutral atom cooling have made enormous progress over the last dec-
ades. At the Eindhoven University of Technology, the approach to realise a quantum computer
with neutral atoms is by using an array of Far-Off Resonance Traps (FORTs). These traps, to
which we refer to as an optical tweezer array, will ultimately be loaded with single strontium-88
atoms. To prepare a single atom in a tweezer trap, one illuminates the tweezer trap with laser
light that we refer to as the collision laser, to induce light-assisted collisions. The goal is to make
the preparation efficiency per tweezer trap as high as possible by enhancing the one-atom loss over
the two-atom loss mechanism.

To investigate this theoretically, our study followed two different approaches. The first one is a
semi-classical simulation, referred to as “simulation in this thesis”. The second one a quantum
approach that involves wave function overlap calculations between the particles in the ground
state and in the excited state, here referred to as “overlap calculations”. For the simulation, the
particles are assumed to have a definite position, while moving inside the tweezer trap. When the
particles come close to each other, the interaction energy increases, resulting in the blue-detuned
collision laser to become resonant with the ground-excited state transition of the strontium-88
atoms. This transition can lead to energy gain as a result of motion in the repulsive excited
interaction potential, on the detuning and the Rabi frequency of the collision laser.
For the overlap calculations, the physics of the particles is captured by the relative wave functions
of two interacting atoms in the ground and excited state, from which one can obtain the over-
lap between states in a two-level system within the strontium-88 atom. By calculating the wave
function overlap as function of the detuning, the transition rate between the two levels can be
calculated as function of the ground-state energy and the detuning. Finally, the two approaches
are combined to calculate the trap loss at a temperature of 1 µK, using a trap loss profile from the
simulation and a hypothesized trap loss profile. Using these trap loss profiles, we are able to calcu-
late the trap loss as function of the detuning and to determine the optimum detuning for trap loss.

For Rabi frequencies between Ω = 0.25 MHz and Ω = 5 MHz, and for a detuning between ∆ =
1.76 MHz and ∆ = 2.5 MHz, using a trap depth of 120 µK with strontium-88 atoms, the optimal
regime is found where the particles approach each other in the ground state and gain just enough
energy to exploit the differences in energy prior to the collision, which causes the desired one atom
trap loss for the maximum trap preparation efficiency. This preparation efficiency is not explicitly
calculated due to a lack of accurate information of one-body losses over two-body losses.
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Chapter 1

Introduction

The fundamental basis of quantum computing is built around the fact that information should be
physical as Landauer pointed out and should, as a consequence, be stored on a physical system[1].
For us physicists this sounds promising, since manipulating systems is what we have been doing
since the beginning of humanity. Over the years, this information has become more and more
abstract, until we reached the point of the information being zeros and ones; a binary system.
This system can well be manipulated with the well-known classical Turing computer[2]. However,
when Richard Feynman in 1982 proposed the idea of a quantum computer, a new information
processing era was introduced[3]. This new computer made information processing interesting
due to the quantum parallel processing possibilities. This is possible, since a quantum computer
makes use of qubits, a quantum two-level system which evolves according to the Schrödinger
equation. This multiple quantum state manipulation is possible due to a quantum principle called
quantum superposition, which implies that the general quantum state can be constructed as a
linear combination of basis states. Together with quantum entanglement, which correlates the
phases of different qubits and makes cooperation between qubits possible, this forms the basis of
the quantum computer. Computations with different complexity classes could be done as David
Deutsch pointed out in 1985. After Peter Shor discovered a famous quantum algorithms in 1994[3],
able to factorize large numbers, the interest in quantum computing exploded.

During the same time, people tried to cool down atoms to minuscule temperatures to get better
insights of atom properties. In 1975 Hänsch and Schawlow showed, after the invention of narrow
linewidth tunable lasers, that light sources could exert a substantial force on atoms, causing them
to slow down, making it useful for cooling[4]. A decade later, in 1986, when the Magneto Optical
Trap (MOT) was introduced, it became possible to confine atoms to a small region of space using
a spatially dependent magnetic field, and to ultimately create an optical molasses. The first ex-
periments were done on Na, since it had the most ideal level structure, but it was only a matter of
time when before tunable laser sources, such as the laser diodes and the Ti:sapphire laser, became
available, so that other - heavier - neutral atoms, such as strontium-88, could be cooled down to
temperatures below the Doppler temperature, typically in the order of micro-kelvin[5].

One way to combine the theoretical advances in the field of quantum information with the ad-
vances in experimental atomic physics is through the field of neutral atom quantum computing,
that has garnered significant research interest[4]. This neutral atom manipulation is important for
high-fidelity quantum computing as it is well isolated from the environment and can be prepared
in relatively large systems of hundreds or thousands of particles with different geometries[6], which
can ultimately bring light to the fields of cryptography, search problems, simulation of quantum
systems, machine learning and many other BQP (”bounded error, quantum, polynomial time”)
problems[7].

A bottom-up approach to trap atoms, such as atom-by-atom assembly where single atoms are
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CHAPTER 1. INTRODUCTION

trapped and individually positioned in desired geometries, can be achieved using optical tweezers[6].
The individual traps are made of dipole traps produced by a digital micromirror device (DMD) or
spatial light modulator (SLM) and the qubits can be manipulated by optical fields controlled by
acoustic-optical modulators (AOMs) and two-dimentional acousto-optical deflectors (AODs)[7].
Optical tweezers have made remarkable process in the last few years as more than 100 sites can be
deterministic filled with single atoms[8][9][10]. This deterministic filling is done in two stages, in
the first stage either 0 or 1 atoms are left in each trap caused by light-induced collisions, this can
reach efficiencies up to 50% for strontium-88[11]. Then these atoms can be reassembled to create
a full tweezer array of single strontium-88 atoms. These single atoms can function as Rydberg
qubits with high-fidelity state resolved readout, high-fidelity entangling operations and strong in-
teractions and entanglement between the qubits[10]. However, to reach this stage of computation,
new sophisticated methods for single atom preparation have to be developed to increase the atom
preparation per tweezer site prior to the reassembling, which will be the topic of this thesis.

The single atom preparation in this thesis will be done for strontium-88. To increase the single
atom preparation efficiency we will research the two-body scattering processes caused by a collision
laser, this collision laser is detuned relative to a transition in the strontium-88 atoms causing en-
ergy to be released per collision. As will be explained in the next section, the highest preparation
efficiency can be obtained by maximizing the ratio of one-body losses over two-body losses. This
way, the most single strontium-88 atoms will be left on average per dipole trap in the tweezer array.

To investigate this in this thesis, the one-body losses will first be investigated using a semiclassical
simulation, where the particles have a definite position in phase space located in a tweezer trap.
This tweezer trap is a dipole trap, from which multiple form a tweezer array. In the tweezer array
the strontium atoms can be trapped and cooled down. Also, a collision laser can be used over this
trap to induce two-body collisions between the atoms. Using matlab code, the collision processes
have been simulated within a single dipole trap to investigate the one- over two-body losses.
After the simulation research, the focus of this thesis will shift towards a quantum approach in
which the particles behave as waves. In this approach, the overlap wave function between the
ground and excited state, together with different trap loss profiles, will determine the rate of loss
for different detunings. The trap loss profiles are defined as the energy increase due to collision
processes as a function of the detuning of the collision laser. One of the trap loss profile will be
taken from the simulation, but also a constant trap loss profile and a hypothesized trap loss profile
will be used to investigate how it affects the total strontium atom trap loss.

2 Creating an array of ultracold Sr-88 atoms for quantum computing via light-assisted collisions



CHAPTER 1. INTRODUCTION

1.1 One-body loss vs. two-body loss

In order to do proper quantum information processing, it is important to have a collection of
qubits that can interact with each other but still have long coherence times. This can be achieved
using single trapped neutral atoms at extreme cold temperatures, which allows the atoms to
have minimal perturbation with its environment due to little interaction. To prepare a single
atom, a Far Off Resonance Trap (FORT) can be used, as they provide conservative potentials for
the atoms and they can be dynamically reconfigured while still having long coherence times, as
will be explained in section 3.2.2. For rubidium atoms, single atom preparations have reached a
91% loading efficiency using light-assisted collisions[12]. Light-assisted collisions take place if two
colliding atoms come near each other in the presence of light that is near-resonant to an atomic
transition - this process importantly leads to an increase in the energy of the atoms as the atoms,
once excited, can move in the dipole interaction potential and gaining some energy before decaying
back to the ground state. One of three possible outcomes will happen in a light assisted collision,
as the energy release between the atoms is either: (1) enough for both atoms to escape, (2) only
enough for one atom to escape or (3) it is not enough for either of the atoms to escape. These
processes can be seen in figure 1.1 given by a), b) and c) respectively. Path a) is called a two-body
loss whereas path b) is called a one-body loss. Path c) causes no loss and the same amount of
atoms are still left in the trap. [12]

Figure 1.1: The three processes which happen for light-assisted collisions due to an increase in
energy. From top to bottom: (a) two-body losses, (b) one-body loss and (c) no loss. From left to
right the atoms collide which causes any of the three possible losses before cooling back. Image
taken from [12].

The final goal of these light assisted collisions is to kick out atoms of the tweezer trap such that
eventually one atom, no more and no less, is left in the trap, starting from an atom number of
∼ 7 − 10. Naively one can say two-body losses are the most efficient since this would reduce the
atom number the quickest and could potentially reach one atom in the trap if the initial atom
number inside the trap was an uneven number. However, if the atom preparation started out
with an even number of atoms, two-body losses would not do the job, since this leaves the trap
with zero atoms. Taking the even and uneven cases equally would ultimately result in an atom
preparation efficiency of 50%. To increase atom preparation up to 100%, one should preferably
consider only one-body losses, since in this case the trap will definitely be left with only one atom.
Once one atom is still in the trap, there is no possibility for the atom to leave the trap on its own,
since mostly two-body collisions can effectively induce energy into the system.
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CHAPTER 1. INTRODUCTION

Now, when opting for a high loading efficiency, it seems quite obvious that the collisions should
result in as many one-body losses as possible. This process can be optimized by tuning laser
parameters such as the detuning and the intensity and should be varied in such a way that they
optimize the scattering properties of the strontium-88 atoms. A low detuning could mean many
excitations but a relatively low energy increase per excitation, whereas a high detuning could mean
the few excitations but a high increase per excitation. A low Rabi frequency could also mean too
little excitation and a Rabi frequency too high might also be far from optimal. Therefore we will
research these properties carefully in the thesis.

If one is able to optimize the one-body losses over two-body losses, many of the tweezer traps
are filled and less rearranging is needed afterwards[13]. After the tweezer array is loaded with as
many one particle traps as possible one can use fluorescent imaging to record the initial positions
of all loaded traps. Then, using an analysis of the image with a cost algorithm[14], a trapping
beam can be used which reassembles the atoms to an image fidelity up to 99.3%[13]. However,
this rearranging cost some time and having a higher preparation efficiency before the rearranging
is therefore highly desirable.

4 Creating an array of ultracold Sr-88 atoms for quantum computing via light-assisted collisions



CHAPTER 1. INTRODUCTION

1.2 Thesis outline

In this thesis, a systematic discussion of the problem will be presented in three main parts: The
theory in part 1, the description of the simulation in part 2, and ultimately the results in part 3.
This will be finished off with a conclusion and discussion.

The theory
For the theory, first the basic principles will be explained regarding light-assisted collisions in
section 2.1. This will be done within a semiclassical framework where the particles will be seen as
hard sphere atoms with a definite position. Also, no uncertainties are taken into account to make
the picture as clear as possible. Then this picture will be applied to rubidium in section 2.2, a
proven strategy which shows why light-assisted collisions should work.
Next, a more complete picture of the light-assisted collisions will be explained in section 2.3, in
which the quantum nature is taken into account by considering the wave functions of our system.
This approach will lead to an wave function overlap between the ground and excited state and
consequently to the trap loss formula as a function of the wave function overlap.
Once the two pictures are explained, it is useful to talk about how this wave function overlap can
be calculated. Specifically, how the wave functions of the strontium-88 atoms can be calculated
considering the short- and long-range of the interaction potential. The short-range ground state
wave function will be explained in section 2.4.2 and the excited state wave function in section
2.4.3. The long-range wave function will be explained in section 2.4.4.
After the wavelike nature of the quantum wave function, the focus is shifted to the internal
quantum state dynamics caused by the interaction with the laser light. This leads to theory about
Rabi oscillations and their off-resonance solutions, optical Bloch equations to include spontaneous
emission and their solution and finally the polarizability of the different states, all in section 2.5.
The theory part will be finished by explaining the master equation of the trap loss mechanism in
section 2.6.
Then the experimental constraints will shortly be explained, starting off with the properties of
strontium-88 in section 3.1, followed by the temperature limits in section 3.2.1, since these limits
will be important to understand the heating in the simulations. Finally, the theory section will be
closed when explaining the tweezer array and the tweezer Trap in section 3.2.2.

The simulation
Hereafter, when the essential theory is clear, the thesis will go into the simulation and how it
operates. This will be done in five steps, starting with the simulation hypothesis, initialization
and time iteration loop in section 4.1. Then the physical background in which the simulation
runs and its effect on the detuning will be explained in section 4.2.1. After that, the dynamics of
the internal quantum states of the atoms will be explained in section 4.2.2 followed by the forces
and momenta kicks the particles experience in section 4.3.1. The simulation part will conclude by
explaining the different energies, which can be calculated from the particles properties as will be
done in section 4.3.2.

The results
The results will be presented in two main chapters. First the results of the simulation are shown
in chapter 5, since these results are the most intuitive. Here, two experimental parameters will
be highlighted, namely the Rabi frequency and the detuning. Varying these two parameters, the
atom loss and the change in energy will be observed for one-particle simulation runs and for two-
particle simulation runs. Then from these results, the influence of the two-body collisions will be
abstracted, which will later form a trap loss profile for the quantum calculations.
In chapter 6, the thesis will go into the quantum calculation results, where first the wave function
overlap results will be presented, followed by the trap loss calculations using three different trap
loss profiles.
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Chapter 2

Light-assisted collisions

In order to explain the theoretical part of the collision, we will first look into the semiclassical
interpretation in section 2.1 and apply it to an already studied case where high preparation effi-
ciencies have been reached, namely rubidium, in section 2.2. Then a shift to the quantum approach
will be made when explaining the two-channel approach and the trap loss formula in section 2.3.
To calculate the trap loss formula one will need the wave functions of both the ground state as
the excited state as will be calculated in section 2.4. After introducing the wave functions, this
thesis will explain the possible quantum states of the particles and how they will change over time
under the influence of the laser light. This is theoretically explained and applied for the Rabi
oscillation as for the Optical Bloch Equation (OBE) followed by the polarizability and the dressed
state model, all in section 2.5. Finally, the master equation will be explained in section 2.6, as
this will give insights into the mechanism of the trap losses.

2.1 Semiclassical approach

To understand light assisted collisions, it is useful to first consider the semiclassical formalism,
which assumes continuous energies, positions and momenta, without any uncertainties. Another
convention used in this approach, is that the atoms do not experience any external forces outside
the trap. Also, three-body collisions, as described by Faddeev[15], do not occur frequently because
of the relatively large trap and low atom number inside the trap causing low atom densities. It
is therefore enough in this thesis to consider two-body collisions where just two atoms meet each
other in space with an internuclear separation R.
To understand two-body collisions lets consider two atoms in the ground S state, forming a |S + S〉
channel together, they will interact in their ground state interaction potential Ug(R) which, in the
long-range, is asymptotically given by Ug(R)R−→∞ ≈ −C6

R6 where C6 is a constant coming from the
van der Waals-interaction [16]. This |S + S〉 interaction channel will feel a negligible interaction
at large inter-atomic distances, as can be seen by its R−6 dependence, which dies off relatively
quickly. This flat asymptotic regime can also be seen in figure 2.1. However, when particles are in
this interaction regime at a few hundred Bohr radii, the laser light might excite one of the colliding
atoms creating a |S + P 〉 state. This excited state potential Ue(R) has a long-range asymptote
given by Ue(R)R−→∞ ≈ h̄ω0± C3

R3 , where h̄ω0 is the atomic excitation energy and C3 is a constant
arising from the resonant dipole interaction. This dipole interaction can either be attractive or
repulsive, hence the ±[16]. Also, since the dipole interaction scales with R−3 it is still very relevant
at larger internuclear separations as can also be seen in figure 2.1.
In figure 2.1, both potentials, as a function of the interatomic distance are visualized. Depending
on blue- or red-detuned laser light, that is to say a positive or negative detuned laser light, and by
taking into account the angular momenta, a different |S + P 〉 channel can be excited which will
then determine whether the interaction will be repulsive (blue) or attractive (red). This detuning
is defined by the equation ∆ = ωL − ω0, where ω0 represents the natural frequency difference
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between the |S + S〉 and |S + P 〉 channels at large R and ωL is the laser frequency. For both the
blue- and the red-detuned laser light, a Condon point exists for which the laser light is resonant
with this repulsive or attractive potential, that is to say there is zero detuning with respect to
the transition at that particular R. At the this Condon point, the transition probability is the
highest, which causes the highest excitation rate. Also, one could state that at the Condon point
Ue(Rc) − Ug(Rc) = h̄ωL. Calculating this for the ground and excited channel potentials gives a
classical Condon point of

RC =
( C3

h̄∆

)1/3
, (2.1)

where h̄ is the reduced Planck constant. This Condon point is typically in the order of hundreds
of Bohr radii as we will also later see for strontium-88[12].

Figure 2.1: Potential landscape for the ground channel |S + S〉 and the excited state channel
|S + P 〉 for both blue and red detuning. The ground state channel is relatively flat because it has
only a van der Waals interaction whereas the excited state also has a repulsive (blue) or attractive
(red) dipole interaction term. Because of this dipole term the transition can become resonant with
the excited state causing an excitation at the Condon point. Figure taken from [12].

2.2 Light-assisted collisions in rubidium

Since light-assisted collisions for the case of rubidium have already been proven to work, leading
up to a 90% loading efficiency, it is fairly interesting to look at how this was achieved, and what
can be learned from it for the case of strontium. In this experiment the atoms are first pumped
to the so called ‘S state’ 5S1/2, F = 2 level by a resonant laser light. These atoms are then
illuminated by a nearly resonant light laser which can pump the atoms to the ‘P state’ 5P3/2,
F ′ = 3. This P state has a linewidth of Γ/2π = 6MHz and the transition of the S to P state is
λ = 2π/k = 780 nm.[17]
In the experiment, it is very important to minimize the two-body losses, which happens when
the kinetic energy gained by a single atom exceeds the trap depth U of the tweezer trap. This
energy gain mechanism is caused by spontaneous emission and due to the cycles of absorbing and
stimulated emission of the particles between the S state and P state. The quantum oscillations
change the interaction strengths between the particles causing extra energy for the particles as
explained in the previous section. For now we only consider the semiclassical example where two
particles in the |S + S〉 channel approach each other without feeling any interaction because of
the long flat asymptotic potential landscape. Then, when the particles approach the Condon
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point, one of the particles gets excited, causing the atoms to interact via the repulsive potential.
Once the particles move away from each other, there has been some gain in energy due to the
movement along the excited state potential. The interaction potential, together with spontaneous
emission, is causing all the energy fluctuations within the trap. The energy fluctuations are also
represented below, as can be seen in figure 2.2. In subfigure A, one-body atom loss is visualized
and in subfigure B, two-body atom loss is visualized. The main reason not both atoms left the trap
in case A was the uneven energy Ep prior to the collision. To lower the overall energy, laser cooling
techniques can be used during the process. This can be useful to keep energy deviations between
the particles, while still lower the average energy of the system. This leaves the experimental
physicist with several tunable variables which all effect each other as is done in the labs or will be
done in our simulation.

Figure 2.2: Energy fluctuations of the atoms inside a dipole trap in the case of Rubidium-85 as
function of time. In the upper and middle plot the energy of the first and second particle can be
seen and in the bottom plot the pair energy can be seen. Here figure (A) represents one atom loss
whereas for in figure (B) on the right two atom loss is observed. Figure taken from [12].

In order to tune these mechanisms perfectly, one can try and change the parameters of the trap
depth U , the intensity I of the laser light, the laser detuning δ with respect to the S −→ P transition
and the cooling power.

2.3 Two channel approach and trap loss formula

Now that the semiclassical picture is clear, it is important to take a look to the quantum approach
to this problem. For this formalism we will follow the thesis from Jasper van der Kraats [18].
Since we assume the collision takes place at t = 0, it is important to know how the states, also
referred to as wave packet, move towards t = 0 (from either ±∞), and when the two particles start
to feel an interaction potential. One expects that the orbit of the free state |φ(E, t)〉 evolves into
the orbit of the scattering state |Ψ(E, t)〉, which obeys the time dependent schrödinger equation.
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In other words,

lim
t→−∞

e−
l
h̄Ht|ψ(E)〉 = e−

l
h̄H

ct |ϕin (E)〉 ,

lim
t→∞

e−
i
h̄Ht|ψ(E)〉 = e−

i
h̄H

ct |ϕout (E)〉
(2.2)

where |φin(E, t)〉 represents the state that evolves into a scattering state and |φout(E, t)〉 evolves
out of a scattering state. Also, H represents the Hamiltonian of the scattering state and Hc

represents the Hamiltonian of the free state. Using these asymptotic limits, it naturally follows
that the Møller wave operator Ω± can be states as

Ω± = lim
t→∓∞

e
i
h̄Hte−

i
h̄H

ct. (2.3)

The Møller operators can be used to connect the in- and out-asymptotic wave functions to their
respective scattering states as∣∣∣ψ(+)(E)

〉
= Ω+ |ϕin (E)〉 and

∣∣∣ψ(−)(E)
〉

= Ω− |ϕout (E)〉 . (2.4)

Now, using these asymptotic solutions as incoming and outgoing states, a two-channel approach
is necessary, following the treatment as discussed in [19], to describe the |S + S〉 and |S + P 〉
channels. The Hamiltonian of a two-channel model with open channel subspace P, representing
the |S + S〉 channel, and another open channel subspace Q, representing the |S + P 〉 channel can
be written as

H2ch =

(
HPP HPQ

HQP HQQ

)
. (2.5)

Here, the off-diagonal matrix elements represent the coupling matrix strengths and the on-diagonal
matrix elements represent the open channel Hamiltonians. An open channel is obtained if the
energy of the particle is higher than the asymptotic interaction potential, which is the case as the
particles always bounce off the repulsive interaction potential without entering the inner regime,
which we saw earlier in section 2.1. In this framework, one can define the two component wave
function Ψ(r, E) as

Ψ(r, E) = φ(r, E)|Q〉+ ψ(r, E)|P〉, (2.6)

consisting of φ(r, E) and ψ(r, E) which are the distance-dependent components of the total wave
function in the two channels. The two component wave function Ψ(r, E) of the two-channel system
is energy normalized, such that∫ ∞

0

Ψ+(E)∗Ψ+ (E′) dr = δ (E − E′) , (2.7)

for P, and ∫ ∞
0

Ψ−(E)∗Ψ− (E′) dr = δ (E − E′) , (2.8)

for Q. In the presence of an oscillating electric field ~Elaser, an additional contribution of Hmod to
the total Hamiltonian can be added, where

Hmod = −~d · ~Elaser, (2.9)

with dipole moment ~d. In the dressed state picture, one can identify an initial state |α,N〉 and
a final state |α′, N + 1〉 of the transition in the strontium-88 atom, where α and α′ represent the
internal state of the two-atom system and where N and N + 1 indicate the number of quanta
in the drive field. The Hamiltonian HD in the dressed state picture, as has been done in Denise
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Ahmed-Braun her paper [19], can then be written down as

HD →



. . .

[H2ch]N Elaser

[
dp 0
0 dQ

]
Elaser

[
dp 0
0 dQ

]
[H2ch]N +

[
h̄ω 0
0 h̄ω

]
. . .


. (2.10)

Applying this to Fermi’s golden rule formula to calculate the transition rate from the initial free
state |α,N〉 to the final state |α′, N + 1〉 results in

γ =
2π

h̄
|〈α,N + 1 |Hmod|α′, N〉|

2

=
2π
(
δ~d · ~Elaser

)2

h̄

∣∣∣∣∫ ∞
0

ψ− (r, E)ψ+(r, E)

∣∣∣∣2 dr,

(2.11)

which implies linear scaling of the transition rate with the Franck-Condon factor Ffi[20] as

Ffi =

∣∣∣∣∫ ∞
0

ψ− (r, E)ψ+(r, E)

∣∣∣∣2 . (2.12)

The fact that the transition rate is linearly proportional with the Franck-Condon overlap could
also be obtained semiclassically and has been done in appendix section A.1. This can then be
extended to trap loss within the tweezer trap by considering on- and off resonant transitions as[19]

δN = A′N

∫ ∞
kmin

P (T,E)Ffi (kq) dkq, (2.13)

where A′N is an experimental prefactor and P (T,E) represents the Bose-Einstein distribution
function of the ground state particles given as

P (T,E) =
1

A exp{(E − µ)/kBT} − 1
, (2.14)

where µ is the chemical potential, T is the temperature and kB is the Boltzmann constant. When
performing the integral over all possible k values one considers all possible excitations. The total
trap loss δN can then be calculated as a consequence of the overlap of the wave functions of
the ground and excited state. The boundaries of the integral are defined from the lowest possible
transitions k-vector kmin to the maximum k-vector which is infinity, since even the greatest positive
detunings contribute to all possible transitions. The prefactor A′N is an experimental scaling factor
which scales with time but does not depend on the detuning.
However, equation (2.13) assumes that any transition will cause a decrease of the atom number
in the trap. But this is not true, since some transitions do not give the maximum amount of
energy possible to the system during a collision. Furthermore, this factor should depend on the
shape of the trap, since this also influences the trap loss efficiency of an excitation. Keeping this
inconvenience in mind, we make A′N a function of the detuning A′N = A′N (∆), since semiclassically
we have seen that the detuning determines the amount of energy gain[19]. However, this factor
cannot be calculated and has to be determined experimentally. In this report this factor will be
determined using the simulation.

2.4 Quantum wave functions

In the previous section, three important profiles are introduced, namely the Bose-Einstein distri-
bution profile P (T,E), the Franck Condon profile Ffi and the trap dependent atom loss profile
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A′N (∆). The Bose-Einstein distribution is a well-known distribution for bosonic particles, such
as strontium-88, and does not require too much discussion. The trap dependent profile will be
investigated using the simulation and the wave function overlap has to be calculated theoretically,
as will be introduced in this section. The resulting wave function can later be seen in the results
section 6.1. In this section, first the phase shift will be explained shortly since this is essential
to why the short-term interaction can be approximated. After the phase shift discussion, it is
convenient to talk about the analytic solutions of the short- and long-range wave functions for
both the ground and the excited state.

2.4.1 Phase shifts

Since the phase shifts are so important to estimate the short-range of scattering problems, we will
go into some details and show the derivation of how the phase shift can be determined. Many
details are left in the appendix, but the general idea is stated here. To do this, let’s consider a
scattering problem with an infinite wall located at x = 0. On this wall, let’s impose a plane wave
wave function coming from the left as

Ψi(x) = Aeikx. (2.15)

The reflection of such a plane wave on an infinite wall is maximum and thus the reflected wave
function looks as

Ψr(x) = Be−ikx. (2.16)

By conservation of probability one can conclude that B = −A, since the wave function has to
vanish at the position of the wall. The total wave function would then look like

Ψ = A(eikx − e−ikx). (2.17)

Now assume there is a non-zero potential left of the wall resulting in a phase shift δ of the scattered
wave function. The new total wave function can then be written down as

Ψ = A(eikx − ei(2δ−kx)). (2.18)

This equation however, does not treat angular momentum as a separate variable. For this, the
Rayleigh formula (A.39) can be used, which states that the wave function Ψ = Aeikz can be
expressed for different angular momenta l as

Ψ(l) = Ail(2l + 1)jl(kr)Pl(cos(θ), (2.19)

where jl is the Bessel function of l-th order and Pl is the spherical harmonic function of degree l.
Equation (2.19) can then be approximated for large r as

Ψ(l) ≈ A (2l + 1)

2ikr

[
eikr − (−1)le−ikr

]
Pl(cos θ), (2.20)

in which the relation regarding the Hankel function from equation (A.32) has been used yielding

jl(x) =
1

2

[
h

(1)
l (x) + h

(2)
l (x)

]
≈ 1

2x

[
(−i)l+1eix + ll+1e−ix

]
, (2.21)

which would have been the scattering Schrödinger equation without any potential. If now a
potential is introduced, the first term of equation (2.21) picks up a phase shift due to the scattering
potential, which yields

Ψ(l) ≈ A (2l + 1)

2ikr

[
ei(kr+2δl) − (−1)le−ikr

]
Pl(cosΘ). (2.22)

In order to connect this equation to other well-known equations it is useful to first consider the
scattering formalism. In this formalism, the Schrödinger equation has been solved in a series of
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steps, which in this thesis, has been done in the appendices. Starting with the Lippmann-Schwinger
equation in section A.2 resulting in the formula (A.10) as

|ψ〉 = |φ〉+
1

E −H0 + iε
V |ψ〉, (2.23)

where H0 is the Hamiltonian in which the two particles are infinitely far apart and do not interact.
The eigenfunctions of this Hamiltonian are |φ〉 and its eigenvalues are the energies E, iε is a
mathematical necessary to do the integral. Then the Green functions in section A.3 have been
used to accurately describe the solution of the Lippmann-Schwinger equation for a point source
potential. Finally, in section A.4, the general form of the scattering wave function is presented as

ψ(r) ∼ eikz + f(θ, φ)
eikr

r
, (2.24)

where the first part of the equation is the incoming wave and the second part is the scattered
wave with scattering amplitude f(θ, φ), where θ and φ represent the azimuthal and polar angle
respectively. This general form is then used in section A.5 using the partial wave formalism to
derive an expression as a function of the partial wave amplitudes (A.36) and reads

ψ(r, θ) = A

{
eikz + k

∞∑
`=0

i`+1(2`+ 1)a`h
(1)
` (kr)P`(cos θ)

}
, (2.25)

and again, the first part represents the incoming wave and the second part represents the scattered
wave. This formula, together with formula (2.22), both describe the same state and the formulas
are related to each other with a relation between the phase shifts δ and the partial wave amplitudes
al in the limit of large r (r ⇒∞) as

al =
1

2ik
(e2iδl − 1) =

1

k
eiδlsin(δl), (2.26)

where al is the scattering length, describing the short-range interactions, and will later be used
for the long-range wave function in an interaction scattering potential[21].

2.4.2 Short-range ground state wave function in a van der Waals po-
tential

In the previous subsection, we discussed the phase shift and the corresponding scattering length
which both are a consequence of introducing a non-zero interaction potential. This interaction
potential influences the short-range wave function, relative to a perfect infinite wall potential,
causing a phase shift to emerge. However, this short-range potential is still important for the total
wave function and can sometimes be solved analytically, as we will do in this section, following
the discussion in [18]. Starting off with the well-known radial Schrödinger equation

− h̄2

2m

∂2u(E, r)

∂r2
+
[
V (r) +

h̄2

2µ

l(l + 1)

r2

]
u(E, r) = Eu(E, r), (2.27)

where µ is the reduced mass. It is important to note that u(E, r) ≡ rR(r) where R(r) is the radial
wave function. To calculate the ground state wave function, only a van der Waals potential V (r)
has to be taken into account, defined as −C6

r6 . Furthermore, the centrifugal term can be neglected
as l = 0, representing only s-wave scattering. This is the case as only extreme low energies have
been used and strontium-88 is bosonic [22]. Filling in the potential and rewriting equation (2.27)
gives

∂2

∂r2
u(E, r) +

2µC6

h̄2

1

r6
u(E, r) =

2µ

h̄2Eu(E, r). (2.28)
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This can be rewritten in terms of rvdW and EvdW , which are given as

rvdW =
1

2

(
2µC6

h̄2

) 1
4

and EvdW =
h̄2

2µr2
vdw

. (2.29)

Filling in these values and introducing the dimensionless variables x = r/rvdW and ξ = E/EvdW
gives the dimensionless radial Schrödinger equation as

∂2

∂x2
u(ξ, x) +

16

x6
u(ξ, x) = ξu(ξ, x). (2.30)

The problem with only using the van der Waals potential become apparent at the short-range
where no repulsion is taken into account. This can be approximated using the WKB formalism,
as described in appendix A.7.1, in which a turning point divides a forbidden region, where E < V ,
and a classical region, where E > V . Also, the energy of the particle is small with respect to
height of the interaction and can therefore be neglected. Therefore, a classical momentum can be
expressed in known variables for the short-range forbidden region as

k(r) =

√
−2µV (r)

h̄2 . (2.31)

For the classical region r > r0, one can estimate the radial wave function until r0 by patching it
across the barrier as

uwkB(r) =
1√
κ(µ)

cos

(∫ r

r0

dr(r)− π

4

)
. (2.32)

For r > r0 which is of the order of the van der Waals length rvdW the short-range potential can
be neglected again and the radial equation can be calculated using equation (2.30). Again, at zero
energy, the solution to this equation is given by a Bessels function of order 1/4, which becomes
explicit by defining u(x) =

√
xv(x). The most general solutions to the Bessel function are given

as

u(x) =
√
x

[
AJ 1

4

(
2

x2

)
+BY 1

4

(
2

x2

)]
, (2.33)

which can then be rewritten in the form

u(x) =
√
x

[
Γ

(
5

4

)
J 1

4

(
2

x2

)
− rvdW

a
Γ

(
3

4

)
J− 1

4

(
2

x2

)]
, (2.34)

where a is the mean scattering length given by

a = ā

[
1 +

A

B

]
with ā =

4π

Γ
(

1
4

)2 rvdW. (2.35)

However, instead of using the rewritten form it is much more convenient to take the general solution
from equation (2.33) and to continuously connect it to the long-range wave function using the log
derivative method[23].

2.4.3 Short-range wave function in the excited state potential

In the excited state potential, the short-range is relatively easy. Because of the repulsive interaction
potential, this regime is classically forbidden for internuclear distances smaller than the Condon
point. The potential in the relevant interaction regime goes as C3

r3 up to 25 MHz before it goes
down at smaller r. However, this short-range regime cannot be reached, since only detunings
smaller than the maximum of the potential hill are considered. This ultimately leaves us with the
WKB solutions (A.61) from the appendix as

ψ(x) ≈


D′√
|p(x)|

exp
[
− 1
h̄

∫ x1

x
|p (x′)| dx′

]
, x < x1

2D′√
p(x)

sin
[

1
h̄

∫ x
x1
p (x′) dx′ + π

4

]
, x > x1

(2.36)
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for the downward slope representing the repulsive potential. x1 is the Condon point here dividing
the classically forbidden and allowed regions, P (x′) is the momentum of the particle and D′ is a
normalization factor. Around the Condon point, Airy functions are solutions of the Schrödinger
equation. These Airy functions connect the plane wave solution, with the constant k, on the right
side, as will be discussed in next section 2.4.4, together with the decaying wave function on the
left side[21].
The same solutions for this excited state potential could be achieved using propagation methods,
as has also been done to confirm the results. One way of doing this is using the SC-model where
SC stands for Single Channel. In this numeric calculation, the script first calculates a propagator
Qi connecting two adjacent grid points as

ui−1 = Qiui. (2.37)

Then, given an initial condition for the wave function, for example in the asymptotic limit, it can
work out the ratios backwards. This is quite useful in case two initial conditions are needed for
the problem[12].
However, in this case also an easier approach could be considered, namely the finite difference
method as described in appendix A.6. Using this method, the next element can be calculated by
discretizing the Schrödinger equation. This leaves the forward difference equation

Ψn = (
77

6
Ψn+1 −

107

6
Ψn+2 + 13Ψn+3 −

61

12
Ψn+4 +

5

6
Ψn+5)/(

15

4
+ a2k2

n). (2.38)

Where a is the grid size and kn is the k-vector at grid size n given by

kn =

√
2µ(E − Vn)

h̄
(2.39)

These equations together calculate the nth grid point as function of later grid points which can
be useful when only an initial condition is set from the asymptotic regime as is the case for many
scattering problems. The resulting error is up to fourth order accuracy which means that the error
is decreased by a factor of 10−4 as the grid size decreases by a factor.

2.4.4 Wave function in the asymptotic limit

Now that the short-range wave function and the wave function in the intermediate regime have been
explained for both the ground and the excited interaction channel potential, it is very important
to talk about the asymptotic regime of these wave functions. This can then be fitted to the short-
range either by using the log derivative method or simply as initial condition for the propagation
methods described in section 2.4.3. This asymptotic wave function is nothing more than a plane
wave with a phase shift, related to the scattering length, as postulated in equation (2.18). This
can then be rewritten in a similar way as has been done for the phase shift in section 2.4.1, yielding

u(E, r)
r⇒∞−−−→ eiδl(E) sin

(
kr − lπ2 + δl(E)

)
√
k

(2.40)

Where k =
√

2m(E−V )
h̄2 and

lim
k→0

k cot δ(k) = −1

a
(2.41)

defining the phase shift δ(k) as function of the scattering length a in the low energy limit[18].

2.5 Internal quantum states

In this section, the effects of the detuning and Rabi frequency are theoretically discussed in order
to understand the simulation better. This will be done by starting to explain the Rabi oscillations
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and its off-resonance solutions to explain absorption and stimulated emission. Then, we will go
into the Optical Bloch Equations (OBEs) from which also the solutions are showed, this will be
done to implement spontaneous emission into the picture. This section about the internal atom
state will be finished with an explanation of the dressed state model and the polarizability to
explain the differential Stark shift.

2.5.1 Rabi oscillations

Strontium atoms moving inside the tweezer trap will feel a sinusoidal time dependent electric field
from the collision laser. This collision laser with a certain Rabi frequency Ω and detuning δ induces
excitations and stimulated emissions in the particles. Depending on the resonance condition, the
particles will oscillate in their internal quantum state between the ground state |Ψg〉 and the
excited state |Ψe〉. The general solution for this time dependent wave function in superposition is
given by[21]

Ψ(t) = cgΨge
−iEgt/h̄ + ceΨee

−iEet/h̄. (2.42)

where cg and ce are the coefficients of the ground and excited state respectively. If one would now
consider a sinusoidal time dependent electric field as

Ĥ ′(r, t) = V (r) cos(ωt), (2.43)

and apply this as a perturbation to the original Hamiltonain one can find the rate equation for
the coefficients. This has been done in appendix A.8.1 and the solutions are [24]

iċg =
Ω

2
eiδtce and iċe =

Ω

2
e−iδtcg, (2.44)

where Ω and δ are again the Rabi frequency and the detuning of the collision laser and i is the
imaginary number. The solutions of these equations are given as the square of the coefficients
|ce(t)|2 and has been done for the appendix section A.8.2. The probability of being in the excited
state Pe(t) is given as[25]

Pe(t) = |ce(t)|2 =
Ω2

Ω2 + δ2
sin2

(√
Ω2 + δ2

2
t

)
. (2.45)

Here we see an oscillation amplitude of Ω2

Ω2+δ2 and a oscillation frequency of
√

Ω2 + δ2. this new
oscillation frequency is also defined as the generalised frequency and depends now on the detuning
as will also be the case in our simulation. However, these solutions are only for a constant Rabi
frequency and detuning whereas the particles in the simulation experience a different relative
detuning due to the interaction energy and the differential Stark shift. Therefore we will still refer
back to the rate equations for the coefficients (2.44) while also talk about the Rabi oscillation
amplitude and generalised frequency to understand the underlying physics.

2.5.2 Optical Bloch equations

Since the Rabi oscillation framework only takes into account excitations and stimulated emission,
it is now useful to talk about the optical Bloch equations(OBEs). These OBEs also take into
account spontaneous emission by coupling the atom to the vacuum field[26]. The derivation of
this coupling leads to four coupled rate equations for the density matrix terms ρgg, ρee, ρge and
ρeg which hs been done in appendix A.8.3 and yields

dρgg
dt

= +γρee +
i

2
(Ω∗ρ̃eg − Ωρ̃ge)

dρee
dt

= −γρee +
i

2
(Ωρ̃ge − Ω∗ρ̃eg)

dρ̃ge
dt

= −
(γ

2
+ iδ

)
ρ̃ge +

i

2
Ω∗ (ρee − ρgg)

dρ̃eg
dt

= −
(γ

2
− iδ

)
ρ̃eg +

i

2
Ω (ρgg − ρee) ,

(2.46)
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where ρ̃ge ≡ ρgee
−iδt and also dρee/dt = −dρgg/dt, which is required in order to conserve the

total population number, stated as ρgg + ρee = 1. Also, γ is the linewidth defined as 1/τ , where
τ is the lifetime of the excited state[26].

However, also here the solutions give a more intuitive answer to the problem and interesting
properties can be abstracted from it. The derivation of these solutions are given in appendix
A.8.4 and yield an expression for the factor ρee in the steady state solution as[26]

ρee =
1

2
(1− w) =

s

2(1 + s)
=

s0/2

1 + s0 + (2δ/γ)2
, (2.47)

where s0 is the on resonance saturation parameter indicating how saturated the transition is for
a given laser intensity. δ is again the detuning of the laser and γ is the line width. From the
excited state population one can introduce the concepts of the scattering rate and the power
broadening linewidth as has been done in the appendixA.8.4. The results can be summarized with
the expressions

γp = γρee =
s0γ/2

1 + s0 + (2δ/γ)2
. (2.48)

for the scattering rate, representing the effective scattering of the collision laser onto the strontium-
88 atom, and for the power-broadened linewidth

γ′ = γ
√

1 + s0. (2.49)

This new line width is a consequence of the intensity of the laser, which is expressed with the
on resonance saturation parameter s0. In figure 2.3 the effects for various saturation parameters
are shown. As we can see is the scattering rate of the laser higher for a higher saturation.
Because of this power broadening it is still likely to excite atoms with high saturation with large
detunings as would otherwise not be very likely. This supports the ranges we will ultimately test
in the simulation. However, in the simulation we will compute the rate equations from the Rabi
oscillation framework rather than the optical Bloch equations. This has been done as the optical
Bloch equations do not give discrete photon decays. Rather, the particles experience decoherence
into the mixed states. This problem and the solution for the simulation is carefully explained in
section 4.2.2. In short, we will imitate the spontaneous emission processes by a decay curve which
determines the probability of decaying rather than having a continuous decay. This probability
will then lead to a discreet energy jump resulting in photon decay and a momentum kick for the
strontium-88 atom.
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Figure 2.3: Scattering rate γp as a function of the detuning δ for different values of the on resonance
parameter s0. Here it can be seen that the scattering rate decreases as the detuning gets bigger
or smaller than zero. Also the lines broaden out substantially as s0 > 0 called power broadening.
Figure taken from [26].

2.5.3 Differential Stark shift

The last effect of the collision laser on the atoms is caused by the differential Stark shift. This
shift determines the spacing between the ground and excited state levels. This energy spacing
then influences the effective detuning set by the laser outside the trap. This shift in energy levels
can be explained though the dressed state model as has been done in appendix section A.8.5 and
can be done using the concept of polarizability as has been done in appendix section A.8.6, but a
short summary will be given below.
In the dressed state model, the rotating frame approximation has been added to the ground and
excited state coefficients leading to an set of coupled rate equations for the coefficients cg and ce.
These equations can be put in a matrix form and get diagonalized to get the eigenstates of the
system. Doing this leads to two new eigenstates[26]

Ee,g =
h̄

2
(−δ ∓ Ω′) , (2.50)

which are now dependent on the detuning of the laser δ and the generalized Rabi frequency Ω′

introduced in section 2.5.1.
In the polarizability framework, the two energy levels are not shifted by the same amount, rather
the shifts depend on the polarizability. The polarizability of an atom describes the tendency, when
subjected to an electric field, to acquire an electric dipole moment in proportion to that applied
field. This polarizability is therefore proportional to the dipole matrix element, while also being
inversely proportional to the detuning of the laser. When summing over all possible transitions
contributing to the polarizability one can obtain an expression for the total polarizability as has
been done in the appendix A.8.6. The differential Stark shift as function of the polarizability of
state i can then be calculated from the equation[27]

EdSs = h∆ν = −1

2
αi|E|2, (2.51)
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where |E|2 is the electric field of the trapping laser squared. For the qubits in the trap it is
desirable to have an equal differential Stark shift between the two qubit states. These qubit states
in a strontium-88 computer are chosen to be 1S0 and 3P1 as will be discussed later in section
3.1. However, given these states, one can look for a lattice wavelength where the differential Stark
shift is equal for both states. This wavelength is called the magic wavelength. The differential
Stark shift is shown in figure 2.4 for lattice wavelength between 0 µm and 4.5 µm for both the
qubit states. Multiple crossings can be seen representing the magic wavelength. However, a magic
wavelength with small slope is preferred and can be found in the region between 0.75 µm and
1 µm[28]. In this region also commercial lasers are available, which makes it ideal in practice[29].
Zooming into this region gives figure 2.5. Here, a value of 815 nm can be estimated to be the
magic wavelength. This value is equal to the theoretical value of 815 nm[30], which could have
been calculated from the derivation in the appendix A.8.6.
The reason why specifically these states have been chosen to define the magic wavelength has
to do with the qubit states. These 1S0 and 3P0 qubit states have a particularly long lifetime,
which makes them ideal for quantum computing and having the same differential Stark shift per
qubit state is convenient for qubit manipulation[31]. However, since the light assisted collision
uses the 1S0 and 3P1 states of strontium-88, a difference in differential Stark shift is expected in
the simulation as will later be explained in section 4.2.1. This differential Stark shift depends on
the position of the atoms in the tweezer trap, as the intensity profile of the trapping laser depends
on position, making also the effective detuning depend on the position.

Figure 2.4: Differential Stark shift as a function of
the lattice wavelength between 0.5 µm and 4.5 µm for
both the 1S0 state (red) as the 3P0 state (blue). Figure
taken from [30].

Figure 2.5: Differential Stark shift as
a function of the lattice wavelength
between 0.8 µm and 0.83 µm for both
the 1S0 state (blue) as the 3P0 state
(red). Figure taken from [30].

2.6 Atom trap loss rate master equation

To finish the the theory discussion, the number of strontium-88 atoms in a trap will be described
by the rate master equation. Both one-body losses as two-body losses will contribute to the
trap loss as described in section 1.1. The probability of a one-body loss to happen during dt is

γNdtpN (t) and for the two-body loss it is βN(N−1)
2 dtpN (t), where N(N−1)

2 is the amount of 2
atom arrangements given N atoms in total. These processes yield the following equation for the
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probability pN (t) to have N atoms in the dipole trap

pN (t+ dt) =pN (t)(1−
[
γN + β

N(N − 1)

2

]
dt) (2.52)

+ pN+1(t)γ(N + 1)dt (2.53)

+ pN+2(t)β
(N + 2)(N + 1)

2
dt. (2.54)

Taking the limit dt −→ 0 yields the following master equation for the evolution of pN (t) over time

dpN
dt

= β(E2 − 1)
[N(N − 1)

2
pn

]
+ γ(E − 1)[NPN

]. (2.55)

Here, E is called the step operator defined by its effect on an arbitrary function f(N) as

E[f(N)] = f(N + 1) and E−1[f(N)] = f(N − 1). (2.56)

If then the average number of atoms in the trap is defined as 〈N〉 =
∑∞
N=0NpN , also the master

equation for this property can be derived using equation (2.55)

d〈N〉
dt

= −γ〈N〉 − β〈N〉(〈N〉 − 1)− β∆N2, (2.57)

with ∆N2 the variance of the atom number in the trap. This equation can be solved for the sub
poissonian assumption (β∆N2 = 0) by integrating over time and rearranging it for 〈N〉 yielding

〈N(t)〉 =
e(β−γ)t

β
β−γ (e(β−γ)t − 1) + 1

N0

, (2.58)

with N0 the initial atom number. Determining the factors β and γ would determine the one-
body over two-body losses[32]. However the main conclusion that we draw is that the population
decays exponentially when the initial number of atoms is large. The exponential decay factor will
be explored as a function of the detuning in the quantum calculations.
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Chapter 3

Experimental constraints

To get a better overview of the strontium-88 atoms at play in order to manipulate them with the
collision laser, it is important to go into detail of some key properties, such as the relevant electron
shells and the level scheme, the interaction potentials and other relevant constants of strontium-
88 such as the scattering length and the mass of the atom. These properties have a direct effect
on the interaction between the atoms and should therefore be well understood to optimize the
scattering processes. This will be done in section 3.1. After the atomic properties, this paper will
go into the temperature limits, that can be reached with different cooling techniques as will be
done in section 3.2. These temperature limits are reached in preparation of the collision processes
but give an intuitive answer to why the atoms heat up during the simulation. After explaining
the temperature limits, the optical tweezer array followed by the individual tweezer traps will be
explained in section 3.2.2.

3.1 Strontium-88

Strontium-88 has 38 protons, 50 neutrons and 38 electrons, two of which are in the valence shell,
which makes strontium-88 an alkaline earth atom with an electronic level structure ideal for laser
manipulation and for the realisation of quantum devices. strontium-88 has no nuclear spin, since
all spins inside the nucleus cancel each other. Since it also has an even number of neutrons
Strontium-88 is an bosonic isotope, which simplifies the electronic energy spectrum greatly. This
also makes it very insensitive to stray magnetic fields, as it is not affected by the magnetic field of
the nucleus[33]. In figure 3.2, the electronic level structure of strontium can be seen. We choose
the (5s5s) 1S0 state together with the (5s5p) 3P0 state to form the qubit states of the strontium
atom, as was introduced for the magic wavelength in section A.8.6. These states are connected by
a 698 nm transition with a relatively small linewidth, compared to other transitions in strontium-
88, causing the transition rate between the states to be low. As a consequence this 3P0 state is
long lived and ideal for quantum computing due to its long coherence time. The states relevant
for light-assisted collisions are the (5s5s) 1S0 and (5s5p) 3P1 states, which are connected by a
transition of 689 nm and a linewidth of 7.4 kHz[33].
The S and P states form a |S + P 〉 channel in which the interaction potentials are given by

V (R) =
C3

R3
− C6

R6
(3.1)

Where for the S state C3 = 0, since there is no dipole interaction and C6 = 3103Eha0
6, where

Eh is the Hartree energy and a0 is the Bohr radius. For the P state there are two interaction
potentials. Namely C3 = −0.015Eha0

3 and C6 = 3513.8Eha0
6 for the |S + P 〉, mJ = 0 channel

and C3 = 0.0075Eha0
3 and C6 = 3773.85Eha0

6 for the |S + P 〉, |mJ | = 1 channel[34]. These
excited state potentials are respectively called the 0u and 1u potentials and are both plotted in
figure 3.1. Here one can see the 0u potential is attractive and the 1u potential is repulsive for
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particles coming closer to each other from the asymptotic regime.
The repulsive excited state potential 1u will be used for the light assisted collisions, since this
repulsive potential makes it easier to tune the energy gain per collisions. This is the case as
particles will mostly interact in the regime outside of the Condon point, particles will therefore
not come close to each other creating oscillatory bonds between the particles[35]. The 1u potential
creates a potential barrier of 25 MHz at approximately 100 a0. This barrier prevents particles from
going below internuclear distances of the Condon point. Therefore, particles will not interact in the
short-range besides any tunneling effects decreasing the complexity of the scattering processes. In
order to excite particles properly from the |S + S〉 state to the |S + P 〉 state the quantum number
|mJ | has to be changed by +1. To do this a σ+ laser can be used.

Figure 3.1: Both the 0u and 1u potential for the excited state channel. In the asymptotic regime
both potential go to zero in the plot. The repulsive 1u potential which is of interest shows a
maximum 25 MHz around approximately 100 a0.

Another property of strontium-88 of interest is its scattering length, since this is necessary to
calculate the wave functions. In a paper from Simon Stellmer and Florian Schreck, the scattering
lengths of 4 papers were compared, and the average was taken to be a = −2 a0[36]. The mass of
strontium-88 is 87.91 u[37]. The last physical property of importance for this thesis is the lifetime
of the excited 1u potential of strontium-88. Inside the tweezer trap, the lifetime is estimated to
be 21.5 s[38], this value could also have been calculated using Einstein’s rate coefficients defined
in section A.9.
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Figure 3.2: Electronic level structure of atomic strontium. Here on the left side the s = 0 states
and on the right side the s = 1 states are categorized. The atomic transitions are given by
the arrows between the energy levels with the corresponding line widths of the transitions. The
1S0 −1 P1 transition is important for the blue MOT, whereas the 1S0 −3 P1 narrow transition
is important for the red MOT. This relation between the linewidth and the cooling temperature
will be further explained in section 3.2. The qubit states are 1S0 and 3P0 and the states used for
light-assisted collisions are 1S0 and 3P1[33].

3.2 Temperature limits and tweezer trap

Apart from the internal structure of strontium-88, also the effects of the environment on the
strontium-88 atom will be explained. This will be done in combination with explaining the Doppler
and recoil temperature limits in section 3.2.1, as this information will be used for the interpretation
of the simulation results. Moreover, the trapping laser will be explained together with the tweezer
array in section 3.2.2. Here, the polarizability and the intensity profile are the main focus as both
these values will influence the internal state of the strontium-88 atoms by the differential Stark
shift, explained in the theory section 2.5.

3.2.1 Temperature limits

To consider the temperature limits let us consider the forces from the trap on the atom first. First,
a Magneto Optical Trap (MOT) is used to cool the atoms before the tweezer trap is used. The
MOT consists of six circular polarized laser beams. The technique relies on an atom absorbing
and then re-emitting a photon, thereby losing momentum. To do this in a coordinated manner,
a spatially-varying magnetic field is created to trap the cold atoms. Usually, an anti-Helmholtz
configuration is used, which consists of two counter propagating coils on the z-axis, such that
magnetic field between the coils is zero and varies linearly with position.
This magnetic field is important because it creates a spatially-varying Zeeman shift. This Zeeman
shift then allows either σ+ polarized right from the right or σ− polarized light from the left to
exert a scattering force on the mJ = +1 and mJ = −1 states respectively. This will result in a
net force towards zero as

F = F− + F+ =
h̄kγs0

2

{ 1

1 + s0 + (2 δ−ωz

γ )2
− 1

1 + s0 + (2 δ+ωz

γ )2

}
, (3.2)

where h̄k is the momentum of the photon, γ is the linewidth of the transition, s0 is the saturation
parameter and ωz is the atomic transition frequency including the Zeeman and Doppler shift given
as ωz = kzv − gµ0dBz[20].
Now that forces of the MOT are explained, one can derive temperature limits related to the traps.
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The cooling process is limited by the randomness of the momentum kicks from either the lasers or
the momentum kicks due to spontaneous emission of the atom, which depends on the transition
rate Γ = 1/τ and the discrete size of each momentum kick. This limit is known as the Doppler
limit which is given by

kBTD = h̄Γ/2. (3.3)

Γ is the transition linewidth at Full Width Half Maximum (FWHM) in rad/s[20].
Another cooling process, which cools the atoms below the Doppler limit, is called Sisyphus
cooling[11]. Using a 813.4 nm tweezer wavelength one can create an potential a potential landscape
due to the differential Stark shift as can be seen in figure 3.3. In this potential landscape, one can
selectively excite atoms, when they are at the lowest energy point of the ground state. After the
excitation, the atom will roll up in the excited state before decaying back to the ground state, as
can also be seen in the figure. For Sisyphus cooling to work, three criteria have to be fulfilled.
First, the excited state has to be more confined than the ground state as this will lower the energy
if the atoms moves in the excite potential relative to the ground potential. Second, one must
selectively excite atoms to the excited state from the bottom of the potential, and third, the atom
should have sufficient time to move from the center of the trap before decaying back to the ground
state. If all these three criteria are met, one can reduce the energy of the atom per scattered
photon. This process can then be optimized by increasing the confinement of the excited state
relative to the ground state, as this would make the excited state steeper than the ground state.
The selectivity of the laser can be explained by the quantum numbers mJ = 0 and |mJ | = 1 of
the 1S0 and 3P1 states respectively. Using this method repeatedly allows experimentalist to cool
below the Doppler limit, creating another limit called the recoil limit. This lower temperature
limit is given by

kBTR = Ek =
h2

λ2M
, (3.4)

where M is the atomic mass and λ the cooling wavelength[20]. This limit is calculated given the
energy shift the atoms experience when absorbing a single atom. These temperature limits are
important for the calculations, since the collision laser also yields photon scattering on the atoms
heating up the atoms, which were originally cooled down to the Recoil limit.[30].

Figure 3.3: Sisyphus cooling using an excitation laser. The energy landscape is created due to
the 813.4 nm tweezer laser. As can be seen is the tweezer potential deeper for the excited state
(3P1) compared to the ground state (1S0). To cool the atom, it should preferably excite near the
bottom of the potential, after which it rolls up the steeper excited state before decaying back to
the ground state. This will as a consequence lead to a reduction in energy per scattered photon.
Figure taken from [11].
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3.2.2 Tweezer array

Now the temperature limits are discussed in the previous section we will now take a look at the
tweezer array consisting of tweezer traps created by a 813.4 nm laser. These tweezer traps are
arranged in an rectangular lattice, which can be either filled or partly filled, as can be seen in
figure 3.4. The preparation efficiency, which we try to maximize, can be calculated by dividing
the amount of filled traps by the total amount of traps. To simplify the problem, every tweezer
trap is considered a distinguishable subsystem, which is easily divisible. This can be done, since
the distance between the traps is 8 µm, which is large compared to the effective range of the trap,
which is in the order of 1 µm in the ρ direction. It is therefore reasonable to only consider one
tweezer trap, as will be explained in this section further on.

Figure 3.4: Filled tweezer array consisting consisting of individual tweezer traps in a rectangular
lattice (left). A partly filled tweezer array from which the preparation efficiency can be calculated
(right).[11]

In free space, free from an electric field, atoms in their ground state have no dipole moment.
However, when a static electric field is introduced using a laser, it will induce a dipole moment
inside the atom to reduce its potential energy. From this we can conclude that the atoms will be
attracted to regions with higher intensity therefore minimizing the dipole energy of the atom. This
effect is called the differential Stark shift. The differential Stark shift uses, rather than a static
field, an oscillating electromagnetic field. Either this frequency is below the atomic resonance
frequency, which would make the dipole moment in phase with the electric field and the atoms
are drawn to the regions of the highest intensity or the laser frequency can also be too high for
the atomic resonant frequency, causing the dipole moment of the atom to be out of phase and to
oppose regions of high electric field resulting in the atoms to go down the intensity gradient of
the laser[39]. For this Strontium experiment the trapped solution is chosen in which the atom is
trapped at high intensities. This intensity profile is a Gaussian intensity profile, causing the atoms
to move towards the center [40].

To get an expression for the tweezer trap, an electric field ~E has to be introduced which causes
a polarization ~p on the trapped atoms as ~p = α~E, where α(ω) is the complex polarizability
of the atom. In this derivation[20], the polarization has the same frequency ω as the electric

field. This gives respectively, in complex notation, ~E(r, t) = êE(r) exp(−iωt) + c · c and ~p(r, t) =
êp(r) exp(−iωt) + c · c. Given these expressions, the interaction potential can be defined as

Udip = −1

2
〈~p · ~E〉 = − 1

2ε0c
Re(α)I, (3.5)

where I is the intensity of the laser (I = 2ε0c
∣∣∣ ~E∣∣∣2), ε0 is the electric constant and c is the speed of

light in a vacuum. The scattering rate in the oscillator Lorentz model is given by

Γsc(~r) =
Pabs

h̄ω
=

1

h̄ε0c
Im(α)I(~r), (3.6)
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where Pabs is the energy absorbed by the atom per time unit and is re-emitted as dipole radiation as
Pabs = 〈~p · ~E〉 = ω

ε0c
Im(α)I where h̄ω is the photon energy. Since all the constants are known and

the intensity profile can be chosen, the polarizability should first be calculated using the Lorentz
model. The model treats the electron, with mass m and charge e classically and is bounded to
the core with an oscillation frequency ω0, representing the optical transition frequency. In this

Lorentz model the equation of motion for the electron is ẍ + Γωẋ + ω2
0x = − eE(t)

m . From this
differential equation, one can calculate the polarizability to be

α = 6πε0mc
3 Γ/ω2

0

ω2
0 − ω2 − iω3/ω2

0Γ
, (3.7)

where Γ is the on-resonant damping rate Γ = (ω0/ω)2Γω. This equation can now be inserted into
the dipole potential (equation (3.5)) and the scattering rate (equation (3.6)) giving respectively

Udpp(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (3.8)

Γsc(r) =
3πc2

2h̄ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r), (3.9)

where two terms are within the brackets, which can be reduced to one, considering most laser
frequencies are sufficiently close to the transition frequency such that the detuning ∆ = ω − ω0

fulfills the inequality |∆| � ω0 which makes the first term blow up. This approximation does not
always hold up as is also not the case for our setup. However, this does give simplified conclusions,
which still hold up by approximation. Filling the detuning into the equation, simplifies the equation
for the optical potential and the scattering rate as

Udpp(r) =
3πc2

2ω3
0

Γ

∆
I(r) (3.10)

Γtextsc(r) =
3πc2

2h̄ω3
0

(
Γ

∆

)2

I(r). (3.11)

From this derivation, two important conclusions can drawn, namely:

• The dipole strength is proportional to ∆−1 and the scattering rate is proportional to ∆−2.

• For negative detunings (red) the atoms tend to go towards regions of high field intensity and
for positive detunings (blue) the atoms will stay away from regions of high intensity.

In the experiment, a focused beam trap is used. This focused beam provides a three dimensional
confinement for the atoms and can be made using only one laser. This laser beam shines a Gaussian
intensity profile beam with power P along the z-axis with an intensity profile

I(ρ, z) =
2P

πw2(z)
exp

(
−2

ρ2

w2(z)

)
, (3.12)

where ρ is the radial coordinate and w(z) is the beam waist defined as 1/e2 of the maximum
intensity. This beam waist is equal to w0 at z = 0 but diverges as it moves away from the origin
along the z-axis as

w(z) = w0

√
1 +

(
z

zR

)2

. (3.13)

Here zR is the Rayleigh length, which depends on the wavelength of the trapping laser as zR =
πω2

0/λ[20]. This intensity profile (3.12), will later be used in the simulation. As now both the
internal structure, the temperature limits and the the tweezer array are explained it will be
important to model this into the simulation. This will be done in the following chapter, where the
simulation is explained.
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Simulation
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Chapter 4

Simulation outline

In this simulation outline I will explain how the simulation works and what assumptions are made.
In section 4.1, I introduce the hypothesis, the initialisation and the time iteration loop. Then in
section 4.2 I will explain the dipole trap, the differential Stark shift and how it is implemented
into the simulation. This section concludes by explaining the relative detuning and its effect on
the spontaneous emission processes. In section 4.3, the forces are explained and in section 4.3.2
the resulting changes in energy will be explained.

4.1 Hypothesis, initialisation and time iteration loop

We will start the simulation outline with the hypothesis and a discussion of the initialisation and
the time iteration. The hypothesis will try to predict some results based on the theory explained
earlier. The initialisation part will show how the particles are set up and what assumptions are
made in the beginning of the simulation and the time iteration loop part will explain how the time
iteration takes place and what variables are calculated per time iteration.

4.1.1 Hypothesis

The goal of the simulation of this thesis, is to know what the energy gain as a function of the
detuning is, also known as the trap loss profile A′N (∆), as was introduced in section 2.3. This can be
done by changing the detuning for discrete values and by looking at the energy gain per unit time.
This trap loss profile, combined with the wave function overlap and the Bose-Einstein distribution
function following (2.13) then gives the trap loss profile as a function of the detuning[19]. This
detuning of the collision laser relative to the transition frequency between the 1S0 and 3P1 state
is hypothesized to be small compared to the depth of the tweezer trap, since this would give the
highest scattering rate, but not too small, since having a low detuning also means there is little to
no energy gain from the scattering processes, as explained in section 2.2. To distinguish between
two-body and one-body losses, the simulations can be of importance, since the overlap calculations
can only predict the trap loss. In this simulation the trap loss is expected to have a good ratio of
one-body over two-body losses for low detunings, meaning in the order of the trap depth 2.3 MHz
as we will see in section 3.2.2, as this would induce just enough energy per scattering event to
exploit the variance in energy prior to any scattering process.
Another experimental variable of importance in the simulation, is the effect of the Rabi frequency.
This Rabi frequency will have a huge influence on the amplitude of the Rabi oscillation, defined

as Ω2

Ω2+∆2 (A.82). Beforehand, a low Rabi frequency is expected to be better, since this would
decrease the amplitude of the Rabi oscillation according to equation (A.83). This low amplitude
would ensure most colliding atoms are in the S state most of the time prior to the collision,
recreating the semiclassical picture of light induced collisions. However, a small Rabi frequency,
might not be the most ideal scenario as it might not excite colliding atoms at all. For a large
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Rabi frequency, this excitation would happen during the collision, but this excitation might also
happen outside of the scattering processes due to linewidth broadening, as we saw in equation
(2.49), creating too many spontaneous emission processes causing unwanted heating.
Finally, the cooling mechanism can be of importance, since it can bring down the average energy
while maintaining the variance in the energy and thus in the different energies between particles
prior to the collision as described in the statistical discussion in section 2.2. All these factors
described above are dependent on each other, which makes it hard to find an analytical solution,
and makes the use of a simulation required. In the next sections, the simulation will be outlined
on how it works. The code itself is listed in section B.5.

4.1.2 Initialisation

The simulation starts by defining time in the usual way from t = 0 to tend. Here a tend is chosen
to be a thousand times the lifetime of the 3P1 state in order to eliminate too much fluctuations of
the emission processes while also keeping the computational time of the simulation low enough.
Then a time spacing has been chosen, typically in the order of ∼ 10× 10−8 s such that it is of the
same order as the space divided by the velocity such that particles properly feel each other and
have time to smoothly accelerate.

After the time is set up, we set the number of particles, N , in a 6-dimensional phase space of
size N by 6, where the first three dimensions represent the position components and the remain-
ing three dimensions represent the momentum components. The position initialisation for the
particles are chosen randomly, since we found it did not have much influence on the simulation for
later timescales, the distribution of the particles are therefore chosen out of a Gaussian probability
distribution with σ one tenth the width of the smallest confinement[41], which is 0.1 µm. This will
become clear in section 4.2.1. A Gaussian curve is mathematically allowed since the movements
of the particles behave as Brownian motion.

The velocity set up is somewhat more difficult, since it has to obey the Maxwell-Boltzmann velocity
(Vdist) distribution for a temperature of 1 µK [42]. This can be done statistically using a rejection
method; [43]. Explained shortly, random values will be chosen in the plane set by

ylim = [0,max(Vdist)] and xlim = [a, b], (4.1)

where a and b should be chosen sufficiently to the left and right respectively such that the
Boltzmann curve is clearly visibly in this range. The random values in this plane will be ac-
cepted if it lies below the Boltzmann curve and will be rejected if the random numbers are outside
the Boltzman curve. The accepted values are then assigned to the particles’ momenta in this
phase space, keeping in mind that the Boltzmann curve represents the total velocity magnitude
whereas we are only interested in the three spatial components separately one should divide the
total magnitude by

√
3. This has been done using the code given in code B.4.

The third variable which has to be initialised is the internal quantum state. The initial state of
the particles should lie on the Bloch sphere as this would correctly represent a two-level system
[44]. To have the particles somewhere on the Bloch sphere, the coefficients cg and ce are given by

cg(θ) = cos(θ/2) (4.2)

ce(θ, φ) = eiφ · sin(θ/2), (4.3)

where φ = [0, 2π] represents the azimuthal angle and Θ = [0, π] represents the polar angle on the
Bloch sphere. In the simulation, Θ = 0.01 rad is chosen, since most particles are far away from
each other, meaning that they are most likely in the ground state for a large detuning.
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4.1.3 Time iteration

After the initialisation, the simulation starts to run in a for-loop. The simulation uses a leap frog
iteration scheme [45], which operates according to

vi+1/2 = vi + ai
∆t

2
xi+1 = xi + vi+1/2∆t

vi+1 = vi+1/2 + ai+1
∆t

2
+ vsp. em.,

where before the third step, the acceleration ai+1 has been calculated from the forces, as will be
explained in section 4.3.1. Also, the momentum kick vsp. em. caused by spontaneous emission is
calculated before the third step, since this induces an extra term to the original velocity. After
the leap frog scheme, the effective detunings and the effective decay rates are calculated, as we
will see in section 4.2.1 and 4.2.2 respectively, and the time gets updated at the end of the loop.
First there is a check whether or not the particles have left the trap. This is done for threshold
values of ρ > 1 µm or z > 10 µm, where ρ and z represents the radial distance to the z-axis and
the height in a cylindrical coordinate system respectively. Using these thresholds, one can identify
the particles which left the trap.
Then the kinetic, potential and interaction energy are calculated, in order to calculate the effective
detuning, which will be explained further in section 4.2.1. This effective detuning is necessary to
update the internal state of all the individual particles and is done directly after calculating the
interaction energies. Since these quantum states are of much smaller timescales than the times-
cales of the particle movements, new sub-iterations are done per normal time iteration to update
the internal state of the particles fast enough. To finish the iteration loop, the decay rate has to
be calculated, which will be explained in section 4.2.2.

4.2 Dynamic quantum states

Now that the initialisation of the simulation is explained, a better description of the quantum
states is needed as will be done in this section, the quantum states of the particles depend on
the tweezer trap creating a differential Stark shift, the detuning set by the laser and the Rabi
frequency as will all be treated in this section. To do this, the concepts of the effective detuning
and the effective decay rate will be introduced.

4.2.1 Effect of the tweezer trap

In this section, the implementation and the applications of the tweezer trap will be explained.
This explanation will be done for the different internal quantum states with their respective
polarizabilities. This difference in polarizability creates a differential Stark shift, which has an
effect on the detuning. To account for the different detuning felt by the particles a concept of the
effective detuning will be explained in this section.

Tweezer trap

When simulating a physical system, the first thing to consider is the background of the simulation,
the stage where the particles will eventually interact with each other. The physical background
is defined by the MOT and the tweezer traps. However, not every term is as important. The
first thing we can neglect is the MOT as the forces it asserts on the particles during light-assisted
collisions are small compared to the forces of the tweezer trap[11]. Also, since the tweezer trap
consists of an array of lasers which individually create a local minimum in the potential landscape,
it is possible to reduce the problem to a single laser trap[11]. With all these approximations, the
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background of the physical stage are given by a single tweezer trap.
This trap can then be described in mathematical terms to extract the forces from it. First the
intensity of the light as a function of space is given by equation (3.12) as [26]

IGaussian(ρ, P,w0) =
2P

πw2
0

exp
(
− 2ρ2

w2
0

)
. (4.4)

The resulting potentials, caused by the differential Stark shift, are given in the ρ-direction as

Uρ(ρ, P,w0) ∝ −η0αIGaussian(ρ, P,w0), (4.5)

and in the z-direction as

Uz(z, P, w0) ∝ −η0α
2P

πβw2
0

+mgz, (4.6)

Where the constant β is given by β = 1 +
(
λz
πw2

0

)2
and where the gravitation is in the z-direction.

The waist w0 is given in equation (3.13). In both the expressions, the conversion factor is left out
in the thesis, since only the shape is important to understand the underlying physics. To calculate
the depth of the tweezer trap, one uses a polarization α of 286 Cm2V−1 for the 1S0 state and
353.9 Cm2V−1 for the 3P1 |mj | = 1 state, which corresponds to the polarizabilities at 813nm (the
magic wavelength of the 1S0 and 3P0 state)[30]. The profile of the tweezer trap can be seen in
figure 4.1. Here, a minimum trap depth of 120 µK can be seen for the 1S0 state and a minimum
trap depth of 159 µK for the 3P1 state. This corresponds to a trap depth of 16.8 Mrad/s and
20.7 Mrad/s respectively or 2.6 MHz and 3.3 MHz. From these values the differential Stark shift
magnitude can easily be calculated, as has also been done in figure 4.1 in the last row. Note that
the scaling between the ρ- and z-direction is different. Where the effective range in the ρ direction
is approximately 1 µm, the effective range in the z-direction is approximately 10 µm long. This will
as a consequence lead to more diffusion along the z-direction as the ρ-direction is more confined.

Figure 4.1: Trap depth in both the radial direction (left column) and along the z-axis (right
column) for the 1S0 (first row) and 3P1 states (middle row) and the resulting differential Stark
shift between the states (last row).

Effective detuning

Now that the background of the simulation has been explained, it is important to see what effect
it has on the internal state of the particles. To do this, this thesis defines the effective detuning as
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the detuning in the frame of reference of the particles. Since the particles are constantly moving
inside the trap, all the particles experience different detunings because of the position dependent
differential Stark shift as it depends on the laser profile (3.12).
Another effect on the effective detuning is the Doppler shift, but that turned out not to be relevant.
The Doppler shift for a given source frequency Ωs , in this case of the collision laser, determines
the observed frequency in the frame of reference of the observer Ω0, in this case of the particles
and is given by[46]

Ω0(v) =

√
1− v
1 + v

Ωs, (4.7)

where v is the relative velocity between the source and the individual particles. Since the laser is
standing still, this would simply imply that v is the parallel velocity component of the particles
relative to the collision laser. Filling in a relatively high velocity at T = 1 µK of 0.01 m/s gives a
change in measured frequency of just 2%. This small change for high velocities will therefore be
neglected, resulting in no Doppler shift in the simulation.
The starting point for the effective detuning is the fixed detuning by the laser, which is defined
as ∆ = ωl − ω0, the difference between the laser light and the transition frequency of the ground
and excited state of the atom. Furthermore, the differential Stark shift will increase the effective
detuning with values of 4 Mrad/s or more, since the polarizability of the P state is bigger than
the polarizability of the S state, resulting in the inequality 0 ≤ E1S0

− E3P1
≤ 4 Mrad/s, as can

also be seen in figure 4.1. This effect gives the following formula for the effective detuning as

∆′ = ∆ + ∆EdSs, (4.8)

where ∆ is the detuning set by the laser and EdSs is the energy shift caused by the differential
Stark shift. However, at the center of the trap, a maximum differential Stark shift of 4 Mrad/s is
felt on the effective detuning. Therefore, it does not make sense to consider detunings ∆ higher
than 4 Mrad/s below the potential barrier of the excited repulsive 1u state, which has been in-
troduced in figure 3.1, since this would allow the incoming scattering wave function to enter the
short-range interaction making the approximations, of not entering the inner regime as explained
in 3.1, not valid anymore.

To get an estimation of the detuning, it should approximately be Vtrap depth ≤ ∆ ≤ 2Vtrap depth,
since the focus of this paper is one-body losses and not two-body losses. If one would translate
this to the specific trap depths of the S potential it can be found that the detuning should be
V1S0

≤ ∆ ≤ 2V1S0
. Here the 1S0 potential is taken, since it is the lowest potential and therefore

the easiest to escape. Also, in case an excited particle tends to leave the trap, it may emit a photon
within a small time scale compared to the time it will lose energy, resulting the atom to be found
in the ground state again therefore still leaving the trap in the 1S0 potential. In numbers, this
inequality above would translate to 16.8 Mrad/s ≤ ∆ ≤ 33.6 Mrad/s or 2.7 MHz ≤ δ ≤ 5.3 MHz.
In the rest of the thesis I will refer to the detuning as δ as the units will be given in MHz.

Also during the simulation, the particles will feel the interaction energy contributing to the effective
detuning. This is ultimately the reason why colliding particles become resonant with each other
and excite and why the effective detuning in equation (4.8) can become zero. Classically and
without the differential Stark shift, this would happen at the Condon point, see section 2.1. In the
simulation it is a bit more complex as the differential Stark shift is involved. Also, the excitations
do not specifically have to happen at the Condon point, it can also excite close to the Condon
point, since also with a detuning, Rabi oscillations take place as we saw in section 2.5.1.

4.2.2 Quantum states

Now the tweezer trap and its effect on the detuning have been explained, it is of interest how the
particles responds to this as a consequence. This will be done by discussing the order of Rabi
frequency, the resulting Rabi oscillations and a method to implement spontaneous emission to the
Rabi oscillations.
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Rabi frequency

To talk about the Rabi frequency, it is useful to first get the order of magnitude right. To check
this, the equation of the Rabi frequency Ω = ~d · ~E/h̄ where d is the electric dipole moment can be
used. The total Rabi frequency can also be rewritten as[47]

Ω =

√
4P

ε0c20

〈n, l, j,mj | rq
∣∣n′, l′, j′,m′j〉
h̄

, (4.9)

where the relation of a Gaussian intensity beam with a width w0 and power P have been used[27].
This power is connected to the electric field intensity as

2P

πw2
o

=
1

2
cε0

∣∣∣ ~E∣∣∣2. (4.10)

Filling in these values in the alkali-Rydberg calculator (ARC), see code B.1, with the correct
quantum numbers 〈n, l, j,mj | = 〈5, 0, 0, 0| and

∣∣n′, l′, j′,m′j〉 = |5, 1, 1, 1〉 for the S and P states
respectively, gives a Rabi frequency of 54.61 MHz, which is calculated using a waist of 50 µm and
a laser power of 20 µW. This Rabi frequency is, however, in the highly saturated regime, see 2.5.2.
It is therefore also interesting to consider lower Rabi frequencies, as will be done in the results.
The power can be changed by orders of magnitude leading to huge variations in the Rabi frequency.

Rabi oscillation

To use Rabi oscillation, explained in section 2.5.1, in the simulation, a finite difference method has
been used. To show how this works, let’s consider the following quantum system wave function
|Ψ〉

|Ψ〉 = c1 |Ψg〉+ c2 |Ψe〉 , (4.11)

where c1 and c2 represent the coefficients for the particle to be found in the ground state (|Ψg〉) or
in the excited state (|Ψe〉) respectively if multiplied with its complex conjugate. These coefficients
will evolve under a detuned laser light as (equation (2.44))

ċ1 = i
Ω

2
eiδtc2, (4.12)

ċ2 = i
Ω

2
e−iδtc1. (4.13)

To iterate this in the simulation, the forward Euler, the backward Euler and the semi explicit
Euler scheme have been tried. Of those three, the semi explicit Euler was the most stable of the
three. Using the semi explicit Euler scheme, where the first equation is iterated forwards and the
other is iterated backwards, these equations would then become [48]

c1(ti+1)− c1(ti)

dt
= −iΩ

2
eiδtc2(ti), (4.14)

c2(ti+1)− c2(ti)

dt
= −iΩ

2
e−iδ(t+dt)c1(ti+1). (4.15)

Rewriting this as a function of c1(ti+1) and c2(ti+1) would ultimately result in equations

c1(ti+1) = −iΩ
2
eiδtc2(ti)(dt) + c1(ti), (4.16)

c2(ti+1) = −iΩ
2
e−iδ(t+dt)c1(ti+1)(dt) + c2(ti), (4.17)

which are the equations to calculate c1 and c2 for the next time step t + dt. These formulas are
dependent on the time step dt, the detuning δ and the Rabi frequency Ω.
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In figure 4.2 different Rabi oscillations of Ω = 54 MHz. In this figure, three distinctions have
been made between different detunings. From the top to the bottom, detunings of δ = 0 MHz,
54 MHz, 540 MHz have been used. The blue line is the probability of being in the excited state
whereas the red line is the probability of being in the ground state. The probability of being in
either in the ground or excited state stays one as probabilities should always add up to one. Also,
the amplitude of the oscillations, explained in section 2.5.1, can be seen and how it changes with
different detunings. The higher the detuning the lower the oscillations amplitude, ultimately not
affecting the quantum states in the limit for δ −→ ∞. This can also be seen in equation (A.82).
These plots have been made using code B.2 using the Runge Kutta method[49].

Figure 4.2: Rabi Oscillations for Ω = 54 MHz with δ = 0 MHz, 54 MHz, 540 MHz. Here the blue
line is the probability of measuring the particle in the excited state |ce|2 and the red line is the

probability of measuring the particle in the ground state |cg|2. The higher the detuning the lower
the oscillation amplitude.

In figure 4.3 the Rabi oscillation are shown as used in the simulation. here, only the probability of
being in the excited state has been plotted to make the figure more clear. The plot has been made
for 10 individual particles with zero detuning, resulting in maximum Rabi oscillations between 0
and 1. The main difference between figure 4.2 and 4.3 is the higher Rabi frequency used, which
was too fast to be stable in the iteration loop as used in figure 4.2. To solve this, the use of
sub-time steps within each normal time iteration was required, which divides each time step in
smaller time steps using another for-loop.
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Figure 4.3: Rabi Oscillations for N=10 all in the ground state with zero detuning. The Rabi
frequency is here in the order of 300 MHz

Optical Bloch equations and spontaneous emission

Now, we have seen that the normal Rabi oscillations are correctly implemented into the code, it is
useful to look at solutions of the optical Bloch equations, since we know that the Rabi oscillation
framework does not include spontaneous emission, since there is no coupling to the vacuum field.
The Optical Bloch Equations are [23]

dρgg
dt

= +γρee +
i

2
(Ω∗ρ̃eg − Ωρ̃ge) (4.18)

dρee
dt

= −γρee +
i

2
(Ωρ̃ge − Ω∗ρ̃eg) (4.19)

dρ̃ge
dt

= −
(γ

2
+ iδ

)
ρ̃ge +

i

2
Ω∗ (ρee − ρgg) (4.20)

dρ̃eg
dt

= −
(γ

2
− iδ

)
ρ̃eg +

i

2
Ω (ρgg − ρee) , (4.21)

where ρgg, ρge, ρeg and ρee represent the density matrix elements, γ is the linewidth of the
transition and Ω∗ is the generalised Rabi frequency. In figures 4.4a and 4.4b, the solutions of these
equations can be seen for γ = 1/τ . The code uses another convention for the linewidth, namely
γOBE = 2 · γcode as the linewidth was only taken from the center. This resulted in that fact that
the γ in the code had to be calculated using the relation γcode = 1/(2τ), where τ = 21.5 µs is the
lifetime of the excited 3P1 strontium-88 state.
The two figures below are shown to visualize the full quantum dynamic picture for both a Rabi
frequency of zero and for a Rabi frequency of 2πMHz, plotted against the time from zero to the
lifetime τ . And indeed, as should always be the case for zero Rabi frequency, the probability of
the ρee dropped off with a factor of 1

e ≈ 0.367 within the lifetime. This result is clearly visible for
the Ω = 0 case in the left figure. For Ω 6= 0 in the right picture, it is slightly more complicated,
since now mixed states are introduced causing decoherence in the system into these mixed states.
For this the solutions of the OBE from section A.8.4 can be taken in the steady case as this is the
solution for t −→∞. Here the value of the population difference w (equation (A.94)) is somewhere
between 0 and 0.5, depending on the saturation parameter and thus the intensity of the laser.
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(a) Optical Bloch plot for Ω = 0. A
clear drop of the excited wave func-
tion can be seen by a factor of 1/e at
the lifetime of 21.5 µs.

(b) Optical Bloch plot for Ω = 1 MHz and δ = 0.5 MHz.

Figure 4.4: Solutions of the OBE where the blue line represents the ρee state of the density matrix
and the black line shows the ρgg state of the density matrix. Only the on-diagonal elements of the
wave function density matrix are visualized. (Left) No Rabi frequency, here only the exponential
decay can be seen. (Right) A Rabi frequency of Ω = 1 MHz causing the states to oscillate and to
decay at the same time, while also having decoherence into the mixed off-diagonal states.

To implement spontaneous emission into the code, it was of no advantage to implement the Optical
Bloch Equations, since these continuous oscillations could never produce a discrete decay into the
ground state, ultimately emitting a photon with discrete energies.
Therefore, another approach was found in which the decay curve is calculated independently from
the Rabi oscillations, keeping track of the chance of decaying. Let’s first look how an ensemble of
particles starting in the excited state would decay. Here the convention Γ = 1/τ is used. The rate
equation for spontaneous emission is given as[21]

dNe(t)

dt
= −Γ ·Ne(t). (4.22)

In a discrete semi-explicit scheme this will become

Ne(ti+1)−Ne(ti)
dt

= −Γ ·Ne(ti+1), (4.23)

which would lead to an expression for the next time step as

Ne(ti+1) =
N(ti)

1 + Γ · dt
, (4.24)

from which a decay loss per time step dNe(ti) defined as

dNe(ti) = Ne(ti−1)−Ne(ti). (4.25)

However, during the simulation, the particles are not always in the excited state. Most of the time
they are in the ground state, which would mean there is no chance of decaying. Therefore, when
implementing this framework into the iteration scheme we choose an effective decay rate that is
defined as Γ̃ ≡ Γ · |ce|2. This simply means that the decay rate scales with the probability of being
in the excited state. This can also be seen from Fermi’s golden rule, which states that the decay
rate from an initial to a final state is given by[50]

Γe−→g =
2π

h̄
|〈g|H |e〉|2ρ(Ef ). (4.26)

36 Creating an array of ultracold Sr-88 atoms for quantum computing via light-assisted collisions



CHAPTER 4. SIMULATION OUTLINE

Where the Hamiltonian consists of the dipole operator and the ρ is the density of states at the
Fermi level. Let’s for example take the superposition state |Ψ〉 = cg |g〉 + ce |e〉, substituting this
superposition state into Fermi’s golden rule yields

Γi−→f =
2π

h̄
|〈g|H |(cg |g〉+ ce |e〉)〉|2ρ(Ef ) (4.27)

=
2πρ(Ef )

h̄
(|cg|2 〈g|H |g〉+ |ce|2 〈g|H |e〉). (4.28)

Here 〈g|H |g〉 = 0, since the dipole operator changes the quantum number causing the inner
product to be orthogonal. Which leaves the equation left as

Γ̃i−→f =
2π

h̄
|ce|2 〈g|H |e〉 = |ce|2Γi−→f , (4.29)

supporting the claim earlier for an effective decay rate, since it depend on the state of the particle.
Also, since every particle experiences another detuning, it is not useful anymore to talk about an
ensemble rather than a probability of decaying for a single particle. Vice versa, this step would
seem quite obvious because if every particle would individually obey a probability distribution of
a decay plot this would transform to the famous decay plot as in figure 4.4a.
Implementing both the effective decay rate as going to a probability transforms equation (4.24)
into

Pdecay(ti+1) =
P (ti)

1 + Γ|ce|2dt
, (4.30)

and a probabilistic loss per time step as

Pdecay(ti) = Pdecay(ti−1)− Pdecay(ti). (4.31)

The probabilistic decay equation could now be implemented into the code resulting in individual
decay rates for each particle and has also been plotted in figure 4.5. For this plot every particle
starts off in the excited state and stays in the excited state to show the individual decay curves.
After some time, some particles have decayed and start again at the bottom. Notice that the
slope of the decay curve is of most importance, since this determines the chance of decaying, see
equation (4.31).

Figure 4.5: Decay curve for 10 particles, which are always in the excited state, meaning that the
decay curve has a constant decay coefficient. Every particles has its own decay curve, given by
a single color, following the ensemble decay rate. The rate of decay of the imaginary ensemble
determines the probability of decaying back to the ground state for a single particle. During the
22 µs of the plot six decay events took place. Namely the orange particle, given by the orange
line, at t = 2 µs, t = 20 µs and t = 21 µs. The purple particle also at t = 2 µs. The blue particle at
t = 5 µs and the green particle at t = 11 µs, which are visualized in red.

Using the effective decay rate gives the correct decay curve for particles in the excited state, as can
have been seen in figure 4.5. Particles in the ground state should have a flat decay curve, following
equation (4.30), and particles in a superposition state should follows a decay curve between these
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two extremes. This effective decay rate gives the right amount of decay events during the time
given the lifetime of strontium-88. This has all been done without implementing the density
matrix formalism, which makes it computationally more feasible as only c1 and c2 now have to be
computed.
Up until now we discussed the effective detuning due to the tweezer trap and how to implement
spontaneous decay using the effective decay rate, now the energy is of importance as will be done
in the next section.

4.3 Equations of motion and energy

Now that the initialisation and the internal quantum states are explained one can look at the
dynamics of the particles and the energies. First, all the forces will be explained together with
spontaneous emission momenta kicks, later the energies will be explained. These represent the in-
teraction energy, the potential energy, the kinetic energy and other concepts such as the differential
Stark shift and temperature.

4.3.1 Equation of motion

The dynamics of the particles are handled by the equations of motions, originated from the forces
at play. This includes the interaction forces, the trap forces and other events such as spontaneous
emission as will be discussed in this section. The forces are also a consequence of the internal
state, which is explained above.

Interaction force

The interaction forces causes the effective detuning to become resonant with the collision laser
causing particle to excite to the excited state. This will add energy into the system because of
the movement in the U1u(r) excited interaction potential. This happens if one particle in the 1S0

state and another in the 3P1. This potential is given as[34]

U1u(R) = C3/R
3 where C3 = 0.0075Eha0

3. (4.32)

Here, R is again the internuclear distance and can be calculated as

R2 = dx2 + dy2 + dz2, (4.33)

dx, dy and dz represent the distance between the particles in the x−, y− and z-direction. The
internuclear distance is a square matrix of size N , representing the distance between all the
particles.
To calculate the force due to the interaction potential one should remember that the derivative of
the potential is minus the force. This will result in

~F (R) = −dU1u(R)

dR
= −0.0225Eha0

3 ~R/R4. (4.34)

Doing this for all three directions in Cartesian coordinates yields

Fx(x, y, z) = −∂U1u(R)

∂x
= −∂U1u(R)

∂R

∂R

∂x
= −0.0225Eha0

3 · dx
R4

, (4.35)

Fy(x, y, z) = −∂U1u(R)

∂y
= −∂U1u(R)

∂R

∂R

∂y
= −0.0225Eha0

3 · dy
R4

, (4.36)

Fz(x, y, z) = −∂U1u(R)

∂z
= −∂U1u(R)

∂R

∂R

∂z
= −0.0225Eha0

3 · dz
R4

, (4.37)
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where the chain rule was used to differentiate to the respective Cartesian coordinate. Notice how
all these three force matrices are anti-symmetric since the dx, dy and dz-matrices were also anti-
symmetric. This should be correct, since both particles feel each other with the same strength but
with opposite sign.
But remember not all the particles interact at the same time, only when one is in the excited P
state and the other particle in the ground S state. To take this into account, all the forces Fij get
multiplied with a factor SPij which is defined as element in the ith column and jth row of matrix

~SP = ~PS = ~cg ~c∗g ⊗ ~ce ~c∗e + ~ce ~c∗e ⊗ ~cg ~c∗g, (4.38)

where ~ce and ~cg represent the coefficients of the ground (|Ψg〉) and excited state (|Ψe〉) for every
particle. This SP matrix represent the interaction strength between the particles, since the
particles only feel each other when one is in the ground state and the other is in the excited
state, or vise versa. These two options give the two terms in equation (4.38). Notice how the
outer product creates a matrix and since this equation is written as AB′+A′B, this expression is
a symmetric matrix, this makes sense, since both particles feel each other with the same strength.
To make this matrix even better one should get rid of all the diagonal elements of the matrix,
since a particle does not feel an interaction force with itself.

Finally, when the elements from equation (4.35) and (4.38), representing the force matrix and the
interaction strength matrix, are multiplied, the real force is calculated. To calculate the force of
one particle, the contributions of all other particles should be summed. Most of these interaction
terms will however be almost equal to zero due to the distance between them. This indicates why
three-body scattering rarely happens, confirming the scattering formalism used in section 6.1.1.

Trap forces

Another force at play is the force from the tweezer trap which keeps the particles together and
make the particles oscillate inside the trap if there weren’t any other forces at play. To calculate
the trap forces, which depend on the internal state of the particle, it is first useful to consider the
extremes of the problem: One in which a particle is fully in the 1S0 state and one where a particle
is fully in the 3P1 state. They would feel another potential and therefore another force. Also a
distinction between the ρ-direction and the z-direction has to be made, since the profiles of these
traps differ in each direction. We use cylindrical coordinates with ρ = x2 + y2. The potentials are
already given in equations (4.5) and (4.6) and the corresponding force for a particle in the 1S0

and 3P1 state can be calculated as

~Fρ,1S0
(ρ, z) = −(Uρ(ρ+ h, z)− Uρ(ρ, z))/h, (4.39)

~Fz,1S0
(ρ, z) = −(Uρ(ρ, z + h)− Uρ(ρ, z))/h, (4.40)

Here, the chain rule can be used to convert the radial force into the x and y force by multiplying
Fρ by x/ρ and y/ρ respectively. Only a different polarization has to be used for the states as was
described earlier in section 3.1.
To now get the actual force, since particles are in a superposition, the particles have some weighting
factor to which they feel the potential. This can be done using the ~S and ~P vectors, which tells
us how big the probability is that a particle can be found in a quantum state given as

~S(~cg) = ~cg ~c∗g, (4.41)

~P (~ce) = ~ce ~c∗e. (4.42)

Again ~cg and ~ce are the coefficients vectors corresponding to the ground and excited state of length
N . The corresponding strength particle i in superposition would feel due to the tweezer trap in
the ρ and z directions respectively are

Fi,r(r, z) = Fi,r,1S0
(r, z)Si + Fi,r,3P1

(r, z)Pi, (4.43)

Fi,z(r, z) = Fi,z,1S0
(r, z)Si + Fi,z,3P1

(r, z)Pi, (4.44)
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and the acceleration the particle would feel as a consequence is given by ai = Fi/m.

Spontaneous emission

In contrast to the stimulated emission and absorption, spontaneous emission has a net influence on
the motion of the particles. This process has already been described in section 4.2.2 and causes the
excited atoms to decay to the ground state, emitting a photon in the process. This photon, with a

kinetic energy (h̄ω0)2

2mc2 and momentum h̄ω0

c , causes the particle to move in opposite direction by the
laws of energy and momentum conservation. The momentum kick the particle would experience
as a consequence is

pkick = mv =
h̄ω0

c
, (4.45)

following momentum conservation. This could also have been derived from the energy conservation
equation, which states

(h̄ω0)2

2mc2
=

1

2
mv2. (4.46)

This is all fine in the discrete picture when the particle is definitely in the excited state, but again,
the particle could also decay from a superposition state which would not obey energy conservation.
This is because the energy the photon would have, corresponding to the transition frequency, is
equal to the whole transition energy. This energy, when the particle is in the superposition state,
does not have this energy and thus there is a difference in energy. To solve this in the simulation,
the momentum kick might either happen or not, such that energy conservation takes place. To
calculate this, particles that decayed from an almost excited state, say |ce|2 = 0.9, also have a
90% chance of gaining a momentum kick. Whether the momentum kick took place or not, the
internal state of the particle is set back to the ground state as should be the case to conserve
energy. This has been done to conserve the discrete momenta kicks, while still having the particles
in a superposition state.

4.3.2 Energy

This part of the simulation is relatively straightforward since the calculations are just a consequence
of the simulation itself and is merely used to visualize the things going on in the simulations.
Different energy contributions will be explained and various distinctions can be made to visualize
the dynamics better. This section will go into the total interaction energy, the total kinetic energy,
the total potential energy, the temperature and the energy of individual particles. In this section
the differential Stark shift will be defined, since this is a consequence of the difference between the
potential energies between the S and P state.

Total interaction energy

This interaction energy contribution is very important to see in order monitor the particles poten-
tial energy during the interaction. This interaction energy is given by equation (4.32). If all the
contributions of all the particles are added up, it should still be divided by two, since otherwise it
would count the same potential energy twice; the potential particle one feels from particle two and
vice versa. Since this interaction potential is also state dependent, the potential gets multiplied
by the elements of the SP matrix from equation (4.38). Since the particles don’t feel any force
from the |S + S〉 channel as the particles would already be excited to the |S + P 〉 channel, the
|S + S〉 channel energy, coming from the short-range van der Waals interaction, is also not taken
into account for the interaction energy.

Total potential energy and differential Stark shift

To get the full picture of all the conservative forces into play, also the trap forces should be taken
into account. This is done by summing up the different contributions of the S state trapping
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potential and the P state trapping potential in the following fashion

Upot(r, z) = ~Ur,1S0
(r, z) · ~S + ~Uz,3P1

(r, z) · ~P , (4.47)

where again the ~S and ~P vectors are used from equation (4.41) to take into account the internal
state of the particles. The individual components of this sum give the potential trap energy for
individual particles, indicating whether or not they would leave the trap. The inner product,
however, gives insights into the total potential of the trap. The total potential energy consists of
the total interaction energy and the total potential trap energy.
The differential Stark shift is calculated as the differences of the potential trap energies as

∆EdSs = ∆EdSs,r + ∆EdSs,z (4.48)

= (Ur,1S0
(r, z)− Ur,3P1

(r, z))/h̄+ (Uz,1S0
(r, z)− Uz,3P1

(r, z))/h̄, (4.49)

where h̄ is the reduced Planck constant, which gives the outcome in units of rad/s and produced
figure 4.1.

Total kinetic energy and temperature

The kinetic energy of the system can be calculated using the expression Ek = 1
2mv

2, where m
is the mass of the strontium-88 atoms and v is the velocities of the atoms. The kinetic energy
contributions of the atoms can be summed to know the total contribution of the kinetic energy.
This is important, since the total contribution of the kinetic energy together with the total potential
energy of the system, described in the section above, should add up to a constant; the total energy
of the system, which should stay constant without the influence of any collision laser.
It is also useful to look at the temperature. Usually this property can be calculated using the
relation E = kBT , but since this relationship is ill defined at small particle numbers, therefore it
is better to use the molecular description of the temperature given by[51]

T =
mv2

RMS

3R
, (4.50)

where vRMS =
√

1
N (
∑N
i=1 vi) representing the velocity Root Mean Square of all the particles nor-

malized by the number of particles, R is the gas constant given by 8.3144598 and m is the molar
mass of strontium-88 and is measured at 0.0879 kg/mol.
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Chapter 5

Simulation results

In the first part we have explained the scattering theory, the internal state of the particles and
laser properties. In the second part the simulation was explained and how it operates. In this
chapter I will first show some initial results to give an intuitive picture, later this picture will be
expanded towards a bigger picture in which the trap loss profile that we are mostly interested in
is explained. This trap loss profile is the energy gain due to two-body collisions as a function of
the detuning and can be found in the theory in equation (2.13). This trap loss profile can then be
used to calculate the trap loss as will be done in section 6. However, another goal of this section
will be to explain the filling factor of the tweezer array, which can be calculated when knowing
the one- over two-body losses[13].

In order to enhance the filling factor of the tweezer array for strontium-88 atoms, various simula-
tions have been done within a semiclassical framework. In these simulation, two-body collisions in
individual tweezer traps have been investigated. The individual tweezer traps can then be expan-
ded to the bigger tweezer array picture as every tweezer trap is the same. By doing the simulation
enough one can calculate the filling factor.

The simulation result will furthermore give insights into of the dynamics of the particles and the
internal state of the particles. This last factor is mainly determined by the detuning felt by the
particle and the strength of the interaction. This detuning δ, is the detuning set by the collision
laser as explained in section 4.2.1. The strength of the coupling between the ground and excited
state is determined by the Rabi frequency Ω. As a consequence of the effective detuning and the
Rabi frequency, one can investigate the dynamics of the particles. The forces in the simulation are
determined by spontaneous emission processes, the tweezer potential and the interaction potential,
as explained in section 4.3.1. Since excitations to the excited state interaction potential can cause
extra energy into the system during a collision, particles can increase in energy, thereby leaving
the trap.

5.1 Goal of the simulation

To understand the dynamics at play of the two-body collision between strontium-88 atoms in
order to calculate the ratio of one- over two-body losses and to determine the trap loss profile, the
semiclassical simulation will be used. This time-dependent simulation makes it easy to interpret,
which then makes it easier to set up a quantum framework. To investigate the interaction, several
ranges of the Rabi frequency Ω and the detuning δ will be varied in order to answer the two main
questions. Namely:

1. What combination of the detuning and the Rabi frequency leads to the highest ratio of
one-body losses over two-body losses?
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2. What is the energy release per collision as a function of the detuning?

The first question would give immediate insights into the preparation efficiency of the tweezer
array, and is the main goal of this thesis paper. However, since this would only give the answer
semiclassically, we are also interested in the trap loss as function of the detuning, which we call the
trap loss profile. To answer this, the second question is important, because if one knows what the
energy increase is per collision semiclassically, one can combine this to the transition probability
quantum mechanically. From that, the relative trap loss can be calculated, giving a better picture
of the problem as will be done in chapter 6.1.

In order to answer these questions, various kinds of simulations were performed. The Rabi fre-
quency was varied from 0.01 MHz to 50 MHz and the detuning was varied from 0 MHz to 20 MHz.
The end limits of both variables are relatively high. For the Rabi frequency this end limit is
defined as 50 MHz, since this would make the transition extremely saturated 2.5.2, causing a lot
of heating. Whereas the end limit for the detuning is taken to be 20 MHz, which is approximately
seven times the trap depth 4.2.1. Seven times the trap depth might seem high, since this detuning
might scale linearly with energy in theory. However, the energy gain during collisions might be far
from optimal for large detunings or low Rabi frequencies because these parameters can prevent
the particles to effectively reach the excited state. Given the end limits of both parameters, a
huge range of variables were tested to see what is optimal in the different regimes.

The simulation section will start with an explanation of the energies and its effect on the internal
quantum states using the effective detuning, a concept introduced in section 4.2.1. Then we show
the the decay curve of the simulation, which is affected by the internal state. These decay curves
are important since they cause spontaneous decay for the particles which will affect the energy.
When all the important parts of the simulation are explained and visualized. The real simulation
results are showed starting with an one-particle simulation to see the energy change over time
without any multiple body collision. Then, we show the two-particle simulations to see how the
energy increases including particle collisions. For both the simulations results, the maximum
energy increase and the average energy will be shown and in case one or two particles leave the
trap, the energy of the second particle is shown as soon as the first particle leaves the trap.
If both the simulations for one- and two-particles are listed and analyzed, one can calculate the
contribution of the two-atom collisions as will be done in section 5.1.4. This energy gain due to
the collisions as function for the detuning will then later be used to construct a trap loss profile as
function of the detuning. All detunings in this chapter are expressed in MHz and the simulation
plots in this chapter have been made using the code B.6.

5.1.1 Energies, internal quantum states and the decay curve

In this section, both the effect of the interaction energy on the internal quantum states as the effect
of the internal quantum state on the decay curve will be explained following the discussion in part
4.2.1. Both simulations are performed with 10 particles, where every particle has a different color
in the plots. Whenever just one color can be seen per time, it means that the colors overlap and
that all the particles are in the same state or follow the same decay curve as will be seen later.

Energies and internal quantum state

To see the interplay between potential and kinetic energy and how it effects the internal state of the
particles, it might be useful to see figure 5.1. At 10 µs the potential energy is low, indicating that
the particles are below in the trap. Then directly after, when the internuclear distance between
the particles becomes less, the interaction energy increases which causes some particles to become
resonant with each other, as can be seen in the interaction energy by the small green peak at 11 µs.
As a consequence of the interaction energy, the particles get excited to the excited states as can be
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seen below in figure 5.1 where a few particles are now in a superposition of the ground state and
excited state given by probability of measuring the particle in the excited state Pe. Around 12 µs
the particles are out of resonance again, creating a small dip in the total potential energy before
going to the outsides of the trap at 15 µs. In this period, the particles are not in resonance with
the collision laser, as can also be seen in the out of resonance Rabi oscillations, which oscillate
with constant amplitude (A.82). The second time the particles come close and get into resonance
with each other is at 21 µs, where again, the Rabi oscillation amplitude and frequency changes
according to the theory (A.82). During this whole process, the total energy of the system stays
constant as no excited interaction potential or spontaneous emission is taken into account yet, this
total energy is visualized by the black line at 1.3× 10−4 K.

Figure 5.1: Example of energy plots (above) and the probability of measuring the particles in
the excited state Pe (below). Without taking into account the differential Stark shift, the excited
interaction potential and spontaneous emission processes. Above: the kinetic energy (in blue) and
the potential energy (in green) oscillate in anti-parallel fashion while still having a constant energy
(in black). At 11 µs and 21 µs the interaction energy increases causing some particles to become
resonant. Below: Rabi oscillations of 10 particles starting off in the ground state. At 11 µs and
21 µs some particles get into resonance causing the Rabi oscillation to change in amplitude.

Internal quantum state and decay curve

Now we know how the position of the particles in the trap affects the internal state we will now
look at how the internal state affects the decay curve. The decay curve is calculated per particle
dependent on its internal state and it represents the amount of decayed particles if it was represen-
ted by an ensemble of particles. The change in this decay curve per time step then determines the
chance of one particle to decay. If the particle is in the ground state, the effective decay constant is
zero and and the curve stays flat whereas if the particle is in the excited state the decay constant
is equal to the original decay constant defined as 1/τ . This can all be read back in the simulation
outline in section 4.2.2.

An example of this decay curve is given in figure 5.2, where the particles start in the excited state
and undergo Rabi oscillations with a detuning of zero (independent of its particle position) as can
be seen in the upper plot. This will result in an effective decay rate using equation (4.30) the

decay curve iterates as Pdecay(ti+1) = P (ti)

1+Γ̃i−→fdt
, here Γ̃i−→f is defined as the effective decay rate

given by 4.29

Γ̃i−→f =
2π

h̄
|ce|2 〈g|H |e〉 = |ce|2Γi−→f . (5.1)

Creating an array of ultracold Sr-88 atoms for quantum computing via light-assisted collisions 45



CHAPTER 5. SIMULATION RESULTS

As a consequence, the individual decay curves do not rise as fast on average as was the case in
figure 4.5, where the particles stayed in the excited state. This is also expected considering the
particles are half as much in the excited state. The chance of decaying per time step is defined
as the change of this decay curve per time step (Pdecay(t + 1) − Pdecay(t)). If this decay chance
is then accepted it means that the particle will decay back to the ground state possible emitting
a photon and increasing its kinetic energy, this is the case since energy conservation does have to
take place as explained in the section 4.3.1. In this plot Ω = 2πMHz has been used.

Figure 5.2: Rabi oscillations and decay curve for N=10 for Ω = 2πMHz and δ = 0 Hz. In the
upper plot the Rabi oscillations are plotted with on the y-axis the probability of being in the
excited state. Every color represents a different particle. Below, the decay curve as a consequence
of the effective decay rate is plotted. Here the curve is flat as soon as the particle is in the ground
state and back to the original decay rate as the particle is in the excited state. We can see that
the green particle and the blue particle decayed at respectively 5 µs and 12 s.

5.1.2 One-particle simulation: How the energy changes without two-
body collisions

Now both the effective detuning and the effective decay rate are showed and how they affect and
are affected by the kinetic energy, via spontaneous emission, and by the interaction energy re-
spectively, we can now combine everything into one simulation and look at one particle first.

Starting with the one-particle case, not much is expected to happen, since no two-body scattering
processes can take place. However, since the simulation starts off at a recoil temperature of
1 µK using Sisyphus cooling, the atoms can warm up to the Doppler limit, depending on discrete
velocity steps taken caused by spontaneous emission. This increase in temperature is expected for
higher Rabi frequencies and lower detunings since this would cause more transitions and thus more
spontaneous emission events leading to the discrete energy steps. To see whether this is the case,
the figures 5.3a and 5.3b are shown below for the cases Ω = 1 MHz δ = 0 MHz and Ω = 1 MHz,
δ = 20 MHz respectively, such that only the detuning varies. The δ = 0 MHz simulation is to
be found in the excited state more often, resulting in a higher heating rate due to spontaneous
emission as can be seen in the energy difference during the whole run in the figures 5.3a and 5.3b.
Since the energy increase is only caused by spontaneous emission we can conclude that having a
low detuning causes more global heating, which is heating caused not due scattering events but
due to spontaneous emission. One could check this by looking at the decay curves and counting the
decay events and this is again the most for low detunings. These spontaneous emission events are
caused by a lot of excitations which is indeed the case for low detunings following the theory. The
simulations take 22 ms, which is a thousand times the lifetime of the excited 3P1 state of strontium-
88. This simulation times ensures that the results are not too much affected by fluctuations, while
still having reasonable computation times. Also, the kinetic energy and potential energy that is
plotted represents the 0.1 µs average energy. This value is chosen to be larger than the oscillation
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time inside the trap such that the oscillations cancel each other making the line flatter and to
make the plots more clear.

(a) The simulation results for Ω = 1 MHz,
δ = 0 MHz and N = 1.

(b) The simulation results for Ω = 1 MHz,
δ = 20 MHz and N = 1.

Figure 5.3: The energy as a function of time is given from t = 0 to t = 22 ms, in blue the kinetic
energy is given, in green the potential energy is given and in black the total energy is given, for
a time average of 0.1 µs. One can see that for the low detuning (left) more spontaneous emission
takes place than for the case of high detuning (right) causing more global heating.

To expand all the results for the one-particles simulations, all the results for all the different ranges
of the Rabi frequencies and the detuning, plots 5.4a and 5.4b are shown below. In this first plot on
the left, the average energy is shown as function of the detuning for different Rabi frequencies and
in the second plot on the right, the maximum energy from the starting temperature during the
simulation has been plotted as function of the detuning for different Rabi frequencies. The average
energy of the particles is more reliable parameter, since it is the average over time whereas the
maximum energy tells us about the energy deviation and the change of particles which might have
left the trap. In the cases where the Rabi frequencies is between 0.01 MHz and 1 MHz particles
did not leave the trap and are therefore plotted. Some of the particles however, left the trap for
Rabi frequencies of 5 MHz and 50 MHz and are therefore listed below in a table. In tables 5.1
and 5.2 again the average energy and the maximum energy are displayed. However, the runs with
particle losses are indicated by ” − ”. The maximum energy deviation, for the one-body runs
whose atom left the trap, are namely 120 µK, as this is the trap depth for the S state potential.
To still distinguish between the simulations with trap loss, the time it took the particles to leave
the trap has been given in table 5.3.

Energy [µK]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Rabi Ω
5 MHz 0.038 - - - 0.011
50 MHz - 0.061 - 0.018 0.047

Table 5.1: The average energy of the system during the 22 ms for one particle. Here values for the
Rabi frequency Ω between 0.01 MHz and 50 MHz have been used with detunings δ between 0 MHz
and 20 MHz. ’-’ means that the particle lost the trap.

Energy [µK]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Rabi Ω
5 MHz 79.89 - - - 26.44
50 MHz - 93.66 - 65.61 99.80

Table 5.2: The maximum energy deviation in µK. Maximum energy deviation during the 22 ms
for one particle. Here values for the Rabi frequency Ω between 0.01 MHz and 50 MHz have been
used with detunings δ between 0 MHz and 20 MHz. ’-’ means that the particle lost the trap.
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(a) The average energy during the one-particle sim-
ulation runs for different Rabi frequencies as a func-
tion of the detuning.

(b) The maximum energy during the one-particle
simulation runs for different Rabi frequencies as a
function of the detuning.

Figure 5.4: The average energy (left) and maximum energy (right) for the one-particle runs as
a function of the detuning. Every color represents a Rabi frequency. Only the Rabi frequencies
where no particle left the trap are plotted. Those results are listed in the tables.

Duration [ms]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Rabi Ω
5 MHz - 0.011 0.017 0.017 -
50 MHz 0.006 - 0.009 - -

Table 5.3: The duration for the particles to leave the trap during the 22 ms for one particle. Here
values for the Rabi frequency Ω between 0.01 MHz and 50 MHz have been used with detunings δ
between 0 MHz and 20 MHz. ’-’ means that particles did not leave the trap.

Summary for the one-particle

In the table 5.3 it can be seen that for Rabi frequencies higher than 5 MHz, the heating is already
big enough for particles to leave the trap. For small Rabi frequencies, below 0.25 MHz, the heating
is almost zero and no differences per detuning can be found as could be seen in figure 5.4a. In the
optimal regime between 0.25 MHz and 5 MHz a maximum heating is found for a detuning between
0 MHz and 10 MHz, as here the energy deviation is much higher than for detunings higher than
10 MHz.
To state it more generally, the coupling between the ground and excited state channel, caused
by the Rabi frequency, of the strontium-88 atoms cannot be too large or too small, since this
would couple the states too much or too little, causing the particles to heat up too much due
to spontaneous emission or get no excitation at all. For the intermediate regime, the detuning
can be checked, since here the coupling is in the middle, meaning no other process is dominant.
In this regime, the energy increase is the highest for low detuning, since this would imply many
spontaneous emission processes. There is no upper bound for the detuning, since no scattering
processes are taken into account yet. This will be investigated in the next section.
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5.1.3 Two-particle simulation: How two-body collisions changes the
trap loss and energy gain

For the case where two particles are in the trap, the interaction energy between particles is not
zero anymore and the colliding atoms can come into resonance with the light field. The resonance
condition is given by the effective detuning, the detuning felt in the frame of reference of the
strontium-88 atoms, being equal to zero, see also equation (4.8). When the particles are reson-
ant, the internal state of the particle, which is mainly in the ground state being far away from
each other, can excite to the P state, gaining some extra energy moving in the dipole interaction
potential. One can then extrapolate the energy increase for the scattering processes when com-
paring the one particle simulation runs to the two-particle simulation runs. In this section, three
examples have been chosen with different Rabi frequencies and detunings in figure 5.5a, 5.5b and
5.5c, which are the Ω = 0.25 MHz, δ = 0 MHz, the Ω = 1 MHz, δ = 5 MHz and the Ω = 1 MHz,
δ = 10 MHz simulations respectively. After the individual cases, more general figures and tables
are shown visualizing the same emergence properties as in the previous section (the maximum
energy deviation, the average energy and the energy of the second particle after the first one left).
Rabi frequencies and detunings are chosen in the same regime as in the previous section.
Example 1: Comparing same detuning (δ = 5 MHz) and different Rabi frequency
(0.25 MHz and 1 MHz). Between the first figure (5.5a) and second figure (5.5b), only the Rabi
frequency differs by a factor of 4 resulting in less energy gain for the lower Rabi frequency. This
is because particles cannot properly excite to the P state resulting in less spontaneous emission
and less movement in the repulsive dipole in the |S + P 〉 channel both causing extra energy into
the system. This can be checked, since the population of the internal state for both particles is
less in the excited state on average for the Ω = 0.25 MHz case compared to the Ω = 1 MHz case.
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(a) Simulation results for Ω = 0.25 MHz, δ = 5 MHz
and N = 2.

(b) Simulation results for Ω = 1 MHz, δ = 5 MHz
and N = 2.

(c) Simulation results for Ω = 1 MHz, δ = 10 MHz
and N = 2.

Figure 5.5: The energy as a function of time is given from t = 0 to t = 22 µs. In blue the kinetic
energy is given, in green the potential energy is given and in black the total energy is given. Figure
a) and c) are less optimal because of the lower Rabi frequency or higher detuning respectively,
whereas figure b) is the most optimal. The energy is taken to be the 0.1 µs average energy to make
the blue and green oscillations lower in amplitude.

Example 2: Comparing same Rabi frequency (δ = 1 MHz) and different detuning
(5 MHz and 10 MHz). Comparing the second figure (5.5b) and third figure (5.5c), only the
detuning differs by a factor of 2. Less energy is gained in the case with larger detuning, because
the particles are less in the excited state, because the particles are less in resonance with the
transition frequency, leading to Rabi oscillations with a smaller amplitude (A.82). Being in the
excited state less, means less spontaneous emission, which causes fewer momenta kicks by the
photon decay. One can check this by examining the decay curves. Since the decay curves are
flatter for the higher detuning, one can conclude fewer spontaneous emission processes have taken
place. This could have been compensated by the energy gain during the collisions, since a higher
detuning means moving from higher up in the repulsive potential, but this happens not to be the
case.
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(a) The average energy during the two-particle sim-
ulation runs for different Rabi frequencies as a func-
tion of the detuning

(b) The maximum energy during the two-particle
simulation runs for different Rabi frequencies as a
function of the detuning

The results of the maximum energy deviation and the average energy, for all different Rabi fre-
quencies and detunings, are listed in figures 5.6a and 5.6b, and tables 5.4 and 5.5 for the average
energy and the maximum energy deviation respectively. Again, the figures are for Rabi frequencies
between 0.01 MHz and 1 MHz, since in these simulations no atoms left the trap, wheras with a
Rabi frequency of 5 MHz and 50 MHz particles did leave the trap and are therefore listed in the
tables. Also, since in the two-particle runs one atom can stay in the trap, the time it took for the
first particle to leave the trap are notated in table 5.6, also the energy of the second particle is
listed in table 5.7.

Similar to the one-particle runs, both Rabi frequencies too low and too high can be eliminated.
For Rabi frequencies too low (Ω ≤ 0.25 MHz) this is due to a lack of energy gain from spontaneous
emission processes as was already seen from the one-particle runs but also no significant energy
gain due to scattering processes between the particles was found. This can be explained by the
fact that particles could not properly excite to the P -state, see equation (A.82), and therefore not
gain energy when moving along the repulsive dipole potential of the strontium-88 atoms. For Rabi
frequencies too high (Ω ≥ 5 MHz), again as we have already seen for the one-particle case, atoms
heat up too much due to spontaneous emission processes causing global heat into the system.
Global heat will not selectively induce one-body collisions and is therefore not desired.

In contrast to the one-particle simulation, there is not as clear of a relation between the detuning
and the energy increase as we saw for the one-particle case. This is because for low detuning,
the particles heat up, but at the same time induce no effective scattering processes where energy
can be gained, whereas for higher detuning ∼ 5 MHz, less spontaneous emission takes place, but
the energy gain during scattering processes is more effective. This trade-off already gives a bit of
insight in how the scattering processes for strontium-88 atoms effect the energy increase. In the
next section the effects of spontaneous emission will be eliminated partly in order to make better
conclusions about these scattering processes.

Energy [µK]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Rabi Ω
5 MHz - - - - -
50 MHz 211.42 - 233.86 - 233.22

Table 5.4: The largest temperature deviation during the 22 ms for two particles. Here values for
the Rabi frequency Ω between 0.01 MHz and 50 MHz have been used with detunings δ between
0 MHz and 20 MHz.’-’ means that particles did leave the trap.
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Energy [µK]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Rabi Ω
5 MHz - - - - -
50 MHz 0.103 - 0.142 - 0.091

Table 5.5: The average energy of the system during the 22 ms for two-particles. Here values for
the Rabi frequency Ω between 0.01 MHz and 50 MHz have been used with detunings δ between
0 MHz and 20 MHz. ’-’ means that particles did leave the trap.

Duration [ms]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Rabi Ω
5 MHz 0.007 0.008 0.009 0.006 0.007
50 MHz - 0.007 - 0.010 -

Table 5.6: The duration for the particles to leave the trap during the 22 ms for two particles. Here
values for the Rabi frequency Ω between 0.01 MHz and 50 MHz have been used with detunings δ
between 0 MHz and 20 MHz. ’-’ means that particles did not leave the trap.

Energy [µK]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Rabi Ω
5 MHz 0.019 0.063 0.009 0.018 0.015
50 MHz - 0.071 - 0.029 -

Table 5.7: The energy of the second particle after the first one left the trap at times notated in
table 5.6. Here values for the Rabi frequency Ω between 0.01 MHz and 50 MHz have been used
with detunings δ between 0 MHz and 20 MHz. ’-’ means that particles did not leave the trap.

5.1.4 Trap loss profile for different detunings

Now that the one- and two-particle simulations are listed, it is useful to abstract the information
which is needed to understand the two-body collisions by eliminating the one-body effects, namely
spontaneous emission. To do this, the energy gain for the two-particle simulation will be subtracted
by the energy gain for the one-particle simulation, leaving us mainly with the contributions caused
by the two-body collisions. In equation form, this yields

E2-body collisions = E2-particle − E1-particle, (5.2)

where E1-particle is the average energy for the one particle simulation given by figure 5.4a and table
5.1 and E2-particle is the average energy for the two particle simulation given by figure 5.6a and
table 5.5. This procedure will be done for the average energy as well as for the maximum energy
and the results are in figure 5.7a and 5.7b for Rabi frequencies Ω ≤ 1 MHz and in tables 5.8 and
5.9 for Ω ≥ 1 MHz. Notice that ideally one would multiply the one-body contributions by a factor
of two, because when the two bodies are not interacting, two individual one-body processes take
place. This, however, did not match very well with the data, since it produced too many negative
numbers. This could be explained by particles bouncing off each other both losing energy during
the collision.
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(a) The trap loss profiles for different Rabi frequen-
cies as a function of the detuning. Here the light-
blue line represents the trap loss profile which will
be used in the next section.

(b) The difference in maximum energy between the
two- and one-particle runs for different Rabi fre-
quencies as a function of the detuning.

Energy [µK]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Rabi Ω
1 MHz 36.03 102.48 65.66 −16.29 106.62
5 MHz - - - - -
50 MHz - - - - 142.42

Table 5.8: The difference in maximum energy deviation between one- and two-particle simulation
runs during the 22 ms. Here values for the Rabi frequency Ω between 1 MHz and 50 MHz have
been used with detunings δ between 0 MHz and 20 MHz.

Energy [µK]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Rabi Ω
1 MHz 0.004 0.043 0.029 0.010 0.012
5 MHz - - - - -
50 MHz - - - - 0.044

Table 5.9: The difference in average energy between the one- and two-particle simulation runs
during the 22 ms. Here values for the Rabi frequency Ω between 1 MHz and 50 MHz have been
used with detunings δ between 0 MHz and 20 MHz.

In addition to the discussion in the previous section of the two-particle run, a better conclusion
can be drawn now. It is clearly visible, from tables 5.8 and 5.9 about the difference in energy
deviation and difference in average energy respectively, that the energy gain is mostly in the 5 MHz
to 10 MHz regime, as was expected given the small discussion in section 5.1.3. Also, it is clearly
noticeable that for Rabi frequencies that are too low, there is not enough coupling, leading to
no effective light induced collision. For Rabi frequencies that are too high, a huge difference in
energy between the particles can effectively be created by collisions, but particles also gain energy
without collisions in spontaneous emission processes. Also visible, is the ratio between the two
δ2/Ω2, representing the Rabi oscillation amplitude (A.82). When this ratio is small, particles
tend to be more in the ground state prior to a collision and can then more effectively gain energy
during the collision, as would be optimal to create a huge energy deviation between the particles,
causing more one-body losses to take place. In contrast. If this Rabi oscillation amplitude is big,
particles are already more in the excited state prior to the collision causing the scattering events
to be less optimal. This relation can be checked in the figures 5.7a and 5.7b, where we see a larger
energy increase caused by scattering events for higher detuning when also the Rabi frequency is
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increased. This argument can also be turned around, as only higher Rabi frequencies are relevant
as soon as the detuning increases.

Some final remarks about the use of these numbers is to give insight into the dynamics at play.
Relevant trade-offs have been showed between the spontaneous emission events and photon ab-
sorption and emission. Also, a reasonable regime to look in has been found together with an
interesting relation between the detuning and the Rabi frequency. Within these regimes one could
find the energy increase per detuning and creating a trap loss profile for the quantum calculations,
as will be applied in the next section about the quantum nature of the strontium-88 particles
within the tweezer trap.
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Wavefunction overlap and trap
loss

In this chapter, a quantum approach will be taken into account, since the simulation does not
take the wave-like nature of the atoms into account. This approach considers the trap to be
an infinite well potential in which the overlap matrix has been calculated between the ground
state and excited state wave function. Using this overlap matrix one can calculate the transition
probability and thereby calculate the energy gain of the system. However, since this energy gain
depends on the detuning, one will get the trap loss as function of the detuning. This trap loss
as function of the detuning is called the trap loss profile, and will be considered for three cases,
namely a constant trap loss profile, an analytic trap loss profile and a trap loss profile connected
to the simulation.

6.1 Wave function overlap

For the trap loss calculations, the trap loss equation (2.13) it is important to calculate the overlap
matrix, which tells us something about the excitation probability for the strontium-88 atoms from
the ground to the excited state, which will be done in this chapter. This will be done by calcu-
lating the wave function of the ground state potential and the excited state potential in order to
eventually calculate the overlap matrix. With this overlap matrix, the trap loss can be calculated
using the trap loss profile A′(∆), also from equation (2.13). This total trap loss corresponds to
the master trap loss from section 2.6. All of these calculations have been done using the code B.7.

Ground state wave function
For the ground state wave function, equation (3.1) has been used for the ground state potential
with the parameters explained below this equation. Since the potential is only given by a van
der Waals potential, it is important to approximate the short-range using the scattering length
a = −2 a0, explained in section 2.4.1, and to connect it to the long-range wave function, explained
in section 2.4.4, using the log derivative method[52]. This has been done for the radial wave
function multiplied by a factor k · R in figure 6.1, k(R) being the wave vector at an internuclear
distance R. Since only sin and cos functions are used here, the amplitude is never higher than
one. The trap width is taken such that the ground state wave function at 1 µK is zero at the end
of the trap as would be the case for an infinite well potential. We also assume that the collision
takes place at the center of the trap and that the end of the trap is determined by the effective
range, which is explained in section 4.2.1. In the ρ-direction, the effective range is taken to be
0.5 µm. The trap width corresponding to this effective range is 8813 a0, with the constraint that
the wave function should be zero at the boundaries with an integer quantum number. This does
not hold for higher energetic states, as can be seen in the pictures. However, wave functions at
higher temperatures at far internuclear distances, contribute less to the wave function overlap, as
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Figure 6.1: Connection short- and long-range wave function for Ψground(R) ·kR in a van der Waals
potentials for energies of 1 µK, 2 µK up to 5 µK. Plotted from R = 0 to R = 8813 a0 .

will be seen later on. In all the pictures, it is important to keep in mind that the wave function
with the highest asymptotic wavelength is the wave function of the lowest energy. For these plots,
five different energies have been chosen corresponding to energies of 1 µK, 2 µK up to 5 µK. In
figure 6.2, the actual normalized wave function for these energies have been plotted, which already
shows the importance of the short-range regime around the classical Condon point. At larger in-
ternuclear distances, the wave function takes on lower values due to the 1/R dependence. Finally
this ground state wave function for the |S + S〉 channel has been plotted only in the short-range
in figure 6.3. Here, at small R the reflection effects from the nucleus can be seen which interfere
destructively at very small R and constructively interfere at bigger R, which corresponds to the
solutions explained in section 2.4.2. Around 70 a0, the asymptotic wave function can already be
seen, which confirms the choice of connecting the short-range and the long-range at a value of
200 a0.

Excited state wave function

For the excited state scattering wave function, different approaches have been used to calculate the
shape in order to confirm the shape, without normalization, which are all stated in section 2.4.3.
In figure 6.4, the short- and long-range scattering wave functions multiplied with a factor of kR
have been calculated. The wave functions, until the classical Condon point, increase exponentially,
as can be seen coming from low R values. Then, around the Condon point, the Airy functions can
be seen with a slightly higher amplitude than the sin function in the asymptotic regime, as has
been described in sections 2.4.3 and 2.4.4. Also here, the wave function has been calculated for
energies of 1 µK, 2 µK up to 5 µK. In the figure 6.5, the radial wave function has been plotted, in
which it drops off for higher R values.

Wave function overlap
Now that the ground and excited state potentials have been calculated, one can calculate the wave
function overlap using the equation (2.12)

Ffi =

∣∣∣∣∫ ∞
0

ψ− (r, Ee)ψ+(r, Eg)

∣∣∣∣2 . (6.1)
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Figure 6.2: Short- and long-range ground state wave function Ψground(R) in a van der Waals
potential for energies of 1 µK, 2 µK up to 5 µK. Plotted from R = 0 to R = 8813 a0.

Figure 6.3: Short-range ground state wave function Ψground(R) until r = 200 a0 for energies of
1 µK, 2 µK up to 5 µK. Plotted from R = 0 to R = 8813 a0.
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Figure 6.4: Excited state wave function Ψexcited(R) · kR for the short- and long-range. Plotted
from R = 0 to R = 8813 a0 for energies of 1 µK, 2 µK up to 5 µK..

Figure 6.5: Normalized excited state wave function Ψexcited(R) for the short- and long-range.
Plotted from R = 0 to R = 8813 a0 for energies of 1 µK, 2 µK up to 5 µK..
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To do this, first define the excited state energy as a function of the ground state energy and the
detuning as

Ee(δ) = Eg + δ, (6.2)

where Eg values are sampled from zero energy all the way up to 10 µK, the regime where the
s-wave approximation is still valid as discussed in section 3.1. The samples are used to calculate
the overlap for different ground state energies mimicking the Bose-Einstein distribution function.
Later, these samples, representing possible ground state energies, have been interpolated in order to
integrate over the whole ground state energy distribution defined by the Bose-Einstein distribution
at 1 µK. When integrating over the possible energies, the Franck Condon integral part of equation
(2.13) is given as a function of the detuning, as the energy of the excited state depends on the
detuning. This detuning dependent excitations is what we defined as the trap loss.
In figure 6.6, the overlap has been plotted at zero detuning for simplicity. Also, only sample
energies of 1 µK and 2 µK have been used to keep the plot clear. In the plot, the importance of
the short-range is clearly visible, which is order of magnitude bigger than the long-range. Here,
the yellow curve represents the overlap for energies of 1 µK between the ground and excited state
and the blue curve represents the overlap for an energy of 2 µK.

Figure 6.6: Overlap for 1 µK represented in yellow and 2 µK represented in blue. To get the
wave function overlap, one can multiply the overlap by its conjugate and integrate over the space.
Plotted from r = 0 to r = 8813 a0.

6.1.1 Trap loss calculations

In the previous result section we discussed the simulation and how it led to the trap loss profile.
This trap loss profile was introduced in section 2.3 and is given by the formula (2.13)

δN = A′N (∆)

∫ ∞
kmin

P (T,E)Ffi (kq) dkq. (6.3)

Here, A′N (∆) represents the the detuning dependent trap loss profile and the integral over all
k-values represent all possible excitations probabilities. With this formula one can calculate the
relative trap loss as function of the trap loss profile, the Bose-Einstein distribution and the Frank
Condon overlap[20] given as (2.12)

Ffi =

∣∣∣∣∫ ∞
0

ψ− (r, E)ψ+(r, E)

∣∣∣∣2 . (6.4)
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In this section the trap loss profile will be used to calculate the trap loss. This trap loss will be
treated for three different cases in order to see the effects of changing this profile. For the first case,
the assumption was made that the trap loss profile is not dependent on the detuning, meaning that
every excitation will lead to trap loss for both particles. Then a hypothesized analytic solution will
be shown, which is given by a simple polynomial function as a function of the detuning. Finally,
the trap loss profile from the simulation will be used from section 5.1.4 to take real experimental
measurements into account and to take into account the shape dependence of the tweezer trap
together with the differential Stark shift.

Constant trap loss profile
By taking a constant trap loss profile, that is to say that the trap loss is not dependent on the
detuning, a very easy result is obtained for the trap loss. In figure 6.7 the results can be seen for
this constant trap loss, in which an optimum is found at zero detuning. This makes sense, since
at zero detuning, the transition is resonant and most excitation to the excited state takes place.
For higher detunings, the transition is more off-resonant, which leads to less trap loss.

Figure 6.7: Trap losses for a constant trap loss profile plotted for δ between 0 MHz and 20 MHz.
An optimum is found at δ = 0. On the y-axis the relative trap loss is given, meaning that mostly
the shape and optimum detuning are interesting rather than the absolute values.

Analytic trap loss profile
In the previous section, it was discussed that the trap loss would be maximal at zero detuning,
assuming that every excitation causes trap loss. However, at zero detuning, no extra energy is
added to the particles from rolling down the repulsive dipole potential. To correctly calculate
the trap loss, some energy gain profile depending on the detuning is needed. For this energy
profile, three points can be made which predict the analytic profile, these point have already
been discussed in section 4.2.1 and are related to the depth of the tweezer potential for atoms
in the S state. At zero detuning, no losses are expected, since there is no energy gain during
the collisions. At δ = 2.7 MHz, on average 1 atom loss is expected, since both particles would
gain half this energy which is just enough for just one particles to leave the trap given that the
particles prior to the collision have an energy of half the trap depth on average, which has also
been explained in section 4.2.1. To see this better, the statistical interpretation of figure 2.2 can
be helpful, where both particles constantly gain and lose energy in a statistical manner. Till the
point particles do not leave the trap they are on average around half the trap depth, supporting
the claim. At δ = 5.3 MHz, two particle losses are expected, since even if both particles started off
with zero energy, still both particles get enough energy to be kicked out, causing two-body losses.
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From these three linear data points, one can naively assume a linear trap loss profile going from
δ = 0, trap loss = 0 to δ = 5.3 MHz, trap loss = 2 also going through δ = 2.7 MHz, trap loss = 1.
However, since there is a the statistical difference in energy of the particles before the collision,
in combination with the effective cooling of the atoms, already effective one-body losses can be
induced at detunings slightly higher than zero. The same argument can be made for detunings
below 5.3 MHz as this will not directly cause two-body losses. The reason for both arguments is
that it is very plausible that one of the atoms has a relatively low energy prior to the collision
compared to the other, see section 2.2. Also, spontaneous emission of one of the colliding atom
can kick the atom back into the trap. From these arguments an analytic trap loss profile has been
hypothesized, which looks like

trap loss(δ) =
1

5.33
(δ − 5.3)3 + 1, (6.5)

where δ is given in MHz and the trap loss varies from 0 to 2 in the range from 0 MHz to 5.3 MHz.
The resulting trap loss profile, following equation (2.13) as a function of the detuning, can be
seen in figure 6.8. In this picture an optimum is calculated at δ = 1.76 MHz, because at lower
detunings the energy gain is not optimal and and for high detunings the wave function overlap
and the Bose-Einstein distribution function are not optimal anymore.

Figure 6.8: Trap losses for a analytic trap loss profile given by equation (6.5) plotted for δ between
0 MHz and 5.4 MHz. Here an optimum can be found at δ = 1.76 MHz. On the y-axis the relative
trap loss is given, meaning that mostly the shape and optimum detuning are interesting rather
than the absolute values.

Simulation trap loss profile
After the constant trap loss profile and the analytic profile, it is interesting to couple the simulation
to the quantum calculations using the trap loss profile from the simulation. Here, the trap loss
profile as explained in section 5.1.4 will be used. Since Rabi frequencies that are too high give
chaotic behavior due to spontaneous emission events and much weaker Rabi frequencies give no
opportunity to excite effectively, the optimum Rabi frequency of 1 MHz has been taken from table
5.9 and the energies corresponding to different detunings are listed in table 6.1.
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Energy [µK]
Detuning δ

0 MHz 5 MHz 10 MHz 15 MHz 20 MHz
Rabi Ω 1 MHz 0.004 mK 0.043 mK 0.029 mK 0.010 mK 0.012 mK

Table 6.1: The difference of average energy of the one- and two-particle simulation runs during
the 22 ms. Here a Rabi frequency of 1 MHz has been used with detunings δ between 0 MHz and
20 MHz. On the y-axis the relative trap loss is given, meaning that mostly the shape and optimum
detuning are interesting rather than the absolute values.

This energy gain due to two-body collisions can now be used for the trap loss profile in equation
(2.13). Multiplying the trap loss profile from the simulation by the wave function overlap and the
Boltzmann distribution at 1 µK gives the atom loss as a function of the detuning, as can be seen in
figure 6.9, where an optimum atom loss in the trap is predicted at δ = 2.5 MHz. On the y-axis the
relative trap loss has been plotted as this calculation does not tell us much about one-body losses
over two-body losses. Therefore it is not of highest importance to scale the y-axis to experimental
data, one might rather find the optimum detuning together with the optimum Rabi frequency and
check the tweezer preparation efficiency.

Figure 6.9: Trap losses using the simulation given by equation (6.5) plotted for δ between 0 MHz
and 20 MHz. Here an optimum can be found at δ = 2.5 MHz. For higher detunings there is a
decline in atom loss all the way up to 17.5 MHz.

This relative trap loss, however, does not tell us much about the preparation efficiency. However,
both the optimum detuning from the analytic trap loss as for the experimental trap loss fits the
hypothesized one-body losses regime. This is still not enough information to make any significant
claims, since the trap loss is a rate of loss, rather than telling us something about the dynamics and
the ratio of one-body losses over two-body losses. To say something about this, one might refer
back to the simulation results, which indicate that there should be an optimum when minimizing
spontaneous emission effects, while still having effective excitation during the collision. This
effective excitation can be done for Rabi frequencies around 1 MHz, while still having a low Rabi

oscillation amplitude, which was introduced in section 2.5.1 as Ω2

Ω2+δ2 . Meaning that for a higher
frequency also a higher detuning has to be taken in order to keep this amplitude as low as possible.
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Conclusion and discussion

7.1 Conclusion

In this report, we looked at the most efficient way to induce one-body losses using light assisted
collisions for strontium-88 atoms. This has been done with the goal to leave one atom per tweezer
trap. This one atom could then be used to function as a qubit for quantum computations. When
optimizing the one-body losses, a high preparation efficiency can be obtained, which will then
make it more convenient to set up an array of interacting qubits[11]. In order to reach this high
preparation efficiency we used Sr-88 atoms in a tweezer trap 120 µK deep. The atoms inside this
trap would then collide with each other with the use of a collision laser. In this thesis, both a
simulation and overlap calculation have been performed, which give insights into the two-body
collisions of the particles for various Rabi frequencies and detunings of the collision laser. These
two-body collisions will induce atom losses into the system as the energy per collision rises on
average.

For the simulation, a trap loss profile, as function of the detuning has been found, which tells us
about the energy gain per collision. Then, since the atoms in the simulations were still treated as
semi-classical point particles and not enough statistical data could be gathered, only the trap loss
profile has been abstracted from the simulation. This trap loss profile was then used as a factor
in the quantum calculations.

However, an exact loading preparation efficiency has not been found, as both the simulation and
the Franck-Condon calculation fail to calculate exactly the ratio of one-body losses over two-body
losses. Rather, it explains the trap loss and the dynamics of the particles. Nevertheless, when
discussing the dynamics of the particles already some predictions of one-body losses over two-body
losses can be found for Sr-88 atoms in a 120 K deep tweezer trap. The trap loss tells us about the
rate of loss but nothing about the ratio of the loss processes.
A summary of these findings are given below. First the interested regime is highlighted, coming
from the simulation, in point one and two. Then, the optimum detuning is given for the quantum
calculations, for both the simulation trap loss profile as the analytic trap loss profile, in point three
and four. Finally, an important finding between the Rabi frequency and the detuning, which can
be exploited using a cooling laser, is given in point five.

1. Rabi frequencies below 0.25 MHz do not positively contribute to any significant energy gain
caused by light-assisted collisions. This is because the particles have no time to undergo half
a Rabi oscillation in the time frame of the collision.

2. Rabi frequencies of 5 MHz or above heat up the atoms in the trap too much, causing no
good energy difference prior to the collision. This happens because line broadening causes
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all the transitions to be on resonance, causing all particles to heat up. Energy gain caused
by collisions is more localized and causes a larger standard deviation of the energy.

3. This leaves us in the regime between 0.25 MHz and 1 MHz in which the particles interact on
correct time scales and don’t heat up too much. Here, Ω = 1 MHz showed the best trap loss
profile.

4. For the optimal Rabi frequency of 1 MHz in the simulation, a maximum trap loss is predicted
for δ = 2.5 MHz, whereas for the hypothesized analytic trap loss, this optimal detuning is
lower, towards 1.76 MHz. The δ = 2.5 MHz optimum is almost in the regime between one
and two times the trap depth (2.7 MHz and 5.3 MHz). The 1.76 MHz optimum is further
below one time the trap depth. Both indicate that mostly one-body losses are expected, as
for a particle with average energy half the trap energy would be just enough to leave the trap.

5. For the higher Rabi frequencies, higher detunings in the order of 10 MHz are preferred, as
indicated by the energy of the second particle once the the first one leaves the trap in table
5.7. This is because the amplitude of the Rabi oscillations (Ω2/δ2) should be small before
the scattering process to gain optimal energy during the process. Higher Rabi frequencies
could be very interesting with the use of cooling lasers resulting in a low average energy and
a high localized energy gain between the particles.
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7.2 Shortcomings of the simulation and quantum calcula-
tions

1. The simulation does not take into account the wave like nature of the particles, which has
the consequence that energy can only be gained locally. For the quantum case, this would
not be the case, as the collisions would induce a change of the velocity distribution, which
is a more global approach.

2. No optical Bloch equations were implemented into the model, which made it harder to simu-
late the saturation of the two level system. Instead, a different discrete way of implementing
the spontaneous emission was found using individual decay curves by sampling from an
ensemble average and introducing an effective decay rate. This is useful for the simula-
tion. However, one can also implement the optical Bloch equations and find another way to
implement discrete kicks caused by spontaneous decay.

3. The statistics in the results should be built up by sampling multiple times, which makes the
entire process computationally expensive (considering each run takes 1-2 days on a strong
computer). This made it harder to check the real results.

4. Instead of varying the Rabi frequency of the laser, also the intensity could be varied in order
to see more realistic values of the Rabi frequency. This would also be more useful to use for
an experimentalist.

5. The quantum calculations do not explain one atom loss over two atom loss without the need
of the trap loss profile from either the simulation or the analytic form.

6. The simulation did not take into account the cooling laser. This would have been interesting
in order to analyze higher Rabi frequencies and higher detunings. This can be interesting
since not all energy is gained optimally for a given detuning.

7. For the trap loss profile from the simulation, the difference in energy is taken between the one
and two particle simulations. However, one should ideally multiply the one particle energy
gain by 2, because this heating is felt on both particles individually during the two particle
simulation. This could not be done, since it would have given negative values. Instead, it is
assumed that the relative energy gain is important, since the two particles in the simulation
lose energy by colliding into each other from the repulsive dipole potential, which makes
formula 5.2 a lot harder.

7.3 Future research

In the future, many interesting features can be added to the model and the simulation. For the
simulation, many more variables can be changed, such as the trap depth, the starting number of
atoms and a cooling factor, for example. Each of them would give their own insights of how to
balance the dynamics of the particles with the internal state of those same particles. Also, the
coding itself could be changed if one would introduce the OBE into the simulation and find another
way to implement the spontaneous decay kicks. This would lead to a description that is more
accurate and more related to the experimental variables such as the intensity and the saturation
parameters. One way to make the simulation more interesting is by implementing the full quantum
picture, such that wave functions at all time steps are calculated. This would combine Einstein’s
rate equations to the OBE, and ultimately connect them to the experimental parameters. Finally,
one can change the excited state potential to the attractive P state where mJ = 0. This has its
own advantages and disadvantages, but can be beneficial in some cases.
For the quantum wave functions and the trap loss profile, a lot of interesting research can be done,
starting with making the potential of the tweezer trap more realistic and not assuming an infinite
well at the boundaries. This would create more possibilities of actual trap loss, since the particles
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have a chance of tunneling outside of the tweezer trap.
In the future, this simulation can be used to test all light assisted collisions, and make working in
the lab a lot easier. It also presents a way to compute the dynamics of the system in a direct and
intuitive way.
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Appendix A

Theoretical derivations

A.1 Semi-classical to quantum wave function overlap

Using the semi-classically Condon point described in the section 2.1, one can calculate the overlap
at this point. However, it should ultimately be calculated quantum mechanically to give proper
insights into the system, accounting for the delocalization of the wave function. The probability
of a transition with laser light ω and an energy difference E is proportional to a Frank-Condon
overlap matrix element between the ground- and excited state wave functions as

Pge(E,ω) ∝ |〈Ψe(R)|Ωeg(R) |Ψg(E,R)〉|2 (A.1)

≈ |Ωeg(RC)|2|〈Ψe(R)|Ψg(E,R)〉|2, (A.2)

where Ωeg(R) is the optical Rabi matrix element representing the strength of the optical coupling.
This so called Frank-Condon factor can be approximated along the Condon point using a reflection
approximation and applies over a large range of energies, including the red and blue detuning. The
approximation is closely related to the usual stationary phase approximation of line broadening
theory. Using this approximation, the Franck-Condon factor is proportional to the ground-state
wave function at the Condon point as

Fge(E,∆) = |〈Ψe(R)|Ψg(E,R))〉|2 (A.3)

=
1

DC
|Ψg(E,RC)|2 for blue detuning. (A.4)

= hvv
1

DC
|Ψg(E,RC)|2 for red detuning. (A.5)

Here DC = |d(Ve − Vg)/dR|RC
is the slope of the difference potential[53].

A.2 Lippmann-Schwinger equation

In order to explain two body scattering collisions on the quantum scale one needs to consider first
the time independent Schrodinger’s equation:[

− h̄
2

2µ
∇2 + V (r)

]
ψ(r) = Eψ(r) (A.6)

where µ = (m1m2)/(m1 +m2) is the reduced mass of the system. Here, the assumption is made
that the interactions between the two particles are translationally invariant, which is the case if
and only if the internal Hamiltonian only depends on the internal state of the particles and not
on the spatial coordinate. For these kind of systems it is useful to use a center of mass frame in
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which ~K = ~k1 + ~k2 can be set to zero. Writing H0 = ~p2/2µ for the non relativistic kinetic energy
operator with an eigenstate |φ〉 yields

H0|φ〉 = E|φ〉, (A.7)

where E represents the energy in asymptotic regime. One can write the the total time independent
Schrodinger equation in matrix form as

(H0 + V ) |ψ〉 = E|ψ〉, (A.8)

where V represents the interaction potential. Rearranging this equation gives

|ψ〉 = |φ〉+
1

E −H0
V |ψ〉, (A.9)

where |φ〉 are the plane wave solutions added, which would also exist without an interaction
potential. Since the inverse quantum operator (E−H0)−1 can be singular, because the eigenvalues
of H0 can be zero, it is useful to introduce an imaginary factor iε and by taking the limit ε −→ 0+.
This would then give the Lippman-Schwinger equation as[53]

|ψ〉 = |φ〉+
1

E −H0 + iε
V |ψ〉. (A.10)

A.3 Green’s function

In order to write the Lippmann-Schwinger equation in integral form it is useful to define the
Green’s operator. This greens operator obeys the equation [21](

E +
h̄2

2m
∇2

)
G0 (E; r, r′) = δ (r− r′) . (A.11)

This equation can be seen as the solution of the Schrodinger’s equation with a source given by the
delta function δ (r− r′). Equation A.11 can be rewritten in the Helmholtz equation as(

∇2 + k2
)
G0 (k; r, r′) =

2m

h̄2 δ (r− r′) , (A.12)

where the famous energy equation

E =
h̄2k2

2m
, (A.13)

has been used to rewrite the Helmholtz equation in terms of the wave vector. Then, by defining
the Fourier transform of the Green’s function as

G̃0(k; q) =

∫
d3xe−iq·xG0(k; x) ⇒ G0(k; x) =

∫
d3q

(2π)3
eiq·xG̃0(k; q), (A.14)

one can rewrite the Helmholtz function in momentum space as(
−q2 + k2

)
G̃(k; q) =

2m

h̄2 ⇒ G̃0(k; q) = −2m

h̄2

1

q2 − k2
, (A.15)

which can be inverted back to the position basis using the inverse Fourier transformation, also
given by equation (A.14), which results in

G0(k; x) = −2m

h̄2

∫
d3q

(2π)3

eiq·x

q2 − k2
. (A.16)
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Since this integral diverges for q2 = k2, also here an imaginary factor iε has to be implemented,
resulting in

G+
0 (k; x) = −2m

h̄2

∫
d3q

(2π)3

eiq·x

q2 − k2 − iε
, (A.17)

and finally take the limit ε −→ 0+. To solve this integral, one should switch to a polar coordinate
system to rewrite the equation as

G+
0 (k; x) = −2m

h̄2

1

(2π)3

∫ 2π

0

dφ

∫ +1

−1

d(cos θ)

∫ ∞
0

dq
q2eiqx cos θ

q2 − k2 − iε

= −2m

h̄2

1

(2π)2

∫ ∞
0

dq
q

ix

eiqx − e−iqx

q2 − k2 − iε

= −2m

h̄2

1

(2π)2

1

ix

∫ ∞
−∞

dq
qeiqx

(q − k − iε)(q + k + iε)

(A.18)

ultimately leading to the Cauchy’s integral formulas. This formula can be solved using a contour
integral in the positive x-plane. Since x is positive, this results in an extra factor iikr, leading to
the final answer

G+
0 (k; r− r′) = −2m

h̄2

1

4π

e+ik|r−r′|

|r− r′|
. (A.19)

For this derivation the imaginary factor +iε has been chosen rather than −iε. Similarly, G−0 would
have been found as

G+
0 (k; r− r′) = −2m

h̄2

1

4π

e−ik|r−r
′|

|r− r′|
, (A.20)

with the only difference being the sign change in the exponent, representing either in- or outgoing
scattering waves. Since scattering waves can only go outwards, our choice for using −iε seems
quite reasonable.

A.4 Integral formulation Lippmann-Schwinger equation and
the Born approximation

Taking equation (A.10) and using the Green’s operator for the wave function for a delta function
potential, one can expand this theorem for an arbitrary potential V (r′) where r′ represents the
position variable over which the potential has to be integrated. If now plane wave solutions for
the non interaction Hamiltonian equation are given as [54]

φ(r) = eik·r, (A.21)

the Lippmann-Schwinger equation can formulated as

ψ(k; r) = eik·r − 2m

h̄2

∫
d3r′

e+ik|r−r′|

4π |r− r′|
V (r′)ψ (k; r′) , (A.22)

which has a very natural interpretation . Here, the first term represents the incoming wave with
momentum h̄~k and second term is the scattered outgoing wave. Since this integral formulation
of the Lippmann-Schwinger equation is still implicit, that is to say that the total wave function
still depends on the wave function itself for the scattered part, it is useful to introduce the born
approximation. For this, it is assumed that V (r′) is non-zero only in a finite region, which of
course will be approximately be the case for interaction potentials, which decay as 1/r3. For large
r, which is to say that

|r− r′| =
√
r2 − 2r · r′ + r′2 ≈ r − r · r′

r
, (A.23)
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This will then transform the Green’s operator, equation (A.11), as

G+
0 (k; r− r′) ≈ −2m

h̄2

1

4π

e+ikr

r
e−ikr̂·r

′
, (A.24)

and finally transforming the Lippmann-Schwinger equation as

ψ(k; r) ∼ eik·r − 2m

h̄2

1

4π

[∫
d3r′e−ikr̂·r

′
V (r′)ψ (k; r′)

]
eikr

r
, (A.25)

which has the form of

ψ(r) ∼ eikz + f(θ, φ)
eikr

r
, (A.26)

where f(θ, φ) is defined to be the scattering amplitude as

f(θ, φ) = −2m

h̄2

1

4π

∫
d3r′e−ikr̂·r

′
V (r′)ψ (k; r′) . (A.27)

As we will see in chapter A.5 the form of equation (A.26) will be used as reference for the derivation
in order to calculate the phase shift ultimately.

A.5 Partial wave analysis

In this approach, also the Schrödinger’s equation will be solved, now explicitly as a function of the
angular momentum l, which is convenient since most scattering problems are solved in a potential
only depending on the radial coordinate, leading to spherically symmetric scattering states as
solutions. Using this formalism [21], the wave function will be written using the separation of
variables technique as

ψ(r, θ, φ) = R(r)Y ml (θ, φ) (A.28)

with a radial wave function R(r) and an angular part Y ml (θ, φ) known as the spherical harmonics.
Introducing u(r) = rR(r), this leads to the rewritten radial Schrodinger’s equation as

− h̄2

2m

d2u

dr2
+

[
V (r) +

h̄2

2m

l(l + 1)

r2

]
u = Eu. (A.29)

Since for our problem it is only of interest to look for very large r, that is to say for kr � 1 in
the radiation zone, the potential can be set to zero. This has also been done in section A.4 and
is very accurate for potentials where V (r) ∼ 1/rn with n ≥ 2. This approximation is called the
finite potential approximation. Without potential the radial Schrödinger equation reads

d2u

dr2
− l(l + 1)

r2
u = −k2u, (A.30)

where k =
√

2mE/h̄ is defined as usual. Solutions of this equation are given as a linear combination
of spherical Bessel functions as

u(r) = Arjl(kr) +Brnl(kr). (A.31)

However, these functions do not behave as would be optimal for this formalism since neither
functions behave as eikr or e−ikr representing the incoming and outgoing scattering waves. Rather
the functions behave as sine or cosine functions. Nevertheless, the spherical Bessel functions can
be rewritten, using Euler’s identity, to the spherical Hankel functions as

h
(1)
l (x) ≡ jl(x) + inl(x); h

(2)
l (x) ≡ jl(x)− inl(x), (A.32)

which behave as scattering states with a familiar form. In the limit for large r values, the Hankel
functions of the first kind scale as eikr/r and the Hankel functions of the second kind scale as
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e−ikr/r.
For outgoing states, we can evidently write the radial wave function solution in the radiation zone
as

R(r) = Ch
(1)
l (kr). (A.33)

Leading to the total wave function with the same form as has been seen in equation of A.26 for
the Bohr approximation formalism as

ψ(r, θ, φ) = A

eikz +
∑
l,m

Cl,mh
(1)
l (kr)Y ml (θ, φ)

 . (A.34)

Now, as mentioned before, since the potentials are spherically symmetric, the outgoing wave
function cannot depend on φ. So only terms with m = 0 survive. This will simplify the expression
for the angular part as

Y 0
l (θ, φ) =

√
2l + 1

4π
Pl(cos θ), (A.35)

where Pl is the l-th Legendre Polynomial. The final wave function can now be written down as

ψ(r, θ) = A

{
eikz + k

∞∑
`=0

i`+1(2`+ 1)a`h
(1)
` (kr)P`(cos θ)

}
, (A.36)

where the expansion coefficients Cl,0 are defined as il+1k
√

4 ∗ pi(2l + 1)al, where al are called
the l-th partial wave amplitude. Since for large r the Hankel function of the first kind goes as
(−i)l+1eikr/kr one could also write the wave function in the same form as has been seen before
in the chapter A.4 and confirms the total wave function as

Ψ(r,Θ) ≈ A
{
eikz + f(Θ)

eikr

r

}
, (A.37)

where

f(Θ) =

∞∑
l=0

(2l + 1)alPl(cosΘ). (A.38)

Here, two coordinates are used, namely r and z, which normally don’t go together very well. For
this, the plane wave solutions - the first part of equation (A.37) - can be rewritten using Rayleigh’s
formula as

eikz =

∞∑
l=0

il(2l + 1)jl(kr)Pl(cosΘ). (A.39)

Ultimately leading to the total scattered wave function in the partial wave framework as

ψ(r, θ) = A

∞∑
i`(2`+ 1)

[
j`(kr) + ika`h

(1)
` (kr)

]
P`(cos θ). (A.40)

A.6 Excited state wave function using finite difference ap-
proach

The time independent Schrodinger’s equation reads

− h̄2

2µ

∂2

∂r2
|Ψ〉 = (E − V ) |Ψ〉 , (A.41)

which can be rewritten in a fourth order finite difference scheme as[55]

1

a2
(
15

4
Ψn −

77

6
Ψn+1 +

107

6
Ψn+2 − 13Ψn+3 +

61

12
Ψn+4 −

5

6
Ψn+5) = −2µ

h̄2 (E − Vn)Ψn = −k2
nΨn,

(A.42)
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where kn =

√
2µ(E−Vn)

h̄ and a is the step size for this scheme. The fourth order different scheme
implies that the error of each step scales with the step size to the power of four. To calculate the
steps backwards, one can rewrite equation (A.42) for Ψn as

Ψn = (
77

6
Ψn+1 −

107

6
Ψn+2 + 13Ψn+3 −

61

12
Ψn+4 +

5

6
Ψn+5)/(

15

4
+ a2k2

n). (A.43)

A.7 Excited state wave function using WKB approximation

In order to patch a wave function through arbitrary potential landscapes one can use the WKB
approximation. The approximation will be made during the derivation[21], but in essence the
only thing that is important is the change of the amplitude of the wave function over space. That
is to say that A′′/A � (φ′)2 and A′′/A � p2/h̄2. To start the approximation, first the time
independent Schrodinger equation has to be rewritten in the following form

d2ψ

dx2
= − p

2

h̄2ψ, (A.44)

where p is the momentum and can either be real in the classical region (E > V ) or imaginary in
the forbidden regions (E < V ). Now in general, the wave function has the form

ψ(x) = A(x)eiφ(x), (A.45)

in which both the amplitude A(x) and the phase φ(x) real. Filling in this assumption back into
the rewritten Schrodinger equation (A.44) gives the following equality

A′′ + 2iA′φ′ + iAφ′′ −A (φ′)
2

= − p
2

h̄2A, (A.46)

which can then be split into two equations; one for the real part as

A′′ −A (φ′)
2

= − p
2

h̄2A, or A′′ = A

[
(φ′)

2 − p2

h̄2

]
, (A.47)

and one for the imaginary part as

2A′φ′ +Aφ′′ = 0, or
(
A2φ′

)′
= 0. (A.48)

Solving the equation with the real components cannot be done analytically and therefore the
approximation A′′/A� (φ′)2 and A′′/A2/h̄2 has to be made. This generally holds for functions far
away from turning point, where E = V , but breaks down close to the turning points. Continuing
with the assumption and dropping the A′′ term leaves us for an expression for the wave function
amplitude as

A2φ′ = C2, or A =
C√
|φ′|

, (A.49)

where an integration constant is introduced, which has to be solved using boundary conditions.
The equation for the imaginary part can be solved analytically as

φ(x) = ± 1

h̄

∫
p(x)dx (A.50)

representing the phase. By plugging the amplitude (equation (A.49)) and the phase (equation
(A.50)) back into the general solution (equation (A.45)), the final result for the WKB formalism
is obtained as

ψ(x) ≈ C√
p(x)

e±
1
h̄

∫
p(x)dx. (A.51)
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A.7.1 WKB near turning point

Since the physics around the turning point is rather important, it is necessary to connect the
formulas from the classical region and the forbidden region. This can be done in a framework of
an increasing potential slope over space with the turning point (E=V) located at the origin. The
solutions to both sides of the turning point are given as[21]

ψ(x) ≈


1√
p(x)

[
Be

i
h̄

∫ 0
x
p(x′)dx′

+ Ce−
i
h̄

∫ 0
x
p(x′)dx′

]
, x < 0,

1√
|p(x)|

De−
1
h̄

∫ x
0 |p(x′)|dx′, x > 0.

(A.52)

Where the wave function in the classical region is represented by an incoming and a reflected wave
with amplitudes of respectively B and C and the wave function in the forbidden region is given
by an exponential decay as would have been expected. The absolute signs are now added to the
WKB solution since p(x) is imaginary.
For the region around the turning point the potential will be linearized, leading to new momenta
in this so called patching region as

p(x) ≈
√

2m (E − E − V ′(0)x). (A.53)

The Schrodinger equation in this region is now

− h̄2

2m

d2ψp
dx2

+ (E + V ′(0)x)ψp = Eψp, (A.54)

or
d2ψp
dx2

= α3xψp, (A.55)

where

α ≡
[

2m

h̄2 V
′(0)

]1/3

. (A.56)

This constant α can be absorbed into the equation by defining

z ≡ αx, (A.57)

such that
d2ψp
dz2

= zψp. (A.58)

This is a well known differential equation used in physics which comes up in different fields. The
solutions are given by the so called Airy functions and are related to the Bessel’s functions order
1/3. The resulting wave function is linear combinations of these linearly independent solutions
Ai(z) and Bi(z) as

ψp(x) = aAi(αx) + bBi(αx), (A.59)

since the second term blows up for high z and this should not be the case for the forbidden region,
b can be set to zero and the solution for the patching region is found. One can now connect the
formulas from A.52 with the connection formulas on both sides resulting in the formulas

ψ(x) ≈


2D√
p(x)

sin
[

1
h̄

∫ x2

x
p (x′) dx′ + π

4

]
, x < x2,

D√
|p(x)|

exp
[
− 1
h̄

∫ x
x2
|p (x′)| dx′

]
, x > x2.

(A.60)

For a upwards slope, and

ψ(x) ≈


D′√
|p(x)|

exp
[
− 1
h̄

∫ x1

x
|p (x′)| dx′

]
, x < x1,

2D′√
p(x)

sin
[

1
h̄

∫ x
x1
p (x′) dx′ + π

4

]
, x > x1,

(A.61)

for a downwards slope. The normalization constant D can be found by either normalization or by
finding a boundary condition for scattering states.
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A.8 Internal quantum states

In this section, we shift the focus from wave functions in position space to the internal states and
properties of the atoms following the discussion in book [21]. For the derivations the system is
assumed to be a two-level system where the ground state is notated as |Ψg〉 with corresponding
coefficient cg and the excited state is notated as |Ψe〉 with corresponding coefficient ce. The states
in this derivation, given with the bra-ket notation, can represent single atom states but can also
represent channel states such as |S + S〉 and |S + P 〉.

A.8.1 Rabi oscillations

Rabi oscillations are a cyclic phenomena in a two-level quantum system in the presence of an
oscillatory driving field. To see how the dynamics of these quantum states change, let’s consider
two states |Ψg〉, and |Ψe〉, which are eigenstates of the unperturbed Hamiltonian Ĥ0.

Ĥ0 |Ψg〉 = Eg |Ψg〉 and Ĥ0 |Ψe〉 = Ee |Ψe〉 (A.62)

Since the eigenstates are orthonormal, the total wave function can be expressed as a linear com-
bination of the two states at t = 0 as

Ψ(0) = cgΨg + ceΨe (A.63)

where the prefactors cg and ce must obey |cg|2 + |ce|2 = 1.
To this, a time dependent wiggling factor equal to eiEjt/h̄ is added, which are the solutions to the
time dependent part of the Schrödinger equation, where j = a, b. This would then give the time
dependent wave function

Ψ(t) = cgΨge
−iEgt/h̄ + ceΨee

−iEet/h̄. (A.64)

Now the system will be perturbed with a time dependent Hamiltonian H ′(t) to simulate the
influence of the laser light. Plugging the time dependent wave function (A.64) into the time
dependent Schrodinger’s equation,

ĤΨ = ih̄
∂Ψ

∂t
, where Ĥ = Ĥ0 + Ĥ ′(t) (A.65)

yields

cg(Ĥ
0Ψg)e

−iEgt/h̄ + ce(Ĥ
0Ψe)e

−iEet/h̄ + cg(Ĥ
′Ψg)e

−iEgt/h̄ + ce(Ĥ
′Ψe)e

−iEet/h̄

= ih̄[ċgΨge
−iEgt/h̄ + ċeΨge

−iEet/h̄ + cgΨg(−
−iEg
h̄

)e−iEgt/h̄ + ceΨe(−
−iEe
h̄

)e−iEet/h̄]

And since the first two terms on the left cancel the last two terms on the right, the remaining
equation

cg(Ĥ
′Ψg)e

−iEgt/h̄ + ce(Ĥ
′Ψe)e

−iEet/h̄ = ih̄(ċgΨge
−iEgt/h̄ + ċeΨge

−iEet/h̄). (A.66)

To further reduce the equation, a trick can be used to isolate ċg – Note that this is the ultimate
goal, since this would give information on how the states evolve over time. To do this, the inner
product with Ψg is taken on both sides. Exploiting the orthogonality between the states Ψg and
Ψe gives

cgH
′
aae
−iEgt/h̄ + ceH

′
abe
−iEet/h̄ = ih̄ċge

−iEgt/h̄, (A.67)

where H ′ij is shorthand notation for 〈Ψi|H ′ |Ψj〉. Rewriting the equation above for ċg yields:

ċg = − i
h̄

[cgH
′
aa + ceH

′
abe
−i(Ee−Eg)t/h̄], (A.68)

and similarly for ċe:

ċe =
i

h̄
[ceH

′
bb + cgH

′
bae

i(Ee−Eg)t/h̄]. (A.69)
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Or more conveniently, when H ′aa = H ′bb = 0, and the transition frequency is introduced, ω0 =
Ee−Eg

h̄ , the rate equations for the wave function coefficients with a perturbed Hamiltonian become[21]

ċg = − i
h̄
ceH

′
abe
−iω0t and ċe = − i

h̄
cgH

′
bae
−iω0t. (A.70)

These off diagonal matrix elements H ′ab and H ′ba can then be rewritten upon introducing the Rabi
frequency Ω as

h̄Ω = eEo 〈Ψe|x |Ψe〉 . (A.71)

On top of this,one can assume a sinusoidal time dependence

Ĥ ′(r, t) = V (r) cos(ωt), (A.72)

which is perfectly reasonable, since the laser light also has a sinusoidal electric field component.
Using this Rabi frequency and the sinusoidal perturbation, the rate equations for the coefficients
can be rewritten as

iċg = Ω cos(ωt)e−iω0tce (A.73)

iċe = Ω cos(ωt)e+iω0tcg (A.74)

To further simplify this, one can make use of the Euler formulas in order to rewrite the cos(ωt) as

iċg =
Ω

2

(
ei(ω−ω0)t + ei(ω+ω0)t

)
ce (A.75)

iċe =
Ω

2

(
e−i(ω−ω0)t + ei(ω+ω0)t

)
cg (A.76)

Now, two oscillatory terms can be seen in both formulas: one which oscillates with a frequency
(ω − ω0) and one which oscillates with a frequency (ω + ω0). To put things into perspective, one
can assume that

|ω − ω0| = |δ| � ω + ω0 (A.77)

Since the Rabi oscillations oscillate at long time scales compared to |ω − ω0|−1
, over which the fast

oscillation ei(ω+ω0)t simply cancels out, these terms can be neglected, leaving the rate equations
as

iċg =
Ω

2
eiδtce and iċe =

Ω

2
e−iδtcg (A.78)

This last approximation is called the rotating wave approximation[24] and is frequently used in
the Rabi oscillation framework.
In the computer model, one can simulate the rate equations for the coefficients c1(t) and c2(t)
from equation (A.78) explicitly and is also done in both the simulation outline as in the result
part of this thesis. This last equation is the most useful as these are rate equations, which can be
iterated per time step.

A.8.2 Off-resonance solutions to the Rabi equations

In the previous subsection we talked about how the rate equations for the state coefficients can
be used to iterate the solutions over the time steps. However, to be confident about the solutions
and to get a better insight into the solutions it is better calculate them analytically and to explore
different limits. To find the solutions, it is assumed to be off-resonance, since by filling in δ = 0
automatically the on-resonance case is obtained. The set of first order equations in equation (A.78)
can be combined in a second order differential equation for c1 as

d2cg
dt2
− iδ dcg

dt
+

Ω2

4
cg = 0(

d

dt
− iδ

2
+
i
√

Ω2 + δ2

2

)(
d

dt
− iδ

2
− i
√

Ω2 + δ2

2

)
cg = 0,

Creating an array of ultracold Sr-88 atoms for quantum computing via light-assisted collisions 79



APPENDIX A. THEORETICAL DERIVATIONS

which has the solutions

cg(t) = eiδt/2

[
A cos

(√
Ω2 + δ2

2
t

)
+B sin

(√
Ω2 + δ2

2
t

)]
. (A.79)

Let assume, without loss of generality, that the atoms start in the ground state |Ψg〉 at t = 0.
This implies that A = 0. To determine B, equation (A.78) will be used with the constraint that
ce(t = 0) = 0. This gives B = − iδ√

Ω2+δ2
and the solution for cg reads

cg = eiδt/2

[
cos

(√
Ω2 + δ2

2
t

)
− iδ√

Ω2 + δ2
sin

(√
Ω2 + δ2

2
t

)]
(A.80)

and for ce,

ce = −ie−iδt/2 Ω√
Ω2 + δ2

sin

(√
Ω2 + δ2

2
t

)
. (A.81)

Since the transition probability of exciting an atom to the excited state is equal to |ce(t)|2, this
can then be calculated to be

Pe(t) = |ce(t)|2 =
Ω2

Ω2 + δ2
sin2

(√
Ω2 + δ2

2
t

)
(A.82)

Where it is interesting to see how the frequency of the population cycles increases as soon as δ 6= 0.
This new frequency

√
Ω2 + δ2 is called the generalised Rabi frequency Ω′. Also, the amplitude of

the oscillation will not reach 1 as soon as δ 6= 0 but will be equal to Ω2

Ω2+δ2 . For lower electric fields,
the detuning is much higher than the Rabi frequency, δ � Ω, and the probability Pe becomes

Pe(t) ≈
Ω2

δ2
sin2

(
δt

2

)
. (A.83)

If the laser is resonant, of course, the detuning can be set to 0 and an easier formula for P2 can
be obtained,

Pe(t) = sin2

(
Ω

2
t

)
, (A.84)

where the population simply oscillates between the ground state and the excited state[25].

A.8.3 Optical Bloch equations

The Rabi oscillations are a useful tool for calculating the absorption and stimulated emission
effects, which in itself tell a lot about the atomic properties and the electronic dynamics between
the atomic states. However, in the framework of the rate equation derived by Einstein, spontaneous
emission has to take place, as is discussed in appendix A.9. This formalism, however, has its
limitations as it does not include superposition states, whereas the Rabi oscillation formalism
cannot explain spontaneous emission, since it is not caused by the coupling to the light field.
Rather, spontaneous emission should, and can only be fully explained by the coupling to the
vacuum fluctuation. Wigner and Weisskopf showed, later than Einstein did, that an atom in the
excited state decays exponentially as a result of the fluctuations of the quantized vacuum field[26].
This principle has been applied to the same formalism as for the Rabi oscillations using the rate
equations (A.68) and (A.69) and an energy density of

~Eω =

√
h̄ω

2ε0V
ε̂. (A.85)
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The mathematical derivation will not be done again, but the final result can be summarized with
the differential equation for the coefficient for the excited state as

dce(t)

dt
= −γ

2
ce(t), (A.86)

where

γ =
ω3µ2

3πε0h̄c3
, (A.87)

and where γ looks, as expected, almost familiar to the Einstein coefficient A, except for the term
|〈ψ1|x|ψ2〉|2 as can be seen in the appendix A.9.
The differential equation does indeed give the expected exponential decay when solving for ce(t).
Nevertheless, it is far more interesting to know the rate equations and to implement this into the
Rabi oscillation rate equations. To do this, first the density matrix formalism has to be introduced.
The density matrix of any wave function can be expressed as

ρ = |Ψ〉 〈Ψ| , (A.88)

where ρ in matrix formulation for a pure state looks like

ρ =

(
ρee ρeg
ρge ρgg

)
=

(
cec
∗
e cec

∗
g

cgc
∗
e cgc

∗
g

)
. (A.89)

In order to get any insights into the dynamics of the density matrix, it can be substituted into the
time dependent Schrodinger’s equation, leading to

ih̄
dρ

dt
= [H, ρ] (A.90)

Where H is the Hamiltonian of the system and the square brackets of the right hand side of
the equation represent the commutator. Working out the dynamics for all four components of the
density matrix using the Rabi Hamiltonian and including the spontaneous emission term, equation
(A.86), the following rate equations can be obtained:

dρgg
dt

= +γρee +
i

2
(Ω∗ρ̃eg − Ωρ̃ge)

dρee
dt

= −γρee +
i

2
(Ωρ̃ge − Ω∗ρ̃eg)

dρ̃ge
dt

= −
(γ

2
+ iδ

)
ρ̃ge +

i

2
Ω∗ (ρee − ρgg)

dρ̃eg
dt

= −
(γ

2
− iδ

)
ρ̃eg +

i

2
Ω (ρgg − ρee) ,

(A.91)

where ρ̃ge ≡ ρgee
−iδt and also dρee/dt = −dρgg/dt, which is required in order to conserve the

total population number, stated as ρgg + ρee = 1. Also, γ is here defined as 1/τ , where τ is the
lifetime of the excited state[26].

A.8.4 Solutions to the optical Bloch equations

In order to get some insights into the Optical Bloch Equations (OBEs) lets look at the steady-state
solutions by setting all time derivatives to zero. Using the conservation of population, ρgg+ρee = 1,
and optical coherence, ρeg = ρ∗ge, one can solve the OBE by defining the population difference as
w ≡ ρgg − ρee. This gives

dρeg
dt

= −
(γ

2
− iδ

)
ρeg +

iwΩ

2
= 0, (A.92)

and
dw

dt
= −γw − i

(
Ωρ∗eg − Ω∗ρeg

)
+ γ = 0. (A.93)
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These equation can then be solved for w and ρeg as

w =
1

1 + s
(A.94)

and

ρeg =
iΩ

2(γ/2− iδ)(1 + s)
. (A.95)

Here, the saturation parameter is given by

s ≡ |Ω|2

2|(γ/2− iδ)|2
=
|Ω|2/2

δ2 + γ2/4
≡ s0

1 + (2δ/γ)2
, (A.96)

where s0 is the on resonance saturation parameter, δ is again the laser detuning and γ is the decay
rate. s0 is given by

s0 ≡ 2|Ω|2/γ2 = I/Is, (A.97)

with the saturation intensity Is given by

Is ≡
πhc

3λ3τ
. (A.98)

Here, two distinctions can be made to intuitively understand the saturation parameter. One where
s � 1, causing w → 1 (equation (A.94)) meaning the population is mostly in the ground state.
The other regime is for high saturation, where w → 0, meaning that the population is equally
distributed between the ground and excited state. The excited state population can be calculated
as a function of the saturation as

ρee =
1

2
(1− w) =

s

2(1 + s)
=

s0/2

1 + s0 + (2δ/γ)2
. (A.99)

In the limit of this high saturation regime, the excited state population reaches 1/2 meaning that
the decay rate γ from the excited state to the ground state is equal to the excitation rate from the
ground state to the excited state. This excitation rate can also be called the scattering rate γp, as
it represents the effective scattering of the light from the laser field into the atom and is given by

γp = γρee =
s0γ/2

1 + s0 + (2δ/γ)2
. (A.100)

Again, taking the limit for high laser intensities, γp saturates to γ/2. This equation can be
rewritten as

γp =

(
s0

1 + s0

)(
γ/2

1 + (2δ/γ′)
2

)
, (A.101)

where
γ′ = γ

√
1 + s0 (A.102)

is the power-broadened linewidth of the transition. In figure 2.3, the effects of power broadening
can be seen as the on-resonance saturation parameter s0 increases. The higher the intensity of the
laser, the larger the range of detunings, which will effectively scatter the atom expressed in the
scattering rate γp. For very high intensities, for example s0 = 100, the scattering rate becomes
γ/2 following equation (A.101)[26].

A.8.5 Dressed state model

Another important effect which has an influence on the spacing of the atom levels is the light shift,
since it describes the differential Stark shift due to the trapping laser. From equation (A.70) one
can replace the state coefficients cg and ce by

c′g(t) ≡ cg(t)
c′e(t) ≡ ce(t)e−iδt,

(A.103)
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where an extra factor e−iδt is introduced, which can be done as it does not influence the prob-
abilities of finding an atom in its ground or excited state. Adding this extra factor is called the
rotating frame transformation which is exact and is a different approach than the rotating wave
approximation done earlier. Filling equation (A.103) into equation (A.70) yields

ih̄
dc′g(t)

dt
= c′e(t)

h̄Ω

2

ih̄
dc′e(t)

dt
= c′g(t)

h̄Ω

2
− c′e(t)h̄δ.

(A.104)

These equations can then be put into the matrix formulation of the time dependent Schrodinger’s
equation, yielding the Hamiltonian matrix

H =
h̄

2

[
−2δ Ω
Ω 0

]
, (A.105)

from which the eigenstates can be calculated. These eigenstates are the energy levels of the system
given as

Ee,g =
h̄

2
(−δ ∓ Ω′) (A.106)

caused by the detuning. An important thing to note here is that the new energy spacing between
the two dressed state levels are now simply Ω′, which was the generalized Rabi frequency mentioned
in section A.8.2[26]. This change in eigenstates will be important when calculating the resonance
condition for the simulation as will be done in chapter 4.

A.8.6 Polarizability

Another effect which changes the states within the atom is the effect of the polarizability. For
a full description of the polarizability, a quantum picture is needed, which relates the dynamic
polarizability to the dipole matrix element |〈φk|D|φi〉|2, where i is the state for which the polar-
izability αi is calculated and k are all the excited states the interaction has to be summed over.
Doing this for a laser field frequency ωL the equation is given as[47]

αi (ωL) = 2e2
∑
k

h̄ωik |〈φk|D|φi〉|2

h̄2 (ω2
ik − ω2

L)
, (A.107)

where ωik is the difference between the i and k states and e is the electronic charge constant. In
order to not calculate the dipole matrix elements of all the interaction states, one can relate the
transition rates Aik to the dipole elements, written as

Aik =
e2

4πε0

4ω3
ik

3h̄c3
|〈φk|D|φi〉|2 (A.108)

This formula can now be used to fill in for the dipole elements in equation (A.107), which yields

αi (ωL) = 6πε0c
3
∑
k

Aik
ω2
ik (ω2

ik − ω2
L)
. (A.109)

In literature, the transition rate is however not been calculated, but rather the excited state
lifetime 1/AT together with the branching ratio. For an excited state with quantum number S,
Lk, Jk going to a lower energy state i with quantum numbers S, Li, Ji, the branching ratio is
given by

Ãik
AT

=

(2Ji + 1)

{
Ji Jk 1
Lk Li S

}2

∑|Li+S|
J=|Li−S|(2J + 1)

{
J Jk
Lk Li

}2

Jk∑
mk=−Jk

(2Jk + 1)

(
Ji 1 Jk
mi p −mk

)2

. (A.110)
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Here, the first term gives the coupling strength between the excited state and the lower state. For
this, Racah 6-j symbols are used. The second term differentiates between the magnetic sublevels
mi of the ground state. This has to be done since different circular polarizations p of the light can
be used. Summing over all the magnetic sublevels mj of the excited state also uses the Wigner
3-j symbols, as can be seen in the formula[27].
One can now calculate the polarizability of the electronic level structure using the geometric scaling
factors Aik/AT and the total transition rate AT . And with this polarizability, the Stark shift ν
can be calculated, as it scales with the polarizability as

h∆ν = −1

2
αi|E|2. (A.111)

A.9 Rate equations

Here, the atoms will be treated as an ensemble of N atoms. These N atoms may either be in
the ground state N1 or in the excited state N2. Since the total atom number stays constant, the
equation N1 +N2 = N must hold at all times.
When no laser light is on the excited state, atoms will spontaneous decay to the ground state with
a decay rate of A21. Since this decay rate is proportional to the amount of atoms in the excited
state one can model the rate equation as[21]

dN2

dt
= −A21N2. (A.112)

Solving this solution gives the exponential decay as a function of time given as

N2(t) = N2(0)eA21t = N2(0)e−t/τ with τ =
1

A21
. (A.113)

Now, the model needs to introduce a light field with an intensity density of ρ(ω). Since, by
approximation, the laser light only excites atoms with a transition frequency ω0, one can rewrite
the intensity density as ρ(ω0). The rate equation of the total system then becomes

dN2

dt
= ρ (ω0) (B12N1 −B21N2)−A21N2, (A.114)

where the first term represents the light interaction and the second term the old spontaneous
emission. Within the light interaction term two different terms arises, one which increases the
excited state atoms N2, which is called excitation, and one term which decreases the amount
of atoms in the excited state N2, which is called stimulated emission. Both these effects are
proportional to B12 and B21 respectively. Suppose the atoms are in thermal equilibrium with the
ambient field, this would imply that the rate equation is equal to zero and would give an expression
for the density of the light ρ(ω0) as

ρ (ω0) =
A21N2

B12N1 −B21N2
=

A21

B12
N1

N2
−B21

. (A.115)

Now, from thermodynamics, it is known that the number of particles in thermal equilibrium at
temperature T , is proportional to the Boltzmann factor (exp(−E/kBT )) where E is energy of the
particles. Using this fact, an expression for the ratio of the atoms numbers can be derived as

N2

N1
=
e−E2/kBT

e−E1/kBT
= e−h̄ω0/kBT . (A.116)

Filling this back into equation (A.115) and comparing it to famous Planck’s black-body formula
gives the equality

ρ (ω0) =
A21

B12 (g1/g2) ehω0/kBT −B21
=

h̄

π2c3
ω3

0

eh̄ω0/kBT − 1
. (A.117)
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From which one can conclude that
B12 = B21 (A.118)

and that

A21 =
ω3

0h̄

π2c3
B21. (A.119)

Since the B12 and B21 factors are equal, equation (A.118), this paper will from now on only use
B to indicate one of them and A21 will be replaced with A. These A and B factors are called the
Einstein coefficients.
When trying to calculate the Einstein coefficients, the equation for the excitation probability A.83
is needed in terms of the angular frequency as

P2(t) =
Ω2

(ω − ω0)
2 sin2

(
(ω − ω0) t

2

)
. (A.120)

For this derivation an electric field in the z direction as E0 = (0, 0, E) is taken. The Rabi frequency
from equation (A.83) is given by

Ω2 =
e2E2

h̄2 |〈ψ1|z|ψ2〉|2 . (A.121)

Filling in the Rabi frequency in equation (A.120) and recalling that the energy density ρ(ω) is
stored in the electric field as ε0E2/2 gives an integral over the frequencies as

P2(t) =
2e2

ε0h̄
2 |〈ψ1|z|ψ2〉|2

∫
dω

ρ(ω)

(ω − ω0)
2 sin2

(
(ω − ω0) t

2

)
. (A.122)

Since the integral is highest near ω = ω0, it is reasonable to replace the energy density ρ(ω) coming
from the black-body formula with ρ(ω0) and to take it outside the integral, which would lead to

P2(t) ≈ 2e2

ε0h̄
2 ρ (ω0) |〈ψ1|z|ψ2〉|2

∫
dω

1

(ω − ω0)
2 sin2

(
(ω − ω0) t

2

)
. (A.123)

Now, it is simply a matter of mathematical precision to calculate the integral by introducing a
variable x = (ω − ω0)t/2, extending the limits to x = ±∞ which would lead to

P2(t) ≈ 2e2

ε0h̄
2 ρ (ω0) |〈ψ1|z|ψ2〉|2

t

2

∫ +∞

−∞
dx

sin2 x

x2

=
e2π

ε0h̄
2 ρ (ω0) |〈ψ1|z|ψ2〉|2 t.

(A.124)

This equation grows linearly over time, which is wrong but is caused, by the approximations above.
Nevertheless, it does give the right (constant) rate coefficient when calculating the rate Ṗ2(t) by
differentiating equation (A.124) over time. This gives

Rate of Absorption = Ṗ2(t) =
e2π

ε0h̄
2 ρ (ω0) |〈ψ1|z|ψ2〉|2 = Bρ(ω0), (A.125)

which would give an Einstein coefficient B of

B =
e2π

ε0h̄
2 |〈ψ1|z|ψ2〉|2 . (A.126)

Since for this derivation only an electric field in the z-direction has been used, the coefficient is
not rotationally invariant. To do this, one should introduce a normal vector n̂ and integrate this
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over the spherical circle, introducing a factor of 1/3 in the Einstein coefficients. The final results
would then be

B =
e2π

3ε0h̄
2 |〈ψ1|x|ψ2〉|2 . (A.127)

For the Einstein coefficient A this would, according to equation (A.119), lead to [21]

A =
e2ω3

0

3πε0h̄c3
|〈ψ1|x|ψ2〉|2 . (A.128)
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Code

B.1 Rydberg calculator

1 import arc

2 from arc import ∗ #Import ARC ( A lka l i Rydberg Ca l cu la to r )

3
4 #Laser Parameters

5 waist = 50 . e−6 # 50 mu m

6 P = 20 . e−6 # 2 mW

7
8 q=+1; #Light P o l a r i s a t i o n ( sigma+)

9 atom=Strontium88 ( )

10 #pr in t (”%.2 e s ” % (atom . ge tS ta t eL i f e t ime (5 ,1 , −1) ) )

11 rabiFreq = atom . getRabiFrequency (5 , 0 , 0 , 0 , 5 , 1 , 1 , q , P, waist , s = 0)

12 pr in t ( ” rab i Frequency = 2 pi x %.2 f MHz” %( rabiFreq /(2∗ pi ) ∗1e−6) )

Listing B.1: Rydberg calculator for the Rabi strength between the S and P mj

B.2 Rabi oscillations

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

2 %−−−−−−−−−−−−− Rabi f l opp ing f o r a two l e v e l atom−−−−−−−−−−−−−−−−−−−−−−−%

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

4
5 c l c ;

6 c l e a r a l l ;

7 c l o s e a l l ;

8
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

10
11 N=1000000; % no o f time gr id po in t s

12 t=l i n s p a c e (0 ,22 e−8,N) ; % time array in micro seconds

13 dt=t (2)−t (1 ) ; % step s i z e in time

14
15 %−−−− i n i t i a l cond i t i ons −−−−−−−−−−−−−
16 phi =0.3∗ pi %[0 2 p i ]

17 theta =0.9∗ pi ; %[0 p i ]

18 cg ( 1 :N)=cos ( theta /2) ; % i n i t i a l ground s t a t e

19 ce ( 1 :N)=exp (1 i .∗ phi ) .∗ s i n ( theta . / 2 ) ; % i n i t i a l ex c i t ed s t a t e

20
21 Omega rabi=54e6 ∗2∗ pi ; % Rabi f requency 2 pi ∗54 Mhz

22
23 de l t a =[0 Omega rabi 10∗Omega rabi ] ; % d i f f e r e n t detuning f r e q u e n c i e s

24
25 f o r j =1:3 % loop f o r d i f f e r e n t detuning f r e q u e n c i e s

26
27
28 f o r k=1:N−1 % f i n i t e d i f f e r e n c e loop f o r advancing in time

29
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30 cg (k+1)=−(1 i ∗ ce (k ) ∗Omega rabi∗dt ∗( exp (1 i ∗ de l t a ( j ) ∗ t ( k ) ) /2) )+cg (k ) ;

31 ce (k+1)=−(1 i ∗ cg (k ) ∗Omega rabi∗dt ∗( exp(−1 i ∗ de l t a ( j ) ∗ t ( k ) ) /2) )+ce (k ) ;

32
33 end

34
35 Cg( j , : )=cg ;

36 Ce( j , : )=ce ;

37
38
39 end

40
41 % p l o t t i n g the p r o b a b i l i t i e s in ground and exc i t ed s t a t e s

42
43 f i g u r e (1 )

44
45 subplot (3 , 1 , 1 )

46 p lo t ( t , abs (Cg ( 1 , : ) .∗Cg ( 1 , : ) ) , ’ l i n ew id th ’ ,2 )

47 hold on

48 p lo t ( t , abs (Ce ( 1 , : ) .∗Ce ( 1 , : ) ) , ’ r ’ , ’ l i n ew id th ’ ,2 )

49 ax i s ( [ 0 t (N) 0 1 . 1 ] )

50 h=gca ;

51 get (h , ’ FontSize ’ )

52 s e t (h , ’ FontSize ’ ,14)

53 ax i s ( [ 0 t (N) 0 1 . 1 ] )

54 fh = f i g u r e (1 ) ;

55 s e t ( fh , ’ c o l o r ’ , ’ white ’ ) ;

56
57 subplot (3 , 1 , 2 )

58 p lo t ( t , abs (Cg ( 2 , : ) .∗Cg ( 2 , : ) ) , ’ l i n ew id th ’ ,2 )

59 hold on

60 p lo t ( t , abs (Ce ( 2 , : ) .∗Ce ( 2 , : ) ) , ’ r ’ , ’ l i n ew id th ’ ,2 )

61 y l a b e l ( ’ | cg ˆ2 | and | ce ˆ2 | p r o b a b i l i t i e s ’ , ’ f o n t S i z e ’ ,14) ;

62 ax i s ( [ 0 t (N) 0 1 . 1 ] )

63
64 subplot (3 , 1 , 3 )

65 p lo t ( t , abs (Cg ( 3 , : ) .∗Cg ( 3 , : ) ) , ’ l i n ew id th ’ ,2 )

66 hold on

67 p lo t ( t , abs (Ce ( 3 , : ) .∗Ce ( 3 , : ) ) , ’ r ’ , ’ l i n ew id th ’ ,2 )

68 hold on

69 ax i s ( [ 0 t (N) 0 1 . 1 ] )

70 x l a b e l ( ’ time ’ , ’ f o n t S i z e ’ ,14) ;

Listing B.2: Finite difference method applied for Rabi oscillations for Matlab.

B.3 Optical Bloch equations

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

2 %−−−−Optica l Bloch Equation f o r a two l e v e l atom−−−−−−−−−−−−−−−−−−−−−−−%

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

4
5 c l c ;

6 c l e a r a l l ;

7 c l o s e a l l ;

8
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

10
11 N=10000; % no o f time gr id po in t s

12 t=l i n s p a c e (0 ,22 e−6,N) ; % time array in micro seconds

13 dt=t (2)−t (1 ) ; % step s i z e in time

14
15 %−−−− i n i t i a l cond i t i ons −−−−−−−−−−−−−
16
17 rho11 ( 1 :N) =0;

18 rho22 ( 1 :N) =1;

19 rho12 ( 1 :N) =0;

20 rho21 ( 1 :N) =0;

21
22 Omega rabi=1e6 ∗2∗ pi ; % Rabi f requency 2 pi ∗10 Mhz

23
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24 de l t a=Omega rabi ; % Detuning f requency

25
26 gamma=1/(22e−6) ; % l inew id th

27
28 %−−−−Runge Kutta 4 th order −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

29
30 f o r i =2:N

31
32 k1 = drho22 ( t ( i −1) , rho12 ( i −1) , rho21 ( i −1) , rho22 ( i −1) ,gamma, Omega rabi , d e l t a ) ∗dt ;

33 l 1 = drho11 ( t ( i −1) , rho12 ( i −1) , rho21 ( i −1) , rho22 ( i −1) ,gamma, Omega rabi , d e l t a ) ∗dt ;

34 m1 = drho12 ( t ( i −1) , rho11 ( i −1) , rho12 ( i −1) , rho22 ( i −1) ,gamma, Omega rabi , d e l t a ) ∗dt ;

35 n1 = drho21 ( t ( i −1) , rho11 ( i −1) , rho12 ( i −1) , rho22 ( i −1) ,gamma, Omega rabi , d e l t a ) ∗dt ;

36
37 k2 = drho22 ( t ( i −1)+0.5∗dt , rho12 ( i −1)+0.5∗m1, rho21 ( i −1)+0.5∗n1 , rho22 ( i −1)+0.5∗k1 , gamma

, Omega rabi , d e l t a ) ∗dt ;

38 l 2 = drho11 ( t ( i −1)+0.5∗dt , rho12 ( i −1)+0.5∗m1, rho21 ( i −1)+0.5∗n1 , rho22 ( i −1)+0.5∗k1 , gamma
, Omega rabi , d e l t a ) ∗dt ;

39 m2 = drho12 ( t ( i −1)+0.5∗dt , rho11 ( i −1)+0.5∗ l1 , rho12 ( i −1)+0.5∗m1, rho22 ( i −1)+0.5∗k1 , gamma
, Omega rabi , d e l t a ) ∗dt ;

40 n2 = drho21 ( t ( i −1)+0.5∗dt , rho11 ( i −1)+0.5∗ l1 , rho12 ( i −1)+0.5∗m1, rho22 ( i −1)+0.5∗k1 , gamma
, Omega rabi , d e l t a ) ∗dt ;

41
42
43 k3 = drho22 ( t ( i −1)+0.5∗dt , rho12 ( i −1)+0.5∗m2, rho21 ( i −1)+0.5∗n2 , rho22 ( i −1)+0.5∗k2 , gamma

, Omega rabi , d e l t a ) ∗dt ;

44 l 3 = drho11 ( t ( i −1)+0.5∗dt , rho12 ( i −1)+0.5∗m2, rho21 ( i −1)+0.5∗n2 , rho22 ( i −1)+0.5∗k2 , gamma
, Omega rabi , d e l t a ) ∗dt ;

45 m3 = drho12 ( t ( i −1)+0.5∗dt , rho11 ( i −1)+0.5∗ l2 , rho12 ( i −1)+0.5∗m2, rho22 ( i −1)+0.5∗k2 , gamma
, Omega rabi , d e l t a ) ∗dt ;

46 n3 = drho21 ( t ( i −1)+0.5∗dt , rho11 ( i −1)+0.5∗ l2 , rho12 ( i −1)+0.5∗m2, rho22 ( i −1)+0.5∗k2 , gamma
, Omega rabi , d e l t a ) ∗dt ;

47
48 k4 = drho22 ( t ( i −1)+dt , rho12 ( i −1)+m3, rho21 ( i −1)+n3 , rho22 ( i −1)+k3 , gamma, Omega rabi ,

d e l t a ) ∗dt ;

49 l 4 = drho11 ( t ( i −1)+dt , rho12 ( i −1)+m3, rho21 ( i −1)+n3 , rho22 ( i −1)+k3 , gamma, Omega rabi ,
d e l t a ) ∗dt ;

50 m4 = drho12 ( t ( i −1)+dt , rho11 ( i −1)+l3 , rho12 ( i −1)+m3, rho22 ( i −1)+k3 , gamma, Omega rabi ,
d e l t a ) ∗dt ;

51 n4 = drho21 ( t ( i −1)+dt , rho11 ( i −1)+l3 , rho12 ( i −1)+m3, rho22 ( i −1)+k3 , gamma, Omega rabi ,
d e l t a ) ∗dt ;

52
53
54 rho22 ( i ) = rho22 ( i −1)+((k1+2∗(k2+k3 )+k4 ) /6) ;

55 rho11 ( i ) = rho11 ( i −1)+(( l 1 +2∗( l 2+l3 )+l4 ) /6) ;

56 rho12 ( i ) = rho12 ( i −1)+((m1+2∗(m2+m3)+m4) /6) ;

57 rho21 ( i ) = rho21 ( i −1)+((n1+2∗(n2+n3 )+n4 ) /6) ;

58
59
60 end

61
62 %−−−−−−−−p l o t t i n g so l u t i on s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
63
64 f i g u r e (1 )

65
66 p lo t ( t , rho22 , ’ l i n ew id th ’ ,2 )

67 hold on

68 p lo t ( t , rho11 , ’ k ’ , ’ l i n ew id th ’ ,2 )

69 % plo t ( t , abs ( rho12 ) , ’ r ’ , ’ l inewidth ’ , 2 )

70 % plo t ( t , abs ( rho21 ) , ’ g ’ , ’ l inewidth ’ , 2 )

71 x l a b e l ( ’ time ’ , ’ f o n t S i z e ’ ,14) ;

72 y l a b e l ( ’ dens i ty matrix e lements ’ , ’ f o n t s i z e ’ ,14)

73 ax i s ( [ 0 t (N) 0 1 . 1 ] )

74 h=gca ;

75 get (h , ’ FontSize ’ )

76 s e t (h , ’ FontSize ’ ,14)

77 ax i s ( [ 0 t (N) 0 1 . 1 ] )

78 fh = f i g u r e (1 ) ;

79 s e t ( fh , ’ c o l o r ’ , ’ white ’ ) ;

80
81 %−−−−−−−−−−−−−−−−−−−−−end−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

Listing B.3: Runge-Kutta method applied to solve the optical Bloch equations for Matlab.
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B.4 Rejection Boltzmann method

1 c l c ;

2 c l e a r a l l ;

3 c l o s e a l l ;

4
5 SAVE VELOCITIES = 1 ;

6
7 % Constants

8 m88sr = 1.46127∗10ˆ( −25) ;

9 kb = 1.38065∗10ˆ( −23) ;

10 T = 1∗10ˆ(−6) ;

11
12 % Probab i l i t y D i s t r i b u t i o n

13 f = @(v ) 4∗ pi ∗( m88sr /(2∗ pi ∗kb∗T) ) ˆ(3/2) .∗ v . ˆ 2 . ∗ exp(−m88sr .∗ v . ˆ 2 . / ( 2 . ∗ kb .∗T) ) ;

14
15 % Probab i l i t y D i s t r i b u t i o n Range ( random v e l o c i t y between a and b)

16 a = 0 ;

17 b = 0 . 0 5 ;

18
19 % ymax i s maximum value o f f ( v ) between a and b

20 ymax = max( f ( l i n s p a c e (a , b , 1 e6 ) ) ) ;

21
22 % save accepted v va lues

23 vsaved = [ ] ;

24 n = 0 ;

25 N = 10000; % amount o f va lues be f o r e terminat ion

26
27 whi le n < N

28
29 v=rand ( ) ∗(b−a ) + a ; % random v e l o c i t y between a and b

30 y=rand ( ) ∗ymax ; % random y coord inate between 0 and ymax

31
32 % i f y i s below f (v ) , then accept

33 i f y <= f (v )

34 vsaved = [ vsaved ; v ] ;

35 n = n+1;

36
37 i f mod(n , round (N∗0 . 1 ) ) == 0

38 disp ( [ num2str ( round (n/N∗100) ) ’%’ ] ) ;

39 end

40 end

41
42 end

43
44 % Normal izat ion constant f o r p r o b a b i l i t y dens i ty func t i on

45 f a r e a = i n t e g r a l ( f , 0 , i n f ) ;

46
47 f i g u r e ;

48 hold on ;

49 histogram ( vsaved , 100 , ’ Normal izat ion ’ , ’ pdf ’ ) ;

50 xax = l i n s p a c e (a , b , 1000) ;

51 p lo t ( xax , f ( xax ) / f a r ea , ’ k ’ , ’ LineWidth ’ , 2) ;

52
53 i f SAVE VELOCITIES == 1

54 save ( ’ r andom ve l o c i t i e s . dat ’ , ’ vsaved ’ , ’−a s c i i ’ ) ;

55 end

Listing B.4: Rejection method applied on the Maxwell-Boltzmann velocity distribution function
for Matlab.

B.5 Matlab2016 simulation

1 c l c ;

2 c l e a r ;

3 c l o s e a l l ;

4
5 Delta =0∗10ˆ6; % Hz

90 Creating an array of ultracold Sr-88 atoms for quantum computing via light-assisted collisions



APPENDIX B. CODE

6 r ab i=10e3 ;

7
8 %% Nature constants

9 m88sr =1.46127∗10ˆ( −25) ; % kg

10 rm88sr=m88sr ˆ2/(2∗ m88sr ) ; % kg

11 molarm88sr =0.08790561225; % kg/mol

12 hPlank =6.62607∗10ˆ( −34) ; % J/Hz

13 hbar =1.05457∗10ˆ( −34) ; % J∗ s

14 mp=1.67262∗10ˆ( −27) ; % kg

15 me=9.10938∗10ˆ( −31) ; % kg

16 a0 =5.29177∗10ˆ( −11) ; % m

17 EHa=4.35974∗10ˆ( −18) ; % J

18 cspeed =3∗10ˆ8; % m/ s

19 kb=1.38065∗10ˆ( −23) ; % J/K

20
21 %% Constants

22 T=1∗10ˆ(−6) ; % K

23 Brogl ieWavelength =(2∗ pi ∗hbar /( m88sr∗kb∗T) ) ˆ(1/2) ; % m

24 N=1;

25
26 lambda0=689∗10ˆ−9; % m

27 omega0=2∗pi ∗ cspeed /lambda0 ; % Hz

28
29 l i f e t i m e =21.5∗10ˆ( −6) ; % s

30 Gamma=1/ l i f e t i m e ; % Hz

31 r a y l e i g h=pi ∗omega0ˆ2/ lambda0 ; % m

32
33 l i n ew id th = 7 .6 e3 ; % Hz

34
35
36
37 s02 = 2∗ r ab i ˆ2/ l inew id th ˆ2 ;

38 I s a t = pi ∗hPlank∗ cspeed /(3∗ lambda0ˆ3∗ l i f e t i m e ) ;

39 I n t e n s i t y = I s a t ∗2∗ r ab i ˆ2/ l i new id th ˆ2 ;

40 s0 = I n t e n s i t y / I s a t ;

41
42 r ab i = s0 ∗Gamma/2/(1+ s0 +(2∗Delta /Gamma) ˆ2) ;

43 rab i2 = sq r t ( s0 ∗Gammaˆ2/2) ;

44 %% Simulat ion Constants

45 h=1e −11;

46 %tEnd =0.00003;

47 tEnd=22∗10ˆ(−6) ∗1000; %0.000022

48 dt =0.25∗1e −7;

49 s o f t e n i n g =0;

50 t =0;

51 rng (1) ;

52 poscheck=ones (N, 1 ) ;

53 plotRealTime = 1 ;

54 Nt=c e i l ( tEnd/dt ) ;

55
56 %% FORT/ d ipo l e

57 r = @(x , y ) sq r t ( x .ˆ2 + y . ˆ 2 ) ; % m

58 w = @( z ) omega0 ∗ s q r t (1+z/ r a y l e i g h ) ;

59 I = @( r , z ) 2∗power . / ( p i ∗w( z ) ) .∗ exp(−2∗ r . ˆ 2 . /w( z ) . ˆ 2 ) ;

60 %U = @( r , z ) −3∗pi ∗c ˆ2/(2∗omega0 . ˆ 3 ) ∗(Gamma/ Delta ) .∗ I ( r , z ) ;

61
62 w0 = 0.86 e −6;

63 power = 49/36∗1.7∗1 e −3;

64 eta = 3 7 6 . 7 ;

65 conver s ion = 1.64878 e −41;

66 g = 9 . 8 1 ;

67 amu = 1.66 e −27;

68 l am l i g h t =813e −9; % m

69 evo lu t i on = @( z ) 1+(( l a m l i g h t .∗ z ) . / ( p i ∗w0ˆ2) ) . ˆ 2 ;

70 I g a u s s i a n= @( r ) 2∗power /( p i ∗w0ˆ2) ∗exp (( −2.∗ r . ˆ 2 ) . / ( w0 . ˆ 2 ) ) ;

71
72 pol 1S0 = 286 ; % 813nm

73 pol 3P1 mj1 = 3 5 3 . 9 ; % 813nm

74
75
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76 pot r 1S0 = @( r ) −0.5.∗ I g a u s s i a n ( r ) .∗ eta .∗ conver s ion .∗ pol 1S0 ; %J

77 pot r 3P1 = @( r ) −0.5.∗ I g a u s s i a n ( r ) .∗ eta .∗ conver s ion .∗ pol 3P1 mj1 ;

78
79 pot z 1S0 = @( z ) −0.5.∗ eta .∗ conver s ion .∗ pol 1S0 . ∗ ( 2 . ∗ power ) . / ( p i .∗ evo lu t i on ( z ) .∗w0ˆ2) ;

80 pot z 3P1 = @( z ) −0.5.∗ eta .∗ conver s ion .∗ pol 3P1 mj1 . ∗ ( 2 . ∗ power ) . / ( p i .∗ evo lu t i on ( z ) .∗w0
ˆ2) ;%J

81
82 U1S0= @( r , z ) pot r 1S0 ( r )+pot z 1S0 ( z ) ;

83 U3P1= @( r , z ) pot r 3P1 ( r )+pot z 3P1 ( z ) ;

84
85 yr1=pot r 1S0 ( l i n s p a c e (0 ,1 e −6 ,1000) ) ;

86 yz1=pot z 1S0 ( l i n s p a c e (0 ,10 e −6 ,1000) ) ;

87
88 yr3=pot r 3P1 ( l i n s p a c e (0 ,1 e −6 ,1000) ) ;

89 yz3=pot z 3P1 ( l i n s p a c e (0 ,10 e −6 ,1000) ) ;

90
91 %plo t ( l i n s p a c e (0 ,1 e −6 ,1000) , yr1 /hbar∗1e−6)

92 %plo t ( l i n s p a c e (0 ,10 e −6 ,1000) , yz3/hbar∗1e−6)

93
94 %Make v e l o c i t i e s

95 v random = load ( ’ r andom ve l o c i t i e s . dat ’ ) ;

96 phi=rand (N, 1 ) ∗2∗ pi ;

97 theta=rand (N, 1 ) ∗ pi ;

98 ve l=makevel ( phi , theta , v random , N) ;

99
100 %Def ine p o s i t i o n s

101 pos = normrnd (0 , . 1 e−6, N, 3) ;

102 x=pos ( : , 1 ) ;

103 y=pos ( : , 2 ) ;

104 z=pos ( : , 3 ) ;

105 r = sq r t ( x .ˆ2 + y . ˆ 2 ) ;

106
107 %Make s t a t e vec to r on Bloch sphere

108 i =2;

109 ce=ze ro s (N, Nt+1) ;

110 cg=ze ro s (N, Nt+1) ;

111 Pidecay=ones (N, Nt+1) ;

112 Number=N;

113
114 DP=0;

115 phi=rand (N, 1 ) ∗2∗ pi ;
% [0 2 p i ]

116 theta=rand (N, 1 ) ∗0 . 00 1 ;
% [0 p i ]

117 ce ( : , 1 )=exp (1 i .∗ phi ) .∗ s i n ( theta . / 2 ) ;

118 cg ( : , 1 )=cos ( theta /2) ;

119 [KE, PE, IE , T, Epar , ACstarksh i f t ] = getEnergy ( pos , vel , hPlank , m88sr , kb , Number ,
molarm88sr , EHa, a0 , cg , ce , i , U1S0 , U3P1) ;

120
121 %Calcu la te detuning

122 A=1/ l i f e t i m e ;

123
124 Rela t iveDe l ta =0;

125
126 t imer=ze ro s (N, Nt+1) ;

127 t imercheck=ze ro s (N, 1 ) ;

128 s ta t e check=ze ro s (N, 1 ) ;

129 t imert ime=ze ro s (N, 1 ) ;

130 %Create c o l o r matrix f o r s t a t e vec to r

131 c=ze ro s ( s i z e ( cg ) ) ;

132 f o r i =1: s i z e ( cg , 1 )

133 c ( i , : )=i ;

134 end

135 i =2;

136
137 %Dele t ing p a r t i c l e s out o f s c r e en

138 [ acc , ve lok i ck , Pidecay , ce , cg ] = getAcc ( pos , s o f t en ing , Number , a0 , h , m88sr , EHa, cg ,
ce , i , U1S0 , U3P1 , Pidecay , DP) ;

139 part ic l enumber=ones (N, 1 ) ;

140 f o r j =1:N
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141 i f (sum( pos ( j , : ) . ˆ 2 , 2 ) ) ˆ(1/2)>1e−6

142 part ic l enumber ( j , : ) =0;

143 end

144 end

145 pos ( part ic l enumber ==0 ,:) = [ ] ;

146 ve l ( part ic l enumber ==0 ,:) = [ ] ;

147 acc ( part ic l enumber ==0 ,:) = [ ] ;

148 cg ( part ic l enumber ==0 ,:) = [ ] ;

149 ce ( part ic l enumber ==0 ,:) = [ ] ;

150 c ( part ic l enumber ==0 ,:) = [ ] ;

151 Pidecay ( part ic l enumber ==0 ,:) = [ ] ;

152 Number (1 )=sum( part ic lenumber , 1 ) ;

153 t imer ( part ic l enumber ==0 ,:) = [ ] ;

154 t imercheck ( part ic l enumber==0) = [ ] ;

155 s ta t e check ( part ic l enumber==0) = [ ] ;

156 t imert ime ( part ic l enumber==0) = [ ] ;

157 %% save ene rg i e s , p a r t i c l e o r b i t s f o r p l o t t i n g t r a i l s

158 pos save = ze ro s ( s i z e ( pos , 1 ) ,3 , Nt+1) ;

159 pos save ( : , : , 1 ) = pos ;

160 KE save = ze ro s (Nt+1 ,1) ;

161 KE save (1) = KE;

162 PE save = ze ro s (Nt+1 ,1) ;

163 PE save (1) = PE;

164 PE plot = ze ro s (Nt+1 ,1) ;

165 PE plot (1 ) = min ( PE save ) ;

166 IE save = ze ro s (Nt+1 ,1) ;

167 IE save (1 ) = IE ;

168 T save=ze ro s (Nt+1 ,1) ;

169 T save (1)=T;

170 Number save=ze ro s (Nt+1 ,1) ;

171 Number save (1 )=Number ;

172 t a l l = ( 0 : Nt) ∗dt ;

173 Epar=0;

174 r e l a t i v e d e l t a=ze ro s (Nt+1 ,1) ;

175 r e l a t i v e d e l t a (1 )=Re la t iveDe l ta ;

176
177 c e save=ze ro s (N, Nt+1 ,1) ;

178 c e save ( : , 1 )=ce ( : , 1 ) ;

179 %% Time i n t e g r a t i o n sceme

180 f o r i =2:Nt

181 ve l = ve l+acc ∗dt /2 ;

182 pos = pos+ve l ∗dt ;

183 [ acc ve lok i ck , Pidecay , ce , cg ] = getAcc ( pos , s o f t en ing , Number , a0 , h , m88sr , EHa,
cg , ce , i , U1S0 , U3P1 , Pidecay , DP) ;

184 v e l o c i t y k i c k = makevelokick ( ve lok i ck , hbar , omega0 , m88sr , cspeed ) ;

185 ve l = ve l+acc ∗dt/2+ v e l o c i t y k i c k ;

186 t = t+dt ;

187
188
189 i f mod( i , 1000 )==0

190 disp ( [ ’ time : ’ num2str ( t ) ] )

191 disp ( [ ’ p rog r e s s : ’ num2str ( i /Nt∗100) ’%’ ] )

192 end

193 %Remove p a r t i c l e s out s ide o f s c r e en

194 %z>10e−6m

195 %r>1e−6m

196 part ic l enumber=ones ( s i z e ( pos , 1 ) ,1 ) ;

197 f o r j =1: s i z e ( pos , 1 )

198 i f ( pos ( j , 1 ) ˆ2+pos ( j , 2 ) ˆ2) ˆ(1/2)>1e−6

199 part ic l enumber ( j , : ) =0;

200 e l s e i f pos ( j , 3 )>10e−6

201 part ic l enumber ( j , : ) =0;

202 end

203 end

204 pos ( part ic l enumber ==0 ,:) = [ ] ;

205 ve l ( part ic l enumber ==0 ,:) = [ ] ;

206 acc ( part ic l enumber ==0 ,:) = [ ] ;

207 cg ( part ic l enumber ==0 ,:) = [ ] ;

208 ce ( part ic l enumber ==0 ,:) = [ ] ;

209 c ( part ic l enumber ==0 ,:) = [ ] ;
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210 Pidecay ( part ic l enumber ==0 ,:) = [ ] ;

211 Number=sum( part ic lenumber , 1 ) ;

212 t imer ( part ic l enumber ==0 ,:) = [ ] ;

213 s ta t e check ( part ic l enumber ==0 ,:) = [ ] ;

214
215 ve l ok i ck ( part ic l enumber ==0 ,:) = [ ] ;

216 Number save ( i )=Number ;

217 % get energy o f system

218 [KE, PE, IE , T, Epar , ACstarksh i f t ] = getEnergy ( pos , vel , hPlank , m88sr , kb , Number
, molarm88sr , EHa, a0 , cg , ce , i , U1S0 , U3P1) ;

219
220 %Update the s t a t e o f the p a r t i c l e s

221 substeps=1e4 ;

222 cg ( : , i )=cg ( : , i −1) ;

223 ce ( : , i )=ce ( : , i −1) ;

224
225
226 Rela t iveDe l ta=Delta−Epar/hPlank+ACstarksh i f t ; % I n t e r a c t i o n energy ,

S t a rkSh i f t

227
228 f o r j =1: substeps

229 cg temp = cg ( : , i ) ;

230 ce temp = ce ( : , i ) ;

231 cg ( : , i )=(−1 i .∗ r ab i . / 2 . ∗ exp (1 i .∗ Rela t iveDe l ta .∗ t ) .∗ ce temp .∗ dt/ substeps+cg temp ) ;

232 t=t+dt/ substeps ;

233 ce ( : , i )=((−1 i .∗ r ab i . / 2 . ∗ exp(−1 i .∗ Rela t iveDe l ta .∗ t ) .∗ cg ( : , i ) .∗ dt/ substeps+ce temp ) ) ;

234 end

235
236 s ta t e check ( s ta t echeck==1)=0;

237 s ta t e check ( r e a l ( Pidecay ( : , i −1) ) <0.1)=1;

238 t imer ( : , i )=s ta t e check ;

239 l a s t t i m e r=timer ( : , max( i −100 ,1) : i ) ;

240 t imecheck=a l l ( l a s t t imer , 2 ) ;

241 Pidecay ( timecheck==1,max( i −2 ,1) : i ) =1;

242 ve l ok i ck ( timecheck==1)=1;

243 t imer ( timecheck==1, i ) =0;

244
245 phi=rand ( ) ∗2∗ pi ;

% [0 2 p i ]

246 theta=rand ( ) ∗0 . 00 1 ;
% [0 p i ]

247 ce ( t imecheck==1, i −1)=exp (1 i .∗ phi ) .∗ s i n ( theta . / 2 ) ;

248 cg ( timecheck==1, i −1)=cos ( theta /2) ;

249
250
251 Pidecay ( : , i )=Pidecay ( : , i −1) ./(1+A.∗ dt .∗ conj ( ce ( : , i ) ) .∗ ce ( : , i ) ) ; %

Updating the decay ra t e

252 DP=r e a l ( Pidecay ( : , i −1)−Pidecay ( : , i ) ) ; %
Ca l cu la t ing the p r o b a b i l i t y o f decay in dt

253
254
255
256 % save ene rg i e s , p o s i t i o n s f o r p l o t t i n g t r a i l

257 i f isempty ( Re la t iveDe l ta )

258 r e l a t i v e d e l t a ( i ) =0;

259 e l s e

260 r e l a t i v e d e l t a ( i )=min ( Re la t iveDe l ta ) ;

261 end

262 pos save ( : , : , i ) = pos ;

263 KE save ( i ) = KE;

264 PE save ( i ) = PE;

265 PE plot ( 1 : i )=(PE save ( 1 : i )−min( PE save ( 1 : i ) ) ) ;

266 IE save ( i ) = IE ;

267 T save ( i ) = T;

268
269 end

270
271 save ( [ ’ 100 vTrapLossS imulat ion rab i ’ num2str ( rab i ∗100/(10ˆ6) ) ’ Hz de l ta ’ num2str ( Delta

/(10ˆ6) ) ’ Hz N ’ num2str (N) ] ) ;

272
273 %% Acce l e r a t i on Ca l cu l a t i on s
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274 f unc t i on [ a , ve lok i ck , Pidecay , ce , cg ] = getAcc ( pos , s o f t en ing , Number , a0 , h , m88sr ,
EHa, cg , ce , i , U1S0 , U3P1 , Pidecay , DP)

275 S=cg ( : , i −1) .∗ conj ( cg ( : , i −1) ) ;

276 P=ce ( : , i −1) .∗ conj ( ce ( : , i −1) ) ;

277 %Calcu la t ing i n t e r a c t i o n s t r ength

278 SS=cg ( : , i −1) .∗ conj ( cg ( : , i −1) ) ∗( cg ( : , i −1) ’ .∗ conj ( cg ( : , i −1) ) ’ )−diag ( diag ( cg ( : , i −1) .∗ conj (
cg ( : , i −1) ) ∗( cg ( : , i −1) ’ .∗ conj ( cg ( : , i −1) ) ’ ) ) ) ;

279 SP1=cg ( : , i −1) .∗ conj ( cg ( : , i −1) ) ∗( ce ( : , i −1) ’ .∗ conj ( ce ( : , i −1) ) ’ )−diag ( diag ( cg ( : , i −1) .∗ conj (
cg ( : , i −1) ) ∗( ce ( : , i −1) ’ .∗ conj ( ce ( : , i −1) ) ’ ) ) ) ;

280 PS1=ce ( : , i −1) .∗ conj ( ce ( : , i −1) ) ∗( cg ( : , i −1) ’ .∗ conj ( cg ( : , i −1) ) ’ )−diag ( diag ( ce ( : , i −1) .∗ conj (
ce ( : , i −1) ) ∗( cg ( : , i −1) ’ .∗ conj ( cg ( : , i −1) ) ’ ) ) ) ;

281 SP=SP1+PS1 ;

282 PP=ce ( : , i −1) .∗ conj ( ce ( : , i −1) ) ∗( ce ( : , i −1) ’ .∗ conj ( ce ( : , i −1) ) ’ )−diag ( diag ( ce ( : , i −1) .∗ conj (
ce ( : , i −1) ) ∗( ce ( : , i −1) ’ .∗ conj ( ce ( : , i −1) ) ’ ) ) ) ;

283 x=pos ( : , 1 ) ;

284 y=pos ( : , 2 ) ;

285 z=pos ( : , 3 ) ;

286 r = @(x , y ) sq r t ( x.ˆ2+y . ˆ 2 ) ;

287
288 dx=repmat (x ’ , Number , 1 )−repmat (x , 1 , Number) ;

289 dy=repmat (y ’ , Number , 1 )−repmat (y , 1 , Number) ;

290 dz=repmat ( z ’ , Number , 1 )−repmat ( z , 1 , Number) ;

291
292 dr = sq r t ( dx.ˆ2+dy.ˆ2+dz .ˆ2+ s o f t e n i n g . ˆ 2 ) ;

293
294 %% I n t e r a c t i o n

295
296 % U0u= @( dr ) −3513∗EHa∗a0 ˆ6 ./ dr .ˆ6 −0.015∗EHa∗a0 ˆ3 ./ dr . ˆ 3 ;

297 % U1u= @( dr ) −3773∗EHa∗a0 ˆ6 ./ dr .ˆ6+0.0075∗EHa∗a0 ˆ3 ./ dr . ˆ 3 ;

298
299 U0u=−0.015∗EHa∗a0 ˆ3 ./ dr . ˆ 3 ; %red / a t r r a c t i v e

300 U1u=0.0075∗EHa∗a0 ˆ3 ./ dr . ˆ 3 ; %blue / r e p u l s i v e

301
302 f o r c e s t r e n g t h =−0.0225∗EHa∗a0 ˆ3 ;

303
304 i nv r 5 = dr .ˆ −5;

305 i nv r 5 ( i nv r5 == I n f ) = 0 ;

306 i nv r 5 ( inv r5 <1)=0;

307
308 Fx U1u=f o r c e s t r e n g t h ∗( dx .∗ i nv r 5 ) .∗SP ;

309 Fy U1u=f o r c e s t r e n g t h ∗( dy .∗ i nv r 5 ) .∗SP ;

310 Fz U1u=f o r c e s t r e n g t h ∗( dz .∗ i nv r 5 ) .∗SP ;

311
312
313 Fr 1S0 = −(U1S0( r (x , y )+h , z ) − U1S0( r (x , y ) , z ) ) / h ;

314 Fz 1S0 = −(U1S0( r (x , y ) , z+h) − U1S0( r (x , y ) , z ) ) / h ;

315
316 Fr 3P1 = −(U3P1( r (x , y )+h , z ) − U3P1( r (x , y ) , z ) ) / h ;

317 Fz 3P1 = −(U3P1( r (x , y ) , z+h) − U3P1( r (x , y ) , z ) ) / h ;

318
319 Fr=Fr 1S0 .∗ S+Fr 3P1 .∗P;

320 Fz=Fz 1S0 .∗ S+Fz 3P1 .∗P;

321
322 a = [ Fr .∗ x . / r (x , y )+sum(Fx U1u , 2 ) , Fr .∗ y . / r (x , y )+sum(Fy U1u , 2 ) , Fz+sum( Fz U1u , 2 ) ] /

m88sr ;

323
324 ve l ok i ck=ze ro s ( s i z e ( cg , 1 ) ,1 ) ; % 0 ve l ok i ck

325 random=rand ( s i z e ( ve lok i ck , 1 ) ,1 ) ; % Random f o r r e j e c t i o n method

326 decay check=random<DP; % Reject / accept decay chance

327 ve l ok i ck ( decay check==1)=1; % I f accepted , r a i s e v e l ok i ck

328 Pidecay ( decay check==1, i −1)=1; % Reset the decay ra t e to zero

329
330 phi=rand ( ) ∗2∗ pi ;

% [0 2 p i ]

331 theta=rand ( ) ∗0 . 00 1 ;
% [0 p i ]

332 ce ( decay check==1, i −1)=exp (1 i .∗ phi ) .∗ s i n ( theta . / 2 ) ;

333 cg ( decay check==1, i −1)=cos ( theta /2) ;

334
335 end

336
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337 %% Calcu la te Energy

338 f unc t i on [KE, PE, IE , T, Epar , ACstarksh i f t ] = getEnergy ( pos , vel , hPlank , m88sr , kb ,
Number , molarm88sr , EHa, a0 , cg , ce , i , U1S0 , U3P1)

339
340 S=cg ( : , i −1) .∗ conj ( cg ( : , i −1) ) ;

341 P=ce ( : , i −1) .∗ conj ( ce ( : , i −1) ) ;

342
343 %Calcu la t ing i n t e r a c t i o n s t r ength

344 SP1=cg ( : , i −1) .∗ conj ( cg ( : , i −1) ) ∗( ce ( : , i −1) ’ .∗ conj ( ce ( : , i −1) ) ’ )−diag ( diag ( cg ( : , i −1) .∗ conj (
cg ( : , i −1) ) ∗( ce ( : , i −1) ’ .∗ conj ( ce ( : , i −1) ) ’ ) ) ) ;

345 PS1=ce ( : , i −1) .∗ conj ( ce ( : , i −1) ) ∗( cg ( : , i −1) ’ .∗ conj ( cg ( : , i −1) ) ’ )−diag ( diag ( ce ( : , i −1) .∗ conj (
ce ( : , i −1) ) ∗( cg ( : , i −1) ’ .∗ conj ( cg ( : , i −1) ) ’ ) ) ) ;

346 SP=SP1+PS1 ;

347
348 % Kinet i c Energy :

349 KE = 0.5 ∗ m88sr .∗ sum(sum ( ( ve l ) . ˆ2 ) ) / kb ; % [K]

350
351 %Temperature

352 R=8.3144598;

353 T=( sq r t (sum(sum( ve l . ˆ 2 , 2 ) ) /Number) ˆ2) ∗molarm88sr /(3∗R) ;

354
355 % p o s i t i o n s r = [ x , y , z ] f o r a l l p a r t i c l e s

356 x = pos ( : , 1 ) ;

357 y = pos ( : , 2 ) ;

358 z = pos ( : , 3 ) ;

359
360 % matrix that s t o r e s a l l pa i rw i s e p a r t i c l e s epa ra t i on s : r j − r i

361 dx=repmat (x ’ , Number , 1 )−repmat (x , 1 , Number) ;

362 dy=repmat (y ’ , Number , 1 )−repmat (y , 1 , Number) ;

363 dz=repmat ( z ’ , Number , 1 )−repmat ( z , 1 , Number) ;

364
365 drr = ( dx.ˆ2+dy.ˆ2+dz . ˆ 2 ) . ˆ ( 1/2 ) ;

366 drr ( drr==0)=i n f ;

367 drr ( drr>1)=i n f ;

368 % U0u= −3513∗EHa∗a0 ˆ6 ./ drr .ˆ6 −0.015∗EHa∗a0 ˆ3 ./ drr . ˆ 3 ;

369 % U1u= −3773∗EHa∗a0 ˆ6 ./ drr .ˆ6+0.0075∗EHa∗a0 ˆ3 ./ drr . ˆ 3 ;

370
371 U0u= −0.015∗EHa∗a0 ˆ3 ./ drr . ˆ 3 ;

372 U1u= 0.0075∗EHa∗a0 ˆ3 ./ drr . ˆ 3 . ∗SP ;

373 % matrix that s t o r e s r f o r a l l p a r t i c l e pa i rw i s e p a r t i c l e s epa ra t i on s

374 r = sq r t ( x .ˆ2 + y . ˆ 2 ) ;

375
376
377 PE=sum(U1S0( r , z ) ) /kb+sum(sum(U1u) ) /(2∗kb ) ; %[K]

378 IE = sum(sum(U1u .∗SP) ) /(2∗kb ) ; %[K]

379
380 %Being in the Pstate−Being in the Ss ta te

381 ACstarksh i f t = (U1S0( r , z )−U3P1( r , z ) ) /hPlank ; %rad/ s

382
383 Epar= sum(U1u , 2 ) ;

384 end

385
386 f unc t i on ve l=makevel ( phi , theta , v random , N)

387 s t r ength=v random ( round ( rand (N, 1 ) .∗ s i z e ( v random , 1 ) ) ) ;

388 ve l =[ s t r ength .∗ s i n ( theta ) .∗ cos ( phi ) , s t r ength .∗ s i n ( theta ) .∗ s i n ( phi ) , s t r ength .∗ cos (
theta ) ] ;

389 end

390
391 f unc t i on v e l o c i t y k i c k = makevelokick ( ve lok i ck , hbar , omega0 , m88sr , cspeed )

392 phi=rand ( ) ∗2∗ pi ;

393 theta=rand ( ) ∗ pi ;

394 random=rand ( l ength ( v e l ok i ck ) ,1 ) ; % Make a random vector o f l ength
ve l ok i ck

395 energyconse rvat ion=ze ro s ( l ength ( v e l ok i ck ) ,1 ) ; % Make a vector checking i f i t
should r e l e a s e energy

396 energyconse rvat ion ( random<ve l ok i ck ) =1; % Check the chance o f r e l e a s i n g
energy , i f 1 , then energy should be r e l e a s e d

397 ve l ok i ck ( energyconse rvat ion==1)=1; % Make the energy gain equal to
hbar∗omega0

398 ve l ok i ck ( energyconse rvat ion==0)=0; % Create no ve l ok i ck whi le s t i l l
emit t ing a photon
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399 s t r ength=hbar .∗ omega0 . / cspeed .∗ ve l ok i ck . / m88sr ;

400 v e l o c i t y k i c k = [ s t r ength .∗ s i n ( theta ) .∗ cos ( phi ) , s t r ength .∗ s i n ( theta ) .∗ s i n ( phi ) , s t r ength
.∗ cos ( theta ) ] ; %v=2/m∗ s q r t ( Egain )

401 end

Listing B.5: Light assisted collisions in FORT simulation for Matlab.

B.6 Plotting of the Matlab2016 simulation

1 corrE =0.000000000001;

2 p a r t i c l e l o s s=ones (Nt+1 ,1) ∗10 ;

3 cor rE save=ze ro s (Nt+1 ,1) ;

4 cor rE save (1 )=corrE ;

5 f o r i =2:Nt

6 i f Number save ( i )−Number save ( i −1)<0

7 p a r t i c l e l o s s ( i , 1 )=min (1 e3∗PE plot ) ;

8 corrE=corrE −(PE save ( i )−PE save ( i −1) ) ;

9
10 end

11 cor rE save ( i ) = corrE ;

12 end

13
14 f i g u r e

15
16
17 subplot (3 , 1 , 1 )

18
19 p lo t ( t a l l , 1 e3∗KE save , ’ LineWidth ’ ,1 , ’ Color ’ , ’ b lue ’ )

20 hold on

21 p lo t ( t a l l , 1 e3 ∗( PE save−min( PE save )+corrE save ) , ’ LineWidth ’ ,1 , ’ Color ’ , ’ green ’ )

22 p lo t ( t a l l , 1 e3 ∗( KE save+PE plot+corrE save ) , ’ LineWidth ’ ,1 , ’ Color ’ , ’ b lack ’ )

23 p lo t ( t a l l , p a r t i c l e l o s s , ’ LineWidth ’ ,1 , ’ Color ’ , ’ red ’ )

24 l egend ( ’ K inet i c energy ’ , ’ Po t en t i a l energy ’ , ’ Total energy ’ , ’ P a r t i c l e l o s s ’ )

25 t i t l e ( ’ Energ ie s ’ )

26 xlim ( [ 0 , tEnd ] ) ;

27 ylim ( [ min (1 e3∗PE plot ) max(1 e3 ∗( KE save+PE plot+corrE save ) ) ] ) ;

28 x l a b e l ( ’Time [ s ] ’ ) ;

29 y l a b e l ( ’ Energy [mK] ’ ) ;

30 drawnow

31
32 % subplot (5 , 1 , 4 ) %

Temperatur

33 % plo t ( t a l l , T save , ’ r . ’ )

34 % xlim ( [ 0 , tEnd ] ) ;

35 % %ylim ( [ 1 e−6, 10e −6]) ;

36 % x l a b e l ( ’ Time ’ ) ;

37 % y l a b e l ( ’ Temperatuur [K] ’ ) ;

38 % drawnow

39
40 subplot (3 , 1 , 2 )

41 hold on

42 t a l l = repmat ( t a l l , s i z e ( ce , 1 ) ,1 ) ;

43 t a l l = t a l l ( : ) ;

44 ce data = ce ( : ) .∗ conj ( ce ( : ) ) ;

45 s c a t t e r ( t a l l , ce data , 1 , c ( : ) , ’ . ’ )

46 t i t l e ( ’ I n t e r n a l s t a t e ’ )

47 xlim ( [ 0 , tEnd ] ) ;

48 x l a b e l ( ’Time [ s ] ’ ) ;

49 y l a b e l ( ’ ce ’ ) ;

50 hold o f f

51 drawnow

52
53 subplot (3 , 1 , 3 )

54 hold on

55 t a l l = repmat ( t a l l , s i z e ( Pidecay , 1 ) ,1 ) ;

56 t a l l = t a l l ( : ) ;

57 Pidecay data = Pidecay ( : ) .∗ conj ( Pidecay ( : ) ) ;

58 s c a t t e r ( t a l l , Pidecay data , 1 , c ( : ) , ’ . ’ ) ;

59 t i t l e ( ’ Decay curve ’ )
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60 xlim ( [ 0 , tEnd ] ) ;

61 hold on

62 x l a b e l ( ’Time [ s ] ’ ) ;

63 y l a b e l ( ’ Pdecay ’ ) ;

64 hold o f f

65
66 % subplot (4 , 1 , 4 )

67 % plo t ( t a l l , r e l a t i v e d e l t a /(10ˆ6) , ’ g . ’ )

68 % hold on

69 % plo t ( t a l l , r ab i ∗ ones (Nt+1 ,1) /(10ˆ6) , ’ b . ’ )

70 % plo t ( t a l l , Delta ∗ ones (Nt+1 ,1) /(10ˆ6) , ’ r . ’ )

71 % t i t l e ( ’ Re la t i ve de l ta ’ )

72 % legend ( ’ Re la t i ve de l ta ’ , ’ rabi ’ , ’ de l ta ’ )

73 % xlim ( [ 0 , tEnd ] ) ;

74 % ylim ( [ 0 max( r e l a t i v e d e l t a ) /(10ˆ6) ] ) ;

75 % x l a b e l ( ’ Time [ s ] ’ ) ;

76 % y l a b e l ( ’ detuing [MHz] ’ ) ;

77 % drawnow

78 f i l ename =[ ’ P l o t r a b i ’ num2str ( rab i ∗1000/(10ˆ6) ) ’ kHz delta ’ num2str ( Delta /(10ˆ6) ) ’MHz N
’ num2str (N) ’ . png ’ ] ;

79 s g t i t l e ( [ ’ Rabi= ’ num2str ( rab i /(10ˆ6) ) ’MHz Delta= ’ num2str ( Delta /(10ˆ6) ) ’MHz N=’
num2str (N) ] )

80 s e t ( gcf , ’ Units ’ , ’ Normalized ’ , ’ OuterPos i t ion ’ , [ 0 0 1 1 ] ) ;

81 saveas ( gcf , f i l ename ) ;

82
83
84 % f i g u r e

85 %

86 % f o r i =2:Nt

87 % i f mod( i , 1 00 )==0

88 % xx = pos save ( : , 1 , max( i −50 ,1) : i ) ;

89 % yy = pos save ( : , 2 , max( i −50 ,1) : i ) ;

90 % zz = pos save ( : , 3 , max( i −50 ,1) : i ) ;

91 % s c a t t e r 3 ( xx ( : ) , yy ( : ) , zz ( : ) , 5 , [ . 7 . 7 1 ] , ’ . ’ ) ;

92 % hold on

93 % s c a t t e r 3 ( xx ( : , 1 ) , yy ( : , 2 ) , zz ( : , 3 ) , 150 , [ abs ( ce ( : , i ) . ˆ 2 ) , z e ro s ( s i z e ( pos , 1 )
,1 ) , z e r o s ( s i z e ( pos , 1 ) ,1 ) ] , ’ . ’ )

94 % %ce=0 r e p r e s e n t s black

95 % t i t l e ( [ ’ p rog r e s s : ’ num2str ( i /Nt∗100) ’% ’ ] )

96 % hold o f f

97 % ax i s square

98 % ax i s ([−1e−6 1e−6 −1e−6 1e−6 −10e−6 10e −6])

99 % x l a b e l ( ’ x [m] ’ )

100 % y l a b e l ( ’ y [m] ’ )

101 % z l a b e l ( ’ z [m] ’ )

102 % drawnow

103 % end

104 % end

105
106 % subplot (4 , 1 , 3 )

107 % plo t ( t a l l , 1 e3∗KE save , ’ b . ’ )

108 % hold on

109 % plo t ( t a l l , 1 e3 ∗( PE save+abs (min ( PE save ) ) ) , ’ g . ’ )

110 % plo t ( t a l l , 1 e3 ∗( KE save+PE save+abs (min ( PE save ) ) ) , ’ k . ’ )

111 % hold o f f

112 % xlim ( [ 0 , tEnd ] ) ;

113 % ylim ( [ 0 max(1 e3 ∗( KE save+PE save+PE plot ) ) ] ) ;

114 % x l a b e l ( ’ Time ’ ) ;

115 % y l a b e l ( ’ Energy [mK] ’ ) ;

116 % drawnow

117 %

118
119 % subplot (5 , 1 , 5 )

120 % hold on

121 % plo t ( t a l l , r e l a t i v e d e l t a )

122 % xlim ( [ 0 , tEnd ] ) ;

123 % x l a b e l ( ’ Time ’ ) ;

124 % y l a b e l ( ’ min r e l a t i v e de l t a ( expected ’ ) ;

125 % hold o f f

126 % drawnow
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127 % subplot (6 , 1 , 6 ) ;

128 % s c a t t e r ( t a l l , Number , 1 ) ;

129 % x l a b e l ( ’ Time ’ ) ;

130 % y l a b e l ( ’ P a r t i c l e Count ’ ) ;

131 % hold o f f

132 disp ( [ ’ begin energy : ’ num2str (1 e3 ∗( KE save (2)+PE plot (2 )+corrE save (2 ) ) ) ’mK’ ] )

133 disp ( [ ’ average energy : ’ num2str (1 e3∗sum( KE save+PE plot+corrE save ) . / l ength ( KE save ) ) ’
mK’ ] ) ;

134 disp ( [ ’maximum energy : ’ num2str (1 e3∗max( ( KE save+PE plot+corrE save ) ) ) ’mK’ ] ) ;

135 disp ( [ ’ d ev i a t i on : ’ num2str (1 e6 ∗( KE save (2)+PE plot (2 )+corrE save (2 ) )−1e6∗max( ( KE save+
PE plot+corrE save ) ) ) ’ microK ’ ] )

136 c l e a r

Listing B.6: Plotting of the light assisted collisions in FORT simulation for Matlab.

B.7 Quantum calculation on Mathematica

1 ClearAl l [ ”Global ‘∗ ” ]

2 Q = Quantity ; UC = UnitConvert ; QM = QuantityMagnitude ;

3 cs tVa lues =

4 N[QM[UC[Q[# ] ] ] ] & /@ {” PlanckConstant ” , ”ReducedPlanckConstant ” ,

5 ”ProtonMass” , ” ElectronMass ” , ”BohrRadius” , ” HartreeEnergy ” ,

6 ”BoltzmannConstant” } ;

7 cstSymbols = {hPlanck , \ [ HBar ] , mp, me , a0 , EHa, kB} ;

8 c s t = MapThread [ Rule , { cstSymbols , c s tVa lues } ]

9 parms = {\ [Lambda ] −> 689 . 10ˆ−9 , \ [Tau ] −> 21 .5 10ˆ−6 , \ [Mu] Sr88au −>
10 1.46127∗10ˆ −25}
11 (∗T=1−5∗10ˆ−3K∗)

12 tau = 21.35∗10ˆ −6

13 hbar = 1.0545718∗10ˆ −34;

14 c = 8∗10ˆ8;

15 \ [ Lambda ] = 689∗10ˆ−9

16 C30au = −0.01524∗EHa∗a0 ˆ3 ;

17 C31au = 0.00753∗EHa∗a0 ˆ3 ;

18 C60au = 3513∗EHa∗a0 ˆ6 ;

19 C61au = 3774∗EHa∗a0 ˆ6 ;

20 V0u [ R ] := −C60au/Rˆ6 + C30au/Rˆ3 ;

21 V1u [ R ] := −C61au/(R) ˆ6 + C31au/(R) ˆ3 ;

22 DV0u[ R ] = D[ V0u [R] , R ] ;

23 DV1u[ R ] = D[ V1u [R] , R ] ;

24 V0u [R]/ hPlanck∗10ˆ−6 / . c s t

25 Plot [{V0u [R]/ hPlanck∗10ˆ−6 / . R −> x∗a0 / . cst ,

26 V1u [R]/ hPlanck∗10ˆ−6 / . R −> x∗a0 / . c s t } , {x , 0 , 600} ,

27 PlotRange −> {−30, 30} ,

28 PlotLabel −>
29 ” \ !\ (\∗ SubscriptBox [\ ( 0\ ) , \(u\) ]\ ) and \ !\ (\∗ SubscriptBox [\ ( 1\ ) , \
30 \(u\) ]\ ) p o t e n t i a l s f o r S+P” , AxesLabel −> {”R [ a0 ] ” , ”V [MHz] ”} ,

31 PlotLegends −> {”0u p o t e n t i a l ” , ”1u p o t e n t i a l ”} ,

32 Plo tS ty l e −> {Thickness [ 0 . 0 1 ] } ]

33 Rc = R / . Solve [ V1u [R]/ hPlanck∗10ˆ−6 == 2 , R, Reals ] [ [ 2 ] ] / . c s t

34 Rc = Rc/a0 / . c s t

35 Dc = D[ V1u [R] , R] / . c s t / . R −> Rc

36 S e r i e s [ Sqrt [ 1 + x ˆ2 ] , {x , 0 , 3} ]

37
38 ClearAl l [ ”Global ‘∗ ” ]

39 Q = Quantity ; UC = UnitConvert ; QM = QuantityMagnitude ;

40 cs tVa lues =

41 N[QM[UC[Q[# ] ] ] ] & /@ {” PlanckConstant ” , ”ReducedPlanckConstant ” ,

42 ”ProtonMass” , ” ElectronMass ” , ”BohrRadius” , ” HartreeEnergy ” ,

43 ”BoltzmannConstant” } ;

44 cstSymbols = {hPlanck , \ [ HBar ] , mp, me , a0 , EHa, kB} ;

45 c s t = MapThread [ Rule , { cstSymbols , c s tVa lues } ] ;

46 parms = {\ [Lambda ] −> 689 . 10ˆ−9 , \ [Tau ] −> 21 .5 10ˆ−6 , \ [Mu] Sr88au −>
47 1.46127∗10ˆ −25} ;

48 (∗T=1−5∗10ˆ−3K∗)

49 tau = 21.35∗10ˆ −6;

50 hbar = 1.0545718∗10ˆ −34;

51 c = 8∗10ˆ8;

52 \ [ Lambda ] = 689∗10ˆ −9;
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53
54 a = −2;

55 m = \ [Mu] Sr88au/me/2 / . c s t / .

56 parms ; (∗\ [Mu] Sr88au=weight in kg o f s i n g l e atom∗)

57 T = 1∗10ˆ−6; (∗ f i x e d temperature ∗)

58 T l i s t = Table [ i − 0 . 9 , { i , 5}]∗10ˆ−6

59 r0 = 2000 ;

60 a0 = 5.29177∗10ˆ −11;

61
62 E l i s t = T l i s t ∗kB/EHa / . c s t / .

63 parms (∗ Energy spac ing to r e c r e a t e bose−Eins t e in d i s t r i b u t i o n ∗)

64 Eg = F i r s t [ E l i s t ] ; (∗ energy used f o r i n f i t e box width ∗)

65 spac ing = E l i s t [ [ 2 ] ] − E l i s t [ [ 1 ] ] ;

66 Vground [ r ] := −3103/ r ˆ6 ; (∗Ground s t a t e p o t e n t i a l ∗)

67 kground [ r , Eground ] := Sqrt [ 2 m∗( Eground − Vground [ r ] ) ]

68 \ [ Delta ] [ Eground ] :=

69 ArcTan[−a∗
70 kground [ r0 , Eground ] ] (∗ Phase s h i f t as func t i on o f the energy ∗)

71
72 widthtrap = 1∗ˆ−6/a0/2 / . c s t ;

73 quantumnumber [ Eground ] :=

74 Round [ ( kground [ r0 , Eground ]∗ widthtrap + \ [ Delta ] [ Eground ] ) /Pi ]

75 i n f i n i t e bo xw id t h [

76 Eground ] := ( quantumnumber [ Eground ]∗ Pi − \ [ Delta ] [ Eground ] ) /

77 kground [ r0 , Eground ]

78
79 uout [ r , Eground ] := Sin [ kground [ r0 , Eground ]∗ r + \ [ Delta ] [ Eground ] ] ;

80 uin [ r , Eground ] :=

81 B∗Sin [ kground [ r , Eground ]∗ r ] + A∗Cos [ kground [ r , Eground ]∗ r ] ;

82
83 DUin [ r , Eground ] = D[ uin [ r , Eground ] , r ] ;

84 DUout [ r , Eground ] = D[ uout [ r , Eground ] , r ] ;

85 Uout [ r , Eground ] = uout [ r , Eground ] ;

86 Uin [ r , Eground ] = uin [ r , Eground ] ;

87
88 Bvalue [ r , Eground ] :=

89 B / . Solve [

90 DUin [ r , Evar ] / Uin [ r , Evar ] == DUout [ r , Evar ] / Uout [ r , Evar ] , B ] [ [

91 1 ] ] / . Evar −> Eground ;

92 Bvalue [ r0 , E l i s t ] ;

93
94 uuin [ r , Eground ] := uin [ r , Eground ] / . B −> Bvalue [ r0 , Eground ] ;

95 Uuin [ r , Eground ] = uuin [ r , Eground ] ;

96 Uuin [ r0 , E l i s t ] ;

97
98 Avalue [ r , Eground ] :=

99 A / . Solve [ Uuin [ r , Evar ] == Uout [ r , Evar ] , A ] [ [ 1 ] ] / .

100 Evar −> Eground ;

101 Avalue [ r0 , E l i s t ] ;

102
103 uuuin [ r , Eground ] :=

104 uuin [ r , Eground ] / . A −> Avalue [ r0 , Eground ] / .

105 B −> Bvalue [ r0 , Eground ]

106 Uuuin [ r , Eground ] = uuuin [ r , Eground ] ;

107
108 Plot [{Uuuin [ r , E l i s t ] , uout [ r , E l i s t ]} , {r , 0 , i n f i n i t e box w i d t h [ Eg ]} ,

109 PlotLegends −> {”Uin” , ”Uout” } ]

110
111 SurfaceGround [ Eground ] :=

112 Re [ NIntegrate [ Uuuin [ r , Eground ] ˆ2 , {r , 0 , i n f i n i t e box w i d t h [ Eg ] } ] ]

113
114 s u r f a c e = Table [ Re [ SurfaceGround [ E l i s t [ [ i ] ] ] ] , { i , Length [ E l i s t ] } ] ;

115
116
117 Table [ NIntegrate [ ( 1 /

118 Sqrt [ SurfaceGround [ E l i s t [ [ i ] ] ] ] Uuuin [ r , E l i s t [ [ i ] ] ] ) ˆ2 , {r , 0 ,

119 i n f i n i t e bo xw i d t h [ Eg ] } ] , { i ,

120 Length [ E l i s t ] } ] (∗CHECK whether i n t e g r a l o f normal ized uˆ2 i s equal \
121 to 1∗)

122 PsiGround [ r , Eground ] :=
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123 1/ Sqrt [ s u r f a c e ]∗ Uuuin [ r , Eground ] / ( r ∗kground [ r , Eground ] )

124 Plot [ PsiGround [ r , E l i s t ] , {r , 0 , i n f i n i t e box w i d t h [ Eg ] } ]

125
126 matrix = {} ;

127 detuning = 10 (∗ t i l l 2∗(N−1) in MHz∗)

128 For [ i = 1 , i < detuning , i ++, AppendTo [ matrix ,

129 Vexited [ r ] := 0.0075/ r ˆ3 ;

130 EExited [ Eground ] := 2∗ i ∗10ˆ6∗ hPlanck/EHa + Eground / . c s t ;

131 kex i t ed [ r , Eground ] := Sqrt [ 2 m∗( EExited [ Eground ] − Vexited [ r ] ) ] ;

132 kExited = kex i t ed [ r , E l i s t ] ;

133 E e x i t e d l i s t = EExited [ E l i s t ] ;

134 t ab l e =

135 Table [ NDSolve [{ y ’ ’ [ r ] == −2∗m∗( E e x i t e d l i s t [ [ i ] ] − Vexited [ r ] ) ∗
136 y [ r ] , y [ 1 ] == 0 , y ’ [ 1 ] == 1/10ˆ30} ,

137 y , {r , 0 , i n f i n i t e box w i d t h [ Eg ] } ] [ [ 1 ] ] [ [ 1 ] ] , { i ,

138 Length [ E l i s t ] } ] ;

139 Ps i ex i t ed = Table [ y [ r ] / . t ab l e [ [ i ] ] , { i , Length [ E l i s t ] } ] ;

140 Sur faceExi ted =

141 Table [ NIntegrate [

142 Ps i ex i t ed [ [ i ] ] ˆ 2 , {r , 0 , i n f i n i t e box w i d t h [ Eg ] } ] , { i ,

143 Length [ E l i s t ] } ] ;

144 Table [ NIntegrate [ ( 1 / Sqrt [ Sur faceExi ted [ [ i ] ] ] P s i ex i t ed [ [ i ] ] ) ˆ2 , {r ,

145 0 , i n f i n i t e bo xw id th [ Eg ] } ] , { i , Length [ E l i s t ] } ] ; ( ∗ check ∗)

146
147 PsiExited =

148 Table [ ( 1 / Sqrt [ Sur faceExi ted [ [ i ] ] ] P s i ex i t ed [ [ i ] ] ) /( r ∗
149 kExited [ [ i ] ] ) , { i , Length [ E l i s t ] } ] ;

150 over lap =

151 Table [ Conjugate [ PsiGround [ r , Eg + spac ing ∗( i − 1) ] [ [ i ] ] ] ∗
152 PsiExited [ [ i ] ] , { i , Length [ E l i s t ] } ] ;

153 FrankCondon =

154 Abs [ Re [ NIntegrate [ over lap , {r , 0 , i n f i n i t e box w i d t h [ Eg ] } ] ] ] // N

155 ] ] ;

156 matrix

157
158 d i s t r i b u t i o n [ E , \ [Mu] , T ] :=

159 1/(Exp [ 1 / (kB∗T) (E − \ [Mu] ) ] − 1) / . c s t

160
161 xdata = Table [ Eg + spac ing ∗( i − 1) , { i , Length [ E l i s t ] } ] ;

162 part ic l enumber = 2 ;

163 groundstatematr ix = {} ;

164 For [ i = 1 , i < detuning , i ++, AppendTo [ groundstatematr ix ,

165 d i s t r i bu t i ong round =

166 d i s t r i b u t i o n [ E l i s t , E l i s t / part ic l enumber / . cst , T/EHa / . c s t ]

167 ] ]

168 groundstatematr ix ;

169
170 t r a p l o s s p r o f i l e = {} ;

171 For [ i = 1 , i < detuning , i ++, AppendTo [ t r a p l o s s p r o f i l e ,

172 1/(15) ˆ3 (2∗ i − 15) ˆ3 + 1

173 ] ]

174 groundstatematr ix ∗matrix ;

175 t r a p l o s s p r o f i l e ;

176
177 t r a p l o s s p r o f i l e s i m u l a t i o n = {0 .004 , 0 .043 , 0 .029 , 0 .010 ,

178 0.012} ; ( ∗ energy gain as func t i on o f the detuning from 0 to 18MHz∗)

179 \
180
181 xdatas imulat ion = {0 , 5 , 10 , 15 , 20} ;

182 datas imulat ion =

183 P a r t i t i o n [ R i f f l e [ xdatas imulat ion , t r a p l o s s p r o f i l e s i m u l a t i o n ] , 2 ] ;

184 t r a p l o s s p r o f i l e s i m u l a t i o n c u r v e = I n t e r p o l a t i o n [ datas imulat ion ] ;

185 d e l t a v a l u e s = Table [ 2∗ i , { i , detuning − 1 } ] ;

186 t r a p l o s s p r o f i l e s i m u l a t i o n g o o d =

187 t r a p l o s s p r o f i l e s i m u l a t i o n c u r v e [ d e l t a v a l u e s ] ;

188
189
190 I n t e g r a l p i e c e s =

191 groundstatematr ix ∗matrix∗
192 t r a p l o s s p r o f i l e ; (∗ r ep l a c e ” t r a p l o s s p r o f i l e s i m u l a t i o n g o o d ” f o r \
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193 ” t r a p l o s s p r o f i l e ” to get a n a l y t i c p l o t ∗)

194
195 l i s t s p a c i n g = Eg ;

196 t r a p l o s s = {} ;

197 For [ i = 1 , i < detuning , i ++, AppendTo [ t r ap l o s s ,

198 xdata = Table [ Eg + spac ing ∗( i − 1) , { i , Length [ E l i s t ] } ] ;

199 data = P a r t i t i o n [ R i f f l e [ xdata , I n t e g r a l p i e c e s [ [ i ] ] ] , 2 ] ;

200 xbegin = xdata [ [ 1 ] ] ;

201 xend = Last [ xdata ] ;

202 TrapLoss = In t eg r a t e [ I n t e r p o l a t i o n [ data ] [ x ] , {x , xbegin , xend } ]

203 ] ]

204 t r a p l o s s ;

205 \ [ Cap i ta lDe l ta ] = Table [ 2∗ i , { i , detuning − 1 } ] ;

206 p lo t = I n t e r p o l a t i o n [ P a r t i t i o n [ R i f f l e [ \ [ Cap i ta lDe l ta ] , t r a p l o s s ] , 2 ] ] ;

207 maxtraploss = FindMaximum [ p lo t [ x ] , {x , 2 , 18} ]

208 l i n e 1 = 3

209 Plot [ p l o t [ x ] , {x , 0 , 20} ,

210 PlotLabel −> ”TrapLoss as func t i on o f the l a s e r detuning ” ,

211 AxesLabel −> {” \ [ Cap i ta lDe l ta ] [MHz] ” , ”TrapLoss”} ,

212 PlotLegends −> {”Trap Loss Curve”} ]

Listing B.7: Quantum wavefunction

102Creating an array of ultracold Sr-88 atoms for quantum computing via light-assisted collisions


	Contents
	Introduction
	One-body loss vs. two-body loss
	Thesis outline

	I Theory
	Light-assisted collisions
	Semiclassical approach
	Light-assisted collisions in rubidium
	Two channel approach and trap loss formula
	Quantum wave functions
	Phase shifts
	Short-range ground state wave function in a van der Waals potential
	Short-range wave function in the excited state potential
	Wave function in the asymptotic limit

	Internal quantum states
	Rabi oscillations
	Optical Bloch equations
	Differential Stark shift

	Atom trap loss rate master equation

	Experimental constraints
	Strontium-88
	Temperature limits and tweezer trap
	Temperature limits
	Tweezer array



	II Simulation
	Simulation outline
	Hypothesis, initialisation and time iteration loop
	Hypothesis
	Initialisation
	Time iteration

	Dynamic quantum states
	Effect of the tweezer trap
	Quantum states

	Equations of motion and energy
	Equation of motion
	Energy



	III Results
	Simulation results
	Goal of the simulation
	Energies, internal quantum states and the decay curve
	One-particle simulation: How the energy changes without two-body collisions
	Two-particle simulation: How two-body collisions changes the trap loss and energy gain
	Trap loss profile for different detunings


	Wavefunction overlap and trap loss
	Wave function overlap
	Trap loss calculations


	Conclusion and discussion
	Conclusion
	Shortcomings of the simulation and quantum calculations
	Future research

	Bibliography
	Appendix
	Theoretical derivations
	Semi-classical to quantum wave function overlap
	Lippmann-Schwinger equation
	Green's function
	Integral formulation Lippmann-Schwinger equation and the Born approximation
	Partial wave analysis
	Excited state wave function using finite difference approach
	Excited state wave function using WKB approximation
	WKB near turning point

	Internal quantum states
	Rabi oscillations
	Off-resonance solutions to the Rabi equations
	Optical Bloch equations
	Solutions to the optical Bloch equations
	Dressed state model
	Polarizability

	Rate equations

	Code
	Rydberg calculator
	Rabi oscillations
	Optical Bloch equations
	Rejection Boltzmann method
	Matlab2016 simulation
	Plotting of the Matlab2016 simulation
	Quantum calculation on Mathematica



