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Abstract

Despite the long-standing interest in the motion of crowds, the problem of un-
derstanding its underlying dynamics is far from being solved. Prominent models
use the concept that individuals minimize their travel time, but avoid highly
crowded regions. An extension of this idea describes a cost function that pedes-
trians minimize along their trajectory. In this thesis we consider trajectories
of pedestrians on a platform on the Eindhoven railway station. We investigate
whether a cost function can be constructed from the utilities on the station in
an intuitive way, so that the function gives insight by itself.

The platform is spatially discretized into a grid. The reward of a tile is pre-
sumed to depend on how many pedestrians occupy it and whether it is located
at points of interest on the station, such as the escalator, stairs or boarding zone.
We set out to quantify this dependency with maximum entropy reinforcement
learning.

When considering a single person’s trajectory, we found it was practical to
only consider the environment up to a certain range from this person instead of
the whole station. Long-range effects that stem from objects outside this range
are accounted for by adding proxies of them in this smaller environment. The
reward on a tile then also depends on the proxies present on it.

It was found that the tiles occupied by one pedestrian have lower reward on
average than squares occupied by two or three. We theorize that for these utili-
ties, information about the direction of the velocity is needed to further classify
them. Tiles in the boarding zone were found to consistently have low reward.
Between the escalator and the stairs, the reward was found approximately the
same.

Trajectories across the platform are generated with a heuristically found re-
ward that is similar to the obtained reward. The trajectories are similar in broad
lines to real trajectories, but consist of straight segments instead of diagonals.
Suggestions to improve the generation of these trajectories are given. To fur-
ther increase accuracy and reliability, we suggest exploring inverse reinforcement
learning frameworks that allow for non-linear cost functions.
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Chapter 1

Introduction

1.1 Scope

Not only is our world population growing, our society is also becoming faster:
the demand for quick access to services is on the rise, as illustrated by the boom-
ing industry of fast delivery services. When time margins become slimmer and
places more crowded, it is up to public facilities to withstand the growing strain.
Whether they can do so is not so clear: anyone who has been at a crowded event,
be it a festival, an airport, or a train station knows how inefficient it already
is to navigate through large groups of people. In the most dire scenarios, an
uncoordinated crowd can even be dangerous; this is by no means a phenomenon
of the past, as is illustrated by modern occurrences such as last year’s tragic
Astroworld incident [1]. In a faster society and a world with a growing popu-
lation, it is vital to streamline public facilities to not only maintain efficiency,
but also to guarantee the safety of their users.

In order to prescribe streamlining policies for crowded facilities, we believe
we must first understand the underlying dynamics of large groups of people.
Due to their inherent lack of coordination and the mixture of objectives among
individuals within these large groups, though, the dynamics of such groups are
intrinsically complex. The movement and behavior of crowds is commonly mod-
elled as one would a complex fluid. Still, in spite of significant advancements in
computer vision allowing accurate measurements of crowd motion, the under-
lying dynamics remain largely not understood, and this is further exacerbated
by the innumerable variety in geometry.
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1.2 State-of-the-art

1.2.1 Crowd as a fluid

Pedestrians in large groups have been long known to exhibit properties of flu-
ids. As such, the modelling of naturally occurring flows of crowds has long
been inspired by existing fluid models [2]. In addition, in numerous instances of
pedestrian streams, self-organizing phenomena have been shown to occur [3], [4].
Prediction models based on behavioral heuristics have been extended to fluid
dynamics, resulting in the development of macroscopic kinetic models that, at
the basis, follow an optimization of velocity, constrained to the avoiding of col-
lisions [5]. Still, a generalized, scalable model has not been developed yet, and
doing so has been a prominent challenge in the field.

A common approach to model crowd dynamics comes from the minimiza-
tion of the travel time of individual pedestrians. In 2003, a theoretical model
prescribing basic governing equations for crowds as a continuum has been pro-
posed by Hughes [6]. At the basis is the continuity equation representing the
conservation of pedestrians. To form a closed governing equation, the report
proceeds to prescribe equations supported by simple and reasonable hypotheses
drawn from observations, the most important of which is that pedestrians aim
to minimize travel time, but modulate this behavior to avoid high densities. In
technical terms, the travel time is defined over the space as a function of the
density, and pedestrians move along the negative gradient of this field.

In 2004, Hoogendoorn and Bovy [7] formulated a new approach to the mod-
elling of route choice of individual pedestrians. At the basis lay the behavioral
assumption that in deciding their route, pedestrians make a trade-off between
the utility that they gain from performing activities at specific locations against
the perceived cost of the route along these locations. This cost is an extended
model of Hughes’ travel time: not only the density field is factored in, but also
other sources of discomfort from factors such as walking close to walls. A total
cost function is built from these factors, and the pedestrians, again, walk along
the negative gradient of this scalar field. In the report in question, such a scalar
field built from cost functions was performed on the Schiphol Plaza, a mall on
the eponymous airport. In Figure 1.1, the idea is represented.
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Figure 1.1: Expected minimum cost function across Schiphol Plaza for (a)
leaving via the escalators and (b) leaving via either of the five exits. At
any point, the discomfort of the route to the exits (in seconds) ensuing from
optimal choices is given. Example routes are given in red. Reprinted from
Hoogendoorn and Bovy, 2004 [7] (within STM permission guidelines; colors
manually added).

Later, the concept of the minimization of such a cost function was used to
program AI to walk in a simple environment [8]. In this case, the cost function
is a function over a set of states that ascribes a ’cost’ to being in the respective
state. With this in mind, it could prove worthwhile to model individual routing
of real pedestrians in a similar manner. If successful, insight into the very dy-
namics of pedestrian motion could be extracted from such a cost function itself.
While a relatively simple effort-distance balance suffices to train AI in simple
environments, a cost function similar to Hoogendoorn and Bovy’s model that
accurately describes crowd flow in more complex geometries could prove highly
complicated.

1.2.2 Machine learning approaches

An emerging set of tools to help find a cost function for a complex system comes
from the field of machine learning. Machine learning approaches have been at-
tempted with various success rates to solve problems in chaotic systems, such as
predicting the financial market [9], forecasting the weather [10], and have even
been proposed to help streamline operations in healthcare [11]. When systems
are of such high complexity that existing physical models fall short, machine
learning provides a way to get around this complexity and still make predic-
tions. Relating to our problem, machine learning techniques have been used
to predict pedestrian trajectories in an office environment by way of learning a
cost function [12].
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1.2.3 Tracking pedestrian movement

In the last few years, the quality of tracking devices has seen a significant uptick
in terms of both resolution and accuracy. Benchmark tests on modern com-
mercial depth sensors such as XovisTM report that close to 100% accuracy in
determining the number of pedestrians in their frame, with their locations being
accurate up to a 4.4 cm standard deviation. Full benchmark test results can be
found in the report by Pouw et al[13]. The ability to measure trajectories up to
high accuracy opens the possibility of employing machine learning.

1.3 Research question

The mentioned approaches of learning a cost function had the goal of making
accurate predictions in mind. So while learning a cost function is helpful for
that goal, it is not necessarily helpful to understand the underlying dynamics
of crowds. This understanding must be provided by the cost function itself, so
we must operate under the constraint that the cost function that we would like
to learn be intuitive, i.e. the cost function must provide insight by itself.

With the mentioned objective in mind, we want to pose individual routing
of pedestrians as an optimization problem: conversely to the cost function, we
may suppose there is a certain quantity that people individually maximize when
moving through crowds. The goal, then, would be to see if we can reverse engi-
neer this quantity. For this reason, we looked for machine learning methods that
seemed compatible with our task of reverse engineering the utility maximization
process that people solve while moving through crowds.

In short, we want to investigate whether a quantity exists that is built from
the utilities within a system of pedestrian dynamics that accurately predicts
pedestrian trajectories. This brings about the research question:

Can the individual routing of people in crowded environments be
modelled as a utility maximization problem?

1.4 Outline

In Chapter 2, the means to answer the problem are presented, as well as their
technical implementation. The reason why these tools were chosen is also given.
Then, in Chapter 3 a simplistic toy problem about a binary choice scenario is
presented to investigate the validity of the proposed implementation, and then
we attempt to answer the real-life parallel to this toy problem. The results
of both the toy problem and the real-life implementation are summarized and
discussed.
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Thereafter, in Chapter 4 a more complex toy problem about a pedestrian
walking to an exit through a crowded environment is presented and a new
approach to the same framework is proposed to solve it. The outcome is sum-
marized and discussed.

In Chapter 5, data of the pedestrian trajectories of people on a platform
of the Eindhoven railway station is presented, and we attempt to combine the
previous approaches to understand the dynamics of the pedestrians. We lay out
our findings and discuss them.

In the end, the results are summarized in Chapter 6 and a general conclusion
is drawn. The main points of discussion are summarized and suggestions for
future work are given.
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Chapter 2

Scientific and technical
background

In this chapter, we first lay out the similarity from the field of physics to the cost
function appraoch. We then consider machine learning tools, and point to the
option that we find most suited for our goal. An illustrative scenario is outlined
in which the necessity and core idea of the proposed method is explained. Next,
some fundamental frameworks and their applications are laid out, and common
algorithms are given.

2.1 Cost function

In formulating a utility maximization approach, we can borrow from the concept
of the action in Lagrangian mechanics, which is a functional defined as

S[L, t0, tf ] =

∫ tf

t0

L (q(t), q̇(t), t) dt, (2.1)

with L being the Lagrangian of the system. The equations of motion then follow
from the requirement that δS = 0 along a trajectory in the configuration space:
the action is a local minimum. Our suggestion is to consider a similar functional.
Similar to trajectories emerging from the requirement that the action be a local
minimum, for this functional, it is assumed that emerging trajectories maximize
this functional. Precisely, in a configuration space described by the generalized
coordinates x = {x0, ..., xN}, trajectories of the form ζ = {x(t0), ...,x(tf )}
emerge from the maximization of

V [R, t0, tf ] =

∫ tf

t0

R (x(t)) dt, (2.2)

where, instead of a cost function representing the cost of a state x, R(x)
is the opposite; say it gives the reward of the state, making it a reward function.
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The act of finding globally optimal trajectories or distributions in stochastic
systems using cost minimization methods has been employed in various applica-
tions [14]–[18], from vehicle control during rally driving [17] to the dynamics of
arm movements [18], and a utility maximization approach seems like a logical ex-
tension. Instead of finding globally optimal trajectories given a cost functional,
we can take a more passive role and do the inverse: we can use real trajecto-
ries obtained from measurements to find the cost function, or equivalently, the
reward function instead.

2.2 Machine learning tools

When one has access to sufficiently many demonstrations within a system, such
as trajectories, one can leverage them to bypass the complexities of the system
through machine learning. The most common machine learning tool that oper-
ates this way is the artificial neural network, which is an input-output device
whose structure is complex; for all intents and purposes, a neural network is
a black box; its usefulness lies in its ability to predict outcomes of very com-
plex processes, and the reason it is able to do this is because neural networks
are trained by real input-output pairs. We could model a reward function as
a neural network to get around the inherent complexity of the dynamics: we
can carry out measurements and train the neural network with them. Let us
imagine we do this, then after enough training, the neural network will provide
us with very accurate predictions of the positions and instantaneous velocities,
perhaps also even the accelerations of all people in any crowd of our choice. At
that point, however, it is important to realize that we set out to understand the
underlying dynamics, not to emulate them. Being a black box, a neural network
fundamentally provides no insight. Since we want to find an intuitive reward
function that by itself provides insight to crowd dynamics, a neural network is
unfit for our outline.

A method that is fit for our outline of reverse engineering a reward func-
tion is Inverse Reinforcement Learning (IRL). This is another machine learning
method that sets out to find a reward function that is optimal when evaluated
along observed behavior. By letting this reward function be parameterized by
the utilities of a system, we can employ IRL to help us answer the utility max-
imization problem.

2.3 Introductory example

The simplest example of a utility maximization process is a system of two paths
of different lengths {LA, LB} and different occupations {NA, NB} that go to
the same destination: the utilities at play are path length and path occupation.
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Now, suppose we want to train an AI to make sensible, human-like choices in
this system. Without thinking twice, we may make the AI prefer short and
unoccupied paths. As such, without knowing anything about the exact lengths
or the occupation levels of the paths, we may a priori prescribe it to make
choices according to Table 2.1.

NA = NB NA > NB NA < NB

LA = LB 50/50 B A

LA > LB B B undetermined

LA < LB A undetermined A

Table 2.1: Decision table for the two route system.

Indeed, there are two scenarios in which the choice is unclear. The human
choice would be to choose the path that has the lowest travel time. A generalized
way to couple the travel time to the occupation and length of a path is the
following:

t(L,N) =
L

v(N)
.

Given L and N , the choice now depends on the function v(N), so we need this
function to be accurate for human behavior.

We set out to use IRL to find this function. To do so, we have to first define
a utility. A straightforward utility would be the inverse of the travel time. We
might then consider the quantity

R(L,N) =
1

t(L,N)
=
v(N)

L
,

which will be referred to as the reward of choosing a path with length L and
occupation N . The term ’reward’ is interchangeable with ’combined utility’
throughout this report. The next step is to make an estimate for v(N), so we
may use v(N) = α1 − α2N . Here, α1 and α2 are constants. This gives

R(L,N) = α1
1

L
− α2

N

L
.

Notice that the reward increases with both decreasing route length L and
occupation level N . Now, the choice can be prescribed by picking the route
whose length and occupation yield the highest reward. Of course, the values of
α1 and α2 entirely dictate which route is chosen, so we need to somehow find
good values for them.

IRL uses real observations to determine the constants. By looking at what
people do in the described scenario, we can infer what range of possible values
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for α1 and α2 might have brought them to their respective decisions. Within
this range, we pick an α1 and α2 of our liking1 to obtain the reward function.
Finding a reward function that explains observed behavior is the core outset of
IRL. The method hinges on the assumption that demonstrated behavior follows
a maximization of the reward.

Equipped with this reward function, one can present the AI with scenarios
and let it make choices. We can then judge whether these choices are similar
to what a real human would do. If there is a clear mismatch, one may amend
the reward function to include more terms. I.e., it may occur that the AI’s
choices do not pass the eye test with the current obtained values for α1 and
α2, so then we have reason to believe that there is actually another utility at
play. For example, we suspect that next to the the inverse of the travel time,
the pedestrian also considers the path width W . We then modify the reward
function to include the path width W of the paths:

R(L,N,W ) = α1
1

L
− α2

N

L
+ α3W.

We would then proceed to find α1, α2 and α3 and let the AI make choices with
the new reward. This process can be repeated until we are satisfied with the
AI’s behavior. When the AI shows behavior that is indistinguishable from real
people, the reward function tells us which utilities are taken into account in
peoples’ decisions, and the respective α’s tell us the relative proportionality of
these utilities. For example, if the function above with the obtained coefficients
can accurately mimic human choices, we know that the model for the velocity
v(N) was accurate given that the path width W was also taken in to account.

2.4 Frameworks

IRL frameworks can be model-based or model-free. A model-based framework
is used when there is full knowledge of the dynamics of the system, which allows
for evaluation of a strategy because it is exactly known what will happen if this
strategy is carried out. In model-free frameworks, demonstrations are used to
learn the strategy directly.

2.4.1 Markov decision processes

Markov decision processes, also called Markov Decision Problems (MDPs) form
a well studied class of model-based frameworks. Any problem that can be
described as an MDP lends itself to IRL. An MDP is a stochastic control process
described by

• The set of states S = {s1, ..., sN};
1In practice, algorithms are used to pick ’the best’ combination of these coefficients, this

is elaborated on in section 2.6.
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• The set of actions A = {a1, ..., ak};

• The state transition functions {Pa(s, s′)} giving the probability of
moving from state s to state s′ with action a. A state transition func-
tion is usually represented by an N ×N -shaped stochastic matrix;

• The reward R(s) serving as a motivation to propagate the decision mak-
ing process. This may be trivially extended to include the actions in the
manner of R(s, a);

• The discount factor δ ∈ [0, 1) which is a measure of how much emphasis
is put on immediate reward in comparison to future reward. This value is
typically 0.9 or higher.

Further, a policy π is a mapping of the states onto the actions. Then, starting
from any state s = s0, we can create an infinite sequence of states (s0, s1, s2, ...)
by taking the actions prescribed by the policy. A policy can also be stochastic,
which is to say that it allows for stochastic selection of actions: instead of
prescribing an action for each state, it gives for each state the probabilities
of the actions being chosen. Either way, the value of a state under a policy,
denoted by V π(s), can then be evaluated by considering the reward on the state
itself, as well as the expected future-discounted rewards on the states that occur
later in the sequence. Te be precise:

V π(s0) = E

[ ∞∑
i=0

δiR(si)|π

]
, (2.3)

which always converges since δ < 1 by definition. A policy is considered optimal
if it simultaneously maximizes V π(s) for all s. Such a policy is denoted by π∗.
Succinctly, for any policy π,

V π
∗
(s) ≥ V π(s) ∀ s ∈ S. (2.4)

This equation is the centerpiece of IRL, as observations are assumed to exhibit
an optimal policy. Also, notice the parallel between above two equations and
the description of Equation 2.2.

Now that we understand the value of policies, we can talk about applying IRL
to the given MDP. The first ingredient is the assumption that observed behavior
displays an expert policy, which is another way to say that we would like to learn
the decision making strategy from real data. Secondly, it is postulated that the
reward function R(s) is a linear combination of utility functions, or features:

R(s) = α1φ1(s) + α2φ2(s) + ...+ αNφN (s)

= αTφ(s)
(2.5)

where α1, ..., αN are free constants. We can choose these features φi ourselves.
Then, upon inferring π∗ from the observations, we can obtain the coefficients
α1, ..., αN so that Equation 2.4 holds.
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2.5 Objectworld

A general idea to describe motion around a physical environment as an MDP is
to discretize the space into a grid. On the tiles of this grid, objects can be placed
that might or might not influence the pedestrian. Consider the square space
subdivided into an N ×N grid with an actor moving through it. The states are
described by the x, y-coordinates of the tiles in the grid, and the actions in this
MDP are to move up, move down, move left, move right, and remain in place.
Levine et al. [19] used the description of an objectworld, where there are objects
placed around this grid on random tiles. In their description, the objects had an
inner and outer color, both chosen from an ensemble of C colors. There are 2C
features, each being the Euclidean distance to the nearest object with a specific
inner or outer color:

φinner i(s) = dist(s, nearest object of inner color i), (2.6)

and, mutatis mutandis, the same for the inner colors.

When one has access to trajectories in this grid, one can solve the reward
that is parameterized by the mentioned features. When a reward is obtained, the
coefficients of the features will then reveal whether the different inner and outer
colors each had a repulsive or attractive effect on the pedestrians. To see that
a repulsive effect corresponds to a positive constant and vice versa, one needs
to realize that increasing the distance to an object also increases the reward if
the base function corresponding to that object has a positive coefficient.

2.6 Solving principles

Given any MDP, the problem of finding a reward function that upholds Equation
2.4 has many degenerate solutions [20], among which the trivial zero reward:
R(s) = 0. To resolve this ambiguity, there exists a multitude of principles to
select one of these solutions, each based on a different rule.

2.6.1 Maximum difference

A principle proposed by Ng et al. [20] that infers a policy from actual trajectories
is what we refer to as the maximum difference algorithm. At the basis of it
are expert demonstrations on the one hand and nonexpert demonstrations on
the other. For example, Muelling et al. [21] used one skilled table tennis player
and a group of five novices. From these demonstrations, a presumed expert
policy π∗ and a set of nonexpert policies {π1, ...π5} were inferred. The point is
to find the reward that leads to a highest possible difference in value functions
V π

∗
and V πi simultaneously for i = 1, .., 5. More precisely, one looks for the set

of coefficients α∗ such that
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α∗ = argmax
α

∑
i

pm

(
V π

∗
(s0)− V πi(s0)

)
(2.7)

where

pm(x) =

{
mx if x < 0

x if x ≥ 0

is a penalty function that deters a violation of Equation 2.4. Indeed, the higher
m, the larger the penalty for a violation. Typically m = 2 is enough to converge
to satisfactory solutions [20].

When there is no access to nonexpert demonstrations, one can make these
demonstrations by modifying the expert policy. Since the idea behind the max-
difference algorithm is to make single-step deviations from the observed policy
as costly as possible, this is done by changing the policy at just one state.

A typical maximum difference algorithm first infers the assumed optimal
policy π∗ from observed demonstrations, then creates the set {π1, ...πk} of k
nonexpert policies by one-step deviations from the optimal policy. Then, it cal-
culates the reward with Equation 2.7. With that, new policy πk+1 is found that
is optimal under the calculated reward and added to the set of nonexpert poli-
cies, after which the reward is updated. This process repeats until a satisfactory
reward is converged on.

2.6.2 Maximum entropy

Unlike the previous principle, the maximum entropy or MAXENT principle
first suggested by Jaynes [22] and implemented in IRL by Ziebart et al. [23]
proposes to look for the solution that out of all possible rewards has the highest
information entropy. In other words, the actor aims to maximize the expected
reward by acting as randomly as possible.

The parallel with statistical thermodynamics is clear: in Boltzmann’s formu-
lation of the entropy of a system, it is given by S = kB ln Ω; it scales logarith-
mically with the number of microstates in a system Ω. Maximizing the entropy
then entails finding a macrostate of the system that comprises the highest pos-
sible number of microstates. For example, in the system of 100 flipped coins,
maximizing the entropy means looking for the combination of total heads and
total tails that allows for the highest possible number of ways these totals could
have come about. The lowest entropy is the case of 100 heads or 100 tails as
there is only one way to achieve these, so we already fully know the microstate.
Meanwhile, the highest entropy is the case of 50 heads and 50 tails, as there are(

100
50

)
≈ 1029 ways to get this. Then, despite knowing the macrostate, we know

practically nothing about the microstate that brought it about. In this sense,
the number of microstates Ω represents the lack of knowledge of the system. By
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extension, the maximum entropy state then makes the least number of assump-
tions about the system, which is the thrust behind the principle.

The basic Maximum entropy reinforcement learning description concerns
solving a Markov Decision Problem, making it model-based. Although modern
model-free maximum entropy IRL models have been developed [24], we will only
consider the model-based description in this paper.

Pivotal in the MAXENT description is the feature count of a trajectory. We
remind the reader that features are the base functions that parameterize the
reward and are represented by the vector φ(s), see Equation 2.5. A trajectory
ζ = (s0, ..., sf ) has total feature count φζ =

∑
si∈ζ φ(si). Assuming access to

a number m of demonstrated trajectories {ζ1, ..., ζm} through the state space,
the algorithm considers the expected accumulated feature counts along these
trajectories, i.e. the feature expectations:

φ̃ =
1

m

m∑
j=0

φζj =
1

m

m∑
j=0

f∑
si∈ζj

φ(si). (2.8)

On the one hand, there are the real trajectories, and on the other hand there is
the learner, whose behavior we would like to match with the real trajectories. In
MAXENT, this goal is prescribed as merely matching the feature expectations
of the learner’s trajectories with those of the real trajectories:∑

Path ζi

P (ζi)φζi = φ̃i (2.9)

which implies that we need a way to calculate the probability of any trajectory
ζi. In order to do so, MAXENT models the distribution of trajectories as a
function of the feature coefficients α:

P (ζi|α) =
1

Z(α)
eα

Tφζi (2.10)

and it can already be inferred that trajectories with high cumulative reward are
the most common, though trajectories with lower reward still have a probability
of occurring.

Now, like the maximum difference algorithm, there are multiple distributions
that satisfy the matching of feature counts (Equation 2.9). To resolve this
ambiguity, MAXENT chooses the feature coefficients that maximize the entropy
of the distribution; that is, it looks for

α∗ = argmax
α

∑
examples

logP (ζ̃|α). (2.11)

This function is convex and can be optimized by taking the difference in feature
counts as gradient; these feature counts are obtained by calculating the expected
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visitation frequency of each state under the policy of the current iteration. A
general algorithm that implements this principle is given in Ziebart et al.’s pa-
per [23].

A great advantage of MAXENT is that per Equation 2.10, emerging tra-
jectories can still be suboptimal with respect to the current iteration of the
reward function. Therefore, if in observed data, such supposedly suboptimal
trajectories occur, the algorithm finds this acceptable and does not need to
majorly change the coefficients of the features. This makes MAXENT robust
to statistical noise in observations, as is shown in [25], where the reward was
modelled as a linear combination of features plus actor-specific statistical noise.
These properties make MAXENT today’s preferred framework for most IRL
applications.
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Chapter 3

Binary choice

In the simplest case, utility maximization involves a binary choice. Maximizing
the utility then simply means choosing the option that, out of the two, has a
higher utility. An instructive example of a binary choice scenario with people
balancing the utilities of path length and path occupation is the Glow 2019
setting, of which the routing choices of pedestrians has been studied before [26],
[27]. Glow is a yearly event in which people walk through the city of Eindhoven
along a route decorated with light exhibitions. At a certain point, the route went
under the Philips Stadium, where a pillar split up the route into two paths, one
being shorter than the other. See Figure 3.1.

Figure 3.1: Visualization of the Glow scenario. People enter from
below and are subjected to a binary choice between path A or path
B. Typical trajectories along path A and path B are respectively
drawn in green and red.

With no people crowding either of the paths, the most sensible choice is to
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take path A, as it is shorter. However, as more people occupied path A, path
B comparatively became a more attractive choice until enough of the crowd in
path A had passed by.

In this chapter, we first present a toy problem based on this event before
considering real measurements. In this toy problem, artificial observations are
created according to a ground truth reward, and it is investigated how accu-
rately this reward can be reobtained through inverse reinforcement learning.
The second part of this chapter involves performing IRL on real observations
that were carried out by A. Gabbana, F. Toschi, P. Ross, A. Haans and A.
Corbetta [26].

3.1 System description

Consider a person walking at a constant speed V0 encountering the Glow sce-
nario where they must choose between path A and path B. Let the length of
path A and B be respectively LA and LB . Upon arrival, the person sees the
number of people in either path, denoted as NA and NB . The person considers
the combined utility of each path and makes their choice, assumedly the path
with the highest reward. An observation in this system would entail seeing the
velocity of the actor, the lengths and occupation of the paths, and the choice of
the actor given these factors.

An MDP description is redundant due to the simplistic nature of this sys-
tem; we simply need to prescribe how the reward for path A and path B is
constructed. The utilities at play are clearly V0, N and L, so we are looking for

R(V0, N, L) =
∑
i

αiφi(V0, N, L). (3.1)

In addition, the notion of a value of a policy in this system is redundant; it
suffices to say that a pedestrian takes the path with the highest reward.

3.2 Toy problem

To perform IRL, we need to evaluate the value function on all states. To do this,
we must first infer the policy from choices displayed in our observations. It was
mentioned that given the velocity, the path lengths, and path occupations, a
person makes a choice based on whether path A or path B yields a higher reward.
In this section, we consider 10 000 artificial persons, and present each of them
with a different realization of the Glow system, i.e., each person encounters
the system with a unique combination of velocity and path occupations. The
path length is let equal for all persons. Then, the choices of the persons are
made according to a ground truth reward Rgt(V0, N, L), that is, they choose the
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path that yields them the highest reward. We want to find out whether we can
recover this ground truth reward with the maximum difference IRL algorithm.

3.2.1 Creating observations

An existing model that combines path length and path occupation is the fun-
damental diagram, where the velocity of a pedestrian is reduced linearly with
the number of people N in their path. The speed V is then given by

V = V0 − γN, (3.2)

where V0 is the unobstructed speed and γ is the speed penalty per pedestrian
in the path. This model has been shown to be accurate for large crowd flows in
urban areas [28]. Within the system at hand, calculating the travel time for a
person at speed V0 along a path of length L and occupation N is as follows:

tfd =
L

V0 − γN
. (3.3)

We want to make our artificial pedestrians to behave ideally, so we should
make them choose the path that minimizes their travel time. A viable ground
truth reward function would be the inverse of the travel time, since then, this
reward is maximized:

Rgt(V0, N, L) =
1

tfd
=
V0

L
− γN

L
. (3.4)

So, 10 000 pedestrians are initialized, each with a different combination of
V0, NA andNB . Each of them looks at which ofRgt(V0, NA, LA) andRgt(V0, NB , LB)
is higher and chooses the corresponding path. In the end, the observations look
as provided in Table 3.1:

ID V0 NA NB choice

0 1.49 7 2 B

1 1.39 3 5 A

2 1.58 2 1 A

3 1.50 2 8 A

...

9999 1.14 8 6 B

Table 3.1: Observations of the artificial pedestrians. Here, γ is set to 0.09.

3.2.2 Performing IRL and results

Now that we have observations to work with, IRL can be performed. The
way we provide the observations to the system is to convert the set of 10 000
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observations to a concatenation of choices. For instance, the concatenation cor-
responding to Table 3.1 would look like (B,A,A,A, ..., B). We consider this
sequence the optimal policy π∗ for the given set of observations, and this se-
quence counts as one singular demonstration. Suboptimal demonstrations are
created with the one-step deviation rule, i.e. we permute one of the choices in
the optimal sequence to create a suboptimal demonstration, see Figure 3.2.

We chose to start out with k = 3 suboptimal demonstrations. Now that we
have an optimal demonstration and a set of suboptimal demonstrations, we are
ready to perform the maximum difference IRL algorithm. To get a sense of how
consistent the algorithm is, the algorithm is performed 50 times, each time on
a unique realization of the observations.

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

… …

𝑠𝑠𝑁𝑁 = (𝑉𝑉0𝑁𝑁,𝑁𝑁𝐵𝐵𝑁𝑁, 𝐿𝐿𝐵𝐵𝑁𝑁)𝑠𝑠𝑖𝑖 = (𝑉𝑉0𝑖𝑖 ,𝑁𝑁𝐴𝐴𝑖𝑖 , 𝐿𝐿𝐴𝐴𝑖𝑖 )𝑠𝑠1 = (𝑉𝑉01,𝑁𝑁𝐴𝐴1, 𝐿𝐿𝐴𝐴1 )

Figure 3.2: Concatenated sequence of choices. A one-step permuta-
tion is made to the sequence at the top so that state si changes from
(V i

0 , N
i
A, L

i
A) to (V i

0 , N
i
B , L

i
B).

We assume a reward of the form of Equation 3.1:

R(V0, N, L) = α1
V0

L
+ α2

N

L
. (3.5)

Since the goal is to recover R = Rgt, we expect (α1, α2) = (1,−γ). Using the
maximum difference algorithm, we get using discount δ = 0.95 and penalty fac-
tor m = 2 that α1 = 1 without fail, and for α2 we see the following convergence
as more suboptimal policies get added with every iteration:
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Figure 3.3: Progress of α2 optimization. The blue squares represent
individual measurements while the dashed line goes through their
means. After 23 iterations, at which point there are 25 total nonex-
pert policies, the average value of the coefficient α2 reaches -0.0929
± 0.005. This shows that for this toy problem which featured ideal
behavior, the fundamental diagram coefficient can be recovered.

After 23 iterations, at which point there are 25 total nonexpert demonstrations,
the algorithm arrives at mean α2 = −0.0929± 0.005.

With the recovered reward at each iteration, we can let the pedestrians make
choices in the same way as originally was done with the ground truth reward.
By comparing these choices in our ’observations’, we can then get a sense of
how accurate the obtained reward is. In Figure 3.7, the fraction of choices that
are identical to the observed choices is set out against the number of policies in
the optimization (which increases with every iteration). After 22 iterations, the
accuracy is 0.988 on average.
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Figure 3.4: Accuracy of predicted choices of the obtained reward vs
the number of policies in the optimization. The blue squares rep-
resent individual measurements while the dashed line goes through
their means. An average accuracy of 0.988 is obtained after 22 iter-
ations.

3.2.3 Bias against one path

In an earlier analysis of the glow bifurcation, it was shown that for low pop-
ulations of path B (that is, at low values of NB

NA+NB
≡ NB

Ntot
), pedestrians did

not take path B even though this would minimize their travel time [26]. Hence,
specifically for path B, there is a penalty to the reward that dissipates at high
values of NB

Ntot
. In our analysis, we want to simulate this effect by using the

ground truth reward function

Rgt(V0, N, L,Ntot) =
1

tfd
− p φ3

(
N

Ntot

)

=
V0

L
− γN

L
− p

(
1− N

Ntot

)
L

δL,LB

(3.6)

where the Kronecker delta is employed to only incur the penalty if path B is
chosen. Note that this is equivalent to saying that the perceived velocity in path
B is given by

V = V0 − γN − p
(

1− N

Ntot

)
(3.7)

while in path A, the perceived velocity is given by just the fundamental diagram.
Again, dummy observations are simulated and treated as observations for the
maximum difference algorithm. We use the same settings, with p = 0.3. We use
the following linear combination as supposed reward:
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R(V0, N, L,Ntot) =
V0

L
− γN

L
+ α3

(
1− N

Ntot

)
L

δL,LB , (3.8)

expecting that α3 = −p. We obtain the following result for α3:

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
number of policies

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20
3

mean 3

3 = p (target)

Figure 3.5: Result for α3 during the iterations of the maximum dif-
ference algorithm. This figure is analogous to Figure 3.3, this time
for α3, which is the coefficient in fron tof the penalty function. After
28 iterations, it finds α3 = −0.315± 0.019 on average.

After 28 iterations, at which point there are 30 total nonexpert demonstrations,
the algorithm arrives at mean α3 = −0.315± 0.019. The predicting accuracy is
given in Figure 3.6.
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Figure 3.6: Accuracy of predicted choices of the obtained reward
with the obtained coefficient α3 during the iterations of the maxi-
mum difference algorithm. We see that high accuracy can already
be achieved when the obtained coefficient is only somewhat near the
ground truth value.

On average, an accuracy of 0.990 is attained after 28 iterations. This shows
that there is barely any room for improvement, even if the obtained α3 is not
exactly equal to its ground truth value. An explanation is that the coefficient
cannot be improved if the policy that is obtained from the reward with this coef-
ficient is already the same as the observed policy. This means that any coefficient
that can be obtained with the maximum difference algorithm is bounded by a
range where the resulting policy is the same as the observed policy, although
this range is likely small, as is the case in this exercise.

3.3 IRL on real Glow data

Now it is time to perform IRL on real data. With sensors, the positions of
all pedestrians are tracked in real time with high precision. Let us look at the
heatmap of these pedestrians to get a sense of which of them we are concerned
with:
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Figure 3.7: Heatmap of pedestrian locations. We see path A on
the right, which is more popular than path B, the diagonal stream
originating from the bottom right, going towards the left. A small
influx into path B from the lower left is also present, we know that
these are cyclists.

It is clear that most pedestrians take path A. In fact, from our analysis, 89.5% of
pedestrians remained on path A. It should be noted that the small stream that
originates from the bottom left seems to occupy path B; those are in fact cyclists.

Within the IRL description, the utility of path length should be based on
the a priori estimate of this length. An earlier analysis of these data has shown
that typically, a walk that goes along path B is 1.2 times longer than a walk
that goes along path A [26]. In this analysis, it was shown that a fundamental
diagram is present in both paths of the bifurcation, with free stream velocity
V0 = 1.012 and fundamental diagram constant γ = 0.017.

In an ideal world, the pedestrians choose the path that gives them the lowest
travel time according to this fundamental diagram, like in the toy problem.
However, the pedestrians at large did not do this - they had a bias for path A.
To model this, the perceived travel time for path B was described as a functional
of the fundamental diagram travel time. For our purpose, this means that the
base functions in Equation 3.5 will not suffice. Instead, a reward function of the
form

R(V0, N, L,Ntot) =
1

tfd
+ α3Π(V0, N, L,Ntot)

=
V0

L
− γN

L
+ α3Π(V0, N, L,Ntot)

(3.9)

should be tried with the mentioned values for V0 and γ, where Π(V0, N, L) is a
penalty that should encode the bias against path B. To get a feeling for what
this penalty should look like, the fractions of pedestrians that chose path B
given NA and NB are laid out in Figure 3.8. The most egregious differences
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between the pedestrians’ choices and the optimal choices occur at low NB and
high NA; At low populations of path B, pedestrians are unlikely to choose the
path even when path A becomes crowded. Earlier work has shown success by
increasing the perceived travel time of path B at low relative populations of
path B, with this penalty dissipating at higher populations [27]. We may try
Π(V0, N, L,Ntot) = φ3( N

Ntot
) from equation 3.6.
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Figure 3.8: In the left figures, the probability of choosing path B
for each combination of NA and NB are laid out, (a) being the real
choices from the data and (b) being the choices in the ideal case
where people choose the shortest path according to their fundamental
diagram-based travel time. White space means that there is not
enough data to infer the probability. In (a), we see that path B is
rarely chosen when it has a low population. In (b), we see a red
region where people who behave ideally always choose path B, and
the white region is where they always choose path A. Inbetween, there
is a region where the choice can be either, depending on the person’s
velocity. In image (c) on the right, the ideal choice probabilities
are subtracted from the actual probabilities to show in what regime
people act the least rationally. The largest discrepancy is when NB

is low and NA is relatively high.
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3.3.1 Results

With the proposed reward

R(V0, N, L,Ntot) =
V0

L
− γN

L
− α3

(
1− N

Ntot

)
L

δL,LB (3.10)

with V0 = 1.012 and γ = 0.017, we get the following result for α3:
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Figure 3.9: Result for α3 during the iterations of the maximum dif-
ference algorithm. No convergence is reached even after 100 policies,
meaning the algorithm cannot find a valid linear reward function of
the proposed form. The best it can do is α3 = −0.575, which enters
the regime where path A always yields a higher reward.

from which it is clear that the algorithm does not know what to do - the obtained
α3 bounces between the values α3 = −0.575 and α3 = 0.125. In fact, when
we look at the accuracy in Figure 3.10, it becomes apparent that the value
α3 = −0.575 enters the regime where the penalty is large enough to always let
the reward be greater when path A is chosen: the accuracy is then 0.895, which
is the fraction of pedestrians that chose path A. The other value gives very poor
accuracy, the reason for which is unclear.
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Figure 3.10: Prediction accuracy for the obtained α3 values at each
iteration. We see that an accuracy of 0.895 is reached when α3 is
negative enough to always suggest taking path A, which happened
89.5% of the time in the data. The other value for α3 yields very low
accuracy for unclear reasons.

Modeling the reward in this linear way with the proposed function for
Π(V0, N, L,Ntot) is clearly not possible. We could try other functions for Π(V0, N, L),
but at that point it becomes a guessing game: we must conclude that attempting
to model this scenario as a linear utility maximization process is not successful.
Rather than a linear combination, the perceived travel time was modelled as a
function of the fundamental diagram-based travel time in [26], which means that
IRL frameworks that allow for non-linear reward functions should be considered
in the future.
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Chapter 4

Toy problem: routing
toward an exit in a crowded
environment

Eventually, we will want to move toward the environment of a train station
platform. Before we go there, as an intermediate step, we will consider a square
environment where an actor wants to reach the exit, and the space between the
starting position of the actor and the exit is occupied by crowds at random lo-
cations. These crowds have varying densities. In this chapter, we consider a toy
problem where we create artificial observations by simulating many realizations
of these environments, each time letting the actor walk to the exit through the
crowded space. As with Section 3.2, the trajectory of this walk will be dictated
by a ground truth reward, and the goal is to see if we can recover this reward.

4.1 Description of features

In our problem, we use an extension of the objectworld description from Section
2.5. Instead of the objects having an inner and outer color, they have just one
color, all still chosen from an ensemble of C colors. In addition, there is an
object that acts as the exit, and this object is otherwise colorless. This means
there are C + 1 features. We use a 10× 10 grid and the (non-exit) objects can
have one of three colors: yellow, orange or red. Instead of the features being
the Euclidean distance to the nearest object of each color, the square root of
the distance is taken, because this led to more intuitive trajectories; this is an
otherwise arbitrary choice. A state s = (xs, ys) in the grid then has the following
feature vector:
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φ(s) =


√

dist(s, nearest yellow object)√
dist(s, nearest orange object)√

dist(s, nearest red object)√
dist(s, exit)

 (4.1)

and the ground truth reward will be made from these features, by way of Equa-
tion 2.5. We are free to choose the ground truth coefficients αgt as we like.
In this case, we want the different colors to represent different crowd densities,
i.e. the yellow objects are low-density crowds, the orange objects are medium-
density crowds and the red objects are high-density crowds. We want to make
it so that higher density crowds have a stronger repulsive effect than low density
crowds, and that the exit has an attractive effect. We remind the reader that a
repulsive effect corresponds to a positive constant and vice versa. To this end,
we chose αgt = (1, 3, 5,−8). For the reward, we assume the same features as 4.1.

An environment is randomly generated, with the exit being placed in the
top row of the grid and the crowd objects randomly placed between the top and
bottom rows. With the ground truth reward 10 trajectories are generated, each
with a different starting square on the bottom row of the grid. On these trajec-
tories, the MAXENT algorithm is performed to obtain the feature coefficients
α of the different object classes. A sketch of the procedure is given in Figure
4.1.

Figure 4.1: Process of generating trajectories through the objectworld envi-
ronment. First, an objectworld is initialized (left). Then, based on the fea-
tures of Equation 4.1 and the ground truth coefficients αgt, the ground truth
reward is constructed (middle). The optimal policy for this ground truth re-
ward is also calculated and indicated by the triangles. Then, with this policy,
10 demonstrations are are generated, each being a trajectory starting from a
different tile in the bottom row of the grid (right).

4.2 Results and discussion

The result heavily depends on the environment. In some environments, the tra-
jectories created with the ground truth reward follow the same path regardless
of their starting position. If this occurs, many states remain unexplored, and
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the MAXENT algorithm cannot find what the policy should be in these states.
Many policies lead to the same trajectory, and this also means that there are
many reward functions that explain the trajectories. The result is that the co-
efficients that the algorithm finds can differ significantly from the ground truth
coefficients. In such cases, generating trajectories with the obtained reward
does still lead to trajectories that are very similar to the original trajectories.
An example of an environment that has a ground truth reward that leads to
trajectories that leave many states unexplored is given in Figure 4.2.

Generally, the more states are explored by the ground truth trajectories, the
more restricted the reward and the better the algorithm is at finding the proper
coefficients. An example of a ground truth reward that leads to trajectories that
explore many states in the grid is given in Figure 4.3.
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(a) Both images display a 10× 10 grid environment with objects placed on
random tiles. Yellow squares represent a low density crowd, orange tiles a
medium density crowd and red tiles a high density crowd. The green tile is
the exit. Trajectories starting from the bottom row are made to walk to the
exit, optimizing a reward. On the left image, they walk while optimizing
a ground truth reward and on the right, they walk while optimizing the
reward that is recovered by our algorithm. The trajectories are identical.
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(b) On the left, the ground truth reward is given by the colors, see
the colorbar. The policy that indicates the optimal action is given by
the directional triangles. On the right, the obtained reward and pol-
icy are shown. The red frames highlight tiles where the obtained pol-
icy differs from the ground truth policy. The obtained coefficients are
α = (1.87, 4.48, 3.21,−7.88), which is significantly different from the ground
truth coefficients αgt = (1, 3, 5,−8).

Figure 4.2: An example of an environment that leads to an obtained reward
that is different from the ground truth reward. Many states in the grid are
unexplored, and the policy in the unexplored region has relatively many dif-
ferences with the original policy, but this is inconsequential for the simulated
trajectories, as is indicated by the top right image.
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(a) Another example of an environment. Refer to Figure 4.2a for a descrip-
tion.
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(b) Left: ground truth reward and policy. Right: recovered reward and
policy. Refer to Figure ?? for a description. The obtained coefficients are
α = (0.97, 3.11, 5.77,−7.20), which is similar to the ground truth coeffi-
cients αgt = (1, 3, 5,−8).

Figure 4.3: Sometimes, the environment leads to a good recovery of the re-
ward. These figures are analogous to Figure 4.2.

By and large, the ground truth reward at hand leads to trajectories that
explore sufficiently enough states to retrieve that α1 < α2 < α3. To confirm
this, 1500 environments were simulated, and the statistics of the 1500 sets of
coefficients α are laid out in Figure 5.13. The average coefficients of the features
is α̃ = (1.80, 3.38, 5.14,−7.26). Since the algorithm calculates the coefficients
unconstrained, we can get a meaningful result by looking at them in relation to
each other. To this end, since we are interested in the coefficients of the crowd
classes, we scaled the coefficients α1, α2, α3 by the environment-respective α4

and multiplied that by −8 since that was the ground truth value for α4. This
gives the average result (α1, α2, α3) ∗ −8

α4
= (2.06, 3.81, 5.74).
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Figure 4.4: Histograms of the obtained α’s for 2000 different envi-
ronments. In (a), all α’s are plotted, while in (b), the α’s belonging
to the crowd classes are scaled with −8/α4. With this scaling, the
α4 have been scaled to -8, which is the ground truth value.

When compared individually to the ground truth coefficients, the obtained
coefficients are often much different. However, averaged over many environ-
ments, the coefficients resemble their ground truth counterparts relatively well.
What we conclude from this is that coefficients for a single environment are not
reliable, but if multiple environments are considered, the average coefficients
should give a good indication of reality.

What does hold, however, is that the prediction of new trajectories in any
environment is always accurate, no matter how close the obtained coefficients
are to their ground truth counterpart. An idea that comes to mind is to build
a database of environments. If the database contains sufficiently many environ-
ments, then when a new environment is presented, instead of recalculating the
coefficients of this environment with the IRL procedure, we can point to the
most similar environment in the database and use the coefficients for that one
to make predictions. At the same time, the average value of the coefficients in
the database does provide information on the relative importance of the utili-
ties that the features respective to the coefficients represent. A caveat with this
procedure is that in order to make accurate predictions, the set of environments
in the database must cover a substantial fraction of all possible configurations
of the environment.
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Chapter 5

IRL applied to a train
station platform

In this chapter, we first describe general behavior of pedestrians leaving a train
and walking toward the escalator or staircase at the exit of the platform. Then,
the reward is proposed as a combination of the static environment such as the
staircase, the escalator and the boarding zone, and the dynamic environment
which consists of the moving pedestrians. The dynamic environment is pre-
sented as a frequently updating objectworld. Finally, a way to predict how
people handle a bifurcation is presented.

1

1. Escalator going down (away from platform)

2. Stairway

3. Escalator going up (onto platform)

4. Schedule and information board

5. Kiosk

6. Bench

2

3
4

5
6

Figure 5.1: Overview of platform and objects. The black circles are
artifacts to hide pedestrians present during the snapshot.
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5.1 Exploring the data

Every day, anywhere from 20 000 to 50 000 people walk across platform 2 of
the Eindhoven railway station. The platform and its peripherals are described
in Figure 5.1. The platform is 14 m wide and, stretches about 70 m long, mea-
sured from the beginning of the stairs to the end of the figure. With a sensor
tracking setup, the x- and y-positions of all pedestrians on the platform are
continuously and accurately tracked. Measurements are carried out by Prorail
under the tightest privacy constraints, and this is compliant with the ethical
authorization we received. Measurements from October 2021 to March 2022 are
considered.

The pedestrians can be divided into two groups: people who leave the train
and enter the platform, and people who leave the platform and enter the train.
In this paper, the people who leave the train and walk toward the exit of the
platform, eventually taking the escalator or stairway are studied.

For people stepping out of a cabin far from the exit, the kiosk in the center
has a role similar to the stadium pillar in the Glow scenario: it creates a bifur-
cation in which one path to the exit is shorter than the other. For convenience,
the shorter path is said to go ’over’ the kiosk and the longer path to go ’under’
it. We will focus on the pedestrians who leave the train far enough to be pre-
sented with the choice between these paths.

We will first consider the positions of other people on the station at the
moment a pedestrian leaves their cabin and enters the platform in tandem with
their eventual trajectory. In Figure 5.2, two cases of an actor choosing to go
under the kiosk is presented, one of which initially has a considerable crowd
in the path over the kiosk and one where there are barely any people on the
station, and two cases of an actor choosing to go over the kiosk. We see that
the actors who go under the kiosk initially do not plan to do so; they remain
undecided until after a few steps. Presumably, especially during busy hours,
this is because there is an initial group of people lining up at the cabin door,
waiting to enter after everyone has stepped out of the cabin. This wait-and-see-
type behavior is common and invalidates any model that predicts the choice of
going under or over the kiosk from the moment the actors leave their cabin.
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(a)

(b)

(c)

(d)

Figure 5.2: Four examples of actor trajectories. While both (a) and (b) are
common, it is by far more common to see (c) than (d). However, the existence
of (d) implies that it only takes very low occupation of the area above the
kiosk to make pedestrians walk under the kiosk.

Questions

The first question we ask is whether we can understand and predict the close-
range interactions between an actor and the pedestrians around them. Can we
distinguish whether dense spots have a different utility to the actor than less
dense spots?

Another proposition is to understand how we can predict whether a person
goes over or under the kiosk. Do they immediately know which choice they will
make? If so, the first few steps they make should provide enough information
to infer their choice. However, to remain in line with our analysis of the Glow
scenario, we want to use the populations in the paths over and under the kiosk
in our prediction.

5.1.1 Populations under and over the kiosk

Similar to the Glow scenario, it is assumed that people base their decision on
whether to go over or under the kiosk on the populations of these regions. The
group of people who start their walk from the top-right region of the platform
have a good idea of how many people there are in the region above the kiosk,
since they can fully see this region. However, they cannot fully see the region
below the kiosk, so they have limited information about how many people oc-
cupy this region. Therefore, we assume they base their decision on the difference

38



Department of Applied Physics Eindhoven University of Technology

between the visible population above and under the kiosk. We count the pop-
ulation in the to the actor visible region over and under the kiosk, where we
assumed the visible regions are as given in Figure 5.3.

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎

𝐔𝐔𝐔𝐔𝐔𝐔𝐎𝐎𝐎𝐎

Figure 5.3: The regions where the population under Nunder and over Nover

are counted.

We track the total population inside both zones during the month of October
2021 to get a general idea of what these are. We are interested in the difference
between these populations Nover−Nunder, so the distribution of this quantity is
laid out in Figure 5.4.
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Figure 5.4: Distribution of the population differences Nover−
Nunder in the visible regions of Figure 5.3.

We will later use this distribution to threshold it into equally populated
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quantiles for the population differences, i.e. we will distinguish different cases
of Nover −Nunder > 0.

5.2 IRL implementation

We set out to learn a reward function that is a linear combination of utilities
and extract information from the coefficients. From what we see, it is clear that
the pedestrians in question consider the following utilities when choosing their
path: the escalator, the stairs, the boarding zone, and the other pedestrians.
The escalator and stairs serve the same function, but could mutually differ in
utility. A starting point would be to use a linear reward built from features
similar to 4.1, with the objects now being the escalator, stairs, boarding zone
and pedestrians. The kiosk and bench simply serve as impassable obstacles.
However, as explained in Section 2.3, we might set out to amend the reward to
include more utilities if the results are unsatisfactory.

If we were to use this approach, we must translate the platform and its
pedestrians to an objectworld environment: this entails discretizing the space
into a grid and then placing objects on the grid tiles. For reasons that become
clear later, it is convenient to ensure the tiles are squares. Since the dimensions
of the station are 14×70m, we can use a 20×100 grid; the tiles are then 70×70
cm in real measurements. The proposed grid is given in Figure 5.5 and shows
us in which tiles to place our objects.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98
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Figure 5.5: Discretization of the platform environment. From this,
we read on which tiles we should place the objects in our objectworld
environment.

Object colors and features

A 70 × 70 cm tile is likely to only be occupied by one or zero pedestrians, but
it does occur that two or even three pedestrians occupy it. For this reason,
we choose three different colors for these occupation levels: a yellow object
represents an occupation of 1 pedestrian, orange represents 2 pedestrians on
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the tile, and red represents 3. Moreover, we need three colors for the static
objects - the boarding zone, the escalator and the stairs. This leaves us with 6
colors:

static environment colors: yellow, orange, red
dynamic environment colors: boarding zone, escalator, stairs

and therefore 6 features. The words ’yellow’, ’orange’ and ’red’ refer to the
cases of respectively 1, 2 or ≥ 3 pedestrians on a tile. The text colors represent
how the objects will be displayed in the coming graphs. The features will be
similar to Equation 4.1, although we will later discuss their exact form. Impor-
tant to note is that one object can be of multiple colors; for example a tile on
the boarding zone on which one person is standing has both the yellow and the
boarding zone color.

In our discussed version of objectworld, we need an MDP description. The
allowed actions in the MDP are to go up, down, left, right, and to remain in
place. we need to discretize the trajectories of the actors as well. In the dis-
cretized version of the trajectories, it may occur that an actor makes a diagonal
transition from one tile to another - we must then break it up in two steps, e.g.,
a step diagonally upwards and to the left is broken up into two steps: one up-
wards and one to the left. In Figure 5.6, an example is given of an objectworld
with a discretized trajectory through it.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

y
0
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Figure 5.6: Proposed objectworld representation of the top image in
Figure 5.2. Similarly to Section 4, the different colors are different
object classes, the crowd being classified as either low density (1
person per square; yellow), medium density (2 persons per square;
orange), or high density (3+ persons per square; red).

As found in the previous chapter, the coefficients that will be obtained from
any given single objectworld will not provide a good insight individually. How-
ever, when coefficients for many different objectworlds are obtained, we can still
gain insight by looking at their average. As mentioned, to make predictions for
a new environment using this database, we will look at the closest match for the
new environment within the database, and choose the coefficients of the object-
world respective to that environment. It was postulated that for this to work
well, the database must contain a significant fraction of the possible configura-
tions. This is where we see an issue with our current idea for the objectworld:
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the number of possible configurations is astronomically high, primarily due to
how many tiles we have. To given an idea, we have O(103) tiles, each of them
can be either empty or occupied by one of three object classes (yellow, orange

or red). This amounts to 4103 ≈ O(10600) different configurations, and this is
without even considering the placement of objects with the colors of the static
environment.

In addition, there is one obvious and major difference with the scenario in
Chapter 4. While in that section, the crowd objects were modelled as stationary
during the actor’s trajectory, in this case, the crowd is time-dependent: in the
next step of our actor, the environment has already changed completely. We
need to find a way to get around this time dependence. The next section will
propose a way to deal with these two problems simultaneously.

5.2.1 The box approach

To address the problem of the platform objectworld having an enormous num-
ber of possible configurations, we must lower the number of tiles. This can be
done by changing the resolution of the grid. Using a coarse grid means that
we cannot model the close-range interactions with pedestrians, which is what
we are interested in, so doing this is not compatible with our goal. Another
way to lower the number of tiles is to only consider (’zoom in’ on) a certain
part of the environment. If we consider an actor at time t at a certain tile
x, y on the grid, we can draw a square box of size B × B centered around this
tile and disregard anything that is outside of this box. This new environment
has only B2 tiles. We know the crowd at time t, so we can already place the
crowd objects at the proper locations in the box. We can also place the static
objects in the box. Naturally we can place any static objects in the box. We
know the trajectory of the actor while they are inside this box. If we can cap-
ture all utilities relevant to the actor inside this box, we can find the coefficients
of the features respective to the utilities with the usual objectworld IRL scheme.

The second obstacle for the objectworld approach was the time dependency
on the crowd. We will explain how the box idea can help us take on this prob-
lem. Consider the following (Figure 5.7 will illustrate the concept). At time t1,
we draw a box around the actor who is located on the tile at x1, y1. We track
the tiles the actor visits to get their trajectory inside this box. The actor crosses
the edge of this box at time t2, at which point they are at location x2, y2. Now,
we draw another box around the tile at x2, y2 and load the crowd inside this box
at time t2. We repeat this process until the entire trajectory of the actor has
completed. So, the crowd is updated every time the actor leaves a box, retaining
the time dependency of the crowd. This way, we get for every pedestrian on the
station a set of boxes and their trajectory in these boxes. For every box, we can
carry out the objectworld IRL procedure and get the coefficients of the features
corresponding to the colors of the objects in the box.
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Figure 5.7: Box around an actor at an arbitrary point x, y in their
trajectory. The time is t; at this time, the locations of the other
pedestrians are read out and the objectworld on the platform is built.
A box is (in this example, of size 7 × 7) drawn around the actor at
x, y. For the colors in this box, the coefficients will be calculated with
MAXENT IRL on the trajectory segment in this box. In this case,
it is the 14th step of their trajectory, so population difference proxies
are placed in the box. We can learn the coefficients for the the yellow
color and the two proxy colors (we should note that the grey objects
are just obstacles, not utilities).

On the one hand, there are time-dependent objects, which are colored yel-
low, orange and red. On the other hand are the objects colored with the static
environment colors: the boarding zone, stairs and escalator colors. The box will
be filled with objects with objects of these colors. However, in any box that is
not near the stairs or escalators, there is no sense of direction because there is
no object that represents the exit. In order to still account for the fact that
the actor walks toward their long-range goal of the exit, proxies of the exit are
placed in the box if the escalator or stairs are not in it. These proxies are placed
in the B closest tiles to the escalator or stairs.

Further, the long-range effect of choosing to go under or over the kiosk has
to also be represented in the box. As mentioned, we see people generally make
their choice to go either under or over the kiosk between their 5th and 15th step.
To this end, when the box is loaded at one of these steps, proxies are placed
on the bottom row of the box so they give direction. We would like to make it
so the difference between population above and under the kiosk Nover−Nunder,
determines the color of these proxies. So, we create three colors that each
correspond to a level of population difference. We only want to place the proxies
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when Nover > Nunder, so we divide the positive part of the distribution in Figure
5.3 into tertiles T1, T2 and T3. See Figure 5.8.
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Figure 5.8: The division of the positive part of the distri-
bution in Figure 5.3 into tertiles. We have the tertiles T1:
[0, 27], T2: [28, 44] and T3: [44,∞].

The three colors associated with the population difference levels will be dubbed
T1, T2, and T3.

We propose to split up the reward in four parts: one part that originates
from the static objects, one part that encapsulates the crowd effects, one part
for the exit proxies and one part for the population difference proxies:

R(s) = Rstatic(s) +Rcrowd(s) +Rexitproxy(s) +Rpopdiffproxy(s). (5.1)

For reasons that will become later, the features from which the reward is
built are chosen as follows:

Rstatic(s) = αstatic
Tφstatic(s)

=
(
αescalator αstairs αboardingzone

)
δs,escalator

δs,stairs

δs,boardingzone

 , (5.2)

Rcrowd(s) = αcrowd
Tφcrowd(s)

=
(
αyellow αorange αred

)
δs,yellow

δs,orange

δs,red

 , (5.3)
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where yellow, orange and red refer to the three possible density levels of a tile;
the exit proxy

Rexitproxy(s) = αexitproxyδs,exitproxy, (5.4)

and

Rpopdiffproxy(s) = αpopdiffproxy
Tφpopdiffproxy(s)

=
(
αT1 αT2 αT3

)
δs,T1

δs,T2

δs,T3

 . (5.5)

The square of the distance to the object of each color in Equation 4.1 is replaced
with a Kronecker delta on the object of the color, because reward is a very
local concept in this case: e.g., it is only important whether the actor is in
the boarding zone or not; their distance to the boarding zone is presumably
not relevant. To compare the coefficients that we will obtain, it is helpful if
their respective features are identical in form, so we decided that all features be
Kronecker delta functions.

5.3 Results and discussion

We choose a box size of B = 5 and carry out the MAXENT IRL scheme with
discount δ equal to 0.9. Trajectories from October 2021 and December 2021
are taken as input. We made sure these trajectories start on the top right and
reach the exit, filtering out any trajectories that get cut off halfway through due
to sensor limitations. In total, this amounts to 1419 trajectories. We remind
the reader that every trajectory provides multiple box environments, and each
environment gives the coefficients of the colors present in the each box. The
trajectories make up 29 800 boxes. Distributions of the obtained coefficients are
given in Appendix B.

The average values of the coefficients are as follows (for exact values, see
Appendix B):
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Figure 5.9: Mean values of the coefficients of the colors.

The average coefficients tell us the average reward of a tile occupied by an
object of the corresponding color. For example, a tile in the boarding zone has
a lower average reward than a tile occupied by one person, and a tile on the
escalator has a higher average reward than a tile on the stairs if neither are
occupied. However, a tile on the escalator that also has a person occupying it
has lower reward than an unoccupied tile on the stairs, and so on.

5.3.1 Crowd object coefficients

We see that α̃yellow < α̃orange < α̃red, suggesting that on average, a tile occupied
by one person has lower average reward than tiles occupied by 2 or more persons.
This is not intuitive. The distribution of αyellow tells a more complete story, see
Figure 5.10.
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Figure 5.10: Distribution of the obtained values of αyellow. The dis-
tribution is seemingly built from two smaller distributions, one of
which has a negative mean and one a positive. The former suggests a
set of cases where the actor avoided the yellow object, i.e. the object
was a likely a person who was standing still. The latter suggests a set
of cases where the actor followed the object, so likely these objects
were persons who were walking in the same direction.

The distribution of αyellow is comprised of two smaller distributions, one of
which has a negative mean and the other a positive. The former suggests a
group of boxes where the actor avoided the tiles with a yellow object on them,
i.e. tiles occupied by one person. The latter represents a group where the actor
instead pursued such tiles. An explanation for this is that in the first case, the
person on the tile was standing still, forcing the actor to avoid them. In the
latter case, the person was walking in the same direction as the actor - toward
the exit - and the actor followed the person, walking over the tile that is vacated
by the time they reach it. It appears that the first case occurs more often than
the second case, hence the negative average value of αyellow. This average value
falls between two distinct cases and is in general far off from the true coefficient
of any box.

We see a similar structure for αorange and αred, though in their case, the
negative peaks are close to 0, αred more so than αorange. This means that in
boxes where an orange or red colored object is present, the algorithm thinks this
object has low impact on the actor’s trajectory. An explanation for this is that
yellow objects dominate the interaction, as in nearly all boxes with an orange
object in them, multiple yellow objects are present. The collective of the yellow
objects has a greater influence than the lone orange object. For red objects, this
is even more pronounced since red objects are scarcer. The positive peaks of
the distributions of αorange and αred are low, which makes sense since the more
persons occupy a tile, the less likely that tile will be vacated for the actor.
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5.3.2 Static object coefficients

We see a slightly higher average reward for tiles on the escalator than on the
stairs. The distributions of αescalator and αstairs both have a negative and pos-
itive peak, see Figure 5.11. The negative peak in the distribution for αescalator

represents boxes where the actor chose the stairs and the positive represents
boxes where they took the escalator, and vice versa for αstairs. The escalator
was simply chosen more often than the stairs, hence the higher average coeffi-
cient.

𝛼escalator

𝛼stairs

Figure 5.11: Distribution of the obtained values of αescalator and
αstairs. The presence of the positive and negative peak for both dis-
tributions points to boxes where if one of the two is chosen, the other
is not, leading to a positive coefficient for the former and a negative
for the latter.

Save for a few cases, αboardingzone is always negative, even more so than the
coefficients for the crowd colors. This is an intuitive result.

5.3.3 Proxy object coefficients

The average value of αexitproxy is highest of all, which is expected. If there were
a tile on the boarding zone that is occupied by one person, and this was the
only square that brings the actor closer to the exit, it would still have a positive
reward on average. There are rare cases where it is negative, meaning that in
such boxes, the actor does not exit in one of the 5 squares closes to the exit.
We can think of two examples where this occurs. First are the boxes at the
beginning of the actor’s trajectory, when they just leave their cabin. They have
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to walk downward because crowd waiting to enter the cabin is waiting besides
the exit. Second would be the boxes where the actor walks downward to get in
the region under the kiosk.

The coefficients of T1, T2 and T3 colored proxies have the clearest dichotomy
in their distribution: a sharp peak around zero and a spread out peak across
relatively high positive values. It is insightful to look at them side by side, see
Figure 5.12.
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Figure 5.12: Distribution of the obtained values of αT1, αT2 and αT3.
Each consists of a clear positive and a part centered around 0, the
former representing cases where the actor decided to walk under the
kiosk, and the latter where they walk above the kiosk. The height
of the peaks represents the frequency of the respective cases, and we
see that when the population difference Nover−Nunder is in the third
tertile, the pedestrians walk under the station most often, and the
least often for the first tertile.

The height of the peaks around α = 0 represents how often the actor chose
to go over the kiosk. The reason it is centered around α = 0 is because the
exit proxies already have a positive enough reward so that it is sufficient to let
the population difference proxies have zero reward. When the actor chooses to
walk under the kiosk, the reward at the population difference proxies must be
greater than at the exit proxies, and this is represented by the highly positive
peaks. At the third tertile of Nover−Nunder, it occurs most often that the actor
chooses to walk under the kiosk, and at the first tertile it occurs the least often.
This is directly reflected in the average values of the coefficients.

5.3.4 Generating trajectories

As mentioned, the way to generate trajectories would be to use the database of
boxes and their coefficients. If we were to generate a trajectory starting at time
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t at location x0, y0, we would do the inverse: draw a 5 × 5 box around x0, y0,
load the environment at time t and fill the box with objects of the applicable
colors. This box might not exist in our database, so we will need some fitting
procedure to find the most similar box in our database, and use the coefficients
of that box to get the reward function (Equation 5.1). In the box, with its
respective reward function, the trajectory that is optimal with respect to the
reward in this box is carried out. When the actor exits this box, the crowd is
updated. To do so, we need to know the time and load the crowd at this time.
The time can be inferred by knowing that each tile is 70 × 70 cm, so we can
assume some average walk speed (1̃.3 m/s) and calculate the expected residence
time of a tile. Here, it is convenient that we used square tiles, so we assumed a
residence time of tres = 0.7/1.3 seconds. This way, by concatenating trajectories
in boxes, a complete trajectory from the cabin to the exit can be built. How-
ever, conceptualizing and implementing a fitting procedure to get coefficients for
any thinkable box is a monumental task and goes beyond the scope of this work.

Instead, one might consider generating trajectories with the average obtained
coefficients, but we can dismiss this idea on the basis that the average coeffi-
cients are never a good representation of the true coefficients of any box, as we
discussed. What we can do, however, is to search for some coefficients that lead
to trajectories that ’look’ good compared to a real trajectory that started at
the same time and at the same location. Thanks to our distributions, we know
what the approximate relative proportionalities of the coefficients should be.

Using the following coefficients, we got trajectories that along broad lines
follow a similar path as their real counterparts:

αyellow -1
αorange -0.5
αred -0.5
αescalator +1.5
αstairs +1.5
αboardingzone -1.2
αexitproxy +1.5
αT1 +1.3
αT2 +1.5
αT3 +1.7

Table 5.1: Heuristically found coefficients that lead to ac-
ceptable trajectories.

These coefficients have similar proportionality to the average obtained coeffi-
cients (Fig 5.9) and we will show some trajectories that were generated with
the resulting reward function. In the following figures, the blue trajectory is
generated, starting at the same time and location as the real trajectory which
is drawn in black.
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Figure 5.13: Trajectories generated with the coefficients in Table 5.1. The
most striking differences are the fact that the generated trajectories consist
of straight segments, which is an artefact of the fact that going diagonally is
not a permitted action in the MDP.

Remarkably, the generated trajectories consist of straight segments. The
reason for this is that a diagonal step is not permitted, so the actors of the gen-
erated trajectories do not bother to. The actors of the real trajectories do take
diagonal steps, which appear as two steps in their discretized version, because
this is quicker than walking in two straight segments.

Another artefact is the fact that the generated trajectories that terminate
at the stairs, do so by taking the lowest possible point on those stairs. In this
section of the stairs, people commonly walk up, onto the platform - they would
be oncoming traffic. The real trajectories terminate at the highest section, since
that is where people commonly walk down. The stairs object does not make
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this distinction, so this is why the generated trajectories take the first accessible
tile with the stairs.
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Chapter 6

Concluding remarks and
future work

It has been attempted to find a quantity that is optimized by pedestrians in
their routing using inverse reinforcement learning. The quantity in question
must be a linear combination of functions of the utilities in the system. The
coefficients that are obtained then give a sense of proportionality between the
utilities.

In the case of a binary choice, a toy problem was considered where pedes-
trians choose one of two possible paths of different lengths and occupations.
We created artificial observations where the pedestrians choose the path that
yields a higher reward under a known reward function. Two functions have
been tested, and both have been recovered with good accuracy. A next step
could be to introduce statistical noise to the observations, i.e, to let each person
have a 10% chance to make their choice randomly. If we fail to converge with
the present algorithm, a maximum entropy algorithm should be tried instead,
because such algorithms are robust to statistical noise. This is not done in the
thesis due to programming technicalities - we were not able to extend the max-
imum difference algorithm to a maximum entropy model within the time frame
of this thesis.

However, we did not succeed in finding a reward function for real data in a
binary choice scenario. This can be ascribed to the fact that there are a signifi-
cant number of instances where, pedestrians make different choices in otherwise
identical scenarios. This too could be accounted for by a maximum entropy
algorithm. Moreover, frameworks that allow for non-linear solutions should be
considered.

Routing of pedestrians toward an exit in a crowded environment was inves-
tigated as a toy problem where people walked to an exit through a space where
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crowds of three different density levels were randomly placed. Many of such
environments were considered, and the artificial pedestrians walk to the exit
optimizing a reward function that is a linear combination with predetermined
coefficients. For each environment, it was attempted to recover the coefficients
with inverse reinforcement learning. It was found that individually, the obtained
coefficients are not consistently faithful to the original, although the mean co-
efficients give a good indication of the proportionality of the predetermined
coefficients.

Trajectories on platform 2.1 of the Eindhoven central station were discretized
into a grid and broken down into segments. In each segment, the direct envi-
ronment of the pedestrian up a short distance was considered. In total, 28 900
of such environments were obtained from the segmentation of real trajectories.
On each tile, the coefficients of the objects in the tile, such as one or more
pedestrians, the escalator, stairs, and the boarding zone. It was found that on
average, tiles with one person have lower reward than tiles with more persons.
Further, tiles on the escalator exit have higher reward on average than tiles on
the stairs exit. Tiles on the boarding zone had very low reward.

Trajectories were generated across the station with a reward function built
from coefficients similar to the obtained average values. They were similar to
real trajectories along broad lines, but unlike them, the generated trajectories
consisted of long, straight segments.

The fact that the generated trajectories on the station consisted of few linear
segments can be ascribed to the fact that diagonal steps were not allowed, but
had to be broken up into the allowed steps: left, right, up and down. In the
future, a model that allows diagonal steps should be considered. This could
lead to entirely new, likely more accurate coefficient distributions. In addition,
generated trajectories could better resemble real trajectories.

To answer the research question, individual routing on a discretized version
of the platform can be modelled as a utility maximization process, where on the
tiles up to a short distance away from the individual in question, the utility is
represented by a linear combination of delta functions, and the coefficients of
these delta functions are environment-specific.
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Appendix A

Code used for results

The python scripts and notebooks used to create results and figures is available
on this webpage:

https://git.phys.tue.nl/MSc/hees/-/tree/main/Thesis_files

The objectworld codes are a modified and extended version of code originally
developed by Matthew J. Alger [29].
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Appendix B

Coefficient distributions
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Figure B.1: Density plots of the coefficients. Their means are given in the caption, as
well as the number of boxes the color was present.
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