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iii A Raman Quantum Free-Electron Laser Model

Abstract

Operation of a Quantum Free-Electron Laser (QFEL) could provide fully coherent X- and γ-rays
from a compact setup. Imperative to experimental realization is allowing for decoherence of both
spontaneous emission and space-charge to take place, having opposing constraints. Current models
assume a Compton regime where the QFEL process is negligibly influenced by the space-charge
forces resulting from the mean electric field of the charged particle distribution. Here, for the
first time, we present a QFEL Wigner model that includes microscopic space-charge by quantizing
the periodic potential derived from Fourier components of the longitudinal electron beam density.
The model is then used to investigate QFEL dynamics in a Raman regime where space-charge
effects become important. Next, we include spontaneous emission and 3D radiation diffraction to
the model, which is used to investigate the design parameters for a future QFEL setup. We find
that the ultracold electron source (UCES) together with commercially available laser systems can
potentially drive a realizable QFEL in a moderate space-charge regime.
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1 | Introduction

It is hard to overstate that lasers have become essential to modern life because of their vast
applications in industry, science and technology. Ever since the development of the first laser in the
1960s [1], decades of scientific progress have resulted in various types of coherent light sources that
cover a broad range of the electromagnetic spectrum. By pushing towards shorter wavelengths and
pulse lengths, radiation can be used to probe matter at higher spatial resolutions and has enabled
advanced imaging applications in material and life sciences [2]. Coherent radiation in the soft and
hard X-ray regime is therefore highly desired, but significantly more challenging to produce using
conventional laser technology [3]. For this reason, high-quality X-rays are currently provided, for
the most part, by accelerator-based light sources such as the Free-Electron Laser (FEL). X-ray
FELs in operation today are primarily based on the Self-Amplified Spontaneous Emission (SASE)
mode. SASE lasing originates from shot noise, resulting in a low temporal coherence and poor
pulse-to-pulse stability of the generated X-ray pulses compared to more conventional laser sources.
Several schemes have been proposed and demonstrated to improve the longitudinal coherence
of FEL radiation, such as coherent seeding and prebunching techniques using high-gain high
harmonic generation (HGHG) or echo-enabled harmonic generation (EEHG) [4]. Unfortunately,
these methods start to present difficulties when going to very short wavelengths [5]. In 2005,
Bonifacio et. al. showed that by entering the quantum regime of FEL operation, one could
produce short-wavelength radiation with a strongly narrowed spectrum and increased coherence
compared to classical FELs, due to a process known as "quantum purification" [6]. This extremely
promising feature has put the Quantum Free-Electron Laser (QFEL) at the center of continued
theoretical interest, as it could provide a fully coherent compact X-ray device with exceptional
radiation properties. To find a realizable parameter space, however, there is a need for a more
comprehensive quantum theory of QFELs that includes the Raman regime in which space-charge
effects become important [7]. This thesis will provide a theoretical continuation of QFEL theory,
particularly by describing this Raman regime. In this introductory chapter, we will first introduce
a basic laser model and both the classical and quantum versions of the FEL.

1.1 A basic laser model

The laser, short for Light Amplification by Stimulated Emission of Radiation, is a device that
produces coherent radiation through optical amplification. In general, these devices consist of
a gain medium, a mechanism to energize (or pump) that medium, and something to provide
optical feedback with [8], which is seen in Fig. 1.1. To facilitate the stimulated emission events
to be amplified, gain media contain an internal structure of (excitable) quantum states that can
interact with and produce photons. In practice, the gain medium is not limited to a single state
of matter: from gases in gas lasers and liquids in dye lasers all the way up to photonic crystals
and semiconductors used by solid-state lasers. The wavelength at which a laser is able to produce
radiation is directly dependent on the material properties that determine the energy separation
between specific quantum states. This energy separation ∆E is related to the radiated photon
energy and frequency by

∆E = Ee − Eg = ℏωR =
hc

λR
. (1.1)
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A lasing process is ordinarily characterized by three steps. First, the gain medium is pumped by
preparing many atoms in the same excited state, or energy level. Then, spontaneous emission
events take place where atoms spontaneously drop to the ground state and produce photons.
Thirdly, when such a system is contained within a resonator or optical cavity, the spontaneously
emitted photons oscillate through the gain medium and initiate stimulated emission events that
produce more photons, which acts as an amplification process.

Figure 1.1: Schematic of a laser with two-level quantum system and stimu-
lated emission: a single photon causes the decay of electron from the excited
state Ee to the ground state Eg, emitting a second photon in the process.

1.2 The Free-Electron Laser

The free-electron laser (FEL) is another powerful source of coherent electromagnetic (EM) radi-
ation. Its operating principle is based on the interaction of a relativistic electron beam that passes
and wiggles through a periodic magnetic field provided by the so-called undulator, see Fig. 1.2.
In each bend, the electrons emit tiny flashes of light that add up to a strong laser-like pulse. The
wavelength of the pulse λR is strongly blue-shifted due to the relativistic Doppler effect, depending
on the electron beam energy, the undulator strength K ∝ B0λu where B0 is the peak magnetic
field and the wavelength of the undulator field λu. This can be expressed as follows

λR =
λu
2γ2

(
1 +

K2

2

)
, (1.2)

where γ is the Lorentz factor which is a measure for the electron beam energy. The FEL is
an attractive device because the radiated wavelength λR can be chosen simply by changing the
electron beam energy γ. As opposed to conventional lasers, the tunability of FEL radiation is
not dependent on the intrinsic material properties of the gain medium. Instead, the gain medium
consists of free electrons, unbounded by atoms or molecules but an external magnetic field instead,
and whose properties can be readily modified, resulting in outstanding tuning capabilities. In
particular for producing coherent X-rays, an area where conventional lasers using material gain
media become more challenging [3], the FEL is truly a unique and indispensable tool.

1.2.1 Radiation and microbunching
Radiation produced by FELs can be understood in the same terms as conventional lasers, despite
the different underlying physical basis. Two types of radiation involved can be distinguished:

1. Spontaneous emission refers to the incoherent undulator radiation that an accelerating
charge produces in an undulator field;

2. Stimulated emission involves electrons interacting with their own, additional coherent
radiation field. If electrons lose energy to the radiation field and decelerate this could be
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considered a form of stimulated emission. Oppositely, if electrons gain energy from the
radiation field this is analogous to absorption.

FELs have sufficiently long undulators so that the incoherent undulator radiation (spontaneous
emission) can trigger a periodic density modulation which causes electrons to radiate collectively
and exponentially increases the coherent radiation intensity (stimulated emission) in a process
called Self-Amplified Spontaneous Emission, or SASE. The key mechanism in SASE-FELs is that
electrons start "communicating" with each other through their commonly produced (and growing)
radiation field by exchange of energy. The combination of the undulator field and the counter-
propagating radiation field results in a standing wave pattern which exerts a ponderomotive force
on the electrons. Over sufficient interaction time, these ponderomotive forces modulate the (lon-
gitudinal) density so that electrons bunch up in small slices around the radiation wavelength.
This process of micro-bunching and the resulting collective electron behaviour lead to coherent
amplification, and lie at the heart of classical high-gain FELs, as is illustrated in Fig. 1.2.

Figure 1.2: Overview of a basic FEL structure (top) [9]. Incoherent undulator
radiation generated by randomly distributed electrons is amplified throughout
the undulator and enables exponential growth of coherent emission from micro-
bunched electrons (bottom).

Typically, FELs can be operated in the high-gain Compton or Raman regime [10]. In the Compton
regime, the undulator field is strong such that the ponderomotive force fully dominates over
the space-charge forces between electrons. In the Raman regime, space-charge effects play a
substantial role in determining the radiation growth and efficiency, and thus cannot be neglected
w.r.t. the ponderomotive force. This regime usually involves lower electron energies, high charge
densities and a weaker undulator field. In either case, the physical basis of the FEL mechanism
can be captured in a fully classical model, as opposed to the transitions between states within the
quantum mechanical structure of a gain medium. The radically different involved dynamics make
for a noisier spectrum, and is one of the reasons why FELs are often not considered true lasers.

1.2.2 Optical free-electron laser

At present, operational FELs are based on magnetostatic undulators where the periodic magnetic
field is generated by arrays of alternating magnets of opposing polarity, as illustrated in Fig. 1.2 by
the blue and yellow blocks. The generated undulator wavelength λu is therefore inherently limited
to the size at which sufficiently strong magnets can be manufactured, which is typically on the cm
scale. For the production of X-rays, we consequently need to bridge the wavelength gap from cm
to nm by an extremely strong Doppler shift that is only associated with highly energetic electrons,
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see Eq. (1.2). This high energy requires large accelerating structures which, combined with long
undulators, has resulted in costly, specialized and large-scale FEL facilities such as LCLS(-II),
FERMI, European XFEL, SwissFEL and TESLA [11].

Due to limited beam time at these facilities and increased demand for high-quality X-rays, the
development of compact light sources has become more important over the past years. To this
end, it has been proposed to use a laser pulse as an optical undulator. A schematic of this optical
FEL (OFEL), where the electron bunch is depicted before, during and just after interacting with
the laser pulse, is seen in Fig. 1.3. This type of undulator used in OFELs has a significantly smal-
ler wavelength than the magnetostatic alternative, thereby requiring a significantly lower electron
beam energy resulting in a much more compact FEL set-up. As the undulator is provided by a
laser pulse that counter-propagates with respect to the electron beam instead of a static field, we
modify the wavelength-relation from Eq. (1.2) by λu → λ0/2, now using the dimensionless electric
field amplitude a0 = eE0/mcω as the laser undulator parameter

λR =
λ0
4γ2

(1 + a20) (1.3)

To illustrate their advantage, optical FELs could operate at λR = 1 nm, λ0 = 1 µm by using
∼ 8 MeV electrons, opposed to approx. 4 GeV electrons in the case of a magnetostatic undulator
at λu = 5 cm. In addition to their potential to shrink FELs down to table-top size, optical
FELs are also suited, in theory, to produce radiation at even smaller wavelengths (hard X-rays
and γ-rays) due to their lower energy requirement. Although the theoretical concept has already
been proposed quite some time ago [12, 13], FEL microbunching still requires exceptional laser
pulse and electron bunch properties in an experiment, making experimental realization a topic of
ongoing research [14, 15, 16, 17], and on which will be elaborated later in Chapter 6.

Figure 1.3: Optical FEL scheme: electron bunch (green) approaches laser
pulse undulator (left); electron bunch oscillates in laser field and starts produ-
cing (incoherent) undulator radiation (center); ponderomotive force modulates
density (as in Figure 1.2) producing a coherent radiation pulse (right).

1.3 The Quantum Free-Electron Laser

Conventional FELs operate in a regime that can be described fully classically, despite the fact that
the original proposal by Madey was based on a quantum mechanical description [18]. A FEL based
on an optical undulator, however, can access a regime in which the classical theory breaks down.
The Quantum Free-Electron Laser (QFEL) operates in a regime where the quantum mechanical
discreteness of the electron-light interaction is relevant, such that the underlying physical mech-
anism and radiation properties become very different from its classical counterpart. This section
centers around a definition of this quantum regime and sets out the characteristics of QFELs.
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1.3.1 Defining the quantum regime

In search of the quantum regime, we first consider the electron momentum spread. During FEL
interaction, electrons exchange momentum with the radiation field according to the stimulated
emission and absorption described in 1.2.1. This process modulates the electron momentum dis-
tribution and results in a FEL-induced momentum spread ∆p in the electron phase-space. Funda-
mentally, the electron-light interaction is mediated by photons such that the momentum exchange
is a discrete process described by a quantum theory, rather than a continuous process that only
belongs to the quantum theory’s classical limit. By explicitly comparing the amplitude of the FEL
momentum modulation to a single-photon recoil (due to emission and absorption of radiation),
we can use their ratio as a useful quantity that dictates the transition between the classical and
quantum regime in FELs:

ρ̄ =
∆p

ℏkR
. (1.4)

Later, we will derive an analytical expression for ∆p. For classical FELs (ρ̄≫ 1), the induced mo-
mentum spread is much larger than a single-photon recoil such that the fundamental discreteness
of the interaction washes out completely and a classical theory suffices. In the quantum regime
(ρ̄ < 1) however, this is not the case and momentum discreteness becomes important. From
Eq. (1.4), we can conclude that this quantum regime can be accessed by a sufficiently small mo-
mentum spread ∆p in combination with high single-photon momentum. Optical FELs are much
better suited to meet these conditions compared to the current FELs based on magnetostatic
undulators. First off, high photon momentum is achieved by reducing the radiation wavelength as
far as possible (e.g. λR = 0.1 nm) for which optical FELs are generally better suited. Secondly, as
the momentum spread is proportional to γ, it is also best to keep the electron energy as small as
possible. The laser undulator in optical FELs allows the generation of short-wavelength radiation
with much lower-energy electrons, and hence becomes instrumental in achieving the quantum FEL
regime.

1.3.2 The current state of QFEL theory

The emergence of a quantum FEL regime immediately requires an updated quantum model of
FELs that can account for the discrete nature of the momentum exchange [19]. In 2005, a first
QFEL model was published by Bonifacio et. al. [6] which immediately showed features that were
completely different from SASE in the classical regime. Most interestingly in this regime is the
phenomenon of "quantum purification": the random spiking and large spectral width of classical
SASE-FEL radiation [20] almost fully disappear and a strong narrowing of the spectrum occurs
[21, 22], as if the FEL was driven by a coherent seed.

The first QFEL models [21, 22] are based on Maxwell-Schrödinger equations which couple a
matter-wave function Ψ for the electrons to the classical radiation field, heavily inspired by exist-
ing Collective Atomic Recoil Lasing (CARL) models [23]. CARL is a form of light amplification
based on Rayleigh scattering and the collective behaviour within a cold atomic gas [24], and has
already been experimentally observed [25, 26]. This type of model also yields the simplest rep-
resentation of the QFEL mechanism, and shows that, for sufficiently low values of ρ̄, the wave
function Ψ periodically switches between discrete electron momentum states very similar to a
two-level quantum system in atomic lasers (see Fig. 1.1). Soon after, focus shifted to more com-
prehensive models based on the Wigner distribution function [27], which also could be more easily
extended to a 3D geometry [28, 29]. Though a first 3D model has already been around for a while,
simulation results are scarce and progress can still be made using 1D models to gain a deeper,
more complete understanding of the dynamics at play. For example, it is crucially important to
allow for decoherence of either spontaneous emission or space-charge to take place, having oppos-
ing experimental constraints [7]. Whilst spontaneous emission has been studied [30], the effects
of space-charge in QFELs are largely unknown. This implies that all current models adopt the
Compton regime where the QFEL process is negligibly influenced by the internal Coulomb inter-



A Raman Quantum Free-Electron Laser Model 6

actions, instead of a Raman regime. A complete theory would eventually have to account for the
complete 3D kinetics, decoherence effects, and non-ideal electron and laser beam properties in a
rigorous quantum mechanical model [7]. Such a model can subsequently be used for the design
of a future experiment. Experimental considerations and challenges have already been discussed
on multiple occasions [7, 31, 32] and generally conclude that required laser and electron sources
for a QFEL set-up could come within reach of state-of-the-art technology. This makes thorough
theoretical substantiation all the more important for the experimental realization of QFELs.

1.3.3 Future applications
The realization of QFELs is primarily motivated by applications and experiments using the highly
coherent short X-ray pulses from a compact light source. The quantum purification process yields
considerable improvements on the coherence lengths compared to existing hard X-ray sources.
A drawback of QFELs is, however, that the stringent experimental conditions have direct con-
sequences on the number of photons per pulse. At best, this equals the number of electrons
(∼ 105 − 1010), which is relatively low compared to large facilities (∼ 1012) [33]. Nevertheless,
QFELs can produce a combination of very small bandwidth and simultaneously well-defined ul-
trashort pulses with long coherence lengths, whereas classical SASE-FELs produce a shot-by-shot
randomly distributed train of pulses [7]. Therefore, its unique type of light enables novel applica-
tions such as time-resolved, dynamical studies in structural matter using interferometric, or other
phase-referenced methods. This could be used, for instance, to detect exotic states of matter
undergoing instabilities on ultrashort timescales or rapid phase transitions in high phase-space
density plasmas [7, 34]. Moreover, QFEL radiation could serve as a high-quality seeding source
for subsequent amplification in a different set-up, which does not require high intensities.

1.4 Thesis outline

This thesis will serve as a partial review, but mainly a continuation of the currently existing QFEL
theory based on analytical work and numerical simulations. To this end, we first give a review of
classical FEL theory in Chapter 2 to introduce relevant concepts on which the QFEL physics is
based. Chapter 3 is dedicated to presenting the quantum mechanical FEL theory in its current
state and mathematically substantiating the QFEL dynamics. In Chapter 4, a novel addition to
the theory is made as we study the effects of space-charge on QFELs. Although a comprehensive
3D theory lies outside the scope of this work, the most important elements of such a model are
expanded on in Chapter 5. Finally, Chapter 6 will consider aspects of the experimental realization
of future QFELs and its link to the ultra-cold electron source (UCES)/Coldlight project [35] at the
CQT group in Eindhoven. Based on additions to and extensive simulations of the model described
in this thesis, we gain novel insights into the workings and future realization of QFELs.
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2 | Classical FEL theory

In this chapter, the fundamentals of a classical high-gain FEL theory are reviewed. Next to
familiarising the reader with the important concepts of a FEL, this chapter will lay the important
groundwork on which the quantum-mechanical analysis is based. It will set off by deriving the
equations of motion for an electron bunch in a ponderomotive wave.

2.1 Electron dynamics

The Hamiltonian framework is well-suited to study a wide variety of classical, dynamical systems
formalized as point-particles with a canonical position q and momentum p. At the heart of it lies
the stationary-action principle expressed in Hamiltonian form as

δS = δ

∫ t2

t1

(
p · q̇−H(q,p)

)
dt = 0. (2.1)

By setting up a Cartesian coordinate system r = (x, y, z) and p = (px, py, pz), the direction in
which the FEL interaction will predominantly take place is chosen as the z- direction. The action-
principle can now conveniently be rewritten such that z serves as the independent variable and
(x, y, t) and (px, py,−E) are the new sets of canonical position and momentum variables

δ

∫ z2

z1

(
px

dx

dz
+ py

dy

dz
− E

dt

dz
+ pz

)
dz = 0. (2.2)

In its current form, the old Hamiltonian H = E coincides with the total electron energy, and
Hamilton’s equations apply to this new set of (in)dependent variables for a new Hamiltonian
given by the longitudinal momentum −pz. An expression for −pz is found using the (dimen-
sionless) relativistic Hamiltonian for an electron with canonical momentum p interacting with an
electromagnetic field described by an arbitrary vector potential a

H = γ =
√
1 + (p+ a)2 =

√
1 + (p⊥ + pz ẑ+ a)2. (2.3)

In this form, transverse momentum in x- and y-direction is combined in the variable p⊥. Now, it
is useful to bring in specifics of the FEL interaction. First off, the total electromagnetic field in
which electrons move around and interact with is composed of two fields: the laser (undulator)
field and the radiation field. These fields are respectively characterized by transverse amplitudes
aL,R(x⊥, z, t) and counter-propagate w.r.t. z with circular polarization according to ϵ̂ = (x̂ +
iŷ)/

√
2. The sum of these two fields, also referred to as the ponderomotive wave, is expressed in

dimensionless form as

a(x⊥, z, t) =
eA

mc
= aL + aR =

ϵ̂√
2

(
aL(x⊥, z)e

−ikL(z−ct) − iaR(x⊥, z)e
ikL(z+ct)

)
+ c.c., (2.4)

although we will make several approximations approriate for FELs. Now, Eq. (2.3) can be solved
to derive an expression for pz, that simultaneously serves as the new Hamiltonian H′ of the
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following form

H′(x⊥,p⊥, ct, γ, z) = −pz = −γ +
1

2γ

(
1 + |p⊥|2 + |a|2

)
. (2.5)

Because of the transverse polarization of a, we are left with only one other, fast-oscillating cross-
term 2(p⊥ · a) which can be neglected. In addition, the ultra-relativistic limit applies such that

γ ≫
√
1 + |p⊥|2 + |a|2. Having constructed this Hamiltonian, we can write down Hamilton’s

equations which lie at the basis of the electron dynamics in the ponderomotive field.

dq′i
dz

=
∂H′

∂p′i
=⇒

(dx⊥

dz
=
∂H′

∂p⊥

)
,
( dt
dz

= −∂H
′

∂E

)
(2.6a)

dp′i
dz

= −∂H
′

∂q′i
=⇒

(dp⊥

dz
= − ∂H′

∂x⊥

)
,
(dE
dz

=
∂H′

∂t

)
(2.6b)

These equations will now be worked out in order. One of the most important aspects of the electron
dynamics in the ponderomotive wave is the longitudinal spatial modulation that constitutes the
micro-bunching process. To illustrate this effect we first consider the Hamiltonian equation for
transverse position x⊥ from Eq. (2.6a)

dx⊥

dz
=

∂

∂p⊥

(
− γ +

1

2γ

[
1 + p2

⊥ + |a|2
])

=
p⊥

γ
. (2.7)

It is important to recall that p⊥ stands for the canonical momentum. Using the solution of Eq.
(2.7), the transverse electron velocity can be written (in the paraxial approximation dx⊥

dz ≪ 1) as

β⊥ =
a

γ
+

dx⊥

dz
≈ a

γ
. (2.8)

Using this fact, we can explain the micro-bunching effect: as electrons lose energy to the radiation
field, their energy γ reduces and transverse velocity β⊥ grows, which means the electron undu-
lates at a sinusoidal trajectory of greater amplitude. The opposite happens when the electrons
gain energy from the field. This makes very explicit that the energy modulation induced by the
ponderomotive field (which we will work out later in this chapter) alters the electron trajectories.
This speeding up or slowing down eventually will result in a micro-bunch structure. Before we
proceed, it is useful to work out the ponderomotive potential term using Eq. (2.4)

|a|2 = |aL + aR|2 ≈ |aL|2 − i
(
a∗LaRe

iϑ − c.c.
)

(2.9)

where we assumed that |aR|2 ≪ |aL|2, and adopt the notation of the ponderomotive phase

ϑ = (kR + kL)z − (kR − kL)ct. (2.10)

This variable ϑ denotes the electron phase of the ponderomotive wave, which will be used as a
measure for the each electron’s position. Next, we will consider the Hamilton equation for the
time variable t from Eq. (2.6a)

c
dt

dz
= 1 +

1

2γ2

[
1 + p2

⊥ + |aL|2 − i
(
a∗LaRe

iϑ − c.c.
)]
, (2.11)

which could also be used to write an expression for the longitudinal electron velocity:

βz =
1

c

dz

dt
≈ 1− 1

2γ2

[
1 + p2

⊥ + |aL|2 − i
(
a∗LaRe

iϑ − c.c.
)]

(2.12)

Finally, the third equation that we consider is the one for electron energy γ from Eq. (2.6b)

dγ

dz
=

1

2γ

∂

∂(ct)

[
|aL|2 − i

(
a∗LaRe

iϑ − c.c.
)]

= −kR
2γ

(
a∗LaRe

iϑ + c.c.
)

(2.13)
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2.2 Radiation field dynamics

Next, we would like to describe the spatio-temporal evolution of the radiation potential aR. There
is an additional, electrostatic self-field generated by the internal Coulomb interaction between
electrons, i.e. space-charge forces, that is neglected for now. By doing so, the FEL theory will
be presented in the Compton limit, which is a valid limit for high electron energies and moderate
electron densities. Later, in Chapter 4, the effect of space-charge is brought back in and studied
in a quantum FEL model. We first derive the evolution of the transverse radiation potential aR
with the Maxwell wave equation in the Coulomb gauge (∇ · aR = 0)

□aR =
(
D+D− +∇2

⊥

)
aR = −µ0e

mc
J⊥, (2.14)

where D± = ∂z ± c−1∂t and we can express the current density J⊥ for a beam of j = 1, .., N
electrons as

J⊥ = −ec
N∑
j=1

β⊥δ
(2)
(
x⊥ − xj,⊥(t)

)
δ
(
z − zj(t)

)
(2.15)

Combining these results in the Slowly Varying Envelope Approximation (SVEA), i.e. the radiation
amplitude aR varies slowly over z and t compared to the radiation wavelength ω−1

R , the second-
order derivatives can be neglected in the longitudinal and temporal coordinates. This makes the
LHS of Eq. (2.14)

(
D+D− +∇2

⊥

)
aR ≃

√
2ϵ̂kRe

ikr(z−ct)

(
D+ +

∇2
⊥

2ikR

)
aR + c.c. (2.16)

The RHS, by substitution of the (non-approximated) transverse velocity β⊥ from Eq. (2.8) in Eq.
(2.15), reads

−µ0e

mc
J⊥ =

e2

ϵ0mc2

N∑
j=1

(
aLe

−ikl(z+ct) − iaRe
ikR(z−ct)

√
2γj

+
dx⊥

dz

)
δ(2)
(
x⊥ − xj,⊥(t)

)
δ
(
z − zj(t)

)
.

Combining the LHS and RHS and projecting the expression on the ϵ̂-direction yields:(
D+ +

∇2
⊥

2ikR

)
aR =

e2

2ϵ0mc2kR

N∑
j=1

(
aLe

−iϑ − iaR
γj

+
dx⊥

dz
e−ikR(z−ct)

)
δ(2)
(
x⊥ − xj,⊥(t)

)
δ
(
z − zj(t)

)
.

(2.17)

For the last step, we define the transverse average over N electrons of an arbitrary function
S(ϑ,x⊥) as

⟨S(ϑ,x⊥)⟩ =
A

N

N∑
j=1

S(ϑ,x⊥)δ
(2)
(
x⊥ − xj,⊥(t)

)
, (2.18)

where A is the transverse section of the electron beam. Also, we average over a longitudinal
dimension of several wavelengths long Lb = rλR, where Lb is the bunch length and r an integer.
This way, the number of electrons is scaled with a beam volume N/(ALb) = ne and the plasma
frequency ωp =

√
e2ne/ϵ0me can be introduced. This leads to the following form of the field

evolution equation:(
D+ +

∇2
⊥

2ikR

)
aR =

kR
2

( ωp
ωR

)2[〈aLe−iϑ
γ

〉
− i

〈
aR
γ

〉
−

〈
dx⊥

dz
e−ikR(z−ct)

〉]
. (2.19)
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2.3 1D FEL Model

In the previous section, a closed set of equations, Eqs. (2.7), (2.11), (2.13) and (2.19), was derived
that captured the full 3D evolution of the system. The one-dimensional approximation is, however,
exhaustive for most of the FEL physics, and at the same time offers a very intuitive picture of the
basic mechanisms at work. In this section, any dependence on transverse coordinates is dropped
such that the variables only evolve along the propagation direction z and time t. In addition, the
laser amplitude is considered constant aL(x⊥, z) = a0 and the radiation amplitude is approximated
by aR(x⊥, z, t) ≈ aR(z, t). The evolution of the j-th electron’s ponderomotive phase given in Eq.
(2.10) can be written as

dϑj
dz

= (kR + kL)− (kR − kL)c
dtj
dz

= kL

(γ2j − γ2r
γ2j

)
≈ 2kLηj (2.20)

under the assumption that ηj ≪ 1. In addition, the Hamiltonian equation from Eq. (2.11) is
used and the relative energy deviation from resonance is introduced as ηj = (γj − γr)/γr. The
resonant energy is given by γr =

√
kR(1 + a0)2/4kL according to Eq. (1.3). Using Eq. (2.13), we

can subsequently write the evolution of ηj as follows:

dηj
dz̄

= −a0kR
2γ2r

(
aRe

iϑj + a∗Re
−iϑj

)
(2.21)

Finally, the radiation field from Eq. (2.19) is approximated in 1D by(
∂

∂z
+

∂

∂(ct)

)
aR =

a0kR
2γr

( ωp
ωR

)2
⟨e−iϑ⟩. (2.22)

Note that the center term of Eq. (2.19), −i⟨aR/γ⟩, is also neglected by assuming that aR is
small compared to aL. In addition, the Compton limit ensures that γ ≈ γr such that ⟨e−iϑ/γ⟩ ≈
⟨e−iϑ⟩/γr. Immediately, an interesting result arises: the radiation field evolution scales directly
with the average of all electron phases, which we will here define as the bunching factor:

b =
1

N

N∑
j=1

e−iϑj = ⟨e−iϑ⟩. (2.23)

The bunching factor is a measure for the phase correlation between individual electrons and
quantifies the quality of micro-bunching. For randomly distributed electrons, their phases are
uncorrelated such that b = 1/N . Perfect micro-bunching on the radiation wavelength would
increase the bunching factor value to maximally 1.

Universal scaling

The set of equations, Eqs. (2.20)-(2.22), which neatly couples the electron dynamics to the radi-
ation field, lends itself well to so-called universal scaling [36]. This form of dimensionless scaling
makes that no experimental parameters explicitly appear in the working equations, which allows
for an easy and intuitive interpretation of the physical processes at work. It starts by defining the
fundamental FEL parameter, also called the Pierce parameter:

ρ =
1

γr

(a0ωp
4ckL

)2/3
(2.24)

We use this specifically to rewrite the variables to the following dimensionless form: pj = ηj/ρ,
A = (ωR/ωp

√
ργr)aR, z̄ = 2kLρz = z/Lg where the gain length Lg denotes the characteristic FEL

length scale, which gives
dϑj
dz̄

= pj (2.25a)
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dpj
dz̄

= −
(
Aeϑj +A∗e−iϑj

)
(2.25b)

∂A

∂z̄
+

∂A

∂(ct̄)
= b (2.25c)

The full electron phase space is coupled self-consistently to the radiation field amplitude in a
completely parameter-less set of equations. In the remainder of this chapter, analytical and nu-
merical solutions to these three equations will be treated. In addition, we present the physical
interpretation of the FEL parameter ρ.

2.3.1 Linear stability, detuning of exponential gain
Eqs. (2.25a)-(2.25c) allow for a linear stability analysis of the stationary solutions, which can
provide valuable insight into the FEL dynamics. This type of analysis allows characterization of
the conditions under which instabilities around stationary solutions can occur. To this end, we
introduce the detuning δ as an independent parameter that essentially forms the initial conditions
for the pj variables:

pj(0) = p(0) = δ =
γ0 − γr
ργr

. (2.26)

Physically, the detuning signifies the relative electron energy with respect to the resonant energy.
For simplicity, we assume all electrons have the same energy γ0 of which we will refer to as the cold-
beam approximation. Later this assumption will be dropped. It is convenient to let the detuning
explicitly appear in the equations as it is highly relevant for achieving exponential gain. This can
simply be done by substitution of p′j = pj − δ, ϑ′j = ϑj − δz̄ and A′ = Aeiδz̄ in Eqs. (2.25a)-
(2.25c), in which we transform to a comoving reference frame where electrons do not experience
phase change because of the detuning. Immediately dropping the primes, this effectively only
alters the field equation to

∂A

∂z̄
= b+ iδA (2.27)

where we also dropped the time-dependence for now. To proceed with the linear stability analysis,
an additional momentum bunching variable P = ⟨pe−iϑ⟩ is introduced as we follow the collective
variable description from Refs. [37, 38]. We subsequently analyze the stability around a stationary
point in the small-signal limit. This implies an initially small radiation amplitude A ≈ ∆A, and
a minimal change in the electron variables ϑj ≈ ϑj(0) + ∆ϑj , pj ≈ ∆pj where ∆(..) ≪ 1.
Substitution in the collective variable expressions for b and P , and a first-order expansion of ei∆ϑj

whilst assuming that ⟨e−iϑ(0)⟩ = 0, allows us to simplify the electron evolution equations to

db

dz̄
= −iP (2.28)

dP

dz̄
= −A. (2.29)

In combination with Eq. (2.27), the three equations can be reduced to a single third-order differ-
ential equation of the form

d3A

dz̄3
− iδ

d2A

dz̄2
− iA = 0, (2.30)

which can easily be solved using an Ansatz of the form A ∝ eiΛz̄. Substitution of the Ansatz yields
a dispersion relation of the form

(Λ− δ)Λ2 + 1 = 0 (2.31)

The three solutions for δ = 0 are given by Λ1 = −1, Λ2 = (
√
3i − 1)/2 and Λ3 = −(

√
3i + 1)/2,

which respectively yield oscillatory, exponentially decaying and exponentially growing solutions
for A. Filling out the Ansatz, it is evident that the imaginary part of Λ3 constitutes exponential
growth of the radiation field A ∝ ei Im{Λ3}z̄ ∝ eX>0. The conditions under which this collective
instability can occur are fully determined by the detuning δ, being the only free parameter left in
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the description. In Fig. 2.1, the growth rate is plotted as function of the detuning, and we observe
that the optimal growth rate is achieved with all on-resonance electrons, for δ = 0.

-5 0 5
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j=
($

3
)j

Figure 2.1: Growth rate against detuning. Dotted line indicates optimal
value which is exactly on resonance (δ = 0).

The linear stability analysis hereby shows that, for δ = 0, collective instabilities occur in FEL
interaction that leads to an exponential growth of the radiation amplitude. This will be further
explained in the next section.

2.3.2 Steady-state instability
Having established exponential growth of the radiation field as one of the key characteristics of
FEL action, we now turn to full numerical simulations only dropping time-dependence. In this
steady-state regime, the evolution of the three variables is only considered with respect to z̄. This
approximation is valid for ⟨βz⟩ ≃ 1 or when the interaction time is short enough to neglect the
velocity difference between light and electrons. Numerically solving Eqs. (2.25a)-(2.25c) using a
Runge-kutta scheme (see Appendix A) yields the results seen in Fig. 2.2. Here we see the electron
phase space {ϑj , pj} as well as the radiation intensity |A|2 and bunching |b| against z̄.

(a) (b)

Figure 2.2: (a) Electron phase space where each black dot is an electron at
z̄ = 7.2 and (b) radiation intensity |A|2 and bunching factor |b| for N = 3 ·104.
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The simulation was initialized for a small non-zero field A(z̄ = 0) = 10−4 and N = 3 · 104
electrons uniformly distributed in ϑ between [−2π, 2π] and normally distributed around p = 0
with an rms width σp = 0.1. Let us start at Fig. 2.2(b); the exponential growth of the radiation
intensity |A|2, which was demonstrated in the previous section, is again clearly seen in the region
between z̄ = 0 and z̄ ≈ 7. The longitudinal evolution occurs along the normalized coordinate
z̄ = z/Lg such that the instability is paired with a characteristic length scale of gain lengths. This
exponential growth turns into saturation in which oscillatory behaviour becomes dominant. The
identical regimes, startup - exponential growth - saturation, are recognized in the evolution of
the bunching factor, see Eq. (2.27). After saturation, both strong bunching and high intensities
alternate in a chaotic fashion. As we consider the electron phase space {ϑj , pj} specifically at
the point of saturation z̄ = 7.2, high bunching is immediately recognized as the periodic vertical
alignment in phase space, which the histogram of the electron density also clearly depicts. This
emergent structure is known as micro-bunching, and the spacing between separate micro-bunches
is on the order of an optical (radiation) wavelength:

∆ϑ = 2π −→ δz =
2π

kR + kL
≈ λR. (2.32)

The periodic density modulation around the radiation wavelength and consequent collective be-
haviour of radiating electrons is responsible for the exponential growth of the phase-correlated
(coherent) radiation they produce. This is made even more clear in the histogram in Fig. 2.2(a)
where electron count (which is a measure for density) is set out against ϑ. The electron phase
space also exhibits energy modulation by the energy exchange of individual electrons with the
radiation field, which is on the order of

∆p ∼ 1 −→ γ − γr
γr

=
∆γ

γ
∼ ρ (2.33)

The FEL parameter ρ is thus a direct measure of the amplitude of the energy modulation induced
by the FEL action.

2.3.3 Slippage
In reality, the electron bunches are not infinitely long so that time-dependence should be taken
into account. It is instructive to see what time-dependence physically entails in a FEL system.
Time-dependence essentially keeps track of the velocity difference between the electrons and the
radiation they produce throughout the interaction over z̄. By not taking this into account in the
steady-state approximation, we effectively assume an infinitely long bunch. This so-called slippage
has a substantial effect on the FEL interaction because the propagating radiation field interacts
with different sections of the electron beam and thus requires evaluation of a spatial evolution
on a different scale than gain lengths, but rather with respect to an internal bunch coordinate.
This effect is strongest near the trailing edge of the e-beam; electrons produce radiation without
being affected by radiation produced by any electrons behind [39]. To quantify this slippage, we
introduce a second characteristic length scale, the cooperation length Lc, which is the distance
the radiation slips in front of the electron bunch in one gain length:

Lc =
λR
8πρ

= Lg
1− βz
βz

(2.34)

The time-derivative can be rewritten using a coordinate transformation to the co-moving electron
frame z1 = (z − βzct)/Lc

∂

∂(ct)
−→ ∂

∂z1
. (2.35)

Numerically this effect can be simulated by defining an electron bunch with a finite length of a
number of cooperation lengths Lb = nLc. When slippage is included in the equations, FELs can
operate in the superradiant regime where the peak power scales as n2e.
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2.4 Self-amplified spontaneous emission

Self-Amplified Spontaneous Emission, or SASE-FEL operation allows for (i) the steady-state in-
stability and (ii) the superradiant scattering to occur from (iii) incoherent spontaneous emission,
or noise. Rather than a coherent seed, the electron beam propagates through a sufficiently long
undulator to initiate the coherent amplification by itself. The high-gain regime of SASE-FELs
was first observed experimentally in the Livermore experiment for FELs in the microwave regime
[40], and later in the X-ray regime at the LCLS [41]. The features of SASE-FEL radiation are
determined by the characteristic length scales of the gain length Lg (i) and cooperation length
Lc (ii) along with the electron bunch length Lb. As the cooperation length signifies the length
scale over which electrons within a bunch can interact, a finite electron bunch is composed of
Lb/Lc independent regions which radiate randomly and which give rise to a superradiant peak
within each cooperation length [42]. Because of this, the resulting temporal radiation pulse has a
(quasi-)chaotic structure, as is seen on the left in Fig. 2.3. We can subsequently investigate the
spectral features by Fourier transformation of the temporal pulse:

F{|A(z̄, z1)|2} = P (z̄, ω̄), (2.36)

where ω̄ = (ω − ωR)/ρωR with the resonant radiation frequency given by ωR ≈ 4γ2rωL. The
resulting radiation spectrum is given on the right in Fig. 2.3. The shape of the resulting spectrum
is spiky with the number of spikes an indication of the number of Lc in the bunch. Furthermore,
the spectral width is broad compared to that of a transform-limited pulse. The chaotic spectrum of
a classical SASE-FEL is one other reason that distinguishes FELs from conventional lasers, whose
spectrum is ideally transform-limited. For shorter wavelengths, Lc further decreases (see Eq. (2.34)
such that an electron bunch contains many independently radiating cooperation lengths with a
broader spectral width as result. This is undesirable for coherent X-ray light source applications.

Figure 2.3: Temporal (left) and spectral (right) features of SASE radiation
for z̄ = 20 and Lb/Lc = 50.

The spectral quality of SASE-FEL radiation could drastically be improved upon by quantum
purification. Operation in the quantum regime avoids the spiking and chaotic behaviour and is
therefore of utmost importance for future applications [6].
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3 | Quantum FEL theory

In this chapter, the FEL theory is modified to include the quantum mechanical nature of the
electron-light interaction. After presenting a model for electron quantization in terms of mo-
mentum states, a more intuitive Wigner model is derived. Contrary to the first model, this Wigner
model is more similar to the classical description and therefore better suited to study dynamics
across the full breadth of the quantum-classical spectrum. Lastly, non-ideal and decoherence
effects are introduced and implemented in the Wigner model.

3.1 From classical to quantum

In Chapter 1, an argument was made that the quantum mechanical nature of the interaction will
start to emerge as the momentum spread ∆p due to interaction will become on the order of a
single-photon momentum. In Chapter 2, we found that this momentum spread can be written as
∆p = γmcρ. By substitution of ∆p in Eq. (1.4), a new parameter is automatically introduced,
the QFEL parameter:

ρ̄ =
γmc

ℏk
ρ. (3.1)

The QFEL parameter governs the transition between the classical and quantum regimes of FEL
dynamics. In the classical regime (ρ̄ ≫ 1), the momentum exchange and resultant momentum
spread is much larger than a single photon recoil ℏk such that the momentum exchange can be
interpreted, effectively, as a continuous process. The electrons follow continuous trajectories in
phase space (see Fig. 3.1 (left)) to get to specific phase-space distributions such as the one in
Fig. 2.2(a). In the quantum regime (ρ̄ ≪ 1), the momentum spread induced by FEL action is
on the scale of, or even smaller than ℏk such that the momentum exchange does not allow for a
continuous description, which is illustrated in Fig. 3.1 (right) with a step-wise momentum ladder.
The discrete nature of the momentum exchange between electrons and field should be properly
accounted for in a quantum mechanical model. As both the electrons and electromagnetic field are
fundamentally quantum objects, their classical description is replaced by a quantum mechanical
one.

Figure 3.1: Schematic depiction of phase space evolution as continuous tra-
jectories in the classical limit (left) and QFEL dynamics of discretized mo-
mentum separated by the photon recoil (right) [19].
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3.1.1 Quantum electron dynamics

In acknowledging the limited applicability of treating the electrons as a classical point-charge
distribution, a conceptual leap should be taken. In a quantum field theory (QFT) approach
by G. Preparata [43], it was shown that for a large number of electrons FEL dynamics can be
solved by a single-electron wave function |Ψ⟩ obeying Schrödinger’s equation in a self-consistent
field1. To move towards such a description, we first explicitly introduce ρ̄ to re-normalize pj such
that p̄j = ρ̄pj , and recognize the equivalence between the evolution equations for ϑj and p̄j and
Hamilton’s equations:

dϑj
dz̄

=
p̄j
ρ̄

=
∂Hj

∂p̄j
(3.2)

dp̄j
dz̄

= −ρ̄
(
Aeiϑj +A∗e−iϑj

)
= −∂Hj

∂ϑj
(3.3)

Straight-forwardly, this implies that the (single-)electron dynamics can be associated with a
Hamiltonian of the form

Hj(ϑj , p̄j) =
p̄2j
2ρ̄

− iρ̄
(
Aeiϑj −A∗e−iϑj

)
(3.4)

At this point, the canonical nature of the theory allows immediate generalization of the Hamilto-
nian principle to quantum mechanics by relating the Poisson brackets for canonical variables to
commutators for quantum operators:

[ϑ̂j , p̂j′ ] = i{ϑj , p̄j′} = iδjj′ . (3.5)

Using this relation, the canonical variables can be replaced with a quantum position operator
ϑj → ϑ̂j and momentum operator p̄j → −i∂/∂ϑj . The commutation relation can be easily checked
knowing that a quantum operator in its most basic form is defined by action on its eigenstates.
All in all, this allows us to write an expression for the total Hamiltonian operator H as

H =

N∑
j=1

Hj = H0 +Hint =
1

2ρ̄

∂2

∂ϑ2
− iρ̄

(
Aeiϑ −A∗e−iϑ

)
, (3.6)

We here observe that N electrons behave independently in an interaction potential captured by
Hint which depends on the radiation field amplitude A. Rather than solving N equations for both
operators ϑ̂j and p̂j , we can introduce a matter-wave function |Ψ⟩ describing the electron bunch,
on which our newly defined operators can act:

⟨ϑ|Ψ⟩ = Ψ(ϑ, z̄) (3.7)

⟨ϑ| p̂ |Ψ⟩ = −i∂Ψ(ϑ, z̄)

∂ϑ
, (3.8)

and which evolves according to a (dimensionless) Schrödinger-like equation.

i
∂ |Ψ⟩
∂z̄

= H |Ψ⟩ . (3.9)

Filling out Eq. (3.9) whilst projecting the wave function and momentum operator on the position
⟨ϑ| basis makes that the single-electron wave function evolves according to

i
∂Ψ(ϑ, z̄)

∂z̄
= − 1

2ρ̄

∂2Ψ(ϑ, z̄)

∂ϑ2
− iρ̄

(
Aeiϑ −A∗e−iϑ

)
Ψ(ϑ, z̄). (3.10)

1Note that the EM field will not be quantized, making the analysis semi-classical in nature.
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3.2 Momentum state model

From Fig. 3.1, it is evident that the electron wave function cannot take on every value of mo-
mentum, but instead is limited by a discreteness inherent to the photon-mediated momentum ex-
change. This implies that the wave function Ψ can only occupy discrete momentum states which
are spaced ℏk apart. The momentum state model is centered around a wave function decomposi-
tion in momentum eigenstates ⟨ϑ|m⟩ = (2π)−1/2eimϑ, which satisfy the eigenvalue equation:

p̂ |m⟩ = m |m⟩ . (3.11)

The wave function can subsequently be (Fourier) expanded in terms of the momentum eigenstates

Ψ(ϑ, z̄) =
1√
2π

∞∑
m=∞

cm(z̄)eimϑ, (3.12)

More specifically, |cm|2 represents the probability of an electron having momentum (γ0−γ)mec =
mℏk. Substitution of this wave function expansion in Eq. (3.10) yields an evolution equation for
the momentum state coefficients of the form

dcm
dz̄

= −im
2

2ρ̄
cm − ρ̄

(
Acm−1 +A∗cm+1

)
. (3.13)

The electron evolution due to the FEL interaction is now fully described in terms of population
exchange between different electron momentum states mediated by photon exchange of ℏk. The
bunching factor b in the quantum description is not given by an ensemble average, but instead by
the expectation value of e−iϑ of the continuous probability distribution P = |Ψ|2 = ΨΨ∗. Using
this, the bunching factor in the momentum state model is given by

b =

∫ 2π

0

ΨΨ∗e−iϑdϑ =
1

2π

∫ 2π

0

( ∞∑
m=−∞

cme
imϑ

∞∑
m′=−∞

c∗m′−1e
−im′ϑ

)
dϑ =

∑
m

cmc
∗
m−1 (3.14)

Up to here, we have seen that the evolution of the radiation field amplitude is classically driven
by the spatial micro-bunching of electrons, see Eq. (2.27). Here, by switching to a momentum
state model, an equivalence is demonstrated between the spatial bunching of electrons and the
coherence between neighbouring momentum states occupied by the electron wave function. The
radiation field amplitude now evolves as

∂A

∂z̄
+
∂A

∂z1
=
∑
m

cmc
∗
m−1 + iδA. (3.15)

Together with Eq. (3.13), these equations form the basis of the momentum state model that
can describe FEL interaction for every value of ρ̄, and is thus capable of describing the quantum
regime. In what follows, and identical to the classical approach, we perform a linear stability ana-
lysis, steady-state simulations and time-dependent simulations to obtain analytical and numerical
solutions to these equations.

3.2.1 Linear stability analysis
As with the classical case, a linear analysis is extremely useful to characterize the conditions under
which an instability around stationary solutions can occur. We consider a similar small-signal limit
with a stationary point of the form A ≈ ∆A, c0 ≈ 1 + ∆c0 and cm̸=0 ≈ ∆cm. We can plug the
small-signal approximation directly in Eqs. (3.13) and (3.15), leaving us with the following three
equations

dc1
dz̄

= −i 1
2ρ̄
c1 − ρ̄A (3.16a)
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dc−1

dz̄
= −i 1

2ρ̄
c−1 + ρ̄A (3.16b)

dA

dz̄
= c1 + c∗−1 + iδA, (3.16c)

which are again analytically solvable. Rewritten to a single third-order equation

d3A

dz̄3
= − 1

4ρ̄2

(dA
dz̄

− iδA
)
+ iA+ iδ

d2A

dz̄2
(3.17)

and solving with the same Ansatz of A ∝ eiΛz̄ yields a dispersion relation of the following form:

(Λ− δ)
(
Λ2 − 1

4ρ̄2

)
+ 1 = 0, (3.18)

which is identical to Eq. (2.31) for ρ̄ → ∞. The FEL-induced energy spread is sufficiently large
such that discreteness washes out and a classical description is valid. However, as the imaginary
part of the exponential growing mode |Im{Λ3}| is plotted against δ for different values of ρ̄ in Fig.
3.2, we observe something interesting. Where for ρ̄ = 5 the curve overlaps almost perfectly with
the classical result, for smaller ρ̄ the region of gain decreases in height and overall size. From Eq.
(3.18) can be derived that the maximum gain occurs for δmax ≈ 1/2ρ̄ such that (γ0−γr) ≈ ℏk/2mc
and the gain width is proportional to 4

√
ρ̄. This has two practical implications. Firstly, for QFEL

interaction to show exponential gain, electrons need to be detuned to within the bandwidth of the
gain region. Secondly, even with proper detuning, only a decreased growth rate can be reached
compared to the classical case.

Figure 3.2: Growth rate against detuning for different values of ρ̄.

3.2.2 Steady-state regime

Next, we turn to the steady-state solutions of Eqs. (3.13) and (3.15) where we first consider the
deep quantum regime (ρ̄ = 0.2). We initialize the system such that c0(z̄ = 0) = 1 − ϵ2 and
c−1(z̄ = 0) = ϵ2, where ϵ ≪ 1 signifies some random shot noise. Physically, this shot noise would
be caused by spontaneous emission. Since spontaneous emission is not (yet) contained within the
current model, we have to mimic its effect in simulation by adding a small, non-zero probability of
decay to the lower momentum state. We also start with zero field (A(z̄ = 0) = 0) and a detuning
δ = 1/(2ρ̄) = 2.5 consistent with the linear analysis. The occupation probabilities |cm|2 at three
z̄-positions, and the normalized intensity ρ̄|A|2 and bunching against z̄ are plotted in Fig. 3.3.
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(a) (b)

Figure 3.3: Quantum regime (ρ̄ = 0.2): (a) Occupation probabilities for
different values of z̄, (b) normalized radiation intensity and bunching factor
(top) and occupation probabilities (bottom) against z̄ .

(a) (b)

Figure 3.4: Classical regime (ρ̄ = 5): (a) Occupation probabilities for differ-
ent values of z̄, (b) normalized radiation intensity and bunching factor (top)
and occupation probabilities (bottom) against z̄.

First off, we observe in Fig. 3.3(b) that the system again shows a collective instability and
exponential growth of the radiation intensity in the region from 0 < z̄ ≲ 10.5, as the linear analysis
suggested. The intensity evolution is, however, very different from the classical result in Fig.
2.2(b). Rather than the oscillatory behaviour after saturation as seen classically, the intensity in
the quantum regime evolves as sequential pulses. We start with full occupation of the c0 momentum
state followed by a region of exponential growth during which the occupation of c−1 grows. This
exponential growth terminates as both the occupation of the c−1 state and the radiation intensity
reach saturation, where the intensity is normalized such that ρ̄|A|2 = 1 represents the emission of
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a single photon per electron. Subsequently, the radiation is absorbed when the wave function fully
transitions back to c0. During the interaction, the population keeps cycling periodically between
these two states emitting a radiation pulse during each transition. We observe a field driven by
the coherence between adjacent momentum states. Next, we will consider a classical limit case
for ρ̄ = 5 and δ = 0 under the same initial conditions in Fig. 3.4. It is immediately evident that
during the interaction, more momentum states get involved. The different colors in Fig. 3.4 on
the bottom-right also show that transitions between a large number of momentum states occur
chaotically in the saturation regime from z̄ > 10. As a result, the intensity evolves very similarly to
the classical model from Fig. 2.2(b). It is perhaps surprising that the behaviour already resembles
the classical model to this extent, especially since the number of involved momentum states is still
relatively low. The momentum distribution is far from continuous and discreteness is still clearly
visible nevertheless, the radiation profile that results from this chaotic pattern of transitions is
already hard to distinguish from classical theory.

INTERMEZZO: Connection to the atomic laser

In Chapter 1, it was already brought up that FELs are often not considered true lasers since
they rely on collective Compton scattering instead of coherent transitions within the quantum
mechanical structure of a gain medium. What the momentum state model already makes clear
is that FEL operation in the quantum regime leaves us with Rabi-like oscillations in an effective
two-level system driven by the emission of photons of a fixed wavelength. The quantum FEL
regime starts to behave like a system described by the optical Bloch equations well-known in laser
physics [44]. This is illustrated in Fig. 3.5.

Quantum transitions
in the gain medium

Collective Compton
scattering

Operation of the quantum FEL regime

Figure 3.5: QFEL resembles the atomic laser.

3.2.3 Quantum purification
Similar to the classical approach, we now include slippage with an additional z1-dependence of the
radiation amplitude such that we can study the temporal and spectral features of SASE-QFEL in
more detail. This is even more exciting because we can quantify the spectral advantage of QFELs
over classical FELs due to the quantum purification. The temporal radiation pulse and the cor-
responding spectrum as found through numerical integration of Eqs. (3.13)-(3.15) for ρ̄ = 0.2 are
plotted in Fig. 3.6. Here, we observe a significant spectral narrowing compared to the chaotic,
broad classical spectrum from Fig. 2.3.

To give an explanation of the spectral narrowing in the quantum regime, we first restate the
origin of the broad and spiky spectrum for classical SASE. In general, radiation is produced due
to transitions between neighbouring momentum states (|cm|2 = mℏk) which leads to equally
spaced emitted frequencies proportional to the difference between the associated kinetic energies.
For large ρ̄, a large number of momentum states gets occupied such that many different transitions
occur resulting in a spectrum that contains a large number frequencies and has an envelope width
proportional to the FEL-induced modulation amplitude from Eq. (2.33):(∆ω

ω

)
cl
= 2

∆γ

γ
∼ 2ρ (3.19)
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The FEL-induced modulation occurs for all electrons with an initial energy that falls within the
gain bandwidth from the linear analysis (see Fig. 3.2). The different electron energies contained
within that bandwidth, therefore, lead to the large number of sequential transitions randomly
occurring, which explains the resulting broad multi-line spectrum. The number of spikes Ns can
be approximated using the fact that radiation is emitted in a time of tb = Lb/c, such that the
corresponding width of a single frequency peak can be written as(∆ω

ω

)
≈ λR
Lb

(3.20)

In combination with Eq. (3.19), the number of spikes Ns = 2ρLbλR = Lb/(2πLc) which is
consistent with section 2.4. Now, for the quantum regime (ρ̄ < 1) the FEL-induced modulation
amplitude ∆p is by definition smaller than ℏk such that only a single transition between two
adjacent states can occur, leading to a single frequency spike in the spectrum with a width of
∆ω/ω ≈ λR/Lb. Hence we can understand that QFELs inherently produce transform-limited,
thus fully temporally coherent radiation. For instance, for pico-second bunches which radiate at
λR ≈ 0.1 nm, the QFEL bandwidth is on the order of 10−7 compared to 10−3 for the classical
SASE spectrum given typical values for ρ ∼ 10−4. This spectral improvement of several orders
of magnitude makes QFELs extremely interesting for high resolution studies in the structure of
matter and warm-dense matter physics among other things [7, 45].

Figure 3.6: Temporal (left) and spectral (right) features of SASE-QFEL
radiation at z̄ = 60 and Lb/Lc = 30.

3.2.4 Degree of longitudinal coherence
The time-dependent solution of the radiation field allows for a spectral analysis, which is useful
to study the quantum purification in more detail. Here, we quantify the longitudinal coherence
of a FEL as function of ρ̄ by explicitly calculating the longitudinal coherence properties of QFEL
radiation. To this end, the first-order spectral correlation function is defined as [46]

g(1)(ω, ω′, z̄) =
⟨Â(ω, z̄)Â∗(ω′, z̄)⟩√〈∣∣∣Â(ω, z̄)∣∣∣2〉〈∣∣∣Â(ω′, z̄)

∣∣∣2〉 . (3.21)

Using this, the degree of longitudinal coherence (DLC) ζ can be determined using

ζ =

∫∫ ∣∣g(1)(ω, ω′)
∣∣2I(ω)I(ω′)dωdω′[ ∫
I(ω)dω

]2 (3.22)
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where I(ω) =
〈∣∣∣Â(ω, z̄)∣∣∣2〉. In Fig. 3.7, we plot the DLC against ρ̄ where we see a considerable

decrease as ρ̄ grows larger and we exit the quantum regime.

Figure 3.7: DLC against ρ̄

3.3 Wigner distribution function model

The wave function model describes the momentum state dynamics clearly from the deep quantum
to the classical regime, resulting in distinct evolution of the radiation intensity. However, in
comparison with the classical model, the phase-space representation is lost. For the classical
regime, the number of involved momentum statesm is very large such that the discreteness between
individual states is irrelevant. The (deep) quantum regime only involves the bare minimum number
of momentum states (m = 2) that could still show meaningful dynamics. In order to observe the
quantum-to-classical transition, however, just stating that "the number of involved momentum
states increases" (see Fig. 3.8) would not do justice to the dynamics at play, whilst our current
model is only equipped to do just that.

Figure 3.8: The transition from quantum to classical in terms of momentum
states.

To this end, we will now move to a Wigner distribution function model that is better able to
also capture the intermediate regime and whose equation explicitly shows a classical limit. Wigner
models can represent the full quantum state in a description more similar to classical phase space
without loss of information [47], thereby allowing for a more intuitive representation of the dy-
namics across all regimes. The Wigner function is also not limited to describing perfectly coherent
particle samples, but also admits mixed quantum states which seems to be more representative
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for the thermal electron beams in FELs. Thirdly, as will become more evident in Chapter 5,
the Wigner formalism may easily be extended to a 3D geometry that includes transverse electron
dynamics. Whilst the Wigner function has a myriad of applications in other fields [48], we will
here restrict ourselves to a brief derivation purely in the context of QFELs.

3.3.1 Continuous Wigner model

The Wigner distribution function in the context of quantum mechanics effectively links a wave
function to a probability distribution in phase space. More specifically, the density operator ϱ̂ is
considered, which can be defined for either a pure of mixed state

Pure: ϱ̂ = |Ψ⟩ ⟨Ψ| Mixed: ϱ̂ =
∑
i

ci |Ψi⟩ ⟨Ψi| . (3.23)

This operator on a infinite-dimensional complex vector space, can be described with the same level
of rigor as a real function on classical phase space. The Wigner distribution function is generally
defined for a conjugate variable pair q and p as [49]

W(q, p, t) =
1

πℏ

∫ ∞

−∞
⟨q + q′| ϱ̂ |q − q′⟩ e−2ipq′/ℏdq′ =

1

πℏ

∫ ∞

−∞
⟨p+ p′| ϱ̂ |p− p′⟩ e−2ip′q/ℏdp′

(3.24)
In the context of time-dependent FEL theory, our conjugate variables are the ponderomotive
phase ϑ and relative energy deviation p, and include a dependency over the two, by now familiar,
length scales: the undulator length z̄ normalized in units of gain length Lg and the internal bunch
coordinate z̄1 normalized to a cooperation length Lc. If we momentarily assume a pure quantum
state, this results in the following

W(ϑ, p, z̄, z̄1) =
1

π

∫ ∞

−∞
⟨ϑ+ ϑ′| ϱ̂ |ϑ− ϑ′⟩ e−2ipϑ′

dϑ′ =
1

π

∫ ∞

−∞
Ψ∗(ϑ− ϑ′, z̄)Ψ(ϑ+ ϑ′, z̄)e−2ipϑ′

dϑ′

(3.25)
Steady-state evolution of the electron dynamics is now captured by the evolution of the corres-
ponding Wigner function W

∂W
∂z̄

=
1

π

∫ ∞

−∞

(
∂Ψ∗(ϑ− ϑ′)

∂z̄
Ψ(ϑ+ ϑ′) + Ψ∗(ϑ− ϑ′)

∂Ψ(ϑ+ ϑ′)

∂z̄

)
e−2ipϑ′

dϑ′. (3.26)

This expression contains the evolution equation of the electron wave function, which we already
derived before. It can be shown that substitution of Eq. (3.10) in Eq. (3.26) yields [27]

∂W
∂z̄

= −p̄ ∂W
∂ϑ

+ ρ̄
(
Aeiϑ +A∗e−iϑ

){
W
(
ϑ, p̄+

1

2ρ̄
, z̄
)
−W

(
ϑ, p̄− 1

2ρ̄
, z̄
)}
, (3.27)

where p̄ = p/ρ̄. It can be proven that, due to linearity of the statistical operator ϱ̂ =
∑
i pi |Ψi⟩ ⟨Ψi|,

the same equation also holds for mixed states [27]. The coupling to the radiation field can be done
analogous to the wave function model with an expectation value expression for the phase factor
in terms of the Wigner function:

dA

dz̄
=

∫ ∞

−∞
dϑ

∫ ∞

−∞
W(ϑ, p, z̄)e−iϑdp+ iδA (3.28)

Here, we can also demonstrate one of the aforementioned advantages of the Wigner equation
compared to the momentum state equation (see Eq. (3.13)). In the classical limit ρ̄ → ∞, the
third term in Eq. (3.27) reduces to

lim
ρ̄→∞

ρ̄
{
W
(
ϑ, p̄+

1

2ρ̄
, z̄
)
−W

(
ϑ, p̄− 1

2ρ̄
, z̄
)}

=
∂W
∂p

, (3.29)
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such that the equation becomes a Vlasov equation that is explicitly consistent with the classical
equations for ϑ and p from Eqs. (2.25a)-(2.25b):

∂W
∂z̄

+ p
∂W
∂ϑ

−
(
Aeiϑ +A∗e−iϑ

)∂W
∂p

=
∂W
∂z̄

+
∂W
∂ϑ

dϑ

dz̄︸︷︷︸
(2.25a)

+
∂W
∂p

dp

dz̄︸︷︷︸
(2.25b)

= 0. (3.30)

Unfortunately, there is still one element missing. In the above derivation, it is both assumed that
ϑ is unbounded while the ponderomotive phase is in fact periodic in (0, 2π), and p is continuous,
whilst electron recoil is associated with discrete momentum transitions. As opposed to a clas-
sical picture, in quantum mechanics, the periodicity and discreteness of conjugate variables are
intrinsically linked and should thus be accounted for.

3.3.2 Discrete Wigner model
The discrete Wigner function is able to describe rotational periodicity and quantized momentum
in quantum mechanics, and was first explored by J. Bizarro in 1994 [50]. The discrete Wigner
function for a discrete momentum state, again labelled by m, is defined as

Wm(ϑ, z̄) =
1

π

∫ π/2

−π/2
Ψ∗(ϑ− ϑ′)Ψ(ϑ+ ϑ′)e−2imϑ′

dϑ′ (3.31)

From here on, we follow a slightly different approach compared to the continuous Wigner model
by first substituting the momentum eigenstate expansion for Ψ(ϑ± ϑ′) of Eq. (3.12):

Wm(ϑ, z̄) =
1

2π2

∑
m′,m′′

c∗m′cm′′e−i(m
′−m′′)ϑ

∫ π/2

−π/2
e−i(2m−m′−m′′)ϑ′

dϑ′

=
1

2π

∑
m′,m′′

c∗m′cm′′e−i(m
′−m′′)ϑsinc

[(
m− m′ +m′′

2

)
π
]
. (3.32)

Since the Wigner function and both Fourier expansions are indexed by the number of momentum
states, we are left with three indices (m,m′,m′′) that run from (−∞,∞). The following index
transformation can be made: m′ → m + m′ + µ and m′′ → m′ − m, where m′′ is replaced
by µ = 0, 1 to maintain both integer and half-integer contributions of the sinc function. This
convenient transformation allows to simplify the expression further by writing out the sum over
µ. The first contribution µ = 0 always evaluates the sinc function at 0 where we know that
sinc(0)→ 1, and the second contribution (µ = 1) is ±1 dependent on the exact half-integer:

Wm(ϑ, z̄) =
1

2π

∑
m′

(
c∗m+m′cm−m′e−2im′ϑ + c∗m+m′+1cm−m′e−i(2m

′+1)ϑ (−1)m−m′−1

(m−m′ − 1
2 )π

)
(3.33)

This can written in slightly more compact form as

Wm(ϑ, z̄) = wm(ϑ, z̄) +

∞∑
m′=−∞

(−1)m−m′−1

(m−m′ − 1
2 )π

wm+ 1
2
(ϑ, z̄) (3.34)

where for µ = 0, 1 holds that

wm+µ/2 =
1

2π

∑
m′

c∗m+m′+µcm−m′e−i(2m
′+µ)ϑ. (3.35)

To determine the full Wigner distribution function Wm(ϑ, z̄) both the integer and half-integer
functions wn and wn+1/2 are needed. The same holds for the subsequent probability distributions
for m and ϑ:

|cm(z̄)|2 =

∫ π

−π
wm(ϑ, z̄)dϑ (3.36a)
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|Ψ(ϑ, z̄)|2 =
∑
m

wm(ϑ, z̄) + wm+1/2(ϑ, z̄). (3.36b)

These marginal projections are found using the Wigner function’s projection property [49]. For
the continuous case, we could directly find a closed evolution equation for W. It is, however, not
possible to do the same for Wm. For this reason, we first expressed Wm is terms of wm+µ/2 where
we can find evolution equations for, and reconstruct the full Wigner function Wm(ϑ, z̄) after.
Again for a more extensive derivation we refer to Ref. [50]. Deriving Eq. (3.35) with respect to
z̄, where we use the shorthand notation s = m+ µ/2, yields

∂ws(ϑ, z̄)

∂z̄
= − s

ρ̄

∂ws(ϑ, z̄)

∂ϑ
+ ρ̄
(
Aeiϑ +A∗e−iϑ

){
ws+ 1

2
(ϑ, z̄)− ws− 1

2
(ϑ, z̄)

}
. (3.37)

This equation is again coupled to the evolution of the radiation field as

dA

dz̄
=

∞∑
m=−∞

∫ π

−π
wm+ 1

2
(ϑ, z̄)e−iϑdϑ+ iδA (3.38)

To ease numerical simulation of Eq. (3.37) and because ws is periodic in ϑ, we can introduce an
additional Fourier expansion of

ws(ϑ, z̄) =
1

2π

∞∑
n=−∞

wns (z̄)e
inϑ. (3.39)

Substitution in Eqs. (3.37) and (3.38) yields the final working equations of the discrete Wigner
model.

dwns
dz̄

+ in
s

ρ̄
wns = ρ̄

{
A
(
wn−1
s+ 1

2

− wn−1
s− 1

2

)
+A∗

(
wn+1
s+ 1

2

− wn+1
s− 1

2

)}
(3.40a)

dA

dz̄
=

∞∑
m=−∞

w1
m+ 1

2
+ iδA. (3.40b)

With this, we have arrived at a consistent set of equations that describe QFEL interaction using a
discrete Wigner distribution function. First off, it is conveniently dependent on ρ̄ whilst capturing
both the discreteness and periodicity of conjugate variables intrinsic to the quantum regime (ρ̄ < 1)
as well as having an explicit continuous, classical Vlasov limit (ρ̄≫ 1). Moreover, it uniquely re-
expresses their quantum dynamics to classical language which is extremely useful to investigate
the intermediate/quasi-classical FEL regime, and the transition into the quantum regime.

3.3.3 Quasi-phase space dynamics
Since the consistency between Eqs. (3.40a)-(3.40b) and the momentum state model from Eqs.
(3.13)-(3.15) has been demonstrated before [27, 29], we turn directly to numerical solutions of the
discrete Wigner distribution function as depicted in Fig. 3.9. The Wigner function merges its
separate marginal projections, which are also obtained by the wave-function model, into a single
quasi-probability distribution, allowing for a more qualitative analysis of the dynamical transition
into the quantum regime. Fig. 3.9(a) corresponds to the quasi-classical regime (ρ̄ = 5). The
phase-space is very similar to the classical model in Fig. 2.2(a), apart from negative regions
in the quasi-distribution which indicate non-classical behaviour [51]. From |Ψ(ϑ, z̄)|2, classical
micro-bunching is recognized as the strongly peaked probability distribution around the radiation
wavelength. As we move to lower ρ̄ in Fig. 3.9(b), the classical structure is still visible although
the number of involved momentum states is significantly lower compared to (a). The probability
distribution around the micro-bunch positions is also less sharp and the negative regions in the
distribution are more pronounced. In Fig. 3.9(c), the value for ρ̄ is sufficiently low to reduce the
number of involved momentum states to only 4, and the resulting phase space almost fully loses
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the swirling, (quasi-)classical structure. Finally, for ρ̄ = 0.2 in Fig. 3.9(d), the dynamics can be
fully described by c0 and c−1 as an effective two-level quantum system apart from some non-zero
values in the surrounding phase-space regions. These contributions do not add up to something
significant in the marginal projections on m and ϑ. In this regime, the phase-space representation
also makes more clear that bunching (phase correlation) is significantly lower compared to ρ̄ = 5,
which might explain the lower amplitudes of the gain curve for lower values of ρ̄ (see Fig. 3.2).
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Figure 3.9: Wigner function Wm(ϑ, z̄) with marginal projections |cm(z̄)|2

and |Ψ(ϑ, z̄)|2. Results are shown for ρ̄ = 5 (a), ρ̄ = 2 (b), ρ̄ = 0.7 (c) and
ρ̄ = 0.2 (d). All positions are chosen at the point of saturation where the first
radiation peak and maximum micro-bunching first occur.

3.4 Decoherence and non-ideal effects

QFEL operation heavily relies on coherent transitions between adjacent momentum states. As a
result, the question arises which additional, non-ideal effects might impair this behavior and could
cause decoherence. In this section, we revisit several assumptions intrinsic to the current model.
Specifically, the effect of uncorrelated energy spread and spontaneous emission on the coherent
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QFEL dynamics is considered. In addition, we argue that space-charge effects should be added
to current models. All have a detrimental effect on the photon yield and saturation length of the
steady-state and time-dependent evolution.

3.4.1 Inhomogeneous energy spread
There are two important energy scales in FELs. First, the inhomogeneous energy spread δγ
of the electron beam prior to interaction, as shown in Fig 3.10(a). Due to δγ each electron
couples slightly differently with the ponderomotive wave. Second, there is an energy modulation
induced by the momentum exchange with the radiation field, as depicted in Fig. 3.10(b). In
this subsection, we consider the first. So far, the electron beam has been considered mono-
energetic (cold-beam approximation), at a detuning δ = (γ0 − γr)/ργr where each electron has
initial energy γ(z̄ = 0) = γ0 at the start of the interaction. In reality, however, the incoming
electron beam will always have a finite energy spread δγ due to various kinds of inhomogeneous
broadening mechanisms such that individual electrons will experience slightly different Doppler
shifts, resulting in a broadening of the radiation bandwidth [52].

Figure 3.10: Two classical interpretations of energy spread.

Classically, energy spread can be easily implemented in the model by initializing a momentum
distribution around the resonant energy for the point-charge distribution. For a QFEL, however,
a broader occupation distribution over initial momentum states is not the same as energy spread,
since the discreteness only emerges due to the coupling with the radiation field. (For a big part,
the high-energy photons make that the quantum discreteness can even become significant (ρ̄ < 1)
on the scale of FEL interaction.) As we consider the initial energy spread, however, coupling to
the radiation field has yet to take place such that the electron momentum need not be limited to
the discrete step size of the radiation and its effect cannot be captured by the momentum state
description.

To take this effect into account, we assume an arbitrary distribution function f0(δ) for the detun-
ing δ = γ0 − γr/(ργr). For ease of calculation, a slightly modified Fourier expansion of the wave
function is adopted that includes the detuning

Ψ(ϑ, z̄) =

∞∑
m=−∞

cm(z̄, δ)ein(ϑ+δz̄). (3.41)

Following identical derivation steps for the discrete Wigner model (Section 3.3) with this modified
expansion, in combination with a generalized source term that include all detunings weighted by
f0(δ) for the radiation field yields

∂Ā

∂z̄
= b′(z̄) =

∞∑
m=−∞

∫ ∞

−∞
f0(δ)w

1
m+ 1

2
dδ, (3.42)
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Here, A = Āeiδz̄ and the right-hand side is a quantum expression for the bunching factor b′(z̄)
weighted by the distribution. The electron equation for wns remains unaltered from Eq. (3.40a).
We study the effect on the radiation evolution for two different initial energy distribution f0(δ)
with an rms width of σδ = 0.5 and σδ = 2.8. Both are plotted together with the QFEL gain
bandwidth in Fig. 3.11. Since the gain bandwidth decreases both in width and size for smaller
ρ̄ (see again Fig. 3.2), the initial energy distribution f0(δ) could contain values which lie outside
the QFEL bandwidth. For the complete wave function to take part in the interaction, it should
hold that 4

√
ρ̄ < σδ, for instance ρ̄ = 0.2 yields a constraint that σδ ≲ 1.8.

(a) (b)

Figure 3.11: Initial energy distribution f(δ) for σδ = 0.5 (a) and σδ = 2.8,
and QFEL gain bandwidth for ρ̄ = 0.2 from the linear analysis (Eq. (3.18).

(a) (b)

Figure 3.12: Normalized radiation intensity and bunching (top), occupation
probabilities |c0(δ)|2 (center) and |c−1(δ)|2 (bottom) against z̄ for ρ̄ = 0.2.

In Fig. 3.11(a), we see that a Gaussian distribution around δ (in blue) is chosen well within
the bounds of the QFEL gain bandwidth (red), such that σδ < 1.8. The corresponding intensity
and occupation probabilities in Fig. 3.12(a) show that the transition from c0 to c−1 is fully made
for all detunings. Conversely, as f0(δ) is not contained within the gain region as depicted Fig.
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3.11(b), only part of the electrons have the appropriate detuning to undergo QFEL interaction
and make the transition to c−1. In addition, this goes at the cost of the radiation intensity |Asat|2,
the saturation length z̄sat and the duration of a single pulse, as is seen in Fig. 3.13 where the
radiation intensity is again plotted against z̄ for different three rms widths of f0(δ).

Figure 3.13: Normalized radiation intensity for three energy spreads.

3.4.2 Spontaneous emission

In QFEL operation, spontaneous emission refers to the incoherent undulator radiation emitted by
electrons. However, the current model is based on electron dynamics being coupled only to the
coherent radiation field, under the assumption that the coherent amplification quickly outgrows
the initial incoherent contribution from spontaneous emission. Though, QFEL operation heavily
relies on the coherence between adjacent momentum states b =

∑
cmc

∗
m−1 as opposed to classical

FELs. A significant spontaneous emission rate introduces additional transitions from c0 and c−1

to lower momentum states, which causes decay of bunching and could impair the coherence. This
effectively induces an energy spread to the electron distribution. This decoherence effect can be
included by first considering a rate equation for the electron momentum [53, 30]. The probability
of an electron having momentum p will increase by spontaneous emission events from electrons
with momentum p+ℏk and decrease for electrons with momentum p. These photons are generally
emitted under a certain random angle φ with respect to the propagation axis z, resulting in a
distribution G(ω) for the frequency and associated photon momenta. Using this fact, we construct
a simple rate equation for a momentum distribution function, in our case the Wigner function W,
of the form

∂W(z, p)

∂z
= R

∫
G(ω)W

(
z, p+ ℏ

ω

c

)
dω −RW(z, p), (3.43)

where R = παa20/(3λL) is the spontaneous emission rate per unit undulator length with fine-
structure constant α ≈ 1/137. It has been shown, however, that broadband spontaneous emission
does not significantly affect the competition between coherent and incoherent emission compared
to monochromatic spontaneous emission [53], hence we will assume the latter i.e. G(ω) = δ(ω′−ω).
As the momentum distribution in our current model is captured by components wns of the discrete
Wigner distribution, where the probability for momentum p = mℏk is given by Eq. (3.36a).
The evolution equation for wns can thus be modified to include this spontaneous emission rate as
follows:

dwns
dz̄

+ in
s

ρ̄
wns = ρ̄

{
A
(
wn−1
s+ 1

2

− wn−1
s− 1

2

)
+A∗

(
wn+1
s+ 1

2

− wn+1
s− 1

2

)}
+
β

ρ̄

{
wns+1 − wns

}
︸ ︷︷ ︸
Spont. emission rate

, (3.44)

where β = αa20mcγ/(6ℏk) is the spontaneous emission rate in universal scaling. In Fig. 3.14(a),
the intensity, bunching and occupation probabilities for m = 0,−1,−2 are plotted against z̄ for
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ρ̄ = 0.2 and β = 0.03. This shows that in the quantum regime, spontaneous emission causes
an additional damping of the intensity and increased saturation length as occupation of the c−2

state slowly starts to grow. The Wigner distribution along with its marginal projections on m
and ϑ for ρ̄ = 5 and β = 3 in Fig. 3.14(b) clearly depicts two effects of spontaneous emission.
First off, the negative regions of the phase-space distribution which indicate quantum behaviour,
have almost fully disappeared. This is due to the energy spreading effect of spontaneous emission
which increases the blue continuous (classical-like) line’s thickness, obfuscating the interference
regions. Also, we can observe that the induced energy spread smears out the spatial distribution
function |Ψ(ϑ, z̄)| at the maximum bunching position. The phase-space distribution of the micro-
bunches appears less sharp en less jagged compared to Fig. 3.9(a). Also notice the two orders
of magnitude difference in β between the deep quantum regime (β = 0.03 in Fig. 3.14(a)) and
the quasi-classical regime (β = 3 in Fig. 3.14(b)), which implies that spontaneous emission is
significantly more restrictive for ρ̄ < 1.

(a)

-0.05

0

0.05

(b)

Figure 3.14: (a) Normalized radiation intensity, bunching and occupation
probabilities against z̄ for ρ̄ = 0.2, β = 0.03. (b) Wigner distribution Wm for
ρ̄ = 5 and β = 3.

3.4.3 Opposing constraints of spontaneous emission and space-charge

Contrary to spontaneous emission, space-charge has not been included in QFEL models leaving
its effect largely unknown. To demonstrate why space-charge is important to include in a QFEL
model, we review the opposing experimental constraints put on by spontaneous emission and
space-charge [7]. Both effects can be associated with length scales which, in turn, can be related
to the required interaction length expressed in the number of gain lengths Lint = NLg, to derive
explicit constraints for the laser undulator parameter a0. For space-charge, the relevant length
scale comes from the inverse plasma wavenumber k−1

p = cγ3/ωp. Using this, we pose a constraint
based on the fact that micro-bunching should occur over shorter distance than space-charge effects
become significant i.e. NLg < k−1

p . We can rewrite this inequality to

a0 ≥ a0,min = N

√
8λc
γλR

(1 + ρ̄), (3.45)

where we used the fact that Lg ∝ ρ−1(a0) and the definition of ρ from Eq. (2.24). We have also
seen in the previous section that spontaneous emission leads to electron decay outside the allowed
QFEL bandwidth inhibiting its performance. Alternatively, we can state that all QFEL dynamics
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should take place within the lifetime of the initial electron momentum state such that a constraint
can be formulated using the decay rate R−1 = 2παa20/(3λL). As the lifetime of an excited state
should be greater than the typical interaction time such that a coherent interaction can actually
take place, we pose the constraint that the interaction length Lint should be greater than (twice)
the inverse decay length, or RNLg ≤ 1

2 . Again, we can derive a constraint for a0 on the basis of
this

a0 ≤ a0,max =

√√√√ 3λc
αγλRN

√
ρ̄3

1 + ρ̄
. (3.46)

Evaluating both constraint relations as a function of N in Fig. 3.15 shows that a regime in which
both decoherence effects become negligible only occurs well before saturation around N ≈ 1.5− 2.
As a consequence, QFELs cannot be operated in a space-charge-free regime while simultaneously
neglecting spontaneous emission, or vice versa. Therefore, for the general completeness of the
QFEL model, it becomes crucial to account for space-charge.

Figure 3.15: Laser undulator parameter a0 against N . Green shaded area
denotes region where a0,max > a0,min, in the red shaded area holds that
a0,min > a0,max, such that both constraints cannot be met simultaneously.
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4 | Results of a first Raman QFEL
model

This chapter focuses on the inclusion of longitudinal space-charge effects on the micro-bunch scale
in a discrete Wigner model. The relevance of including space-charge in a QFEL model has been
stressed on multiple occasions in literature [7, 54, 55]. In the previous chapter, it was hypothesized
that space-charge could act as a decoherence mechanism with opposing experimental constraints to
spontaneous emission. In this chapter, the classical space-charge potential is formally quantized
after which we investigate the linear stability conditions in the momentum state model. We
subsequently add the space-charge potential to a discrete Wigner model which we use to study
QFEL dynamics.

4.1 Implementation of space-charge effects

At present, most X-ray FELs operate in the Compton regime where the modulation process is
negligibly influenced by the internal Coulomb interaction, i.e. space-charge forces, between the
electrons. However, at high electron densities or, such as in QFELs, at low electron beam energy,
space-charge can significantly affect bunching dynamics. In this so-called Raman regime, the char-
acteristic length scale of electron plasma behavior in terms of the (inverse) plasma wave number
k−1
p and the FEL gain length Lg become comparable in size. Raman FELs show even stronger col-

lective electron behavior having direct consequences for their operating regime and overall perform-
ance. In a one-dimensional model, these effects can be largely understood in terms of microscopic
space-charge which directly acts against the density modulations that constitute micro-bunching.
Especially in micro-bunch configuration, the repulsive Coulomb forces grow stronger as electrons
are more narrowly spaced. In what follows, this longitudinal microscopic space-charge field is
derived and implemented in the QFEL model.

We start by evaluating the electrostatic field Esc = −∇Φsc using Gauss’ law for an arbitrary
charge distribution ϱ(x, t) given by the electron bunch

(
∇2

⊥ +
∂2

∂z2

)
Φsc = − e

ϵ0mc
ϱ(x, t) =

e2

ϵ0mc

N∑
j=1

δ(3)
(
x− xj(t)

)
. (4.1)

The one-dimensional approximation simplifies this equation to

∂Esc

∂z̄
=

e2

mϵ0c2
ne(ϑ)

Ne

∑
j

δ(ϑ− ϑj). (4.2)

where we use the particle density as function of ϑ: n(ϑ) = (2πne/N)
∑
j δ(ϑ − ϑj) with ne the

local density. As micro-bunches start to form on the scale of the wavelength 2π/(kR + kL) or the
ponderomotive phase ϑ = (kR + kL)z − (kR − kL)ct, the associated space-charge field generated
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by the high-density regions is periodic in ϑ as well. The electron density n(ϑ) can be Fourier
expanded in ϑ as follows

n(ϑ) = ne
∑
n

⟨e−inϑ⟩einϑ + ⟨e−inϑ⟩∗e−inϑ. (4.3)

Note that the summing over delta functions has allowed for a similar averaging procedure as before,
see for instance Eq. (2.18). Using this, we can solve Eq. (4.2) to obtain an expression for the
space-charge field.

Esc(ϑ) = kR

( ωp
ωR

)2 ∞∑
n=0

⟨e−inϑ⟩einϑ − ⟨e−inϑ⟩∗e−inϑ

in
. (4.4)

As we neglect macroscopic space-charge effects, the zeroth (n = 0) harmonic of the Fourier ex-
pansion is neglected. In fact, the only term of interest, for now, is the microscopic space-charge
field periodic with the first harmonic (n = 1) of the radiation wavelength, as we neglect higher
harmonics. Interestingly, this field is proportional to the bunching factor b = ⟨e−iϑ⟩. This makes
sense: as the bunching factor increases, electrons collect themselves in small regions to form the
micro-bunches. More closely spaced, the repulsive Coulomb forces between electrons are more
pronounced and the corresponding field should grow. This result should now be fitted into the
classical FEL model of Eqs. (2.25a)-(2.25c). It is easily recognized that the presence of an addi-
tional electric field will modulate the electron momenta, since F = dp/dt = qE. This way, the
evolution of pj can be written as having an additional term:

dpj
dz̄

= −
(
Aeiϑj +A∗e−iϑj

)
︸ ︷︷ ︸
Mod. by radiation field

− iσ
(
beiϑj − b∗e−iϑj

)
︸ ︷︷ ︸

Mod. by space-charge field

= −
[
(A+ iσb)eiϑj +(A− iσb∗)e−iϑj

]
. (4.5)

Equation (4.4) has undergone universal scaling, where we introduced the space-charge parameter
σ as

σ = 4ρ
1 + a20
a20

=
Lg
ργ
kR

( ωp
ωR

)2
. (4.6)

The space-charge parameter denotes the amplitude and thereby the strength of the space-charge
field, and is dependent on both the electron energy and density. Here we also observe that σ
increases for high densities and low γ. So far, this derivation is fully classical but, of course, we
like to extend this to the quantum regime. Similarly, by recognizing the equivalence between Eq.
(2.25a) and the modified equation for pj , we can write the associated Hamiltonian as

H =
∑
j

Hj = − 1

2ρ̄

∂2

∂ϑ2
− iρ̄

[
(A+ iσb)eiϑj + (A∗ − iσb∗)e−iϑj

]
. (4.7)

Again by substitution of the Hamiltonian H in the Schrödinger-like equation, we obtain an evol-
ution equation for the electron wave function

∂Ψ

∂z̄
= − i

2ρ̄

∂2Ψ

∂ϑ2
− ρ̄
[
(A+ iσb)eiϑj + (A∗ − iσb∗)e−iϑj

]
Ψ, (4.8)

where the bunching factor is again given by the expectation value expression b =
∫
Ψ∗Ψe−iϑdϑ.

The radiation field evolves in an identical way according to Eq. (3.14)

4.2 Detuning with quantum and space-charge corrections

Having introduced a new free parameter to the equations, it is essential to investigate the conditions
under which the steady-state instability can occur. For sake of clarity, we perform the linear
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stability analysis using the momentum state model. This yields an evolution equation for cm
coefficients

dcm
dz̄

= −im
2

2ρ̄
cm − ρ̄

[
(A+ iσb)cm−1 + (A∗ − iσb∗)cm+1

]
, (4.9)

which is coupled to the radiation field that evolves according to Eq. (3.15). Assuming small
variations around the stationary solution (A ≈ ∆A, c0 ≈ 1 + ∆c0 and cm ̸=0 ≈ ∆cm) a single
third-order is derived of the form:

d3A

dz̄3
− iδ

d2A

dz̄2
+
[ 1

4ρ̄2
+ σ

]dA
dz̄

− i
([ 1

4ρ̄2
+ σ

]
δ + 1

)
A = 0. (4.10)

Assuming a solution of the form A ∝ eiΛz̄ yields the following dispersion relation

(Λ− δ)
(
Λ2 −

[ 1

4ρ̄2
+ σ

])
+ 1 = 0. (4.11)

The dispersion relation admits the classical Compton limit (σ = 0, ρ̄ ≫ 1) from Eq. (2.31),
the quantum Compton limt (σ = 0, ρ̄ < 1) from Eq. (3.18) and the classical Raman limit
(σ ̸= 0, ρ̄ ≫ 1) [56], all three of which are consistent with existing literature. The interesting
regime for us, of course, is the quantum Raman regime (σ ̸= 0, ρ̄ < 1). Although this result
was found before using a heuristic approach [55], we here formally derived the dispersion relation
including both quantum and space-charge corrections. We can show that the approximate detuning
to obtain optimal gain is given by

δmax ≈
√

1

4ρ̄2
+ σ. (4.12)

In Fig. 4.1 we have plotted the growth rate against the detunings for 4 combinations of ρ̄ and σ. It
can be seen that both the quantum and space-charge corrections affect the gain region identically;
for optimal gain with non-zero space-charge, the detuning should be increased accordingly and
the optimal gain is decreased. From this, we may conclude that it has a detrimental effect on the
dynamics.

Figure 4.1: Growth rate against detuning, for different values of σ and ρ.

4.3 Wigner quasi-phase-space dynamics

Having done a formal derivation of the evolution equation for Ψ(ϑ, z̄) with space-charge, we can
go a step further to study the effect of space-charge in steady-state simulations. Although the
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momentum state model allows for easy linearization, we use the Wigner model to investigate
the effects of space-charge on the phase-space dynamics. Importantly, the Wigner model allows
for better bench-marking with classical simulation in the Raman limit. Subsequently, we can
gradually decrease ρ̄, which brings us into the quantum regime. Using the evolution of Ψ in Eq.
(4.8), which now includes space-charge, we can follow the same steps to derive a discrete Wigner
description including space-charge:

dwns
dz̄

+ in
s

ρ̄
wns = ρ̄

{
(A+ iσb)

(
wn−1
s+ 1

2

− wn−1
s− 1

2

)
+ (A∗ − iσb∗)

(
wn+1
s+ 1

2

− wn+1
s− 1

2

)}
(4.13a)

dA

dz̄
= b+ iδA =

∞∑
m=−∞

w1
m+ 1

2
+ iδA (4.13b)

The quasi-phase-space can be reconstructed from the numerical solutions of wns according to Eq.
(3.34) for Wm, as well as the marginal probability distributions for ϑ and cm from respectively
Eq. (3.36b) and Eq. (3.36a). The Wigner function Wm and associated marginal projections |Ψ|2

and |cm|2 for increasing values of ρ̄ = 0.2, 1, 5 in the Compton (σ = 0) and Raman regime (σ = 3)
are plotted in Fig. 4.2.

4.3.1 Classical limit

Figures 4.2(a)-(b) show the correspondence between the classical phase space one gets from nu-
merically integrating Eqs. (2.25a)-(2.25c) and the Wigner function in both the Compton (σ = 0)
and Raman limit (σ ̸= 0) at the point of saturation. The (quasi-)phase-space in Fig. 4.2(a) is
shown at the position where the bunching factor reaches its maximum value, which can be recog-
nized as the periodic, vertical alignment in phase space. From the marginal distribution for ϑ, i.e.
the probability |Ψ(ϑ, z̄)|2, bunching is observed as increased probability to find electrons at the
micro-bunch positions. Although classical-like dynamics for Wm are clearly visible, the relatively
low value of ρ̄ = 5 makes that some quantum interference effects in the negative regions of the
phase-space are still visible and we recognize that the momentum state occupation, although a
multiple of states is occupied, has not fully lost its discrete nature.

To attain optimal gain in Raman FELs, electrons are more strongly detuned (see Eq. (4.12))
which increases the effective energy spread of the electrons induced by the momentum exchange
with the radiation field [57]. Larger bucket amplitudes, quantum mechanically, correspond to the
occupation of more momentum states, which is clearly visible in Fig. 4.2(b). Here, quantum inter-
ference and momentum discreteness is again not fully lost. Micro-bunching still occurs although
the probability distribution is somewhat smeared out and shows more oscillatory behaviour with
respect to the Compton FEL.

4.3.2 Intermediate and quantum regime

To show the transition from the pendulum-like phase-space swirls in classical FELs to the simpler
two-state transitions in the QFEL picture, we turn to the resulting phase spaces in Figs. 4.2(c)-
(d). As is seen, the number of momentum states getting occupied during the interaction reduces
in this intermediate regime for ρ̄ = 1 compared to ρ̄ = 5. Some of the characteristics of classical
orbits are evident but the discreteness of momentum is more apparent in the resulting phase
spaces. Especially Fig. 4.2(d) resembles the Raman phase-space shape from Fig. 4.2(b), though
with discreteness being more visible. When entering the quantum regime in Fig. 4.2(e)-(f), the
phase-space representation becomes trivial. As the momentum state occupation is reduced to only
two states, we turn to the radiation field and separate momentum states in the next section, to
further investigate the Raman QFEL regime.
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Figure 4.2: Wigner function Wm(ϑ, z̄) with marginal projections for m (left)
and ϑ (top). Results are shown for (a) ρ̄ = 5, σ = 0 at z̄ = 11.9, (b) ρ̄ = 5, σ = 3
at z̄ = 18.9 (both with classical phase-space overlap according to Eqs. (2.25a)-
(2.25c)), (c) arρ = 1, σ = 0 at z̄ = 13.5, (d) ρ̄ = 1, σ = 3 at z̄ = 18.5, (e)
ρ = 0.2, σ = 0 at z̄ = 10.7, (f) ρ = 0.2, σ = 3 at z̄ = 11.6. All positions are
chosen at the point of saturation where the first radiation peak and maximum
micro-bunching first occur.
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4.4 Radiation field and momentum state dynamics

We now examine the deep quantum regime with space-charge. In Fig. 4.3(a), the evolution of the
c0 and c−1 states is plotted as function of z̄ for σ = 3. Contrary to a Compton QFEL where the
electron wave function completely transitions to the c−1 state, the electron wave function in the
Raman regime does not completely de-excite. Instead, the radiation reaches saturation when the
wave function is in a superposition of both states, which comes at the cost of radiation intensity.
This can also be seen in Figs. 4.2(f) by the distinct occupation of the Wigner distribution at the
point of saturation of the radiation. The phase-space plots also show that decoherence, i.e. the
occupation of momentum states outside the two-state QFEL bandwidth such as with spontaneous
emission, does not take place.

(a) (b)

Figure 4.3: (a) Normalized radiation intensity and bunching factor (top)
and occupation probabilities (bottom) against z̄ for σ = 3. (b) Normalized
radiation intensity for different values of σ.

The transition is increasingly damped for higher σ, reducing the peak saturation intensity and
increasing the saturation length, which is more clearly seen in Fig. 4.3(b) where the normalized
intensity is set out against z̄ for different values of σ. We can further illustrate this on the basis of
a numerical example. For σ = 5 the radiation saturates about 2 gain lengths later (z̄ ≈ 12.5) at
only 50% intensity (so ρ̄|A|2 ≃ 0.5) with respect to the Compton limit. Based on this, one might
be tempted to extrapolate the trend of increasing saturation lengths and decreasing radiation
amplitude to conclude that eventually, for sufficiently strong space-charge effects, the occupation
probability of c0 stays fixed to 1, the transition to c−1 is fully withheld and therefore no radiation
is produced.

To test this, we simulate QFEL dynamics for even stronger space-charge of which the results
are shown in Fig. 4.4. Figure 4.4(a) shows that as the transition probability to c−1 tends to zero,
the c−2 state starts contributing to the dynamics, perturbing the pure two-state dynamics and
altering the periodicity of the radiation peaks. By increasing σ only slightly further as shown in
Fig. 4.4(b), the c−2 state starts to overtake at the positions of the radiation peaks. As a res-
ult, QFEL-like dynamics in the form of a periodic sequence of radiation pulses are recovered but
with prolonged saturation and a significantly longer transition period. The additional strength of
space-charge has radically altered the behavior to where a specific transition from c0 to c−2 is now
being driven. The c−1 state still participates in the transition though not predominantly, and the
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transition is still terminated by a complete return to the c0 state.

(a) (b)

Figure 4.4: Radiation intensity, bunching factor and momentum state occu-
pations against z̄ for σ = 18.5 (a) and σ = 20 (b)

To explain this variant behavior when operating at stronger space-charge, we first compare δmax

to ℏk to evaluate a critical value regime for σ in which the added electron energy could trigger
dynamics outside the two-level system between c0 and c−1. For this we evaluate the detuning
normalized to a single-photon momentum in the following inequality:

δmaxρ̄ =
γ0 − γr
ργr

γrmcρ

ℏk
=

(γ0 − γr)mc

ℏk
≥ 1. (4.14)

Substitution of Eq. (4.12) and solving for σ yields a critical value from which the detuning
necessary for optimal gain with space-charge starts to provide electrons with sufficient energy to
start driving higher-harmonic transitions between momentum states that lie outside the usual
QFEL two-level system. This critical value for the space-charge parameter σ is given by

σcrit ≥
3

4ρ̄2
. (4.15)

Next, we will benchmark this analytical result with numerical simulations. In Fig. 4.5, we plotted
the (normalized) maximum intensity for the first radiation peak as found through numerical integ-
ration of Eqs. (4.13a)-(4.13b) against σ. The first region 0 ≤ σ < σcrit shows a steady decrease of
the radiation intensity due to attenuated momentum state transitions within the two-level system,
consistent with Fig. 4.3. For the region σ ≥ σcrit however, the intensity makes an abrupt jump to
a value of 2 as the c−2 transition and the sequential pulsing of radiation from Fig. 4.4(b) start to
overtake. The critical value at which this sudden intensity jump occurs is in accordance with the
analytical result from Eq. (4.15) suggesting that detuning is indeed responsible for this behaviour.
The increase in intensity can be explained due to the momentum separation between c0 and c−2

being equal to 2ℏk.
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Figure 4.5: Normalized saturation intensity against space-charge parameter.

4.4.1 Limitations from higher harmonics
We immediately recognize that by introducing higher-order transitions to the dynamics in the
region σ ≥ σcrit, the current implementation of space-charge effects in this model does not suffice
anymore. The first-order Fourier components for bunching have so far been considered dominant
with respect to higher-order Fourier components, such that the complete space-charge field from
Eq. (4.4) is not taken fully into account. In the case of driving transitions dominantly with c−2, it
is evident that the second-order bunching factor b2 = ⟨e−2iϑ⟩ =

∑
m cmc

∗
m−2 starts to become rel-

evant in addition to the first-order b. Most FEL models have worked under the (valid) assumption
that space-charge on the micro-bunch scale suffices to capture the dominating dynamics. Here,
however, we show a case where specific values of σ result in targeting specific transitions (such as
between c0 − c−2 for σ ≥ σcrit) for which this assumption might not be valid anymore. Further
work should thus include the effects of higher-order Fourier components to the space-charge and
bunching formalization, although we recognize that the experimental parameters for such high σ
are currently not within realistic bounds.

4.5 In sum

For the first time, we have presented an extended Wigner QFEL model that includes longitudinal
space-charge effects on the micro-bunch scale, and studied its dynamics. The explicit correspond-
ence between the Wigner phase space in the classical limit and classical Raman FEL models as
well as the dispersion relation inferred from the linear stability analysis, have shown that extend-
ing the classical space-charge potential to a QFEL model can be done consistently. Numerical
simulations have shown overall decreasing quantum efficiency and saturation length increase for
larger values of σ. For even stronger space-charge, we have found a critical regime of σ where the
corresponding detuning necessary for optimal gain is sufficiently large to start driving transitions
between momentum states outside the two-level bandwidth. Space-charge can here be viewed as
a mechanism directly responsible for the loss of coherence whilst recognizing that, for this specific
case, the first-order Fourier description of space-charge might fall short. The inclusion of space-
charge directly makes for a more realistic, complete QFEL model, and can be used in combination
with the effect of spontaneous emission from Ref. [30] for further, more extensive studies. Espe-
cially considering the opposing constraints for these two decoherence effects set out in Ref. [7],
the results and theoretical model presented here are highly relevant for further discussion. Whilst
recognizing that a 3D approach of space-charge, which includes transverse and macroscopic space-
charge, will eventually be necessary, the 1D implementation presented here captures much of the
relevant physics and provides a consistent theoretical continuation of existing QFEL models.
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5 | Towards a 3D QFEL model

In this chapter, we make progress towards a 3D QFEL model. We first perform simulations of a
model that includes the aforementioned decoherence effects as well as 2D and 3D diffraction of
radiation based on a finite electron beam waist. Based on these results, we propose a numerical
approach using decomposition in transverse radiation modes. Finally, we discuss the more general
structure of a 3D model which includes transverse electron dynamics and the 3D ponderomot-
ive wave using the Wigner formalism. This type of model is, however, severely limited by its
computational load required for simulation.

5.1 Simulation results with diffraction

So far, we have seen that the Wigner model can be extended to account for the competition between
coherent and spontaneous emission through the β parameter (Chapter 3) as well as space-charge
effects by σ (Chapter 4). The corresponding evolution equation for wns is then given by

dwns
dz̄

+ in
s

ρ̄
wns = ρ̄

{
(A+ iσb)

(
wn−1
s+ 1

2

− wn−1
s− 1

2

)
+ (A∗ − iσb∗)

×
(
wn+1
s+ 1

2

− wn+1
s− 1

2

)}
+
β

ρ̄

{
wns+1 − wns

}
. (5.1)

The field equation was also modified to include the inhomogeneous energy spread of the incoming
electrons. Now, we will additionally consider diffraction, that is the spreading of the radiation
field as it passes the boundaries/edges of the electron beam. We do so by taking into account the
transverse derivatives in the field equation

∂A

∂z̄
− ia∇2

x̄⊥
A︸ ︷︷ ︸

Diffraction

=

∞∑
m=−∞

∫ ∞

−∞
f0(δ)w

1
m+ 1

2
dδ, (5.2)

where a = Lg/ZR is the diffraction parameter with ZR = 4πσ2
x/λR the radiation Rayleigh length

for a radius equal to the transverse rms electron beam size σx. The definition of a in Eq. (5.2)
follows directly from the 3D Maxwell wave equation and universal scaling of ∇2

x⊥
/(2ikR) from

Eq. (2.19). To obtain numerical solutions to these equations, we define a 3D Cartesian grid in
combination with a Runge-Kutta solver scheme (see Appendix A). In addition, to compute the
transverse dependence of the radiation field efficiently, we use a Fourier-transformed radiation field
Ã(z̄,κ⊥) =

∫
A(z̄,x⊥)e

i(κ·x)⊥ such that the nabla-operator simplifies to ∇2
x⊥
Ã −→ −κ2Ã. Rather

than Fourier transforming Eq. (5.1) as well, we inverse Fourier transform Ã −→ A for each step
∆z̄ to consistently couple the field to the Wigner evolution.

5.1.1 2D steady-state diffraction
We first isolate the effect of radiation diffraction, for simplicity, in one transverse direction. The
transverse occupation distribution of the momentum states is chosen to be Gaussian centered
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around the electron propagation axis and normalized to 1− ϵ2 for c0 and ϵ2 for c−1. No seed field
is included in the simulation, i.e. A0 = 0. We consider the case with no diffraction (a = 0) in Fig.
5.1(a) where the normalized intensity is plotted in the (x̄, z̄)-plane for ρ̄ = 0.2, the only difference
with 1D being a finite electron beam waist. Each part of the beam still evolves independently from
the others. The occupation probability, which is a measure of the electron density, simultaneously
determines the bunching factor is lower at the edge of the electron beam, resulting in slower
radiation growth. In Fig. 5.1(b), the normalized intensity is again plotted for ρ̄ = 0.2 but with
diffraction a = 0.01. Around the saturation point, we see part of the radiation diffracts away
in the regions |x̄| > 1. As a consequence, some of the radiation escapes the interaction volume
with the electron beam and thus cannot undergo further amplification leading to a lower on-axis
intensity (ρ̄|A|2 ≈ 0.2). For higher values of z̄, the radiation better maintains its overlap with the
electron beam but decreases in intensity.

(a) No diffraction (b) Diffraction

Figure 5.1: Normalized radiation intensity ρ̄|A|2 denoted by colorbar vs. z̄
for ρ̄ = 0.2, δ = 5 for (a) a = 0 and (b) a = 10−2.

Figure 5.2: Occupation probabilities
for c0 and c−1.

Figure 5.3: Normalized radiation inten-
sity for σ = 0.5, β = 8 · 10−4.

The occupation probabilities |c0|2 and |c−1|2 are plotted against x̄ and z̄ for the the same para-
meters as the previous example as shown in Fig. 5.1(b) in Fig. 5.2, and show transitions between
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the two states still occurring. The transverse width of the electron beam remains unchanged as
the emittance is excluded from the model. We also observe that the transitions become less sharp,
i.e. less separated along the undulator. As a result, the cyclic pulsing of the radiation intensity
characteristic of the 1D QFEL model starts to become less pronounced. Lastly, we perform a 2D
simulation of the intensity again for ρ̄ = 0.2 and a = 10−2, but including non-zero space-charge
σ = 0.5 and a spontaneous emission rate of β = 8 · 10−4 in Fig. 5.3. We observe notable damping
of the radiation intensity due to increasingly attenuated transitions in accordance with the 1D
result discussed in section 3.4.2. It is also interesting to observe the significantly higher intensity
in the tails of the diffracted radiation pattern. This might be caused by the interplay between the
bunching initialization and the proportionality of the space-charge term to b, but more extensive
simulation is necessary to make any hard statements.

5.1.2 3D diffraction and transverse cross-sections

Here we will extend to 3D space and study the diffracted radiation pattern. First, we consider a
plot at ȳ = 0 of the 3D normalized intensity against x̄ and z̄ for ρ̄ = 0.2, a = 10−2 and β = σ = 0
in Fig. 5.4. By comparing Fig. 5.4 with Fig. 5.1(b), we observe a similar effect around the
first saturation peak where radiation fans out away from the interaction volume. We also observe
that Rabi-like oscillations damp out. This occurs on a shorter length scale compared to 2D, since
radiation now diffracts away in two transverse directions instead of one. This way, radiation is more
quickly lost outside the interaction volume. For the multi-dimensional simulations, we remark that
the dynamics is intrinsically different due to the transverse spreading and normalization of the
electron wave function. By renormalizing b, we can effectively consider the 1D model as the inner
core of the 3D radiation profile such that consistency can be recovered between the models. As a
consequence, the on-axis peak radiation in Fig. 5.4 is normalized as ρ̄|A|2 = 1 and saturation is
attained around Lsat/Lg ≈ 10, similar to the 1D model. Since diffraction is present in Fig 5.4, we
lose radiation from the interaction region such that the maximum intensity cannot be attained.
The normalization will be further discussed in Chapter 7.

Figure 5.4: Normalized radiation intensity at ȳ = 0 against z̄ and x̄ for
ρ̄ = 0.2, a = 10−2, σ = β = 0. Dotted lines at x̄ = ±1 signify e-beam waist.

Next, we consider transverse cross-sections of the normalized intensity in the (x̄, ȳ)-plane at
two longitudinal positions from Fig. 5.4 for ρ̄ = 0.2, a = 10−2 and σ = β = 0. The first z̄-position
in Fig. 5.5(a) is taken right after saturation, where the center beam corresponds to the radiation
that largely overlaps with the electron beam and the outer ring corresponds to radiation that
has escaped the beam at saturation due to diffraction. Again, the white dotted lines indicate
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the regions of the electron beam waist x̄ = ȳ = ±1. We see a significant difference in intensity
between the circle that falls within the interaction volume and outside. Logically, radiation that
falls within the beam waist boundaries can be subjected to the QFEL amplification process whilst
the outer radiation ring is spatially separated from the electron beam such that amplification can
no longer occur. The second z̄-position in Fig. 5.6(a) is taken well after saturation and the outer
ring has almost fully disappeared. Due to lack of amplification, the intensity drops significantly
such that a Gaussian profile within the interaction volume becomes dominant.

(a)
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(b)

Figure 5.5: Transverse intensity cross-section (a) and slice intensity with
LG00 fit (b) for ρ̄ = 0.2, δ = 5, a = 10−2 at z̄ = 23
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Figure 5.6: Transverse intensity cross-section (a) and slice intensity with
LG00+LG01 fit (b) for ρ̄ = 0.2, δ = 5, a = 10−2 at z̄ = 40

We fit (slices of) the two transverse profiles explicitly with a combination of Laguerre-Gauss
(LG) mode fits in Figs. 5.5(b) and 5.6(b), where an LG mode for radial p and azimuthal index l
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is given by

LGpl(z̄, r, φ) =

√
2p!

π(p+ |l|)!
w0

w

(
r
√
2

w

)|l|

e−
r2

w2 L|l|
p

{
2r2

w2

}
e−ik

r2

2R−iψe−ilφ (5.3)

Using only two modes, LG00 and LG01, we find that the fit already agrees with the transverse
radiation pattern, respectively with an R-square of 0.9947 in Fig. 5.5(b) and 0.9953 in Fig. 5.6(b).
From this, we may conclude that the solution can be well approximated by already a small number
of LG modes, taking into account that more modes would further improve the goodness of the fit.
Especially well after saturation, we observe dominant amplification of a single Gaussian (LG00)
mode.

5.2 Decomposition in transverse radiation modes

The 3D description of the radiation field has allowed for the radiation to diffract away from the
interaction volume, which can be represented by a small number of transverse LG modes. We
also observed amplification of the fundamental mode. For more efficient simulation, we propose
to adopt an approach based on the decomposition in transverse radiation modes [58, 59, 60], and
introduce it for the first time to a QFEL model. This is done to the following form of the field
equation:

∂A

∂z̄
+
∂A

∂z1
− ia∇2

x⊥
A = b(x⊥, z̄, z1) + iδA, (5.4)

where the bunching factor in the Wigner model is given by b(x⊥, z̄, z1) =
∑∞
m=−∞ w1

m+ 1
2

(x⊥, z̄, z1).
The first step is to resolve for the z1-coordinate via a Fourier decomposition in s spatial frequencies
in z1 for A and b according to

A(x⊥, z̄, z1) =
∑
s

As(x⊥, z̄)e
iksz1 ; b(x⊥, z̄, z1) =

∑
s

bs(x⊥z̄)e
iksz1 . (5.5)

For the next step, we assume the decomposition of the radiation amplitude As(x⊥, z̄) on an
arbitrary, orthogonal mode basis Θpl normalized as∫∫ ∣∣Θpls ∣∣2dx⊥ =

∫ 2π

0

∫ ∞

0

Θpls Θ
pl∗
s rdrdφ = 1. (5.6)

Switching to a cylindrical coordinate system As(z̄,x⊥) = A(z̄, r, φ), we can write the total field as
a finite sum over these transverse modes:

As(z̄, r, φ) =

∞∑
p=0

∞∑
l=−∞

apls (z̄)Θ
pl
s (z̄, r, φ). (5.7)

We adopt Laguerre-Gaussian (LG) modes typical for transverse cylindrical symmetry. Again, each
transverse mode is labelled by a radial index p and azimuthal index l:

Θpls (z̄, r, φ) =

√
2p!

π(p+ |l|)!
w0,s

ws

(
r
√
2

ws

)|l|

e
− r2

w2
s L|l|

p

{
2r2

w2
s

}
e−iks

r2

2Rs
−iψse−ilφ (5.8)

In this expression ws = ws(z̄), Rs = Rs(z̄) and ψs = ψs(z̄) respectively indicate the waist size,
phase front curvature and Gouy phase for each spatial frequency mode ks. Combining both the
longitudinal and transverse spatial expansion yields

A(z̄, z1,x⊥) =

∞∑
s=−∞

∞∑
p=0

∞∑
l=−∞

apls (z̄)Θ
pl
s (z̄, r, φ)e

iksz1 . (5.9)
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By substitution of Eq. (5.9) in Eq. (5.4), one could write the second-order PDE into a collection
of first-order ODE’s of the form

∂apls
∂z̄

Θpls + apls
∂Θpls
∂z̄

+ iksa
pl
s Θ

pl
s − ia

(
1

r

∂

∂r

(
r
∂Θpls
∂r

)
+

1

r2
∂2Θpls
∂φ2

)
apls =

(
bpls + iδapls

)
Θpls (5.10)

It is clear that the first term in this expression contains ∂apls /∂z̄ which is the evolution we set
out to capture in an ODE. By multiplying both sides of Eq. (5.10) by Θpl∗s and consequently
integrating over both transverse coordinates r and φ, the normalization condition ensures that

∂apls
∂z̄

+apls

∫∫
∂Θpls
∂z̄

Θpl∗s rdrdφ+iksa
pl
s −ia·apls

∫∫ (
∂

∂r

(
r
∂Θpls
∂r

)
+
1

r

∂2Θpls
∂φ2

)
Θpl∗s drdφ = bpls +iδa

pl
s

(5.11)
This is rewritten to the following evolution equation for apls

∂apls
∂z̄

= bpls − apls

(∫∫ [
r
∂Θpls
∂z̄

+ ia

(
∂

∂r

(
r
∂Θpls
∂r

)
+

1

r

∂2Θpls
∂φ2

)]
Θpl∗s drdφ+ iks − iδ

)
. (5.12)

From here, we make use of the fact that the transverse nabla-operator works solely on the pre-
defined expressions of LG modes. This is numerically more efficient, especially when the number
of modes can be kept sufficiently small which the results in subsection 5.1.2 strongly suggest. The
mode amplitudes can then be easily solved for and are subsequently recombined to construct the
complete 4D field.

5.3 The structure of a 3D QFEL model

As of yet, the model still omits the transverse electron dynamics and the transverse (laser) un-
dulator profile. To wrap up this chapter, we will review the theoretical steps on how to fit these
into the Wigner model. For classical FEL models, this is done by a straightforward account of
the transverse phase space (x⊥,

dx⊥
dz̄ ) and the complete 3D ponderomotive wave from Eq. (2.4) in

the Hamiltonian from Eq. (2.5). However, the 3D extension in a QFEL model is more intricate
because of the different nature of the electron-light interaction along the transverse and longitud-
inal axes [32]. The quantum mechanical nature of the interaction is important for the longitudinal
dynamics whilst the transverse dynamics adhere to a classical description for thermal electron
beams. As a consequence, this 3D model should not only admit the 1D limit when we drop trans-
verse dependencies and the classical 3D Vlasov limit for ρ̄≫ 1, but in addition a separate classical
limit only for the transverse dynamics.

5.3.1 Extending the Wigner model

The Wigner formalism is again well-suited to capture such a system, and a similar procedure as
before can followed: (i) formulate a Hamiltonian H with quantum operators, (ii) use H to derive
evolution of either the quantum wave function Ψ using the Schrödinger equation or the density
operator ϱ̂ using Louiville-von Neumann equation, and (iii) determine the evolution of the discrete
Wigner function ws by substitution of the evolution equation for Ψ or ϱ̂. The 3D Hamiltonian
operator in universal scaling is given by [28]

H3D(z̄) =
p̂2

2ρ̄3/2
+
αb

2
p̂2⊥+

[ ξ

2ρ
√
ρ̄
(1−|g|2)− bX

4
α2p̂2⊥

]
p̂−
[
g∗Aeiϑ̂−H.c.

]
+

ξ

αρ
√
ρX

|g|2, (5.13)

where the transverse momentum operator p̂⊥ = −i∇x̄⊥ is associated with the variable p⊥ =
(γrσx/λ̄c)x

′
⊥ where x′

⊥ = dx⊥
dz̄ and λ̄ = ℏ/mc the Compton wavelength. This operator forms a

canonically conjugate pair with the transverse position operator ˆ̄x⊥ = x̂⊥/σx. Furthermore, α =
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λ̄c/ϵn where ϵn is the normalized transverse beam emittance, X = 4πϵn/(γrλR), ξ = a20/(1 + a20)
and b = Lg/β

∗ = Lg(ϵn/σ
2
xγr). The transverse (laser) undulator profile is given by g = g(x̄⊥, z̄),

where for example a Gaussian TEM00 looks like

g(x̄⊥, z̄) =
1

1− i(Lg/ZL)(z̄ − z̄0)
e
− |x̄⊥|2

4σ2
L

(1−i(Lg/ZL)(z̄−z̄0)) , (5.14)

where σL = R/σx with R the rms laser radius at the waist position and ZL = 4πR2/λL the laser
Rayleigh length. In the 1D limit, we can simply write g(x̄⊥, z̄) = g = 1. For step (ii), we consider
the evolution of ϱ̂ using the Louiville-von Neumann equation

dϱ̂

dz̄
= i[H, ϱ̂], (5.15)

where we can plug in Eq. (5.13) for the Hamiltonian. For step (iii) we first define a 3D discrete
Wigner distribution function as

ws(ϑ, x̄⊥, z̄, z1) =
1

2π3

∫ π

−π

∫ ∞

−∞
⟨ϑ+ ϑ′, x̄⊥ + x̄′

⊥| ϱ̂ |x̄⊥ − x̄′
⊥, ϑ− ϑ′⟩ e−2i(sϑ′+x̄′

⊥·p⊥)d2x̄′
⊥dϑ

′,

(5.16)
which we subsequently differentiate with respect to z̄, and where we substitute Eq. (5.15) in the
resulting expression. This rather long algebraic manipulation yields the exact evolution of the
Wigner function ws [28], though we can still make one additional simplification. Up to now, we
describe an electron beam with arbitrary normalized transverse emittance all the way down to the
quantum limit (ϵn ∼ λ̄c) whilst we already recognized that a classical limit would suffice here. To
this end, we assume a thermal momentum distribution with a width ∆x′

⊥ much larger than the
quantum limit, i.e. ∆x′

⊥ ∼ (ϵn/σxγr) ≫ (λ̄c/σxγr). To allow for an explicit transverse classical
limit, we already introduced α = λ̄/ϵn such that p̄⊥ = (σxγr/ϵ)x

′
⊥ = αp⊥, and perform a Taylor

series expansion by taking notice of the fact that α≪ 1 such that only the 0-th order terms in α
remain. This yields the following evolution equation for the Wigner function ws(ϑ, x̄⊥, p̄⊥, z̄, z1):

∂ws
∂z̄

+ b(p̄⊥ · ∇x̄⊥)ws︸ ︷︷ ︸
term 1

+

[
s

ρ̄3/2
+

ξ

2ρ
√
ρ
(1− |g|2)− b2

4a
p̄2⊥︸ ︷︷ ︸

term 2

]
∂ws
∂ϑ

− (g∗Aeiϑ + gA∗e−iϑ)

× [ws+ 1
2
− ws− 1

2
]− ξ

ρ
√
ρ̄
∇x̄⊥ |g|

2 · ∇p̄⊥ws︸ ︷︷ ︸
term 3

= 0. (5.17)

Let us briefly discuss the three additional transverse terms that have appeared compared to Eq.
(3.37). Term 1, in unscaled form x′

⊥ ·∇x⊥ describes the diverging electron beam which leads to an
increase of the beam waist σ(z̄). Both contributions of term 2 signify a change in FEL resonance
caused by respectively the transverse undulator profile and the beam emittance. Given that the
resonant wavelength reads

λR =
λL
4γ2

(1 + a20 + γ2θ2), (5.18)

we see that a transverse undulator profile a0 = a0(x⊥) ̸= const. and beam divergence 0 ≤ θ ≤
(ϵn/γσ) alter the resonant wavelength λR. Finally, term 3 stands for an additional ponderomotive
force term because of the transverse distribution of the undulator field. Next, it can be shown
that Eq. (5.17) is coupled to the 3D radiation field A(x̄⊥, z̄, z1) as follows:

∂A

∂z̄
+
∂A

∂z1
− ia∇x̄2

⊥
A = g

∑
m

∫ π

−π

∫ ∞

−∞
wm+ 1

2
e−iϑd2p̄⊥dϑ+ iδA. (5.19)

Here we use the fact that the current density J0 from the 3D Maxwell equation can be written in
terms of the (integer) Wigner functions wm [32]. This describes the radiation field driven by the
three-dimensional bunching factor.
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5.3.2 Limitations
The model in Eqs. (5.17) and (5.19) captures both the complete time-dependent electron motion
and laser and radiation profiles using a 7D Wigner function. However, evaluating this 7D array
requires a combination of integration schemes, interpolation methods, decomposition techniques
and division of computational load which, in the end, becomes highly restrictive for the model’s
numerical efficiency [29]. In addition, it is still not exhaustive for all QFEL dynamics since
spontaneous emission and space-charge effects are excluded from the model. Hence, there is a
need for a simpler model that includes these effects as well as captures aspects of the 3D dynamics
in a numerically efficient way. This is the model as presented in Eqs. (5.1) and (5.2) where
we include 3D radiation dynamics. To justify its use, we do rely on three important simulation
results of the 3D Wigner model (Eqs. (5.17)-(5.19)). First off, it was shown that a transverse
beam emittance does not prevent for the collective QFEL instability to occur as long as it adheres
to a certain upper limit dependent on specific experimental parameters such as λR and σx [32].
Secondly, by analyzing the energy stability of several SASE runs it was found that steady-state
solutions serve as a reliable indicator for the average SASE output given a sufficiently long bunch
Lb > 20Lc [29]. Thirdly, the presence of a Gaussian undulator profile has only slightly diminishing
effects (∼ 10%) on the efficiency when ZL > 5Lg and 2σx < R < 5σx [29]. Lastly, an important
feature of our model is the fact that the 3D field is still driven by 1D electron dynamics such that
the 1D description of space-charge and spontaneous emission still holds. All in all, for the first
time we presented a comprehensive QFEL model that takes into account both decoherence effects
and 3D diffraction.
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6 | Experimental realization

In this final chapter, the theoretical and numerical work which led to our novel model presented
in Chapter 5 is used to investigate a realizable QFEL set-up. We start by reviewing the most
important theoretical constraints a future experiment should adhere to. Subsequently, we specify
the requirements for the electron injector and consider the ultracold electron source (UCES)
in particular, which could meet the stringent requirements for potential QFEL operation. We
additionally consider the required laser undulator properties which include geometrical matching
between the laser and electron bunch. To finish, we present a set of design parameters for a QFEL
based on simulation results of the model presented in Chapter 5.

6.1 Basic criteria and theoretical constraints

In this section, we will review the most important theoretical constraints for QFEL operation. The
experimental challenge is twofold: the electron bunch and laser beam parameters should allow for
both efficient operation of the quantum regime as well as proper geometric overlap to attain the
required interaction volume. Starting with the first, the initial electron energy spread ∆γ should
be sufficiently small compared to the single-photon recoil to avoid discreteness washing out:

∆γ

γ
<

ℏkR
γmc

=
ρ

ρ̄
. (6.1)

On top of that, for QFEL interaction to yield exponential growth, the initial energy spread should
be contained within the gain bandwidth that follows from the linear analysis (Fig. 3.2)

∆γ

γ
< ρ

√
ρ̄. (6.2)

These expressions form the explicit constraints respectively for the emergence and the efficient
exploitation of the quantum regime. In a deep quantum regime ρ̄ < 1, the condition in Eq. (6.2)
becomes more restrictive than Eq. (6.1) such that imposing the latter automatically satisfies the
first. Assuming this regime, we can rewrite the energy spread condition to an upper bound on the
radiated bandwidth as follows

∆λR
λR

= 2
∆γ

γ
< 2ρ

√
ρ. (6.3)

We can subsequently pose that, in order to contribute to the two-level QFEL dynamics, the
radiation produced by each electron must adhere to Eq. (6.3). The radiated wavelength for each
electron is determined by the following resonance relation

λR =
λL
4γ2

(1 + a20 + γ2θ2), (6.4)

for a given angle θ with respect to the propagation axis. This equation immediately allows see-
ing what could push λR outside the allowed bandwidth, given that realistic electron bunches and
lasers inevitably come with variations in their characteristic quantities. First off, both the electron
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energy spread ∆γ and the angular spread δθ cause an increase in the radiation bandwidth accord-
ing to Eq. (6.4). Also, a non-uniform laser undulator parameter a0 = a0(x, z̄) induces variations
around the resonant wavelength. In the next sections, we will formulate conditions for allowed
variations of these specific quantities.

6.2 Electron injector

For QFEL operation, relativistic electron bunches collide with a laser pulse to produce coherent
X-ray pulses. Here, we consider the experimental demands put on the bunch quality for QFELs. In
general, the bunch quality is expressed as a combination of bunch charge Q and the transverse and
longitudinal normalized rms emittance. The transverse normalized emittance ϵ⊥ is used together
with the rms electron beam radius σx as a measure for the beam divergence, given by δθ = (ϵg/σx)
with ϵg = ϵ⊥/(γβ) the geometrical transverse emittance. We can use Eq. (6.4) to derive that the
maximum allowed divergence angle, and thus the upper-bound on the transverse emittance for
efficient operation of the QFEL regime is

γ2(δθ)2 ≤ 2ρ
√
ρ̄ → ϵ⊥ ≤ σx

√
ρ
√
ρ̄(1 + a20). (6.5)

Next, we consider the geometrical matching conditions. Namely, beam divergence reduces the
electron density effectively deteriorating the strength of the electron-light interaction. In addition,
the overlap region is reduced, which leads to an additional condition for the bunch emittance. We
therefore require that the interaction length Lint = NLg should fit twice within β∗ = γσ2

x/ϵ⊥,
which is the betatron-function at the center of the interaction [61]. This leads to

ϵ⊥ ≤ σ2
xγ

Lint
(6.6)

where we additionally impose that the interaction length should be at least twice the laser Rayleigh
length, i.e. Lint = cτL ≈ 2ZL = 4πR2/λL where R is the rms laser radius at focus. This ensures
that the electron bunch is fully contained within the laser pulse throughout the interaction. To
continue, the longitudinal normalized emittance ϵ∥ relates the rms bunch duration σt and the rms
longitudinal energy spread σγ . This Lorentz-invariant quantity is defined for a bunch without
chirp as

ϵ∥ = σtσγ (6.7)

We have already seen that the energy spread σγ has a strict upper limit given by Eq. (6.2).
For typical QFEL operation, short bunch lengths (on the order of 100 fs) are desirable to obtain
appreciable electron densities and ultra-short X-ray pulses. Together with the bunch waist σx
and the bunch charge Q, the bunch length σt determines the mean electron density on which
ρ explicitly depends. Thereby, this directly determines how strongly coupled the electron-light
interaction will be. For the prospected MeV electron beam energy, we require an exceptional
electron injector that is especially capable of preserving low transverse emittances ϵ⊥ < 0.1 mm
mrad for decent bunch charges of Q ∼ 1 pC. To this end, we investigate the ultracold electron
source (UCES) [35] as a potential QFEL electron injector.

6.2.1 Ultracold electron source

The ultracold electron source, or UCES, produces highly charged bunches by near-treshold pho-
toionization of laser-cooled gas trapped in a grating magneto-optical trap (GMOT) [62]. Using
this approach, electron temperatures as low as a few-10 K can be reached, as was demonstrated
by nanosecond [63] and femtosecond ionization [64]. The minimal source size σx is limited by
the overlap between the excitation and ionization laser for high bunch charges. The transverse



A Raman Quantum Free-Electron Laser Model 50

beam quality is subsequently expressed as the normalized rms emittance and can be written, in
the waist, as the product of the beam size σx and momentum spread σpx =

√
⟨p2x⟩:

ϵ⊥ = σxσpx = σx

√
kBT

mc2
, (6.8)

where kB is Boltzmann’s constant and an effective electron temperature T is attributed to the
transverse momentum distribution as σpx =

√
mkBT . Strongly reducing the electron source

temperature thus allows for values of ϵ⊥ which can be significantly lower than conventional pho-
toemission sources [65]. For example, for an rms transverse source size σx = 25 µm of temperature
T = 10 K the normalized emittance is ϵ⊥ = 1 nm rad, which is regularly achieved in the UCES
[64, 66]. In addition, the trapped gas cloud size and therefore the longitudinal size of the ioniza-
tion volume is typically ∼ 1 mm, such that electron densities can be as high as ne ∼ 1018 m−3.
This allows for a combination of high bunch charges and emittances as low as ϵ⊥ ∼ 1 nm rad,
which meet the strict emittance upper bounds given by Eqs. (6.5)-(6.6). The electron bunches
could be focused to a transverse size of several µm and bunch lengths up to ∼ 100 fs [35], which
is typically required for the characteristic QFEL interaction. All in all, the UCES could be an
excellent candidate for driving QFEL interaction as it could meet the stringent requirements for
the bunch charges and emittance.

6.2.2 Bimodal TM010 TM020 cavity

Presently, the electrons in the UCES are extracted by an electrostatic field [62], which has two
main drawbacks. First, the electrons from the trailing part of the bunch accelerate more in the
electrostatic field than the leading part causing the electron bunch to compress downstream of the
UCES. In the compression point, the space-charge forces within highly charged bunches result in
the growth of emittance and uncorrelated energy spread, which is detrimental for lasing. Second,
the longitudinal emittance increases at the source since electrons are accelerated during the finite
ionization time.

A way to circumvent both drawbacks, simultaneously, is to use an oscillating extraction field
at two harmonic frequencies. In Fig. 6.1(a)-(b), the field amplitude for two harmonics of 3 GHz
and 6 Ghz is shown in the accelerator of length z = 3 cm and radius r = 4.4 cm. The time
dependence (together with the finite length of the accelerator and amplitude of the field) allows
for tuning of the field gradient over the electron bunch at the beginning and end of the accelerator
such that (de)compression can be controlled. In addition, the bimodality ensures that the field is
set to zero at ionization, thereby overcoming the longitudinal emittance growth. After ionization,
the field ramps up quickly, accelerating the electron bunch away from the source. This is clearly
depicted in Fig. 6.1(d) by the total field (black line). Since AC-accelerators are less sensitive to
breakdowns than DC-accelerators, much stronger fields can be used, which in turn lead to much
higher electron beam energy.

We can subsequently simulate the extraction of a bunch from the UCES using this bimodal cavity
where the maximum field strength is 45 MV/m. We find that for a 1 pC bunch of σx = 60 µm,
Lb = 360 µm, T = 10 K with an ionization time tion = 0.5 ps, the resulting energy spread is
∆γ/γ ∼ 10−4 for E = 800 keV and the transverse normalized emittance ϵ⊥ = 10 nm rad. The
corresponding (averaged) electron phase space is plotted in Fig. 6.2. These values demonstrate
that bunch quality in terms of low emittance and energy spread (for sufficient bunch charge) can
be preserved using this type of setup. The bunch parameters could thus fall within the intended
parameter space of potential QFEL operation, especially given that optimization of the cavity
design could further increase the bunch quality.
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Figure 6.1: Normalized electric field in cross-section of acceleration cavity
for (a) 3 GHz and (b) 6 GHz. (c) Field plotted against z̄ and (d) against
normalized time f3t where the black line denotes the sum of the two frequencies.

Figure 6.2: Electron phase space for Q = 1 pC, 60 × 360 µm extracted from
UCES using bimodal TM010 TM020 cavity, resulting in relative energy spread
∆γ/γ ∼ 10−4 for E = 800 keV and emittance ϵ⊥ = 10 nm rad.

6.3 Laser undulator

The principal aim of the laser undulator is to provide a highly uniform field, both in a spatial and
temporal sense, in which individual electrons should experience similar field strengths. Realistic
laser pulses, however, always come with spatial envelopes thus variations in intensity. First, we
revisit the fact that intensity variations of the laser profile, i.e. non-constant laser parameter a0,
induce variations in the radiated wavelength by electrons according to Eq. (6.4). Compared to
the allowed QFEL bandwidth, we can subsequently pose an upper limit to the allowed relative



A Raman Quantum Free-Electron Laser Model 52

variations in a0
δa0
a0

≤ ρ
√
ρ̄
1 + a20
a20

, (6.9)

where we still assume the linear Thomson regime such that a0 < 1. Additionally, the intensity
gradients result in an inhomogeneous field which gives rise to a ponderomotive force of the form
Fpond = −(mc2/4γ)∇a20. This force acts on electrons and causes them to drift out from the
center of the bunch inducing an angle of deflection θ. We can approximate an upper bound
on the allowed intensity variation by first assuming a constant force over the interaction, such
that Fpond ∼ ∇a20 ≈

√
2/πσ2

xδa
2
0. In combination with θpond = (Lint/

√
8πγ2σx)δa

2
0, a second

constraint on the intensity variation can be written as [7]

δa0
a0

≤ 2

a0

(πρσ2
xγ

2

L2
int

) 1
4

. (6.10)

We have already seen in Eq. (6.6) that β∗ ≥ 2ZL which ensures that the electron bunch is fully
contained within the laser pulse given that σx ≤ 2R, and does not diverge considerably within ZL.
Furthermore, for proper geometric matching, the laser pulse length τL should be sufficiently long
to cover (twice) the duration up till saturation in a head-on scattering geometry, or τL > 2Lsat/c.
Typically, the radiation intensity saturates around Lsat ≈ 10Lg on the mm-to-cm length scale
which corresponds to laser pulse lengths τL on the ps-to-ns scale. Additionally, the total pulse
energy is given by U = PτL for a given laser power P , which for a Gaussian laser profile with a
radius R can be written as [31]

P [TW] =
a0R

(2
√
2 ln 2)λL

. (6.11)

The combination of long pulse lengths and a low intensity variation is experimentally challenging,
but can be obtained in modern high-power laser systems. In addition, we detect a favorable scaling
for low values of a0 in Eq. (6.9) which also lowers the required pulse energy U .

6.4 Proposal design for a QFEL

In this final section, we will present the design parameters of a potential QFEL experiment. Pre-
vious feasibility studies [7, 31] have been limited to the Compton regime, which has put significant
limitations on the usable laser and electron bunch parameters. Yet, the results from Chapter 4 have
now enabled us, for the first time, to make quantitative statements of the effects of space-charge
on QFEL dynamics. Most importantly, we have found that the coherent two-state dynamics of
QFEL interaction can be preserved in a moderate space-charge regime, only at reduced efficiency.
Moreover, we have found that the reduction in |A|2sat is way more significant under the influence
of a spontaneous emission rate [30] compared to a Raman regime with moderate values of σ (Fig.
4.5). Using this insight, we propose a novel operating regime with non-zero space-charge where
we can operate at lower a0 values. This also automatically mitigates the detrimental effect of
spontaneous emission, although our model still takes into account a small non-zero value of β.
In addition, low values of a0 are easier to maintain over the required interaction length, thereby
bringing the corresponding parameters within the capabilities of state-of-the-art laser systems.
This is particularly interesting given that, up till now, feasibility studies have required laser pulse
energies on the order of 10− 100 J [29, 31] due to higher operating values of a0.

6.4.1 Selecting the operating regime
We start by picking typical parameters for the laser undulator operating at λL = 1 µm with a
10 µm beam waist. Based on the UCES, we assume 1 pC 100 fs electron bunches with an rms
width σx = 1 µm, such that σx < R. Although this is not yet within the reach of contemporary
electron sources, the UCES allows for such bunches to be generated. Thereafter, by selecting
values for a0 and γ we fix almost all remaining parameters. In doing so, we make sure that ρ̄ < 1,
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the effect of space-charge may be moderate (σ ∼ 1 − 5) and the spontaneous emission rate very
small (β/ρ̄3/2 ≪ 1). In addition, we aim for a manageable gain length Lg ∼ 1 mm (and thus
interaction length) that can be obtained using pulse lengths within available laser technology.
This simultaneously relaxes the upper bound on the required emittance given that the interaction
length Lint decreases, whilst be comparable in size to the betatron function β∗ ∼ ϵ−1

⊥ (see Eq.
(6.6)). Taking all these considerations into account lands us on a laser strength parameter of
a0 = 0.01 and an electron energy of γ = 7 (or E = 3.35 MeV), which yield a radiated wavelength
λR = 5.10 nm in the Raman QFEL regime for ρ̄ = 0.217 and σ = 4.12. For this value of ρ̄, the
quantum purification is in full effect such that the spectrum consists of a single transform-limited
spike. The spontaneous emission parameter is sufficiently small and given by β = 1.8 · 10−3 ≪ 1.
The maximum allowed gain bandwidth ρ

√
ρ ≈ 5 · 10−5 and thus the required (relative) electron

energy spread also falls within the prospected capabilities of the UCES. The full set of experimental
parameters is listed below in Table 6.1.

6.4.2 Numerical simulations
Given these parameters, we can perform numerical simulations of the QFEL dynamics to quantify
the X-ray yield and interaction length. For illustrative purposes, we first run the steady-state
1D Wigner model for the given values of σ and β. Given that the bunch length is picked such
that Lb/Lc ∼ 20, the steady-state model is expected to yield a reasonable approximation of the
energy output [29]. In Fig. 6.3(a), we plot the normalized intensity ρ̄|A|2, bunching factor |b| and
occupation probabilities |cm|2 against z̄ for ρ̄ = 0.217, σ = 4.12 and β = 1.8·10−3, as found through
numerical integration of Eqs. (3.40b) and (5.1). We observe that the combination of space-charge
and spontaneous emission causes both attenuation and damping of the c0 − c−1 transitions. In
Fig. 6.3(b), we explicitly compare the intensity against z̄ with and without decoherence, from
which we deduce that the radiation saturates about 2 gain lengths later at 40% of the intensity
given the proposed Raman regime.
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Figure 6.3: Normalized radiation intensity and bunching against z̄ for ρ̄ =
0.2, σ = 4.12, β = 1.8 · 10−3. (a) normalized radiation against z̄ with and
without decoherence (b).

To obtain a more realistic estimate of the energy output of the QFEL radiation and the
saturation length, which simultaneously determines the pulse length τL and energy U of the laser,
we simulate the 3D model including diffraction from Eqs. (5.1)-(5.2). In Fig. 6.4, the radiation
intensity is plotted in the (x̄, z̄)-plane for ρ̄ = 0.217, σ = 4.12, β = 1.8 · 10−3 and a = 0.315,
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given a transverse normalized Gaussian occupation distribution. We observe a further increase in
saturation length to Lsat ≈ 15Lg, and a radiation profile where a significant fraction escapes the
interaction volume after saturation due to a relatively high value of the diffraction parameter a.
Moreover, Rabi-like oscillations quickly damp out after the first saturation peak. To characterize
the energy output of the experimental set-up, we briefly discuss the notion of radiated power PR
and the number of emitted photons per pulse Nϕ. From simulations, we have observed that in the
classical regime the saturation intensity is given by |A|2sat ≈ 1 (see Fig. 2.2) and in the quantum
regime by ρ̄|A|2sat ≈ η (see Fig. 3.3). Here we define an efficiency term that signifies the decrease
in |A|2sat under the influence of space-charge and spontaneous emission, thus η = η(σ, β). We can
approximate the saturation intensity valid in both regimes by

|A|2sat ≈ 1 +
η

ρ̄
. (6.12)

The peak radiation power for a given electron beam power Pbeam = γmc2(I/e) can thus be written
as [38]

PR = Pbeam(ρ|A|2sat) ≈
I

e
ℏω(η + ρ̄), (6.13)

where we substituted the definition of ρ̄ = γmcρ/(ℏk). As a result, we can express the number of
emitted photons per pulse as

Nϕ =
Q

e
(η + ρ̄). (6.14)

The detrimental effect of space-charge, spontaneous emission and diffraction on the on-axis (x⊥=0)
saturation intensity is specified by η ≈ 0.2. This is consequently used to determine the number of
X-ray photon generated per pulse using Eq. (6.14), which shows an X-ray yield of around 2.6 · 106
photons per pulse. For pulsed lasers with a modest repetition rate around 40 Hz, the prospected
soft X-ray flux of 108 photons per second could be sufficient for many applications. The full set
of experimental parameters is summarized in Table 6.1.

Figure 6.4: Normalized radiation intensity at ȳ = 0 against z̄ and x̄ for
ρ̄ = 0.2, a = 0.315, σ = 4.12 and β = 1.8 · 10−3.
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QFEL
QFEL parameter ρ̄ 0.217
FEL parameter ρ 1.03 · 10−4

Max. gain bandwidth ρ
√
ρ̄ 4.80 · 10−5

Gain length Lg (mm) 0.776
Saturation length Lsat/Lg 15

Laser undulator
Laser wavelength λL (µm) 1
Laser undulator parameter a0 0.01
Pulse length τL (ps) 77.6
Pulse energy U (mJ) 619
Power P (GW) 7.97

Electron bunch
Electron energy E (MeV) 3.58
Transverse normalized emittance ϵ⊥ (nm rad) 5.57
Rms bunch radius σx (µm) 1
Peak current I (A) 10
Electron density ne (m−3) 6.63 · 1022
Bunch charge Q (pC) 1
Bunch length Lb (µm) 30.0

Decoherence and 3D effects
Space-charge parameter σ 4.12
Spontaneous emission rate β 0.0018
Diffraction parameter a 0.315

X-rays
Radiation wavelength λR (nm) 5.10
Efficiency of sat. intensity η 0.2
No. of photons per pulse Nϕ 2.60 · 106

Table 6.1: Design parameters for a potential Raman QFEL.
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7 | Discussion and outlook

The work in this thesis directly motivates topics of further study, both theoretical and experi-
mental. In this section, we discuss the current space-charge implementation and the 3D QFEL
Wigner model with diffraction, and provide an outlook for further research.

Firstly, the theoretical model is limited to the space-charge field induced by the electron density
modulation at the ponderomotive beat wave frequency. However, we have shown that for suffi-
ciently strong space-charge (σ ≥ 3/4ρ̄2) higher harmonics should be taken into account as well.
Although we remark that, in a deep quantum regime, σ does typically not exceed this critical
value, the dynamics with a higher-harmonic space-charge field can be further investigated and
compared to the current description. In addition, macroscopic and transverse components of the
space-charge field based on the full 3D charge-distribution should eventually be included in the
Wigner model for the most accurate description.

For the multi-dimensional simulations, we have remarked that wave function normalization is dif-
ferent in two or three dimensions thus altering the growth rate and peak intensity. The approach
followed in literature [67] and also this work was taking the 3D model as reference for explicit
comparison to 1D and 2D. This way, the gain from lower-dimensional simulations is matched
through a renormalization factor for b given that the evolution of A in Eq. (2.19) is quadratic
in Ψ (b =

∫
|Ψ|2e−iϑdϑ). Nevertheless, a thorough account of normalization remains ambiguous,

especially given that the derivation of the 1D model also contains a transverse averaging step
(see Eq. 2.18). We therefore suggest that the manual bunching normalization and subsequent
consistency between 1-, 2- and 3D models with diffraction should be studied in more detail.

A logical extension of our work is to also include the beam emittance. In combination with
the effects of space-charge, spontaneous emission and diffraction, such a complete model can be
used to quantify the regime where the QFEL instability could potentially be inhibited. Numerical
simulation of this model, however, requires a large amount of computational resources. To this
end, we have proposed a modal decomposition technique similar to Ref. [60] to efficiently com-
pute the 3D field in terms of transverse LG modes. From current 3D simulations, we have shown
predominant amplification of specific LG modes such that a solution may be approximated by
a small number of modes, which would significantly speed up computation. Furthermore, these
simulations can also be used to investigate the transverse coherence properties in comparison to
classical FELs, it being a trivial extension of the theory presented in subsection 3.2.4 and Ref. [46].

As a general remark, with the model presented here, a lot can still be learned from more ex-
tensive simulation including different combinations of effects, e.g. to study the interplay between
spontaneous emission and space-charge. Moreover, since previous feasibility studies were limited
to the Compton regime, our model can be used to potentially unveil more realizable QFEL regimes
than the one from section 6.4. Finally, preliminary simulation results of the UCES and bimodal
extraction cavity have demonstrated that the electron bunch quality (1 pC, ϵ⊥ ∼ 10 nm rad,
∆γ/γ ∼ 10−4) can be preserved, even with minimal optimization of the cavity design. This offers
promising prospects for achieving the relevant parameter space for QFEL operation.
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8 | Conclusion

This thesis focused on the theoretical continuation and numerical simulation of the QFEL theory.
In the first chapters, we presented a review of the classical and quantum FEL theory and identified
the importance of accounting for the Raman QFEL regime. Consequently, we have presented
results of a QFEL model that, for the first time, can describe this Raman regime. To this end, we
have included microscopic space-charge by quantizing the periodic potential derived from Fourier
components of the electron beam density. The most important outcomes of this work can be
summarized as follows:

• The space charge potential has been incorporated in a QFEL Wigner model,
which is consistent with the classical limit.

• In a moderate space charge regime (σ ≤ 3/4ρ̄2) the gain and efficiency of a QFEL
is reduced, while the coherent two-state dynamics is preserved.

• A comprehensive model including spontaneous emission, space-charge and 3D
diffraction is presented. We also propose a method to improve the efficiency of
the 3D model based on transverse mode decomposition.

• The ultracold electron source together with commercially available laser systems
can potentially drive a realizable QFEL in a moderate space-charge regime.

All in all, with the work presented in this thesis we have made a contribution to a more complete
understanding and the future experimental realization of QFELs.
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A | Runge-Kutta scheme

Here we set out the Runge-Kutta scheme for obtaining numerical solutions to the steady-state 1D
FEL model from Eqs. (2.25a)-(2.25c). We first collect all (2N + 1) variables in a single vector of
the form

X =
[
ϑ1 · · · ϑN p1 · · · pN A

]
(A.1)

The set of equations can now be written in the form of

dX

dz̄
= f(z̄,X). (A.2)

More specifically, Eqs. (2.25a)-(2.25c) can be re-expressed in terms of (parts of) the vector X as
follows:

dX(1 : N)

dz̄
= X(N + 1 : 2N) (A.3a)

dX(N + 1 : 2N)

dz̄
= −

(
X(2N + 1)eiX(1:N) −X∗(2N + 1)e−iX(1:N)

)
(A.3b)

dX(2N + 1)

dz̄
=
∑
N

e−iX(1:N) + iδX(2N + 1) (A.3c)

Equations of the form as in Eq. (A.2) can be solved using the fourth-order Runge-Kutta method
(RK4) for an initial condition X(z̄) = X0. This is done in a step-wise manner, where

z̄i+1 = z̄i +∆z̄ (A.4)

and the
Xi+1 = Xi +

∆z̄

6
(k1 + 2k2 + 2k3 + k4). (A.5)

In this expression, the values for k are given by

k1 = f(Xi) (A.6a)

k2 = f
(
Xi + k1

∆z

2

)
(A.6b)

k3 = f
(
Xi + k2

∆z

2

)
(A.6c)

k4 = f
(
Xi + k3∆z

)
(A.6d)

The iterative process in these equations can be carried out for a given ∆z̄ and yields solutions of
X over any given z̄-domain. For the momentum state model (section 3.2) and the Wigner function
model (section 3.3), we follow an identical approach where the vector X contains respectively the
momentum states cm, or the discrete Wigner components wns .
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