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Summary 

Redox flow batteries are a promising technology for the long-term, large-scale storage of 

electrical energy. However, current elevated costs and suboptimal performance hinder 

widespread deployment. As a core component of the redox flow battery, the porous electrode 

largely determines the battery performance by providing both the active surface for 

electrochemical reactions and the flow geometry for mass and charge transport. Thus, 

optimizing the electrode offers a powerful strategy to increase the redox flow battery 

performance and decrease the costs.   

The goal of this thesis is to expand the fundamental understanding of the role of the electrode 

three-dimensional microstructure within redox flow battery performance. To do so, a 

microstructure-informed pore network modeling framework was developed, based on the 

coupled mass and charge transport of a single-phase, reactive electrolyte. The presented model 

provides a computationally inexpensive route for electrode optimization, alleviating the need 

for empirical, time-consuming experimentation.  

The response of the numerical framework was compared with experimental data for three 

distinct redox couples with different kinetics within a carbon fibrous commercial electrode (i.e. 

Freudenberg H23). The response of the numerical framework showed good agreement with 

experimental data for an organic electrolyte (TEMPO·/TEMPO+), but the agreement with two 

aqueous electrolytes (Fe2+/Fe3+ and V4+/V5+) was limited, which was attributed to non-idealities 

induced by incomplete wetting during experimental flow cell operation.  

The numerical framework has been used to conduct a case study, comparing the electrochemical 

performance of a recently developed non-fibrous electrode microstructure with a commercially 

available fibrous electrode. The theoretical analysis revealed an improved performance of the 

novel electrode. This was attributed to the coexistence of (1) macrovoids fractions consisting 

of larger pores (> 50 μm), permitting high convective flow, with (2) an electrochemically active 

surface region consisting of smaller pores (~10 μm), facilitating fast kinetics. The interplay of 

these microstructural characteristics was shown to limit the formation of ohmic and 

concentration overpotentials.  

Finally, a novel genetic optimization approach was proposed for the bottom-up design of porous 

electrodes with optimal topology. The first results of the developed genetic optimization 

approach showed a promising increase of 5-15% in the electrochemical performance and a 46-

47% decrease in the required pumping power of the generated networks, compared to 

completely random artificially generated cubic networks. The proposed genetic optimization 

methodology could serve as a base for future studies into the optimization of design 

characteristics for redox flow battery electrodes and other electrochemical technologies. 
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Chapter 1. Introduction 

1.1 Motivation 

The urgent need to reduce carbon emissions has motivated the development of low-carbon 

emitting renewable energy technologies, such as solar photovoltaics and wind power. Over the 

period of 2008-2018, the share of renewable energy utilization in the power generation sector 

has experienced an average yearly growth of 16% worldwide [1]. However, in contrast to 

conventional power plants, renewable energy sources are intermittent in nature, which 

compromises the stable operation of traditional energy grids [2]. Thus, widespread deployment 

of large-scale, stationary energy storage systems is required to compensate for the intermittent 

nature of renewable energy sources [3].   

A promising technology for long-term electrical energy storage is the redox flow battery (RFB) 

[4], [5]. RFBs are electrochemical systems that interconvert chemical and electrical energy by 

leveraging redox couples, dissolved in liquid electrolytes, that are pumped through an 

electrochemical stack [6]. Their most appealing features, as compared to other sealed batteries 

(e.g. lithium-ion), are the ability to decouple power and energy capacity, high round-trip 

efficiency, extended durability, fast response times, low environmental impact and geographic 

independence [7].  

Despite their promise, RFBs experience limited market penetration due to their current elevated 

costs and suboptimal performance. The current capital cost of the state-of-the-art (i.e. all-

vanadium) RFB system is above $400/kWh [8], which largely exceeds the $150/kWh cost target 

set by the U.S. Department of Energy for the year 2020 [9]. Simultaneously, the deployment of 

RFBs for the integration of renewable energy storage within the electricity grid requires 

roundtrip efficiencies of 75-90%, system lifetimes of more than 10 years, and a storage capacity 

of 1-20 MW [9].  

To meet these stringent targets, a substantial research effort is focused on the development of 

novel flow battery chemistries, advanced materials (e.g. electrodes and membranes), and 

electrochemical reactors, leveraging both experimental design as well as computational 

modeling approaches [10]–[15]. As a core component of the RFB, the porous electrode largely 

determines the battery performance by providing both the active surface for electrochemical 

reactions and the flow geometry for mass and charge transport. Thus, optimizing the electrode 

offers a powerful strategy to increase RFB performance and decrease the costs. 

Traditionally, the RFB electrode design has been driven by empirical, trial-and-error 

experimentation which is time- and resource-consuming. Additionally, macroscopic, one-

dimensional computer models have been employed, but these models fail to capture the 

complex effects of the electrode three-dimensional microstructure on the performance of the 
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RFB. And, while recent studies have shown that the electrode microstructure plays a critical 

role in the device performance [10], [12], [13], the characteristics of optimal electrode structures 

for RFBs remain to be discovered. Thus, there is a need to develop a novel computational 

methodology that can be used to accurately predict the influence of electrode microstructure 

properties on the performance of different types of RFBs. Ultimately, the methodology can be 

employed to perform bottom-up design of electrodes with optimal topology to lower pumping 

power requirements, increase power density, decrease overpotentials, and minimize material 

utilization.  

1.2 Outline of the thesis 

This thesis investigates the role of the electrode three-dimensional microstructure within RFB 

performance. A sophisticated 3D numerical framework that successfully predicts local transport 

processes within ideally wetted porous electrodes was developed within the open-source 

software OpenPNM [16], and was tested for multiple RFB chemistries (Fe2+/Fe3+, V4+/V5+, 

TEMPO·/TEMPO+). The model allows for systematic variations of critical parameters (e.g. 

microstructure, flow rate, concentration) to assess their respective impact, and has been used to 

discover microstructure-property-performance relationships for two physical porous electrodes. 

Moreover, the numerical framework was used to lay the foundation of a novel genetic 

optimization method for the bottom-up design of the topology of next-generation RFB 

electrodes. 

A conceptual overview of the project is given in Figure 1. 

 

Figure 1 - Illustration of the project vision. Image extraction and artificial generation are used to analyze and 

optimize the microstructure-property-performance relationships within redox flow battery porous electrodes. 

This thesis is divided into eight chapters. In Chapter 1, a brief motivation for the conducted 

work was given. Chapter 2 contains an overview on the RFB fundamentals and on the current 

state-of-the-art of numerical modeling of RFB electrodes. In Chapter 3, the generation of porous 
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electrode geometries either by the use of x-ray computed tomography (XTM) or by the use of 

artificial generation is examined. In Chapter 4, a computational model to analyze the flow 

behavior of specific redox couples within different electrode geometries is presented. 

Subsequently, an overview of the laboratory experiments that were conducted to validate the 

numerical model is presented in Chapter 5. In Chapter 6, the findings on the relation between 

the electrode microstructure and performance for two real electrode microstructures are 

reported. In Chapter 7, a novel genetic optimization approach is described that can be employed 

to perform bottom-up simulations to discover ideal electrode microstructural properties. 

Finally, the conclusions and an outlook for future work are presented in Chapter 8.  
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Chapter 2. Redox flow batteries fundamentals 

2.1 Redox flow batteries operating principles 

RFBs are electrochemical systems that interconvert chemical and electrical energy by 

leveraging redox couples, dissolved in liquid electrolytes, that are pumped through an 

electrochemical cell [6]. An overview of the major components of a single cell RFB is shown 

in Figure 2.  

 

Figure 2 - Schematic overview of a single cell redox flow battery in discharge mode. Electrons are transported 

through the circuit and ions are transported in both electrolytes, and across the membrane.  

The electrochemical core of the RFB consists of a membrane electrode assembly (MEA), which 

can be stacked to increase the power output of the system. Each MEA is composed of two 

electrodes, that are separated by a membrane. 

In charge-mode, electricity is consumed within the electrochemical cell to drive the non-

spontaneous redox reactions of the dissolved active species. In discharge-mode the reverse 

process takes places and spontaneous redox reactions are leveraged to generate electricity. 

During discharge, species A is oxidized in the negative half-cell, releasing electrons that can 

perform work on an external load. Simultaneously, species B is being reduced in the positive 

half-cell, by consuming electrons flowing from the external load. An ion-selective membrane 

prevents the mixing of the negative and positive half-cell electrolytes, while allowing specific 

ions to pass to the other half-cell to complete the electrochemical circuit. A general form of a 

single-electron redox reaction occurring in an RFB is given by [Eq. 2.1-2.2].  
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 A(n−1)+

discharge
⇌

charge
An+ + e−    

Negative electrode Equation 2.1 

 
B(m+1)+ + e−

discharge
⇌

charge
Bm+ 

Positive electrode Equation 2.2 

The classical flow pattern of an RFB, often used in academia, involves a flow-through setup, 

where the electrolyte is directly pumped through the porous electrode. Bipolar plates with flow 

channels can be added to divert from this setup, which results in decreased pressure drop over 

the system at the expense of shorter electrode-electrolyte contact time. Various flow channel 

designs with different performances have been proposed in the literature, such as the 

interdigitated and parallel flow field design [17-18]. 

One of the most appealing features of RFBs, as compared to other sealed batteries, is the ability 

to decouple power and energy capacity. The energy capacity of RFBs is dependent on the size 

of the electrolyte storage tanks and the concentration of the active species, whereas power 

capacity is dependent on performance factors such as pumping power, electrode structure and 

flow cell design [4]. Consequently, RFBs can operate at a wide range of operational power and 

discharge times, see Figure 3 [6]. Moreover, the deployment of RFBs is independent of 

geographical factors, such as the requirement for levitated water reservoirs for the application 

of pumped hydro storage. The combination of these factors make RFBs an attractive option for 

the long-term energy storage from a fluctuating electricity grid. 

 

Figure 3 - The application range of different energy storage technologies, based on energy stored and power 

output, reconstructed from Martín et al. [19]. The logarithmic scaled representation shows a relatively large energy 

operating window for flow batteries. CAES: Compressed air energy storage, SMES: superconducting magnetic 

energy storage. 
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2.2 Redox flow battery types 

A wide variety of RFB systems has been proposed in the past few decades, with industrial 

capacities up to 20 MW/80 MWh [3], [6-7], [20]–[22]. RFBs are classified based upon the 

active species that are used to chemically store energy and upon the solvent used to dissolve 

these active species.  

Within each RFB two half-cell types are combined to obtain one electrochemical cell. The 

selection criteria for the combination of two half-cells are the thermodynamic potential, 

electrochemical reaction reversibility, cost and availability of the components, safety, and the 

solubility of the active species in the solvent. Moreover, half-cells operating with gaseous and 

solid redox couples can be combined with liquid half-cell redox couples to form hybrid flow 

batteries, such as the hydrogen-bromine RFB [23]. However, in this thesis, the focus will be on 

the characterization of porous electrodes within all-liquid RFB redox couples.  

The expansion of RFBs started with the development of aqueous flow batteries, which utilize 

an aqueous solution of active species, combined with a strong acid supporting electrolyte (e.g. 

hydrochloric acid) to increase conductivity. Commonly studied aqueous systems include the 

iron/chromium (Fe/Cr) [24] and the all-vanadium RFB (VRFB) [25] systems. The Fe/Cr system 

[Eq. 2.3-2.4] is considered the first type of RFB and was developed in the 1970s at NASA. 

 Fe2+ ⇌ Fe3+ + e−         E0 = 0.77 V vs. RHE Equation 2.3 

 Cr2+ ⇌ Cr3+ + e−         E0 = −0.41 V vs. RHE Equation 2.4 

With 𝐸0 being the standard reduction potential [V] of the considered redox couple with respect 

to the reversible hydrogen electrode (RHE). The more positive the reduction potential of the 

species, the greater the affinity of the species for electrons and thus the higher the tendency to 

be reduced. The Fe/Cr system suffers from a relatively low open-circuit potential (i.e. the 

difference in reduction potential of both redox couples, 1.18V) and active species cross-over 

by transport through the membrane during operation.  

Cross-over of species does not only lead to an efficiency loss, but also to a loss of capacity and 

therefore, a decrease in overall system performance over time. To mitigate this problem, RFB 

systems have been proposed that contain active species of the same element in various oxidation 

states. In these systems, cross-over only results in an efficiency loss, as the species will be 

reduced or oxidized after cross-over. The VRFB can be classified as one of these systems, as it 

employs the V(II)/V(III) redox couple at the negative electrode and the V(IV)/V(V) redox 

couple, commonly identified in the form of VO2+ and VO2
+, at the positive electrode [Eq. 2.5-

2.6].  
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 𝑉2+ ⇌ 𝑉3+ + 𝑒−               E0 = −0.26 V vs. RHE Equation 2.5 

 𝑉𝑂2+ + 𝐻2𝑂 ⇌ 𝑉𝑂2
+ + 2𝐻+ + 𝑒−     E0  = 1.00 V vs. RHE Equation 2.6 

Despite the convenient operating conditions, aqueous RFBs have some inherent disadvantages. 

Foremost, aqueous RFBs are concerned with the breakdown of water at higher voltages (Ecell > 

1.23 V vs. RHE) due to water electrolysis, restricting their open-circuit potential window. For 

this reason, non-aqueous RFB systems have been proposed. Non-aqueous RFBs often use 

transition-metal complexes as active species, which are dissolved in organic solvents (e.g. 

acetonitrile), and combined with an organic supporting electrolyte (e.g. tetraethyl ammonium 

tetrafluoroborate) to increase conductivity [26]. Widely studied non-aqueous RFBs are the 

vanadium acetylacetonate (V(acac)3) RFB and the extremely fast all-organic 2,2,6,6,-

teramethyl-1-piperidinylxy (TEMPO) RFB [27-28]. Although non-aqueous RFBs allow 

operation outside the potential window of water, their implementation is still limited due to the 

need for advancements in system cost, membrane performance and stability, and solubility of 

active species and supporting electrolytes [4].   

2.3 Porous electrode design 

RFB electrode design comprises a complex optimization problem, since the design is subject to 

several contradictory requirements. First of all, the porous electrode has to provide both the 

active surface for the electrochemical reactions and the flow geometry for the transport of ions 

and electrons [29]. Moreover, fast kinetics and high selectivity towards the desired redox 

reaction have to be balanced with the mechanical, physical, and chemical stability of the 

electrode [30]. An ideal electrode should have a high electrochemical active area, a low 

electrical resistivity, an ability to operate at a wide range of current densities, a long cycling 

lifetime, a high stability, a resistance to oxidation, a reasonable cost and an optimized pathway 

for mass transport of ions and electrons [4].  

Traditionally, commercial electrodes consist of carbon fibers, that are synthesized by 

carbonization of a polymer precursor and manufactured into a coherent structure, based on the 

design of the carbon backing of polymer electrolyte fuel cell gas diffusion layers (GDLs) [10]. 

Carbon fibers offer high porosity, high electrical conductivity, low cost, and good stability, 

which makes them suitable as electrodes for RFBs [31]. The manufacturing processes of the 

carbon fibers vary per manufacturer and these processing differences give each type of carbon 

fiber its distinct property set. Despite similar bulk porosities (80-95%) [32] and fiber diameters 

(5-10 μm) [33], a distinct microstructure is present for each type of carbon fiber electrode, see 

Figure 4. The differences in microstructure can be characterized based on various electrode 

properties, such as the pore size distribution (PSD), pore connectivity, and specific surface area 

[10].  
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Figure 4 - X-ray tomography images of different carbon fibers: (a) a Freudenberg paper sample, (b) a SGL 29AA 

paper sample and (c) a Toray paper sample, visualized in ParaView [34]. 

While the fibrous carbon materials used in GDLs of fuel cells are functional for RFBs due to 

the overlap in property sets, specific property requirements for RFBs are not integrated into 

their design. In contrast to the multiphase transport in fuel cell technology, full utilization of an 

RFB electrode is based on the facilitation of liquid transport and wetting throughout the entire 

electrode. Considerable effort is put in the production of carbon electrodes that facilitate high 

active surface area, have high electrolyte-philicity, and contain catalytically-active surface 

functional groups to improve the electrode performance. Various treatments have been 

successfully applied to carbon paper, such as etching [35], nanoparticle deposition [36], and 

thermal treatment [11]. However, all these methods are based on empirical models. Ultimately, 

to design optimal porous electrodes, a more fundamental understanding of the role of the 

electrode microstructure on flow cell performance is required. 

2.4 Numerical Modeling of Porous Electrodes 

Numerical modeling of porous media is a valuable tool for analyzing and quantifying the effect 

of electrode properties on flow cell performance. Traditionally, the focus of numerical modeling 

of porous media has been on the extraction of oil in petroleum reservoirs [37]. However, the 

last years have seen a renewed importance in porous modeling for the field of fuel cells and 

flow battery systems.  

The current numerical understanding of flow batteries is primarily based on macroscopic 

continuum models [38]–[41]. These cell-level models include kinetics, ohmic and mass transfer 

losses, where the electrolytic cell is divided into a volume-averaged computational grid. 

Macroscopic models have aided in investigations of the effect of membrane properties, 

electrolyte types, flow field design and flow rate effects on cell performance [17], [42]–[44]. 

Although useful for predictions of cell performance, the volume averaging of the computational 

grid omits the effect of the electrode microstructure on RFB performance. Moreover, the 

accuracy and sensitivity of macroscopic continuum models are heavily dependent on the 
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empirical relationships that describe the transport properties within the structure, such as 

permeability coefficients or effective diffusivity coefficients [16], [45].  

On the other hand, highly detailed methods, such as finite element methods (FEM) and lattice 

Boltzmann methods (LBM) have been employed to gain insight into the transport within porous 

materials [32], [46-47]. These models directly solve the flow field of the electrolyte and can 

therefore deal with highly complex geometries, but require large computation power to solve 

the defined set of equations. The large number of nodes required to model even a few pores and 

the complexity of multiphysics problems limit the application of these models to a small 

subdomain of the electrode. 

Pore network modeling (PNM) represents an alternative modeling approach that is able to 

capture microstructural effects on the mesoscale at a reasonable computational cost [12-13]. In 

PNM, the complexity of the model equations is reduced, while the underlying physics is 

retained, see Figure 5. 

 

Figure 5 - Representation of the level of complexity and detail for the various modeling techniques used to model 

porous media. The right image was adapted from Zhang et al. [32]. 

Instead of directly solving the momentum equations within the porous electrode, the porous 

space is approximated by a network of spheres and cylinders. The structural properties of the 

porous material can be obtained from imaging techniques or from artificial generation 

techniques [48]–[51]. Transport of mass and charge within the porous material is based on finite 

difference schemes, in which 1D analytical solutions are leveraged to reduce the computational 

costs (see Chapter 4.3). Agnaou et al. demonstrated that this simplification of the model 

equations results into a computational time reduction up to 104 times compared to FEM 

simulations within the same geometry, with a limited loss in computational accuracy [52]. 

Therefore, PNMs can be leveraged to study complex flow problems in relatively large domains, 

and are suitable for optimization studies for the RFB electrode microstructure.  
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To date, few studies have been published on PNMs for electrochemical devices. Moreover, 

most of the published work considers the physics for multiphase flow seen in fuel cell 

technology [53]–[55]. Arguably, the biggest contribution to the field of PNM was delivered by 

the group of prof. Gostick, University of Waterloo, that developed the open-source PNM toolkit 

OpenPNM in Python [16]. The OpenPNM environment contains a large set of equations that 

can be used to construct pore networks and to perform flow simulations in these networks. [12]. 

Recently, a hydrogen-bromine RFB model, built with OpenPNM, was published by Sadeghi et 

al. [13]. Additionally, Lombardo et al. presented a framework for transient PNM to simulate 

the coupled flow, species and charge transport within porous electrodes and applied it to a 

VRFB [12]. This initial work in the field focused primarily on the development of the modeling 

equations. However, the implementation of all the relevant physics in PNMs is still open-ended. 

Unfortunately, the model of Lombardo et al. neglects the model equations to compute the 

voltage drop over the membrane and the thickness of the electrode. The model of Sadeghi et al. 

on the other hand is only valid for the specific case of the hydrogen-bromine RFB, where the 

hydrogen compartment can be considered as an ideal half-cell. Moreover, mass transfer towards 

the electrode within the porous electrode is not considered in both presented models.  

In this thesis, a novel PNM framework is presented that improves on the existing models. The 

framework’s versatility is tested by the validation of three distinct RFB electrolytes: an aqueous, 

kinetically facile electrolyte using the Fe2+/Fe3+ redox couple, an aqueous, kinetically sluggish 

electrolyte using the V4+/V5+ redox couple and an organic, kinetically facile electrolyte using 

the TEMPO·/TEMPO+ redox couple. This novel PNM model opens up a wide range of 

possibilities for the characterization and optimization of porous electrode microstructures for 

flow battery applications.  
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Chapter 3. Imaging and generation of porous electrodes 

Due to the large improvements made on computational power in the last decade, analytical 

techniques to visualize the microstructure of porous media have become an established field 

[56]. Within this work, two distinct approaches have been used to obtain microporous 

electrodes geometries for PNM. The first approach consists of the extraction of physical 

electrode structures, using x-ray tomography (XTM) in combination with a network extraction 

algorithm, which is explained in Chapter 3.1. The second approach consists of the artificial 

generation of porous networks that represent desired structures or approximate real structures 

with a specialized set of network generation rules, using the geometry module presented in 

OpenPNM, which is elucidated in Chapter 3.2 [16]. 

3.1 X-ray computed tomography of real electrode structures 

XTM is a non-invasive technique that can be used to obtain quantitative morphological 

information in the micrometer range. XTM produces grayscale images, which reflect the range 

of x-ray attenuation values (i.e. the reduction of the x-ray beam intensity) for the scanned 

material at various 2-dimensional cross-sections. The different cross-sections of the material 

are combined to recreate a virtual representation of the 3-dimensional scanned structure. The 

desired porous network is obtained from this virtual model by a series of image processing 

steps, consisting of smoothing, segmenting, and network extraction [56].  

3.1.1 X-Ray scanning 

Electrode materials were scanned in an uncompressed state using laboratory micro-CT at an 

isotropic resolution of 3.3 μm. The scans were carried out using a peak potential of 45 kVp and 

a current of 88 μA to acquire 312 image projections over the length of the electrode.  

3.1.2 Smoothing and segmentation methods  

Gray-scale images produced using XTM contain a certain degree of noise that has to be reduced. 

Care has to be taken to preserve phase edges while applying noise reduction filters to limit 

losses of features in the virtual model. In this work, a median filter with a radius of 2.0 pixels 

was used to reduce the noise in the gray-scaled image. Median filters use the median value of 

a specified neighborhood surrounding the voxel in consideration and replace that voxel value 

with the median value of this neighborhood, thereby smoothening the image [56]. A voxel 

represents a 3D volume within the virtual model (congruent with a pixel in 2D). Subsequently, 

each voxel in the grey-scale image has been assigned to either the solid or void phase using a 

K-means cluster segmentation filter [56]. In K-means clustering, the image is segmented in two 

clusters: the solid phase and the void phase. These clusters are iteratively updated until all 

voxels are assigned to one of the clusters [56]. The reported median filter and K-means cluster 
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segmentation filter had been imported as plug-ins in the image processing software ImageJ [57], 

[58].   

To prevent boundary effects from sample cutting, a 1.0 mm high and wide sample selection 

was obtained from the center of the processed image, where the thickness of the electrode was 

reduced by removal of the first and last few image layers in this dimension. The obtained 

binarized electrode sample is displayed in Figure 6a.  

 

Figure 6 - Visualization of (a) a processed x-ray tomography image of a Freudenberg paper electrode, (b) the 

resulting extracted pore network and (c) an overlay of the x-ray tomography image with the extracted pore network 

(1000x1000x151 𝜇𝑚).  

3.1.3 Network extraction 

The open-source SNOW network extraction algorithm was used to extract the pore network 

(PN) from the obtained binarized image, see Figure 6b [49-50]. The SNOW algorithm has been 

developed for the extraction of porous networks from tomographic images and was previously 

validated for porous media with a wide range of porosity (20-85%) by Gostick [49]. The 

network extraction operation was run on a desktop computer with 32 GB of RAM memory. For 

the extracted networks, a standard deviation value of the applied convolution mask (𝜎) of 0.4 

and a value for the radius (R) of the spherical structure element of 4 voxels was used. A more 

detailed explanation of these parameters and the procedure of the SNOW algorithm can be 

found in Appendix I.  

3.2. Artificial Generation of Microporous Networks 

Previous work in the field of PNM has utilized artificial generation as an alternative tool to 

generate PNs. These artificially generated structures are based on the geometry formulas of 

various shapes, such as spheres, cylinders, and polygons. Systematic studies on the geometry 

of the artificially generated structures have subsequently been performed in order to investigate 

the effect of various pore-scale characteristics, such as porosity and wettability, on the overall 

performance of the generated porous electrode [13], [53], [59].  
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In this work, cubic lattices were generated utilizing the OpenPNM Network class. This class 

takes a network shape, spacing, and connectivity as input and produces a network with the pore 

and throat coordinates as an output. The shape of the cubic lattices describes the number of 

generated pores in each dimension, the spacing describes the distance between the different 

pore centers in the cubic lattice, and the connectivity displays the total number of throat 

connections that a single pore within the cubic lattice embodies. 

Topological properties were subsequently attributed to the network’s pores and throats by the 

use of the OpenPNM Geometry class. In this operation, geometrical formulas of spheres and 

cylinders are leveraged together with a random seed value, in order to create pseudo-randomly 

distributed topologies. In the following subchapters, the most important topological properties, 

displayed in Figure 7, are briefly explained.  

 

Figure 7 – Schematic diagram of the most important topological properties in a pore-throat-pore conduit.  

3.2.1 Pore diameter 

The pore diameter was assigned by a pseudo-random process. First, a random value between 

the two boundaries, called the seed (𝑆𝑝), was generated for each pore. In this research, the 

boundary points 0.2 and 0.7 were taken, which is identical to the standard option in the 

OpenPNM StickAndBall geometry class. Subsequently, the maximum pore size (𝑑𝑝,𝑚𝑎𝑥) was 

determined by finding the maximum pore diameter that can be placed in each location without 

overlapping any neighboring pore. The randomly generated seed value of each pore was 

multiplied with the maximum pore size to find the pore diameter [Eq 3.1].  

 𝑑𝑝 =  𝑆𝑝 ∙ 𝑑𝑝,𝑚𝑎𝑥 [m] Equation 3.1 

3.2.2 Throat diameter 

Each throat diameter was determined from the minimum pore size of the two pores that the 

throat is connecting. This minimum pore size was subsequently multiplied by a throat sizing 

factor, 𝑓𝑇, of 0.5  to obtain the diameter, 𝑑𝑇 , of the connecting throat [Eq. 3.2]. The throat sizing 

factor was kept identical to the standard option in the OpenPNM StickAndBall geometry class. 

 𝑑𝑇 =  𝑓𝑇 ∙ min (𝑑𝑝,1, 𝑑𝑝,2) [m] Equation 3.2 
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3.2.3 Throat cross-sectional area 

The throat cross-sectional area (𝑆𝑇) was determined from the throat diameter, assuming that 

each throat is a perfect cylinder [Eq. 3.3].  

 𝑆𝑇 =
𝜋

4
∙ 𝑑𝑇

2  [m2] Equation 3.3 

3.2.4 Pore surface area 

The pore internal surface area (𝐴𝑝) was calculated by subtracting the throat cross-sectional area 

of all neighboring throats of the pore (𝑁𝑇) from the surface area of a perfect sphere with 

diameter 𝑑𝑝 [Eq. 3.4]. Note that the pore internal surface area (𝐴𝑝) is different from the pore 

cross-sectional area (𝑆𝑝). 

 
𝐴𝑝 = 𝜋 ∙ 𝑑𝑝

2 − ∑ 𝑆𝑇

𝑁𝑇

𝑗=1
 

[m2] Equation 3.3 

3.2.5 Throat conduit lengths 

The throat conduit length (𝐿𝑇) is defined as the summed length of two half-pores and the 

connected throat, and is used for calculating the hydraulic transport through a network. In cubic 

networks, the summed conduit length is equal to the applied network spacing. 

3.3 Cubic network 

Random cubic networks can be generated using the presented geometrical formulas. The input 

properties used to generate a cubic network of 1296 pores are given in Table 1. A visual 

representation of the cubic network is presented in Figure 8. Boundary pores and throats, 

required for the implementation of transport algorithms, were generated at each surface. 

Table 1 - Overview of the input properties used to develop the model network visualized in Figure 8.  

 Value Units 

Network shape [18, 18, 4] [x, y, z] 

Spacing 50 μm 

Connectivity 6 − 

Pore seed 0.2 ≤ Sp < 0.7 − 

Throat sizing factor 0.5 − 
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Figure 8 - Visualization of an artificially generated random cubic lattice with [18, 18, 4] pores in the x, y and  z 

direction. The colors indicate the relative size of the generated pores and throats. Boundary pores and throats are 

present on the edges of the network. 
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Chapter 4. Multiphysics pore network model 

The extracted and artificially generated networks can be subjected to a variety of pore-scale 

physics models. In this chapter, the assumptions, computational domain, physics, and numerical 

implementation of the developed multiphysics PNM are discussed. The developed model aims 

to give insight into the reactive transport occurring within an RFB electrode. The presented 

model provides a novel, computationally inexpensive route for electrode optimization for 

different redox couples, alleviating the need for empirical, time-consuming experimentation.  

4.1 Model assumptions and adopted sign convention 

4.1.1 Model assumptions 

PNMs are an idealization of real porous structures. In PNMs, it is assumed that the void space 

within the porous structure can be approximated by spherical pores and cylindrical throats, see 

Figure 9. Each pore is assumed to be a well-mixed body and transport in the pore network 

occurs within the throats. The validity of this assumption was verified among others by Yang 

et al., by comparison of two direct numerical simulations using FEM and LBM with 

experimental data [60]. The idealization of the void space allows for the reduction of 

complexity of the considered model equations, while still retaining information about the 

microporous structure of the porous electrode.   

 

Figure 9 - Schematic representation of the performed idealization of the pore network in PNM. (Left)  schematic 

overview of a cross-section of a real porous structure and (right) its approximated pore network structure, adopted 

from Koplik et al. [61]. 

Within the presented PNM, the following model assumptions have been made: 

1. The electrochemical cell operates at steady-state conditions. 

2. The electrochemical cell operates at isothermal conditions. 

3. The crossover of active species through the membrane is neglected. 
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4. The considered electrolyte solution is modeled as a single-phase, diluted, 

incompressible, Newtonian fluid that has a uniform viscosity throughout the porous 

electrodes. 

5. Due to the small flow dimensions, the flow within the porous structure is classified as a 

creeping flow. 

6. Due to the high electric conductance in the solid phase in comparison to the liquid phase, 

the electric potential of the solid electrode phase is assumed to be constant throughout 

the electrode. The solid phase potential is assumed to equal the applied cell voltage in 

the cathodic compartment and to equal zero in the anodic compartment. 

7. The charge flux within the liquid phase is approximated using the bulk conductivity of 

the electrolyte. Migration effects are therefore neglected. 

8. The half-cell reaction is described as a single-step reaction mechanism and neglects the 

formation of intermediates that are adsorbed on the electrode surface. 

9. The electrochemically active surface area of a pore is equal to its geometrical internal 

surface area. 

10. The electrochemical reaction is only occurring in the pores and not throughout the 

connecting throats. 

4.1.2 Sign convention 

The governing equations presented in the following subchapters are based on the convention of 

describing the flux of positive charges. During discharge, a positive current travels from the 

negative half-cell towards the positive half-cell, while in charge mode the opposite process 

occurs and the signs of the current density (𝑗) and overpotential (𝜂) are reversed. According to 

the common electrochemical convention, current and overpotentials are positive in the case of 

an anodic reaction (oxidation) and negative in the case of a cathodic reaction (reduction). An 

overview of the implications of this sign convention on the sign of the source term (production 

of species) for the oxidized (𝑆𝑜𝑥) and reduced species (𝑆𝑟𝑒𝑑) can be found in Table 2.  

Table 2 - Sign convention table for the negative and positive half-cell in an redox flow battery.  

 Discharge Charge 

Half-cell Negative Positive Negative Positive 

Type Anode Cathode Cathode Anode 

 Physics 

𝐣(𝛈) + − − + 

𝛈 + − − + 

                           Source terms 

𝐒𝐨𝐱 + − − + 

𝐒𝐫𝐞𝐝 − + + − 
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4.2 Computational domain 

The presented numerical framework efficiently predicts local transport within the porous 

electrode and offers a flexible platform on which different RFB chemistries can be 

implemented. In this thesis, symmetric RFB simulations were performed for three distinct redox 

couples, VO2+ VO2
+⁄ , Fe2+ Fe3+⁄  and TEMPO·/TEMPO+, in order to validate the predicted the 

electrochemical behavior within a porous carbon fiber electrode (see Chapter 5). 

The symmetric cell simulations were performed using the co-current operation of the anodic 

and cathodic half-cell (i.e. the inlet for both half-cells is located at their bottom faces). In the 

symmetric cell set-up, the oxidation reaction of the redox couple occurs in the anodic half-cell, 

whereas the reduction reaction of the same redox couple takes place in the cathodic half-cell. 

The membrane that separates the two half-cells is treated as a macro continuum entity, and 

therefore only the overall macroscopic ionic resistance of the membrane is considered. A 2D 

representation of the computed domain for the Fe2+ Fe3+⁄  redox couple is presented in Figure 

10. 

 

Figure 10 - Schematic overview of (a) the modelled domain for the Fe2+ and Fe3+ redox couple in blue showing 

the electrolyte flow inlet and outlet boundaries and in red the electrolyte potential boundaries and (b) a 

magnification of a pore-throat-pore conduit with relevant fluid transport quantities. 

4.3 Model physics 

The considered physics within the three-dimensional porous electrode are described by the 

equations of fluid transport, species mass transport, and charge transport. Moreover, the 

coupling of the flow field, both half-cells, and the membrane is controlled by the applied 

boundary conditions. The following subchapter describes the governing equations and the 

formulated boundary conditions within the electrochemical cell for the case of cell discharge. 
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4.3.1 Fluid transport 

The fluid transport within the porous electrode is described by the steady state Navier-Stokes 

equations through cylindrical pipes (Stokes flow). The mass balance for the electrolyte phase 

around each pore in the network is described by [Eq. 4.1]. 

 
− ∑ 𝜌𝑢𝑖𝑗𝑆𝑖𝑗

𝑁𝑇

𝑗=1
= 0 

[kg s−1] Equation 4.1 

With, 𝜌 the electrolyte density [kg m−3], 𝑢𝑖𝑗 the fluid velocity from pore i to pore j [m s−1] and 

𝑆𝑖𝑗 the cross-sectional area of the throat connecting pore i and j [m2].  

The Hagen-Poiseuille equation can be used to express the velocity field based on the pore 

pressures [Eq. 4.2]. 

 𝑢𝑖𝑗 = 𝛼𝑖𝑗(𝑝𝑖 − 𝑝𝑗)  [m s−1] Equation 4.2 

With 𝑎𝑖𝑗 the hydraulic conductance of the throat connecting pore i and j [m Pa−1 s−1] and 𝑝 

the pressure in pore i or j [Pa]. The hydraulic conductance is described by [Eq. 4.3]. 

 
𝛼𝑖𝑗 =

𝑆𝑖𝑗

8𝜋𝜇𝐿𝑖𝑗
 

[m Pa−1 s−1]  Equation 4.3 

With 𝜇 the dynamic viscosity of the electrolyte [Pa s] and 𝐿𝑖𝑗 the conduit length of the 

connecting throat [m].  

The boundary conditions for fluid transport consist of a Dirichlet (constant) inlet pressure 

boundary condition at the boundary pores at the bottom of the electrode, and a discharge 

pressure boundary condition at the top of the electrode sample. The inlet pressure boundary 

condition is determined by setting a target inlet velocity. From the target inlet velocity the target 

flow rate (𝑄𝑖𝑛) is calculated, using [Eq. 4.4]. 

 𝑄𝑖𝑛 = 𝑢𝑖𝑛𝐴𝑖𝑛 [m3 s−1] Equation 4.4 

With 𝑢𝑖𝑛 the inlet velocity of the electrolyte [m s−1] and 𝐴𝑖𝑛 the geometrical inlet area of the 

electrode [m2]. Subsequently, the inlet pressure at the bottom boundary pores is iteratively 

updated until the total flow rate entering the network matches the target flow rate. A discharge 

pressure of 0 Pa was set at the outlet boundary pores. 

Neumann (gradient) no-flux boundary conditions were set to the boundary pores at the 

boundaries of the width and thickness of the electrode (i.e. dv dx⁄ = 0).   
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4.3.2 Species Transport  

Mass transport of chemical species in the porous electrodes is described by the advection-

diffusion-reaction equation. The conservation equation around each pore for the active species 

that is consumed is described by [Eq 4.5]. 

 
− ∑ 𝑚𝑖𝑗𝑆𝑖𝑗

𝑁𝑇

𝑗=1
=

𝐼𝑖

𝑛𝐹
 

[mol s−1] Equation 4.5 

With 𝑚𝑖𝑗 the mole flux of the active species between pore i and pore j [mol m−2 s−1], 𝐼𝑖 the 

applied current in pore i [A], 𝑛 the number of electrons participating in the half-reaction and 𝐹 

the Faradaic constant [C mol−1]. 

The mole flux 𝑚𝑖𝑗 is derived from the exact solution for the one-dimensional advection-

diffusion equation [Eq 4.6], based on the approach of Sadeghi et al. [62].  

 𝑚𝑖𝑗 = 𝑢𝑖𝑗(𝑐𝑖 +
𝑐𝑖 − 𝑐𝑗

exp(𝑃𝑒) − 1
)   [mol m−2 s−1] Equation 4.6 

With 𝑐𝑖 the concentration the reacting species in pore i [mol m−3] and 𝑃𝑒 the local Peclet 

number at the considered throat [Eq. 4.7].  

 
𝑃𝑒 =

𝑢𝑖𝑗𝑙𝑖𝑗

𝐷
 

 [−] Equation 4.7 

With 𝐷 the diffusion coefficient of the active species in the electrolyte [m2 s−1]. 

The applied current 𝐼𝑖 is defined by the Butler-Volmer equation in [Eq. 4.8] for the anodic 

compartment and in [Eq. 4.9] for the cathodic compartment.  

 
𝐼𝑖,𝑎 = 𝑗0

𝑎𝐴𝑖 (
𝐶𝑖,𝑠

𝑟𝑒𝑑

𝐶𝑟𝑒𝑓
𝑟𝑒𝑑) [exp(−

𝛼𝑎𝐹𝜂𝑎

𝑅𝑇
) − exp (

𝛼𝑐𝐹𝜂𝑎

𝑅𝑇
)]   

[A] Equation 4.8 

 
𝐼𝑖,𝑐 = 𝑗0

𝑐𝐴𝑖 (
𝐶𝑖,𝑠

𝑜𝑥

𝐶𝑟𝑒𝑓
𝑜𝑥 ) [exp(

𝛼𝑎𝐹𝜂𝑐

𝑅𝑇
) − exp (−

𝛼𝑐𝐹𝜂𝑐

𝑅𝑇
) ] 

[A] Equation 4.9 

With 𝑗0 the exchange current density [A m−2], 𝐴𝑖 the electrochemically active internal surface 

area of pore i [m2], 𝐶𝑖,𝑠 the concentration of the reduced form or the oxidized form at the 

electrode surface [mol m−3], 𝐶𝑟𝑒𝑓 the reference concentration of the reduced form or the 

oxidized form at which the exchange current density was measured [mol m−3], 𝛼𝑎 and 𝛼𝑐 the 

anodic and cathodic reaction transfer coefficients [−], 𝜂𝑐 and 𝜂𝑎 the overpotentials in the 

cathodic and anodic compartment [V], 𝑅 the ideal gas constant [J K−1 mol−1] and 𝑇 the 

operating temperature [K]. The exponents 𝛼𝑎 and 𝛼𝑐 can typically be related to each other by 

[Eq. 4.10].  

 𝛼𝑎 + 𝛼𝑐 = 𝑛 [−] Equation 4.10 
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The electrode overpotential in the cathodic half-cell is calculated from the difference between 

the solid phase potential (𝜑𝑠), the electrolyte potential (𝜑𝑒) and the equilibrium potential of the 

electrode (Eoc) defined against the same reference electrode [Eq. 4.11]. This overpotential term 

does include the activation and concentration overpotential terms, but not include the ohmic 

overpotential originating from the electrolytic and membrane resistances. 

 𝜂𝑐 = 𝜑𝑠 − 𝜑𝑒 − 𝐸𝑜𝑐  [V] Equation 4.11 

The electrode overpotential in the anodic half-cell is calculated by [Eq. 4.12] 

 𝜂𝑎 = 𝜑𝑠 − 𝜑𝑒  [V] Equation 4.12 

In this work, the general Butler-Volmer equations [Eq 4.7-4.8] were modified to include mass 

transfer of the active species towards the electrode surface. The mass transfer of species is 

described by [Eq. 4.13-4.14]. 

 𝐼 = 𝐹𝑘𝑚
𝑟𝑒𝑑𝐴𝑖(𝐶𝑖,𝑏

𝑟𝑒𝑑 − 𝐶𝑖,𝑠
𝑟𝑒𝑑) [A] Equation 4.13 

 𝐼 = −𝐹𝑘𝑚
𝑜𝑥𝐴𝑖(𝐶𝑖,𝑏

𝑜𝑥 − 𝐶𝑖,𝑠
𝑜𝑥) [A] Equation 4.14 

With 𝑘𝑚 the mass transfer coefficient of the considered species [m ∙ s−1] and 𝐶𝑖,𝑏/𝑠 the bulk or 

surface concentration of the active species [mol m−3]. By substitution of [Eq. 4.13-4.14] into 

[Eq. 4.8-4.9] the Butler-Volmer equations for a one-electron electrochemical reaction, 

including mass transfer limitations are obtained [Eq. 4.15-4.16]. 

 

𝐼𝑎 =

𝑗0
𝑎𝐴𝑖 (

𝐶𝑖
𝑟𝑒𝑑

𝐶𝑟𝑒𝑓
𝑟𝑒𝑑) [exp(−

𝛼𝑎𝐹𝜂𝑎

𝑅𝑇 ) − exp (
𝛼𝑐𝐹𝜂𝑎

𝑅𝑇 ) ]

1 +
𝑗0

𝑎

𝐹𝑘𝑚
𝑟𝑒𝑑𝐶𝑟𝑒𝑓

𝑟𝑒𝑑 exp (−
𝛼𝑎𝐹𝜂𝑎

𝑅𝑇
) +

𝑗0
𝑎

𝐹𝑘𝑚
𝑜𝑥𝐶𝑟𝑒𝑓

𝑜𝑥 exp (
𝛼𝑐𝐹𝜂𝑎

𝑅𝑇
)
   

[A] Equation 4.15 

 

𝐼𝑐 =

𝑗0
𝑐𝐴𝑖 (

𝐶𝑖
𝑜𝑥

𝐶𝑟𝑒𝑓
𝑜𝑥 ) [exp(

𝛼𝑎𝐹𝜂𝑐

𝑅𝑇
) − exp (−

𝛼𝑐𝐹𝜂𝑐

𝑅𝑇
) ]

1 +
𝑗0

𝑐

𝐹𝑘𝑚
𝑟𝑒𝑑𝐶𝑟𝑒𝑓

𝑟𝑒𝑑 exp (
𝛼𝑎𝐹𝜂𝑎

𝑅𝑇
) +

𝑗0
𝑐

𝐹𝑘𝑚
𝑜𝑥𝐶𝑟𝑒𝑓

𝑜𝑥 exp (−
𝛼𝑐𝐹𝜂𝑎

𝑅𝑇
)
     

[A] Equation 4.16 

It may be verified that [Eq. 4.15-4.16] reduce to the case without mass transfer limitations [Eq. 

4.13-4.14] when the mass transfer terms approaches infinity (𝑘𝑚 → ∞).  

An estimation of the mass transfer coefficient towards the porous electrode was obtained by 

neglecting inertia effects and applying the film theory, assuming that the film layer is equal to 

the pore radius of every pore [Eq 4.17]. 

 
𝑘𝑚 = 2

𝐷

𝑑𝑝
 

[m s−1] Equation 4.17 

The boundary conditions for species transport are a Dirichlet boundary condition for the 

concentration at the inlet of the porous electrode 𝐶𝑖𝑛 and Neumann boundary conditions for all 

other boundaries (i.e. dC dx⁄ = 0). 
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4.3.2 Charge Transport 

The conservation of charge around each pore is coupled with the species transport in the 

electrochemical cell by the current and the potential field, and is described by [Eq 4.18]. 

 
− ∑ 𝐼𝑖𝑗𝑆𝑖𝑗 = 𝐼𝐵𝑉

𝑁𝑇

𝑗=1
 

[V] Equation 4.18 

With 𝐼𝑖𝑗 the charge flux from pore i to j [A m−2], which is proportional to the potential field in 

the liquid phase [Eq. 4.19]. 

 𝐼𝑖𝑗 = 𝛽𝑖𝑗(𝜑𝑖 − 𝜑𝑗) [A m−2] Equation 4.19 

Where 𝛽𝑖𝑗 = 𝜎𝑙 𝑙𝑖𝑗⁄  is the electrical conductance of the connecting throat [S m−2], 𝜎𝑙 the bulk 

electrolyte conductivity [S m−1] and 𝜑𝑖 and 𝜑𝑗 are the liquid potential in pore i and j [V].   

The boundary condition for the electrolyte potential at the membrane (𝜑𝑚) in a specific half-

cell is iteratively calculated from the electrolyte potential at the membrane in the other half-

cell, using Ohm’s law to include the average voltage loss across the membrane interphase 𝛥𝜑𝑚  

[Eq. 4.20]. 

 Δ𝜑𝑚 = 𝑅𝑚𝐼𝑚 [V] Equation 4.20 

With 𝑅𝑚 the resistance of the membrane [Ω] and 𝐼𝑚 the current passing the membrane [A].  

Neumann boundary conditions for the voltage were applied at the inlet and outlet of the porous 

electrode and at the current collector (i.e. dV dx⁄ = 0).  

4.4 Numerical implementation and data extraction 

4.4.1 Numerical implementation 

The backbone of the constructed numerical algorithm consists of the coupled mass and charge 

transport within the porous electrode. In the developed algorithm, the individual transport 

equations within the anodic and the cathodic compartment are updated sequentially within an 

iterative algorithm. The main steps involved in the computation of the cell performance are 

explained in this section. A detailed flowchart of the constructed algorithm is displayed at the 

bottom of this chapter in Figure 11 and the corresponding Python code can be found in the 

supplementary information S.1. 

Due to the assumption of a dilute electrolyte, fluid transport within the porous electrode is 

considered to be independent from the other transport processes and can therefore be directly 

solved to obtain the velocity and pressure field [Eq. 4.1-4.2]. The velocity field of the liquid 

electrolyte is passed onto the iterative algorithm for species and charge transport. The  species 

and charge transport equations consists of two nonlinear systems of equations [Eq. 4.5, Eq. 

4.18] that are coupled by the Butler-Volmer equation [Eq. 4.15-4.16]. The iterative scheme 
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consecutively solves the advection-diffusion reaction equation [Eq. 4.5] and the potential field 

[Eq. 4.18]. Both half cells are coupled, using the found solution for the electrolyte potential at 

the membrane in one half cell to calculate the electrolyte potential at the other side of the 

membrane in the other half cell. In this step, Ohm’s law was used to account for the membrane 

resistance [Eq. 4.20]. The calculated electrolyte potential is subsequently used as a (constant) 

boundary condition for the charge transport equation in the second half cell.  

In order to obtain the polarization curve, the numerical model solves the coupled transport 

equations over a given voltage range. Since the iterative algorithm starts at the open-circuit 

voltage, the initial guess for the overpotential in the first iteration was set to 0 V. The initial 

concentration within all pores, 𝑐0,𝑖, was set to the inlet concentration 𝑐𝑖𝑛. While progressing to 

higher cell potentials, the initial guesses for the concentration, potential field and overpotential 

are based on the solution of the previous cell potential. 

Numerical convergence is achieved when the specified relative and absolute tolerances are met. 

These specified tolerances are based on the total current (𝐼𝑡𝑜𝑡𝑎𝑙) generated or consumed in a 

half-cell [Eq. 4.21].  

 𝐼𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐼𝑙𝑜𝑐𝑎𝑙,𝑗
𝑁𝑝

𝑗=1
   [A] Equation 4.21 

The relative error in the total current estimation (𝜖𝑟𝑒𝑙) can be calculated for both compartments 

by [Eq. 4.22].  

 
𝜖𝑟𝑒𝑙 =

𝐼𝑡𝑜𝑡𝑎𝑙
𝑛 − 𝐼𝑡𝑜𝑡𝑎𝑙

𝑛−1

𝐼𝑡𝑜𝑡𝑎𝑙
𝑛−1  

[−] Equation 4.22 

With 𝑛 being the iteration number.  

The absolute error (𝜖𝑎𝑏𝑠) consists of the difference in total current between both half-cells, and 

is defined by [Eq 4.23]. 

 𝜖𝑎𝑏𝑠 = 𝐼𝑡𝑜𝑡𝑎𝑙
𝑎 − 𝐼𝑡𝑜𝑡𝑎𝑙

𝑐  [A] Equation 4.23 

The tolerance for the relative error (𝜏𝑟𝑒𝑙) was set to 5.0 ∙ 10-5 and the absolute error (𝜏𝑎𝑏𝑠) to 

6.0 ∙ 10-4 A cm−2.  

In order to counteract divergence of the solution due to the highly nonlinear nature of both the 

system, two numerical strategies were employed. The first strategy consists of underrelaxtion 

during the updating of the concentration and potential field, which is a well-known technique 

to keep iterative computation stable [13]. In underrelaxation, a relaxation factor 𝜔 is used to 

dampen the obtained solution [Eq. 4.24]. 

 𝑐𝑖
𝑛+1 ⟵ 𝑐𝑖

𝑛+1𝜔 + 𝑐𝑖
𝑛(1 − 𝜔)   [mol m−3] Equation 4.24 

The second strategy consists of linearization of the charge transport source term. In the case 

that the considered active species has facile kinetics (i.e. a large exchange current density), the 
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mass transport and charge transport equations become strongly coupled. In this case, 

linearization of the current generation term can mitigate divergence. The derivation of the 

charge transfer source term is further elaborated on in Appendix II.  

4.4.1 Data extraction 

From the converged solution, the pressure field, concentration field, potential field and current 

distribution within the porous electrode can be calculated. Additionally, the obtained electrode 

overpotential can be divided in three separate terms: the activation overpotential 𝜂𝑎𝑐𝑡, the 

concentration overpotential 𝜂𝑐, and the ohmic overpotential 𝜂𝑜ℎ𝑚. 

The activation overpotential is defined as the potential difference above the equilibrium 

potential that is required to produce the achieved current, neglecting the effect of the surface 

concentration in the Butler-Volmer equation. The activation overpotential term in found for 

every pore by minimizing the difference between the ideal current, 𝐼𝑖𝑑𝑒𝑎𝑙, obtained from [Eq. 

4.25-4.26] and the obtained current 𝐼 from [Eq. 4.15-4.16].    

 
𝐼𝑎,𝑖𝑑𝑒𝑎𝑙 = 𝑗0

𝑎𝐴𝑖 (
𝑪𝒊𝒏

𝒓𝒆𝒅

𝐶𝑟𝑒𝑓
𝑟𝑒𝑑) [exp(−

𝛼𝑎𝐹𝜼𝒂,𝒂𝒄𝒕

𝑅𝑇
) − exp (

𝛼𝑐𝐹𝜼𝒂,𝒂𝒄𝒕

𝑅𝑇
)]   

[A] Equation 4.25 

 
𝐼𝑐,𝑖𝑑𝑒𝑎𝑙 = 𝑗0

𝑐𝐴𝑖 (
𝑪𝒊𝒏

𝒐𝒙

𝐶𝑟𝑒𝑓
𝑜𝑥 ) [exp(

𝛼𝑎𝐹𝜼𝒄,𝒂𝒄𝒕

𝑅𝑇
) − exp (−

𝛼𝑐𝐹𝜼𝒄,𝒂𝒄𝒕

𝑅𝑇
) ]   

[A] Equation 4.26 

With 𝑐𝑖𝑛 the inlet concentration of the active species [mol m−3].  

The concentration overpotential is defined as the summation of mass transfer and depletion 

effects on the overpotential. The concentration overpotential can be obtained by substracting 

the overpotential found using [Eq. 4.11-4.12] with the activation overpotential found using [Eq. 

4.25-4.26].  

The ohmic overpotential takes the electrolytic and membrane resistivity into account. The 

ohmic overpotential within an electrode can be obtained from the potential field [Eq. 4.27]. 

 𝜂𝑜ℎ𝑚,𝑒𝑙 =   𝜑𝑖 − 𝜑𝑚𝑒𝑚 [V] Equation 4.27 

With 𝜑𝑖 the electrolyte potential in pore i [V], and 𝜑𝑚𝑒𝑚 the average potential in the pores 

closest to the membrane in the considered electrode [V]. The contribution of the membrane can 

be obtained directly from [Eq. 4.20]. 

In the analyzed symmetric flow battery set-up, the (absolute) overpotential contributions sum 

up to the applied cell potential (𝐸𝑐𝑒𝑙𝑙) [Eq. 4.28]. 

 𝐸𝑐𝑒𝑙𝑙 = 𝜂𝑎𝑐𝑡 + 𝜂𝑐 + 𝜂𝑜ℎ𝑚 [𝑉] 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.28 
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Figure 11 - Algorithmic flowchart,  line (1) and (2) depict the coupling of the potential field between the anodic and cathodic half-cell.
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Chapter 5. Experimental methods 

Symmetrical flow cell experiments were conducted in order to validate the theoretical model. 

In this chapter, the procedure of the validation experiments is explained. First, the preparation 

of the electrolyte stock solutions is presented. Afterwards, an overview of the performed 

electrolyte characterization experiments is given. Finally, the symmetric flow battery set-up is 

explained.  

5.1 Electrolyte preparation  

5.1.1 Vanadium(IV)/(V) stock solution 

Vanadium(IV) sulfate oxide hydrate (99.9%, Alfa Aesar) and sulfuric acid (95.0-98.0%, Sigma-

Aldrich) were dissolved into deionized water to obtain a 0.2 M V(IV) and 1.0 M sulfuric acid 

solution.  

The obtained stock solution was electrochemically converted in order to produce vanadium(V) 

sulfate. In this electrochemical oxidation step, 50 mL of the prepared electrolyte was placed 

into two glass reservoirs and was subsequently pumped through the positive and negative sides 

of a VRFB at 10 mL min-1, see Figure 12.  

 

Figure 12 - Schematic overview of the vanadium conversion cell. 

Graphite current collectors with milled in flow-through flow fields were used. Two pieces of 

the untreated Freudenberg H23 paper electrodes with an external area of 2.5 cm2 were placed 

on top of each current collector, using compressible gaskets. A Nafion 212 membrane was used 

to separate the two half-cells [63]. Subsequently, the cell was tightened to 2.2 Nm using a 

torque-controlled screwdriver. Afterwards, the electrolyte was pumped through the battery for 

50 min to ensure optimal wetting, using a Masterflex L/S® Easy-Load® II pump and LS-14 

tubing. Finally, a BioLogic VMP-300 potentiostat was used in potentiostatic mode convert the 

V(IV) electrolyte to V(III) on the negative side and to V(V) on the positive side, by holding a 

potential of 2.0 V until a steady current of ~10 mA was measure. Humidified nitrogen was 

bubbled through both electrolyte tanks during the entire duration of the experiments to prevent 
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oxidation of the redox couples from exposure to oxygen. A 50% SOC V(IV)/V(V) solution was 

obtained by mixing the retrieved V(V) solution with the initial V(IV) solution in a 1:1 

volumetric ratio.  

5.1.2 Iron(II)/Iron(III) stock solution  

An electrolyte stock solution of 0.1 M ferrous chloride (FeCl2) hydrate (98%, Sigma-Aldrich), 

0.1 M ferric chloride (FeCl3) hydrate (97%, Sigma-Aldrich) and 1.0 M sodium chloride (NaCl) 

(≥ 99.0%, AkzoNobel), dissolved in deionized water was prepared. 

5.1.3 TEMPO·/TEMPO+(+) stock solution 

The numerical model was validated for the organic (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

(TEMPO·) and the 2,2,6,6-Tetramethyl-1-piperidinyloxy-oxo tetrafluoroborate (TEMPO+) 

redox couple using the data presented in Forner-Cuenca et al. [10]. In order to estimate the 

density and conductivity of the electrolyte used in this set-up, a stock solution of 1.0 M 

tetraethylammonium tetrafluoroborate (TEABF4) (99%, Sigma-Aldrich), dissolved in 

acetonitrile (99.8%, Sigma-Aldrich) was prepared.  

5.2 Electrolyte characterization 

5.2.1 Density and conductivity measurements 

Electrolyte density measurements were performed in triplo for the three synthesized 

electrolytes using a Sartorius ED224S analytical balance and an electrolyte volume of 10 mL. 

Conductivity measurements were performed using a two-electrode Swagelok conductivity cell, 

see Figure 13, similar to the setup used in Milshtein et al. [64]. The compartment of the 

conductivity cell was flooded with electrolyte and sealed shut. Electrochemical impedance 

spectroscopy (EIS) was conducted using the VMP-300 potentiostat at the open circuit voltage 

and at room temperature (23 °C) with an amplitude of 10 mV and a frequency range of 1 MHz 

- 100 Hz. The high frequency intercept was identified as the value of the resistance. EIS 

measurements were performed in triplo. Furthermore, the measurement for all three samples 

was repeated five times. A calibration curve of the conductivity cell was obtained using aqueous 

conductivity standards (0.01M, 0.1M and 1.0M aqueous KCl solutions), and was used together 

with the cell resistances to gain insight into the conductivity of the different electrolytes. 
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Figure 13 - (a) schematic overview of a Swagelok conductivity cell, reproduced from Milshtein et al. [64], (b) 

Photograph of the (disconnected) Swagelok conductivity cell used for the conductivity measurements.  

5.3 Symmetric flow battery set-up 

Symmetric flow cell experiments were conducted in an RFB cell for the synthesized vanadium 

and iron electrolytes using a two-electrode set-up, see Figure 14. Graphite current collectors 

were used, resulting in a flow-through flow field. Two pieces of the untreated Freudenberg H23 

electrodes with a thickness of 210 μm and an external area of 2.55 cm2 were placed on top of 

each current collector using an incompressible gasket with a thickness of 200 μm, ensuring 

minimal compression. A  porous separator was used to separate the two half-cells (Daramic 

175 SLI Flatsheet Membrane) [65]. Electrochemical experiments were performed at inlet 

velocities of 1.5, 5.0 and 20.0 cm/s. Humidified nitrogen was bubbled through both electrolyte 

tank during the entire duration of the experiments to prevent oxidation of the redox couples 

from exposure to oxygen. Polarization curves were obtained by employing a constant voltage 

step of 0.025 V and measuring the steady state current in a voltage range of 0.0 to 1.0 V. 

 
Figure 14 - (a) Schematic overview of a symmetric flow battery configuration, (b) photograph of the vanadium 

(IV)/(V) symmetric flow cell setup with (1) the N2 humidifier trap, (2) backup bulk electrolyte stock solution, (3) 

electrolyte reservoir solution and (4) the symmetric flow cell.  
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Chapter 6. Model validation and real electrode comparison 

In this chapter, the results from the developed numerical framework are displayed. First, the 

network extraction and algorithm are validated with experimental data (Chapter 6.1). Secondly, 

the power of the numerical framework is demonstrated by analysis and comparison of the 

electrochemical performance in a case study of two distinct electrode microstructures (Chapter 

6.2).  

6.1 Model validation 

In this subchapter, the modeling results are compared with the results obtained from symmetric 

flow cell experiments for the three distinct chemistries. Additionally, the accuracy of the 

network extraction for the used Freudenberg H23 paper is evaluated [49]. First, a comparison 

of the PSD of the obtained PN with mercury intrusion porosimetry (MIP) data found in 

literature was performed. Secondly, permeability simulations were performed and the effective 

permeability was compared with values from literature. Afterwards, the obtained 

electrochemically active surface area (ECSA) is compared with literature data. Finally, the 

electrochemical performance predicted by the numerical model is compared with the 

experimental data obtained for the Fe2+/Fe3+
, the V4+/V5+ and the TEMPO·/TEMPO+ redox 

couples. 

6.1.1. Network extraction  

The PSD from the extracted Freudenberg H23 PN was compared with the PSD from MIP 

measurements, presented in Forner-Cuenca et al. [10]. In MIP, an external pressure is applied 

in order to force the intrusion of mercury within a porous substrate. The applied external 

pressure 𝑃 can be related to the pore diameter 𝑑𝑝 by the Washburn Equation [Eq. 6.1]. 

 𝑑𝑝 = −
4𝛾 cos θ

P
     [m] Equation 6.1 

With γ the surface tension [N m−1] of mercury and θ the contact angle between mercury and 

the wall  [°]. Forner-Cuenca et al. assumed a constant contact angle of 130o in their 

measurements to derive the PSD [10]. A comparison of the PSD of the extracted Freudenberg 

PN with MIP data is presented in Figure 15. In this figure, the normalized volume is defined as 

the fraction of the total pore volume that is occupied by all pores within a 2 μm pore size range.  
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Figure 15 - Pore size distribution of the Freudenberg network obtained with mercuriy intrusion porosimetry (MIP) 

and the SNOW pore network extraction algorithm (PN). 

The PSD obtained from the extracted PN and the MIP dataset are in good agreement. However, 

the MIP distribution is shifted towards smaller pore sizes. Additionally, in contrast to the MIP 

dataset, pores larger than 56 μm are not present within the PN. Both findings appear to be well 

explained by inaccuracies introduced by the used measurement techniques.  

Firstly, the shift towards smaller pore sizes for the MIP dataset can be attributed to the ink-

bottle effect. In MIP measurements, it is assumed that every pore is either directly connected to 

the surface of the medium or through connections with larger pores. When this assumption is 

not met, smaller pores will form an obstruction to flow from and towards the larger internal 

pores. This leads to the misattribution of the pore volume of the larger internal pores to the 

smaller pore sizes and thus shifts the PSD to smaller pore sizes [66].  

Secondly, the discrepancy at larger pore sizes can possibly be explained by the segmentation 

of individual pores within the SNOW extraction algorithm. Due to the presence of 

inhomogeneities within the electrode image, it can be difficult to distinguish the exact 

boundaries of pores and throats, which can lead to the fragmentation of a single pore [49]. 

Additionally, since the surface regions of conventional fibrous electrodes are generally of 

higher porosity than the bulk electrode [49], the trimming of the surface regions of the XTM 

image prior to PN extraction, as explained in Chapter 3.1.2, is another possible reason for the 

absence of larger pores within the PN.  

Because of the quadratic interrelationship between throat size and hydraulic conductance, see 

[Eq. 4.2-4.3], the absence of large pores (which are generally interconnected by larger throats) 

can have a significant effect on the transport of electrolyte through the PN. In order to 

investigate the transport of fluid through the porous electrode, in-plane and through-plane 
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permeability coefficients for the extracted network were estimated from the pressure field 

within the network.  

In this work, the in-plane permeability is defined as the average permeability in the direction in 

line with the carbon fibers (the width and length of the electrode). The through-plane 

permeability is defined as the permeability perpendicular to the carbon fibers (the thickness of 

the electrode). The anisotropy ratio is the ratio between the in-plane permeability and the 

through-plane permeability. The anisotropy ratio is important, because it provides information 

about the alignment of pores and therefore the distribution of electrolyte within the network. 

When most pores are oriented in the flow direction (i.e. high anisotropy ratio), the flow in the 

other directions will become more tortuous. On the one hand, a high anisotropic ratio can have 

favorable effects, because it reduces the pressure drop over the length of the electrode. This 

results in lower pumping power requirements. On the other hand, a high anisotropic ratio can 

introduce a concentration gradient over the thickness of the electrode, which in turn can lead to 

the evolution of concentration overpotentials, and thus limited performance. 

The through-plane permeability of Freudenberg H23 has not been experimentally determined, 

but was estimated by multiplying the ratio of through-plane air permeability (in L m−2 s−1) of 

Freudenberg H23 and H23I2 found in the Freudenberg technical datasheet [67], with the 

through-plane air permeability of Freudenberg H2315 I6 (the former name of H23I2) presented 

in Hasanpour et al. (in um2) [68].  

The extracted in-plane and through-plane permeability coefficients are compared with the 

experimental in-plane and estimated through-plane permeability coefficients in Table 3. 

Table 3 - In-plane and through permeability coefficients, and the anisotropy ratio of the pore network and 

experimental data, * estimated from data found in [67] and [68]. 

 Pore network Experimental data Ref Units 

In-plane permeability 3.8 4.2 [67] μm2 

Through-plane permeability 1.1 1.2* [67-68] μm2 

Anisotropy ratio 3.5 3.4 − − 

The results presented in Table 3 show that there is a reasonable agreement between the 

experimental and simulated permeability coefficients. However, the values obtained from the 

PN are still 9.5% and 8.3% lower than the experimentally obtained in-plane and through-plane 

permeability coefficients, respectively. The found underestimation of the permeability 

coefficients matches with previous findings on the SNOW network extraction. Gostick 

attributed a similar error for the SNOW extraction of Toray paper to the trimming steps taken 

in image processing [49]. Due to the absence of part of the high porosity surface regions, the 

final permeability value for the simulated network is reduced. This result is in line with the 

absence of pores larger than 56 μm found in the PN (Figure 15). The obtained mismatch in 
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permeability tensors indicates that the model will slightly overpredict the pressure drop induced 

by electrolyte transport through the Freudenberg PN. Importantly, the anisotropy ratio obtained 

from the extracted network does show close resemblance with the ratio obtained from 

experimental data, which is an indicator that alignment of pores within the extracted network 

concurs well with the alignment of the real fibrous electrode.  

Another critical parameter for the extraction of the PN is the ECSA. The extracted PN has a 

total geometrical internal surface area of 0.34 m2 g−1, whereas Forner-Cuenca et al. reported 

an experimentally determined active surface area of 0.15 ± 0.01 m2 g−1 for the Freudenberg 

H23 electrode through analysis of the electrochemical double layer capacitance [10]. There are 

several possible explanation for the observed mismatch in the ECSA. First of all, the ECSA of 

the PN is estimated based on an approximated pore space within a simplified geometry, and 

can therefore lead to an over- or underestimation of the real ECSA. Secondly, assumptions 

made in the experimental determination of the ECSA, e.g. the approximated value of the 

specific capacitance, can also lead to the variation observed between both values [11], [69]. A 

correction factor of 0.44 can be utilized to scale the ECSA within the PN to the experimentally 

determined ECSA, however given the uncertainties introduced by the experimental setup, the 

obtained geometrical internal surface area can already be considered a reasonable 

approximation of the true ECSA. 
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6.1.2. Symmetric flow cell simulations 

The response of the numerical model was 

compared with the electrochemical performance 

observed in the symmetric RFB experiments for 

the  Fe2+/Fe3+
, V4+/V5+ and TEMPO·/TEMPO+  

redox couples, see Figure 16. To account for 

species depletion over the length of the electrode 

in the validation experiments, the numerical 

framework was modified to model the entire 

length of the laboratory electrode using a 

network-in-series approach. An explanation of 

this adjustment made in the model is presented 

together with a list of the chemistry specific 

model parameters in Appendix II. The developed 

model proved to be numerically robust, where the 

only fitting parameter used within the validation 

study was the electrical conductivity, to account 

for induced cell resistances (e.g. cable and contact 

resistances) within the symmetric flow cell 

experiments.  

The tests reveal a substantial disagreement 

between the experimental data and the model 

prediction for the aqueous electrolytes, displayed 

in Figure 16a (V4+/V5+) and Figure 16b 

(Fe2+/Fe3+), at lower electrolyte velocities (1.5 

and 5.0 cm s-1). In both cases, a decreased 

laboratory performance is observed, which 

suggests that the model overidealizes the mass-

transfer limitations for aqueous electrolytes. 

Furthermore, the performance of the Fe2+/Fe3+
  

electrolyte seems to agree well with the model 

prediction at a higher electrolyte velocity of 20 cm 

s-1, whereas the V4+/V5+ electrolyte shows an 

additional discrepancy around 0.01-0.02 A cm-2. 

Finally, the experimental results of the organic TEMPO·/TEMPO+ electrolyte, displayed in 

Figure 16c, agree well with the simulated performance, with a maximum deviation of 13% of 

the model in the mass-transfer limiting regime.  

Figure 16 - Current density versus voltage plots for 

three distinct RFB chemistries: (a) a V4+/V5+, (b) an 

Fe2+/Fe3+ and (c) a TEMPO·/TEMPO+ electrolyte at 

inlet velocities of 1.5, 5.0 and 20.0 cm s-1. 
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The observed overprediction of the electrochemical performance for the modeled aqueous 

electrolytes can be explained by the neglected effect of electrode wetting. The developed PNM 

holds the assumption that the considered electrode is fully wetted, which means that all the 

ECSA is equally accessible and that the fluid transport in the open space of the porous structure 

can be characterized as single-phase flow. However, it has been shown that in the real operation 

of RFBs unfavorable interactions between aqueous electrolytes and untreated carbon paper 

electrodes can result in gas holdup within the porous electrode [11], [70]. Especially at lower 

velocities, this may lead to liquid channeling, which in turn leads to incomplete electrode 

utilization and hence decreased cell performance. Due to their lower surface tension, organic 

electrolytes (i.e. acetonitrile based electrolytes) have been demonstrated to fully wetting 

untreated carbon electrodes [10], and it is hypothesized that for this reason the results of the 

TEMPO·/TEMPO+ electrolyte aligns quite well with the simulated results, in contrast to the 

aqueous electrolytes.  

Moreover, the sudden increments in voltage observed around 0.01-0.02 A cm-2 within the 

V4+/V5+ laboratory electrolyte seems to indicate that the description of a single-step reaction 

mechanism, described by the Butler-Volmer equation, is inadequate for the used V4+/V5+ 

electrolyte. Previous research has demonstrated that the V4+/V5+ reaction kinetics is highly 

sensitive to the atomic ratio of oxygen and carbon on the surface of the electrode [11], [71]. 

The sudden increments can indicate that the surface chemistry of the untreated Freudenberg 

H23 electrode inhibits facile charge transfer and thus causes a deviation from the ideal single-

step reaction mechanism enforced within the developed algorithm.  

The observed limitations suggest that a more detailed, multiphase model is required to study 

the mass and charge transfer within non-ideal porous electrodes; however, this is beyond the 

scope of the current study. It is hypothesized that the model is able to generate the correct 

response for the Fe2+/Fe3+
 and V4+/V5+ redox couples at lower inlet velocities, if thermal or 

electrochemical electrode pretreatment steps are leveraged to improve the hydrophilicity of the 

electrode [11], [71], but further research is required.  

The performed validation study stresses the importance of electrode surface chemistry control, 

which turns out to be imperative to obtain well-wetted electrodes. The findings of this study 

suggest that when full wettability and facile kinetics are realized, the presented model can be 

leveraged to predict electrode microstructure-performance relationships for optimized RFB 

operation. 

6.2 Analysis of real electrode performance 

The developed numerical model can be used to analyze the microstructural performance of  

existing RFB electrodes. Extracted performance indicators can be related to the unique property 

set obtained from the PNs and XTM images of the RFB electrodes. Key performance indicators 



35 

 

obtained from the numerical model include the pressure field, the (over)potential fields and the 

current field. Key property metrics that can be extracted from the PNs include the electrode 

dimensions, the PSD, the permeability coefficient, the anisotropic ratio, the porosity profile, the 

internal surface area, and the network connectivity. Additionally, macroscopic quantities can 

be extracted, such as the average ohmic, kinetic and activation overpotential within the 

electrode.  

In this subsection, a case study is conducted to investigate the enhanced performance of a 

recently synthesized phase separated electrode (PSE), which presents a very distinct 

microstructure compared to traditional, fibrous electrodes. The results of these sections are 

presented as a comparison of the performance indicators and the property set of the novel PSE 

and the validated Freudenberg H23 electrode. 

6.2.1 Phase separated electrode extraction 

A network extraction of a binarized image of the PSE was performed, following the procedure 

given in Chapter 3.1.3. The used XTM image was provided by Mr. Charles Tai-Chieh Wan 

(MIT, Chemical Engineering), and was obtained with a scanning resolution of 0.386 μm. In 

order to allow the extraction of a larger network, the computation cost was reduced by 

compression of the image resolution to 0.736 μm prior to the network extraction procedure. 

The extracted pore network is presented in Figure 17. 

 

Figure 17 - Visualization of (a) a processed x-ray tomography image of the phase separated electrode, (b) the 

resulting extracted pore network and (c) an overlay of the x-ray tomography image with the extracted pore network 

(500x500x453 𝜇𝑚). 

The PSE contained a set of relatively small pores compared to the Freudenberg electrode, which 

required the use of a higher resolution XTM image. In order to run the SNOW algorithm on the 

available desktop computer with 32GB RAM memory, the electrode sample had to be reduced 
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to 0.5 mm wide, 0.5 mm long and 0.45 mm thick. A validation of the electrochemical 

performance of the extracted PSE with experimental data is given in Appendix III. 

6.2.2 Comparison of electrode properties  

The permeability, anisotropy ratio, internal surface area, porosity, the coordination number and 

the number average pore size are important electrode properties that influence the 

electrochemical performance. These quantities are shown in Table 4 for the Freudenberg H23 

electrode and the PSE. As explained in Chapter 3.2, the coordination number is defined as the 

number of pores that a single pore is connected to within the network. Furthermore, because of 

the limited data on the true ECSAs of both electrodes (see Chapter 6.1.1), the intrinsic 

geometrical surface area, assigned by the SNOW algorithm, was used as the ECSA in this 

comparison (i.e. no correction factor was applied).  

Table 4 - Macroscopic properties of the Freudenberg H23 electrode and the phase separated electrode (PSE).  

 Freudenberg H23 PSE Units 

In-plane permeability 3.8 0.85 μm2 

Through-plane permeability 1.1 0.74 μm2 

Anisotropy ratio 3.5 1.1 − 

Internal surface area 1622.0 1784.5 cm2 cm−3 

Porosity 74.3 80.1 % 

Average coordination number 9.1 6.9 − 

Number average pore size 14.1 6.3 μm 

The macroscopic analysis listed in Table 4 reveals that the novel PSE has a 44% smaller average 

pore size than Freudenberg H23. Additionally, Table 4 reveals that the in-plane and through-

plane permeability in the PSE are decreased by a factor 4.5 and 1.5, respectively, compared to 

the Freudenberg H23 electrode. This causes a decrease in the anisotropy ratio of PSE to 1.1. 

These results highlight that the pressure drop per unit of distance, predicted by the Hagen-

Poiseuille equation [Eq. 4.2], will be larger for the PSE than for the Freudenberg H23 electrode. 

On the other hand, the observed lower anisotropy ratio in the PSE indicates that the electrolyte 

will have a less hindered flow path throughout the thickness of the PSE. Therefore, the flow 

can distribute more uniformly in all directions within the PSE than within the Freudenberg H23 

electrode. Additionally, Table 4 shows that the extracted PSE has a higher porosity, a 10% 

increase in geometrical internal surface area and a 24% decrease in average connectivity 

compared to the Freudenberg H23 PN. 

Although the macroscopic classification of the electrode structures is useful to outline the 

overall design of both electrodes, it does not describe the complete relationship between 
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network structure and electrochemical performance. Apart from the 10.0% increase in 

geometrical surface area, the increased performance of the PSE cannot be explained, and a 

characterization of the microstructure is required to gain a more detailed insight into the 

properties of both networks. Using the PNM framework, the PSD, the connectivity distribution, 

and the porosity gradient of both networks are obtained, see Figure 18-20.  

 

Figure 18 - Pore size distribution of (a) the extracted Freudenberg H23 electrode and (b) the extracted PSE. The 

extracted Freudenberg H23 electrode PSD resembles a Gaussian distribution, with pores sizes varying between 6 

and 48 𝜇𝑚. The extracted PSE PSD shows a more random distribution, with pore sizes varying between 2-124 

𝜇𝑚. 

 
Figure 19 - Connectivity distribution (logarithmic) of (a) the extracted Freudenberg H23 electrode and (b) the 

extracted PSE. The extracted Freudenberg H23 electrode shows less dispersion in the obtained connectivity values 

than the PSE.   
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Figure 20 - Porosity profiles of (a) the extracted Freudenberg H23 electrode and (b) the extracted PSE. The 

extracted Freudenberg H23 electrode shows a relatively uniform porosity profile in the length and width 

dimension, but an 11.1% variation in porosity over its thickness, with the more porous regions at the surface of 

the electrode. The extracted PSE shows larger variations in its porosity profile in the length and width dimension, 

and a 17.3% variation in porosity over its thickness, with the less porous regions at the surface of the electrode.  

The microscopic characteristics of both networks highlight two key differences between the 

networks. First of all, although the average pore size and connectivity of the PSE is smaller 

than that of the Freudenberg H23 electrode, the distribution of both quantities is more dispersed 

within the PSE. Further analysis indicates that a set of the larger pores observed in the PSE PN 

are the same set of pores that show an extremely high connectivity within the network. It is 

hypthesized that these macrovoids play a central role in the distribution of fluid throughout the 

electrode. Secondly, whereas the porosity profile of the extracted Freudenberg H23 electrode 

shows high porous regions at both surfaces of the electrode, the porosity profile of the PSE 

shows a ± 30 μm region that is 17.3% lower in porosity at the top surface of the electrode. It is 

speculated that if this low porosity region translates to a region with higher ECSA, the ohmic 

losses due to electrolyte transport can be reduced by positioning this low porosity region on the 

membrane-side during flow cell operation, similar to the design principle behind zero-gap 

electrode cells [72]. 

6.2.3 Comparison of electrode performance 

The performance of the Freudenberg H23 electrode and the PSE was evaluated by performing 

simulations with the iron electrolyte at non-rate limiting conditions (𝑣𝑖𝑛= 20 cm s-1) presented 

in Appendix II, which showed good agreement with experimental results (see Chapter 6.1.2). 

The macroscopic electrochemical performance of electrodes can be analyzed using the 

polarization curve. The predicted polarization curves, divided in the different contributing 

overpotential terms, for both networks at non-rate limiting conditions are given in Figure 21. 
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Figure 21 - Symmetric flow cell polarization curves of (a) the Freudenberg H23 electrode and (b) the phase 

separated electrode with an inlet velocity of 20 𝑐𝑚 𝑠−1 for the 0.1M Fe2+ 0.1M Fe3+ electrolyte. 

The most striking result from the polarization curves is the significant difference in ohmic 

overpotential between both electrodes at a constant current density. Although the Freudenberg 

H23 electrode is thinner, the total ohmic overpotential within the anode and cathode is 

significantly higher than in the PSE. For instance, at a current density of 400 mA cm−2, the 

summation of the anodic and cathodic ohmic overpotential for the Freudenberg H23 electrode 

is 0.61V and for the PSE 0.34V. It should be noted that the absolute values for the ohmic 

overpotentials should be handled with care, as these values are heavily dependent on the (low) 

conductivity of the chosen 0.1M Fe2+ and 0.1M Fe3+ model electrolyte. However, the 

proportional difference in ohmic overpotential between both electrodes is remarkable, and can 

be used to explain differences in the performance of both electrodes. 

In order to assess the electrochemical performance on the pore-scale level, the distribution of 

the pressure, current and overpotential terms within both electrodes are presented in the 

following subsections. Although the developed algorithm models the mass and charge transport 

in 3D (see Figure 6 and Figure 17), the distributions are presented as a set of 2D fields over the 

thickness and length of the electrode to improve the clarity of the results. The values within the 

pores in the width-direction were averaged in the case of the pressure and overpotential fields 

and summed in the case of the current field. All field graphs presented are obtained at a constant 

current density of 400 mA cm−2 at an inlet velocity of 20 cm s-1 within a 500 μm long and wide 

section for both electrodes.  
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6.2.3.1 Pressure drop 

Pressure drop must be minimized to ensure energy efficient RFB performance. The PNM gives 

access to the pressure fields within both electrodes, see Figure 22.  

 

 

Figure 22 - Pressure field within a 500 𝜇𝑚 section in (a) the Freudenberg H23 electrode, and (b) the phase 

separated electrode, at an inlet flow velocity of 20 cm s-1. The cathodic compartment is displayed on the left side 

and the anodic compartment on the right side.  

The pressure distribution in both electrodes is a direct result of the difference in the in-plane 

permeability of both electrodes. The computed pressure drop of 26.6 MPa m−1 within the 

Freudenberg H23 electrode is significantly lower than the computed pressure drop of 84.3 

MPa m−1 within the PSE. It should be noted that the higher computed pressure drop for the 

PSE is not solely the result of the lower permeability of the PSE electrode, but is also partly 

explained by the choice to compare the electrodes at a constant inlet velocity, which is a 

measurement standard often seen in flow battery literature [10], [73]. As the PSE is thicker 

(453 μm) than the Freudenberg H23 electrode (184 μm), the total electrolyte flow rate entering 

the PSE is larger than that entering the Freudenberg H23 electrode. This increase in thickness 

will therefore contribute to the higher pressure drop requirement.  

6.2.3.2 Current generation 

The current distribution within the PN gives insight into the formation of highly 

electrochemically active regions (hotspots) and less electrochemically active regions 

(coldspots). The current fields of both electrodes are presented in Figure 23. 
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Figure 23 - Current field within a 500 𝜇𝑚 section in (a) the Freudenberg H23 electrode and (b) the phase separated 

electrode, at an inlet flow velocity of 20 cm s-1 and a current density of 400 𝑚𝐴 𝑐𝑚−2. The cathodic compartment 

is placed on the left side and the anodic compartment on the right side. 

Figure 23 shows an intriguing difference between the current distribution of the two electrodes. 

The electrochemical activity is shown to be more dispersed throughout the Freudenberg H23 

electrode than throughout the PSE. Remarkably, most of the electrochemical activity within the 

PSE seems to take place close to the membrane interface, affirming its similarity with zero-gap 

electrodes. It is hypothesized that the highly connected macrovoids in the phase separated 

electrode play a crucial role in sustaining the higher ionic flues near the membrane, by 

facilitating high (through-plane) conductive transport of active species.  

In order to quantitively assess the current distribution within both electrodes, the current per 

unit of volume, the internal current density, is compared at a constant voltage of 0.5 V. 

Applying this metric allows for true comparison of both electrode performances for a given 

operating potential, irrespective of the electrode thickness. The internal current density as a 

function of the electrode thickness is given in Figure 24.  

 

Figure 24 - Current density as a function of the electrode thickness from the current collector (0 𝜇𝑚) to the 

membrane in (a) the Freudenberg H23 electrode and (b) the phase separated electrode, at an inlet flow velocity of 

20 cm s-1 and a current density of 400 𝑚𝐴 𝑐𝑚−2.  
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Figure 24 reveals that in both electrodes 50% of the electrochemical work is originating from 

the 40-60 μm top layer closest to the membrane interface. However, the figure also highlights 

the absence of a high internal current density close to the membrane within the Freudenberg 

H23 electrode, but the presence of this high internal current density region within the PSE. This 

trend provides more evidence for the claim that the low porosity region at the surface of the 

PSE is extremely important for its electrochemical performance. In fact, the data indicates that 

the higher porosity region at the surface of conventional fibrous electrodes plays a detrimental 

role in the performance of current flow battery electrodes. This finding is compelling, because 

it concurs well with the intended application of the fibrous electrodes within fuel cells. In fuel 

cells, the fibrous electrodes serve as current collectors that promote transport of fluids from and 

towards a thin catalytic surface close to the membrane [74]. However, in a flow battery, the 

electrode has a dual function, as it provides both the active surface for the electrochemical 

reactions and the flow geometry for the transport of electrolyte. The obtained results points to 

the idea that adjustment of the electrode thickness and surface porosity will play an important 

role in future flow battery electrode design, which is further discussed in Chapter 6.2.4.  

6.2.3.3 Overpotential fields 

The overpotential fields within both electrodes at a constant current density of 400 mA cm−2 are 

shown in Figure 25. Figure 25a shows higher activation overpotentials within the Freudenberg 

H23 electrode to obtain the same current output. This is in line with the lower internal current 

densities within the Freudenberg electrode. Additionally, part of the higher activation 

overpotentials can be explained by the difference in thickness between the electrodes. As the 

Freudenberg electrode is thinner, the required internal current density for the same power output 

per external surface area unit is higher. Furthermore, the higher porosity region at the surface 

of Freudenberg H23 electrode leads to decreased performance close to the membrane and thus 

increased ionic transport pathways. Figure 25b highlights that the ohmic overpotential of the 

Freudenberg H23 electrode is significantly higher than in the PSE, as a result of the increased 

ionic pathways. Finally, Figure 25c reveals that the concentration overpotential is significant in 

the most electrochemically active regions for both electrodes, even at a flow rate of 20 cm s−1. 

Specifically, the concentration overpotential is more confined within the Freudenberg H23 

electrode, which can be partly explained by the higher current per volume requirements and 

partly by the higher anisotropic ratio of the Freudenberg H23 electrode, which describes a 

higher obstruction to flow in the thickness direction. 
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Figure 25 - Overpotential fields within a 500 𝜇𝑚 section in (a) the Freudenberg H23 electrode and (b) the phase 

separated electrode, at a inlet flow velocity of 20 cm s-1 and a current density of 400 𝑚𝐴 𝑐𝑚−2. The cathodic 

compartment is placed on the left side and the anodic compartment on the right side. 
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6.2.4 Conclusions of the case study 

The conducted case study has given an account of the differences observed in performance 

between the Freudenberg H23 electrode and the novel PSE. The findings of this study suggest 

that the increased electrochemical performance of the PSE can be attributed to three distinct 

characteristics. First of all, the PSE is simply thicker than the Freudenberg H23 electrode and 

can therefore generate more current per external surface area unit. However, this increased 

performance comes at the expense of a higher pressure drop. More interestingly, the PSE 

contains a set of macrovoids that enable distribution of electrolyte throughout the entire 

thickness of the electrode, limiting the formation of concentration overpotentials within the 

most electrochemically active regions. Moreover, the PSE possesses a highly electrochemically 

active region at the surface of the electrode which is placed close to the membrane, whereas 

this region is more dispersed throughout the thickness of the electrode within the Freudenberg 

H23 electrode. This highly active surface region plays an important role in the increased 

performance of the PSE, by limiting the impact of ohmic overpotentials.  

The findings of this theoretical case study point towards the idea of the adjustment of the 

electrode thickness and surface porosity for future flow battery electrode design. It is proposed 

to investigate electrodes with lower porosity surfaces facing the membrane, as they will 

potentially show increased performance over conventional flow battery electrodes. 

Additionally, it is proposed to investigate the performance of thinner (phase separated) 

electrodes of 30-60 μm. Although these thin electrodes are expected to show lower external 

current and power densities, the reduced ohmic overpotentials within these electrodes can result 

in highly efficient electrodes. These type of electrodes can be especially useful in the field of 

organic flow batteries, where electrolyte conductivity is still significantly limiting the 

performance of the overall system [26], [75]. 

It should be noted that the current research is limited to the non-mass transfer limited case. The 

simulations are presented for a small section of the electrode and it is hypothesized that 

concentration polarization might form a bottleneck at larger electrode lengths or at lower flow 

velocities. It is anticipated that an optimization study can be carried out that can give more 

insight into the delicate balance of pressure drop and electrochemical performance for optimal 

industrial use of next-generation flow battery electrodes.  
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Chapter 7 Artificial optimization of electrode structures 

A challenging area in the field of artificial generation is the implementation of machine learning  

to obtain valuable design criteria for porous electrode structures.  In this chapter, the OpenPNM 

geometry functions are integrated into a novel genetic optimization approach. The proposed 

optimization approach is envisioned to form the foundation of a novel method for the bottom-

up design of the topology of next-generation RFB electrodes.  

In this study, the application of a genetic algorithm (GA) for the optimization of the pore and 

throat size distribution within cubic PNMs is explained. The procedure of the proposed GA is 

explained in Chapter 7.1. The results of the study are presented in Chapter 7.2. Throughout the 

study, the total number of pores, pore positions, network connectivity and total ECSA are kept 

constant. 

7.1 Genetic algorithm implementation  

The GA is a mathematical optimization heuristic inspired by Charles Darwin’s theory of 

evolution, and is the most prominent example of evolutionary computation [76]. The concept 

of the GA is based on the evolution of a population of candidate solutions to a given design 

case, using operators based on natural diversity and selection. The objective of the GA is to 

discover, emphasize and recombine good building blocks of solutions. The recombination of 

good building blocks can be leveraged to generate increasingly better sets of candidate solutions 

for the given design case. 

Some preliminary work in the field of genetic optimization for PNM was carried out in 2009 

by Jamshidi et al. [77]. In their work, Jamshidi et al. used a genetic optimization algorithm to 

generate a PN that approaches the static and hydraulic properties of a reservoir rock sample 

[77]. As far as known, the use of genetic optimization has never been considered within the 

field of battery electrode design and optimization.  

Genetic optimization comprises of five operations: initialization, selection, crossover, mutation 

and termination. During initialization, a random set of candidate solutions, called the 

population, is generated. The population evolves in successive generations. In each generation, 

a fitness function is used to assess the adequacy of each candidate solution. Subsequently, the 

selection operator selects the most fit individuals in the population, called the parents, for 

reproduction. These selected parents produce new individuals, called offspring, through a 

crossover and mutation operation. In the crossover operation, the offspring networks inherit 

their structure by mixing the information from both parent networks, and in the mutation 

operation, stochastic changes are made in the offspring’s structure to broaden the search domain 

[76]. The genetic optimization is stopped when a specified termination criterium is reached, 

which can be based either on the desired fitness or on the total number of generations. A 
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schematic overview of the developed genetic algorithm for cubic networks is presented in 

Figure 26. 

 

 

Figure 26 – Schematic flowchart of the operations in the proposed genetic algorithm for cubic networks. Where 

Atot represents the total internal surface area of the generated pores, Qin the inlet flow rate, cin the inlet concentration, 

𝛥P the pressure drop, I the obtained (total) current, and ξ the fitness.  

7.1.1 Initialization 

A population of cubic networks was initialized by the OpenPNM network generation functions. 

The topologies of the generated cubic networks were randomly generated, based on the 

geometric models of OpenPNM, as explained in Chapter 3.2. To allow for fair comparison 

between different PN geometry distributions, a network scaling step was taken. After 

initialization of each network, the total internal surface area was controlled by uniform scaling 

of the pore diameters, matching the total internal surface area to that of a reference network.  

7.1.2 Selection 

The selection procedure of the GA follows the principle of survival of the fittest. The fitness of 

the PNs was assessed by the developed electrochemical model (see Chapter 4). The model was 
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used to obtain the pressure drop, total current and cell voltage for each individual 

microstructure. The electrochemical power (𝑃) was subsequently determined by [Eq. 7.1]  

 𝑃 = 𝐼 ∙ 𝐸𝑐𝑒𝑙𝑙 [W] Equation 7.1 

With I the generated total current [A] and 𝐸𝑐𝑒𝑙𝑙 the applied cell potential [V]. 

Additionally, the pumping power loss, 𝛯, was determined by [Eq. 7.2] 

 

 
Ξ =

𝑄 ∙ Δp

𝜂𝑝
 

[W] Equation 7.2 

With 𝑄 the electrolyte flow rate [m3 s−1], 𝛥𝑃 the pressure drop [Pa], and 𝜂𝑝 the pumping 

energy efficiency. 

The fitness, 𝜉, of the PN was assessed by combining the electrochemical performance with the 

hydraulic performance by [Eq. 7.3].  

 

 
𝜉 =

𝑃 − Ξ

𝑃
 

[−] Equation 7.3 

The networks with the highest fitness value (𝜉 → 1) were selected as parents for the mating 

pool.  

7.1.3 Crossover 

The crossover operator randomly selects two parent networks from the mating pool to produce 

an offspring network. The pore size and throat size information of the produced offspring 

network was inherited from both parents via a two-step procedure. First, a locus (𝑐𝑝) was 

randomly selected between the first index (0) and the final index (𝑛𝑃) of the pore diameter 

array. The geometry information before the locus was obtained from the first parent, and the 

geometry information after the locus from the second parent. 

7.1.4 Mutation 

The mutation operator allows for random changes to occur in the generated offspring networks, 

which is a critical operation for the exploration of the entire search domain. The degree of 

mutation was controlled by a mutation chance and a mutation range. The mutation chance 

describes the probability that a mutation occurs within each pore, whereas the mutation range 

(𝜎𝑀) describes the severity of the mutation. If a pore was selected for mutation, a random 

mutation value, 𝑐𝑀, was stochastically chosen between (1 − 𝜎𝑀) ≤ 𝑐𝑀 ≤ (1 + 𝜎𝑀). The 

mutated pore diameter (𝑑𝑝
𝑀) was subsequently determined from the old pore diameter (dp

o) by 

[Eq 7.4].  

 dp
𝑀 = 𝑐𝑀 ∙ 𝑑𝑝

𝑜 [m] Equation 7.4 



48 

 

In order to maintain a fair comparison between the network geometries, the pore diameters of 

each newly generated offspring network were again uniformly scaled up or down, until the total 

internal surface area matches that of the specified reference network.  

7.1.5 Termination  

The genetic optimization was terminated when the maximum number of generations is reached.  

7.1.6 Model parameters 

An overview of the parameters used within the genetic optimization study is presented in Table 

5. The network shape and spacing were selected to mimic the shape of a ~175 μm thin and 

~900 μm long porous electrode. Additionally, the total internal surface area of the reference 

network was selected, based on the average internal surface area of 100 randomly generated 

porous networks. The pumping efficiency was assumed to be 0.9 [78]. Moreover, the population 

size, mutation factor, number of generations and the mutation chance have been arbitrarily 

chosen, and should be the subject of future research.  

The potential of the genetic optimization algorithm was explored for the optimization of a 

kinetically sluggish (𝑗0 = 1.0 A cm−2) and kinetically facile (𝑗0 = 100 A cm−2) aqueous 

electrolyte.  

The remaining properties of the simulated aqueous electrolyte and the cell operating conditions 

can be found in Appendix V. The python code can be found in the supplementary information 

S.2.  

Table 5 – Parameters used within the genetic optimization study. 

Parameter Value Units 

Spacing 50 μm 

Total surface area 142 cm2 cm−3 

Network shape  [18, 18, 4] − 

Connectivity 6 − 

Population size 50 − 

Pumping efficiency 0.9 − 

Amount of offspring 50 − 

Mutation factor 0.10 − 

Mutation chance 0.05 − 

Crossover point 0 < 𝑐𝑝 < 𝑛𝑝 − 
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Amount of generations 300 − 

7.2 Genetic algorithm results 

In this section, the GA’s results for the kinetically sluggish (j0 = 1.0 A cm−2)  and kinetically 

facile (j0 = 100 A cm−2) systems are presented. The analysis of the presented results is two-

fold. First, because of the novelty of the GA approach, the suitability of the GA within the field 

of battery electrode design and optimization is established. Secondly, it is speculated that the 

modification in the kinetics will lead to variations in the balance of reactive surface area and 

electrolyte transport properties within the PN. Therefore, the effect of the modification in 

exchange current density on the pore and throat size distributions of the optimized networks is 

investigated.  

In order to determine the viability of the GA, the progression of the fitness values of each 

generation’s most fit individual was followed, see Figure 27. The required computational time 

was ~12.5 minutes per generation (~15 seconds per PN) using a single Intel® Core(TM) i7-

8700K CPU. 

 

Figure 27 – Progression of network fitness value of each generation’s most fit individual for (a) a kinetically 

sluggish (𝑗0 = 1.0 𝐴 𝑐𝑚−2) and (b) a kinetically facile (𝑗0 = 100 𝐴 𝑐𝑚−2) aqueous electrolyte.  

The progression of the candidate solutions reveals that the performance of the most fit PNs 

improves with every generation. The most fit PN after 300 generations showed a 5% and 15% 

increase in the electrochemically output and a 46% and 47% decrease in the required pumping 

power compared to a completely random cubic network for the kinetically sluggish and 

kinetically facile system, respectively. This observation indicates that genetic optimization 

could indeed be a viable route for battery electrode optimization. 

Although progression in the fitness is made with each generation cycle, the absolute 

performance of the generated cubic PNs is underwhelming. In all cases the electrochemical 

work is smaller than the required pumping power (𝜉 < 0), which means that the amount of 
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pumping work required to pump the electrolyte through the PN is higher than the 

electrochemical work that can be retrieved from the system. However, the absolute performance 

is highly dependent on the chosen test case, and can readily be increased by variations in the 

electrolyte composition (active species concentration, density and viscosity), variations in the 

operating conditions (inlet velocity and cell voltage), and variations in the electrode properties 

(length, connectivity and total surface area). Finding the optimum balance of electrode 

properties and operating conditions for a specific industrial electrolyte has not been 

investigated, but is encouraged to be the subject for future research.  

To investigate the increase in performance of the produced offspring networks, 2D snapshots 

of the network throats closest to the membrane in the cathodic compartment were obtained from 

the most fit individuals at three selected generations, see Figure 28.  

 

Figure 28 – 2D snapshots of the network throats in the plane closest to the membrane for the most fit individuals 

at generation 1, 150 and 300. Boundary pores have been excluded from the image. 

The single most striking observation that emerges from Figure 28 is the alignment of larger 

throats in the 2D plane, interwoven with clusters of smaller throats. The alignment of throats is 

observed for both tested exchange current densities, and highlights the importance of pore 

positioning, as the contiguous placement of larger pores facilitates the formation of low 

resistance transport pathways within the PN. The formation of these low-resistance transport 

pathways shows similarities to the macrovoids present in the analyzed PSE (See Chapter 6). 

Chapter 6.2 revealed that variations in the network properties over the thickness of the electrode 

play a critical role in the increased performance of the analyzed PSE. Therefore, aside from 

investigating the PSD of the most fit network structure after 300 generation, the PSDs for the 

four 2D pore planes that build up the thickness of this network were analyzed, see Figure 29.  
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Figure 29 – (a) Pore size distributions of the most fit 3D networks and the individual pore layers that make up the 

thickness of the porous electrode, ordered from the layer closest to the membrane to the pore layer closest to the 

current collector. (b) Visual representation of the pore sizes within the most fit 3D networks, with electrolyte 

transport occurring from front to the back of the electrode. 

Figure 29 shows that the overall PSD of the optimized network is relatively similar in the case 

of the kinetically sluggish and kinetically facile electrolyte, with an average pore size, of 27-29 

μm. However, differences are observed for the individual pore layers. In both cases, the PSD 

of pores closer to the current collector is shifter towards smaller pore sizes compared to the 

PSD of the pores closer to the membrane.  

At first view, the presence of larger pores closer to the membrane seems to contradict the earlier 

findings of a highly active microporous layer presented in Chapter 6.2. However, care has to 

be taken when analyzing the results of the GA. In fact, the observed relocation of larger pores 

to the membrane side is a direct result of one of the limitations of the GA’s methodology. The 

microporous layer presented in Chapter 6.2 is highly active, because the cluster of smaller pores 

significantly increases the ECSA close to the membrane surface. Since the number of pores and 

the pore position is set constant in the GA, the ECSA close to the membrane can only be 

increased by relocating larger pores closer to the membrane.  
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Figure 29 also reveals that the difference in the average pore size of the current collector pores 

and the membrane pores is less pronounced in the case of the kinetically sluggish system (25-

27 μm and 27-29 μm) than in the case of the kinetically facile system (23-25 μm and 29-31 

μm). A possible reason for this variation is the increased electrochemical performance of the 

kinetically facile system (j = 184 mA cm-2) compared to the kinetically sluggish system (j = 

172 mA cm-2). Because of the increased electrochemical performance, the effect of ohmic 

resistance in the electrode becomes more pronounced, catalyzing the shift of ECSA towards the 

membrane surface. However, caution must be taken when this shift of ECSA is considered. The 

progression of the optimization (Figure 27) shows that the most fit individual after 300 

generations has not yet yielded a stable fitness value over multiple generations for both analyzed 

current densities. It is possible that longer computation might shift the PSD even further for 

both analyzed cases, which will lead to similar shifts of the ECSA for both optimized network 

after more generations. 

The presented result give rise to three key features of the presented GA in need of further 

development. Most importantly, the GA code should be extended to allow autonomous 

placement of pores within the PN. The mutation operator can be leveraged to stochastically 

place, migrate and delete pores within the considered design space. In this case, it might be 

more suitable to keep the total pore volume constant, instead of the total reactive surface area. 

This feature will allow the algorithm to decides between the placement of a cluster of smaller 

pores, favoring the total reactive surface area, or larger pores, favoring the electrolyte transport 

through the PN. Simultaneously, parallel computational techniques should be explored in order 

to curb the computational costs of the GA. In theory, the fitness of all PNs in a generation can 

be computed concurrently if multiple computational cores are leveraged. It is envisioned that 

the Dutch supercomputer, Cartesius, can be exploited to run a modified, parallelized GA code 

to drastically reduce the computational costs (to ~12.5 seconds). Finally, the chosen GA 

parameters in this study should be the subject over further investigation. It is hypothesized that 

modifications in the chosen population size, mutation chance and mutation factor can have a 

significant impact on both the exploration of the entire design domain, and on the progression 

of the fitness value with each generation cycle.  

If all these features are considered, the developed GA has the potential to become a powerful 

new optimization technique for the bottom-up design of porous battery electrodes.  

Chapter 8. Conclusions and outlook 

This thesis has expanded the fundamental understanding of the role of the electrode 

microstructure within redox flow battery performance, utilizing a novel numerical pore network 

modeling framework. The conclusions from the study and suggestions for future work are 

presented below.  
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• Constructed a three-dimensional electrochemical model - A pore network modeling 

framework was developed based on a simplified microstructural geometry. The physics 

of mass transport, charge conservation, and electrochemical kinetics were implemented 

to simulate single-phase electrolyte flow through porous electrodes in redox flow 

batteries. The model is chemistry-agnostic and can be adapted to different chemistries 

of interested, provided that the electrolyte completely wets the electrode surface. In the 

future, I suggest implementation of the migration of active species within the mass 

transport equation, utilizing the full Nernst-Planck formulation.  

• Validated the pore network extraction of a commercial fibrous electrode – The 

SNOW algorithm was used to extract a pore network for the commercially available 

fibrous Freudenberg H23 electrode. The pore size distribution, permeability 

coefficients, and internal surface area of the extracted network showed good agreement 

with experimental data. Differences found in the microstructural properties were 

attributed to restrictions imposed by image processing and experimental limitations. The 

most important suggestion for future work is to focus on systematic correlation of the 

electrochemically active surface area within simplified geometries using roughness 

correlations.  

• Compared the electrochemical response of the numerical model with symmetric 

flow cell experiments -  The response of the developed algorithm was compared with 

experimental data for three distinct redox couples with different kinetics 

(Fe2+/Fe3+,V4+/V5+ and TEMPO·/TEMPO+) within an untreated Freudenberg H23 PN. 

The computed performance of the TEMPO·/TEMPO+ redox couple aligned well with 

the experimental performance reported in Forner-Cuenca et al. [10]. Additionally, the 

Fe2+/Fe3+  redox couple showed a matching response in the non-rate limiting regime 

(vin = 20 cm s-1). Agreement of the model’s results was lacking with the Fe2+/Fe3+  

experiments at rate limiting conditions and with all V4+/V5+ experiments. Future studies 

should focus on repetition of the symmetric flow cell experiments for the two aqueous 

electrolytes, using thermally or electrochemically pre-treated electrodes to ensure full 

wettability of the electrode surface. Furthermore, rigorous calibration of the pump flow 

rate should be conducted, to ensure high accuracy of the used pumping flow rate. 

• Analyzed the electrochemical performance of existing porous electrodes – The 

electrochemical performance of a recently discovered non-fibrous phase separated 

electrode was compared with the performance of a fibrous Freudenberg H23 electrode. 

The increased performance of the phase separated electrode was attributed to the 

coexistence of (1) highly interconnected macrovoids fractions consisting of larger pores 

(> 50 μm), permitting high convective flow, with (2) an electrochemically active 

surface regions consisting of smaller pores (~10 μm), facilitating fast kinetics. The 

interplay of these microstructural characteristics was shown to limit the formation of 
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ohmic and concentration overpotentials. Future numerical research can aid the design 

of phase separated electrodes by analyzing the macrovoids to micropores ratio, and by 

exploring the ideal thickness of phase separated electrodes. Future experimental 

research should focus on the development of anisotropic electrodes, with enhanced 

electrochemical surface area at the membrane-side surface, and should investigate the 

performance and mechanical stability of thinner (30-60 μm) porous electrodes to 

decrease ohmic overpotentials.   

• Constructed a novel genetic optimization approach for the bottom-up design of 

battery electrodes –  The first results of the developed genetic algorithm showed a 

promising increase in the overall performance of the optimized network, and the 

proposed methodology could serve as a base for future studies into optimized topologies 

for battery electrodes. Future studies should focus on expansion of the GA methodology 

by allowing autonomous pore placement within the design domain. Furthermore, 

parallel computational techniques should be explored, together with optimized genetic 

algorithm parameters, in order to curb the computational costs and maximize the 

efficiency of the optimization method.  

More broadly, the developed numerical framework opens up the possibility for advanced 

numerical investigations into the interdependence of flow field, membrane and electrode 

designs to improve cell performance. Furthermore, to broaden the knowledge on the interplay 

between pore-scale characteristics and the solid structural design of the electrode, the numerical 

framework can be leveraged to analyze pore networks extracted from artificially generated 

electrodes, developed in material simulation software, such as GeoDict [79].  

All in all, the developed methodology can play an important role in the bottom-up design of 

electrodes with optimal topology. Improved electrode designs will lead to lower pumping 

power requirements, increase power density, decrease overpotentials, and minimize material 

utilization within redox flow battery operation. Thus, it is hoped that the conducted research 

can contribute to the widespread deployment of large-scale, stationary energy storage systems 

and aid the transition towards a low-carbon energy infrastructure. 
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Nomenclature 

Symbol Description Units 

𝐸0 Standard reduction potential V 

𝑆𝑝 Random seed value − 

𝑑 Diameter m 

𝑓𝑇 Throat sizing factor − 

𝐴 Internal surface area m2 

S Cross-sectional area m2 

𝐿 Conduit length m 

𝑗 Current density A m−2 

𝜂 Overpotential V 

𝑆𝑜𝑥 Source term oxidized species mol s−1 

𝑆𝑟𝑒𝑑 Source term reduced species mol s−1 

𝑁𝑇 Number of throats − 

𝜌 Density kg m−3 

𝑢 Fluid velocity m s−1 

𝛼𝑖𝑗 Hydraulic conductance m Pa−1 s−1 

𝑝 Pressure Pa 

𝜇 Dynamic viscosity Pa s 

𝑄 Flow rate m3 s−1 

𝑚 Mole flux mol m−2 s−1 

𝐼 Current A 

𝑛 Number of electrons − 

𝐹 Faradaic constant C mol−1 

𝐶 Concentration mol m−3 

Pe Peclet number − 

D Diffusion coefficient m2 s−1 

𝑗0 Exchange current density A m−2 

𝛼 Transfer coefficient − 

𝑅 Universal gas constant J K−1 mol−1 

T Operating temperature K 

𝜑 Potential V 

𝑘𝑚 Mass transfer coefficient m s−1 

𝐼𝑖𝑗 Charge flux A m−2 s−1 

𝜎𝑙 Electrical bulk conductivity S m−1 

𝛽 Electrical conductance S m−2 

𝑅 Resistance Ω 

𝜖 Error value − 

𝜏 Tolerance − 
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𝜔 Damping factor − 

𝛾 Surface tension N m−1 

𝜃 Contact angle ° 

𝑃 Electrochemical power W 

Ξ Pumping power W 

𝜉 Fitness value − 

𝑐𝑝 Cutting locus − 

𝑛𝑝 Number of pores − 

𝜎𝑀 Mutation range − 

𝑐𝑀 Mutation value − 

Sub- and superscripts                         Description 

i Within pore i 

ij Transport from pore i to pore j 

in Inlet 

out Outlet 

m Membrane or mutation 

ox Oxidized form 

red Reduced form 

BV Butler-Volmer 

ref Reference 

s Solid 

e Electrolyte 

a Anode 

c Cathode or concentration 

act Activation 

ohm Ohmic 

o Initial 

Abbreviation Description 

RFB Redox flow battery 

MEA Membrane electrode assembly 

VRFB Vanadium redox flow battery 

TEMPO 2,2,6,6,-teramethyl-1-piperidinylxy 

GDL Gas diffusion layer 

XTM X-Ray tomography 

PN Pore network 

PNM Pore network modeling 

PSE Phase separated electrode 

PSD Pore size distribution 

ECSA Electrochemically active surface area 
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Appendix 

I. Explanation of the SNOW algorithm 

The base of the SNOW algorithm is watershed segmentation. Watershed segmentation converts 

an image into a topographic map, where the brightness of each point represents its height [80]. 

Subsequently, the different peaks in the tomographic map are used to segment the image in 

different regions (pores and throats). In order to increase the accuracy and computational 

memory requirement of this algorithm, the SNOW algorithm pre-processes the image in four 

main steps.  

In the first step, the distance transform of the pore space is obtained, which labels each voxel 

of the image with the distance to the nearest obstacle voxel (solid electrode fiber).  A gaussian 

filter is applied in this step, in order to limit the amount of peaks that are unfairly labeled as 

local maxima, by smoothing the artificial rectangularity of the solid wall. The impact of the 

gaussian filter can be altered by changing the standard deviation of the applied convolution 

mask (𝜎). The larger the standard deviation, the flatter the mask around each voxel. This results 

in a more pronounced blurring effect of the filter, where a sigma value between 0.2 ≤ 𝜎 ≤ 0.4 

often yields a proper compromise between reducing the amount of spurious peaks and over 

smoothing the image [49].  

Secondly, a maximum filter with a spherical structuring element of radius 𝑅 is applied. This 

filter replaces the value of each voxel with the maximum value found within radius 𝑅. The 

appropriate value of the radius is dependent on the porosity of the network and the XTM 

resolution. When the radius is chosen too small, many artificial pores will be found. When the 

radius is too large, some small pores might be missed. A value of 𝑅 =  5 voxels was proposed 

by Gostick et al., however the effect of R and 𝜎 was not explored extensively for a variety of 

networks and the optimal value can change based on the network characteristics and scan rate 

[49] 

 As a third step, a dilating peak method is used to see if there are adjacent peaks with larger 

tomographic values. When these peaks are found, the corresponding point is deemed a saddle 

points and removed from the tomographic map. 

Finally, nearby peaks that overlap each other are merged into one peak. The sets of markers 

created in these four steps are passed on to a marker-based watershed algorithm. This algorithm 

produces an image with integer values indicating which pore regions each voxel belongs to. 

From this value map, the pore connectivity can be extracted by region isolation, dilation and 

comparison of overlapping labels. Finally, pore and throat geometric properties (pore size, 

throat diameter and length and pore connectivity) are extracted by analyzing the voxel 

information in the distance map of each isolated pore [49]. It should be noted that quantities 
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such as internal surface area, in contrast to artificial generation of pore networks, are calculated 

based on the voxel information in the distance map. Therefore, the obtained surface area for 

each pore can be significantly larger than expected from the geometrical surface area obtained 

using the geometrical formula’s for spheres and cylinders (see Chapter 3.2).  
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II. Numerical implementation 

II.(a) Linearization of the source term in the ohmic conduction algorithm 

The charge transport equation is highly nonlinear, since the current generation term is 

exponentially dependent on the overpotential term. In the case that the considered active species 

has facile kinetics (i.e. a large exchange current density), the mass transport and charge 

transport equations are strongly coupled. In order to mitigate divergence, the charge transport 

source term was linearized around the current solution for the voltage field. The derivation of 

the charge transfer source term in the case of the cathodic compartment is shown in this 

appendix. A similar derivation was conducted for the anodic compartment.  

The governing cathodic Butler-Volmer equation can be rewritten in the form presented in [Eq. 

A. 2.1]. 

 
𝐼𝑐 =

𝑐1[exp(𝑚1𝜂𝑐) − exp (−𝑚2𝜂𝑐) ]

1 + 𝑐2 exp(𝑚1𝜂𝑐) + 𝑐3exp (−𝑚2𝜂𝑐)
   

[A] Equation A.2.1 

With 𝑐1 = 𝑗0
𝑐𝐴𝑖 (

𝐶𝑖
𝑜𝑥

𝐶𝑟𝑒𝑓
𝑜𝑥 ),𝑐2 =  

𝑗0
𝑐

𝐹𝑘𝑚
𝑟𝑒𝑑𝐶𝑟𝑒𝑓

𝑟𝑒𝑑, 𝑐3 =  
𝑗0

𝑐

𝐹𝑘𝑚
𝑜𝑥𝐶𝑟𝑒𝑓

𝑜𝑥 , 𝑚1 =
𝛼𝑎𝐹

𝑅𝑇
 and 𝑚2 =

𝛼𝑐𝐹

𝑅𝑇
. 

The overpotential term can be rewritten into the electrolyte potential term using [Eq A. 2.2.] 

 𝜑𝑒 = 𝜑𝑠 − 𝜂𝑐 − 𝐸𝑜𝑐  [V] Equation A.2.2 

Taking the derivative with respect to 𝜑𝑒 gives [Eq. A.2.3] 

 

𝑑𝐼𝑐

𝑑𝜑𝑒

=

(𝑐1 (

−𝑐3𝑚2 exp(𝑚1𝜂𝑐 − 𝑚2𝜂𝑐) − 𝑐2𝑚2 exp(𝑚1𝜂𝑐 − 𝑚2𝜂𝑐)

− 𝑐2𝑚1 exp(𝑚1𝜂𝑐 − 𝑚2𝜂𝑐) − 𝑐3𝑚1 exp(𝑚1𝜂𝑐 − 𝑚2𝜂𝑐)

−𝑚2 exp((−𝑚2𝜂𝑐) − 𝑚1 exp(𝑚1𝜂𝑐)
))

(1 + 𝑐2 exp(𝑚1𝜂𝑐) + 𝑐3 exp(−𝑚2𝜂𝑐))2
      

[A V−1] Equation A.2.3 

The source term, 𝑆𝑟𝑒𝑑, can subsequently be linearized by [Eq. A.2.4] 

 

𝑆𝑟𝑒𝑑 =
𝑑𝐼𝑐

𝑑𝜑𝑒
∙ 𝜑𝑒

𝑛 + 𝐼𝑐
𝑎𝑑−𝑑𝑖𝑓

−
𝑑𝐼𝑐

𝑑𝜑𝑒
 𝜑𝑒

𝑛−1 

[A] Equation A.2.4 

With 𝜑𝑒
𝑛 the new potential field to be solved for [V], 𝐼𝑐

𝑎𝑑−𝑑𝑖𝑓
 the current field obtained from the 

mass transport equation [A] and 𝜑𝑒
𝑛−1 the previous estimation of the potential field [V]. 
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II.(b) Network-in-series model 

To account for species depletion over the length of the electrode in the validation experiments, 

the numerical framework was modified to match the entire length of the laboratory electrode 

(1.7 cm) using a network-in-series approach. In this approach, multiple PNs are placed behind 

one another, and the concentration at the end of the first PN is considered as the inlet 

concentration of the next PN. In order to map the concentration between the boundary pores of 

the two networks, each network was manipulated to become a mirrored copy (mirrored in the 

flow dimension) of the previous network, see Figure II. 1. The mass and charge transport 

algorithms are solved independently for each anode-cathode couple in the series. 

The code implementation of the network-in-series model can be found in the Supplementary 

Information. 

 

Figure II. 1 - Schematic visualization of a network-in-series model with 3 pore networks, separated by dashed lines. Convective 

transport takes place from left to right. Species consumption is depicted by the color in the network. Concentration 

overpotentials are larger at the end of the porous electrode.       
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II.(c) Chemistry specific model parameters 

Chemistry specific model parameters are listed in Table II. 1. The inlet velocity was varied between 1.5, 5.0 and 20.0 cm s-1, and the cell potential 

was varied from 0.0 to 1.0 V for the  V4+/V5+ and Fe2+/Fe3+
 electrolytes and from 0.0 to 0.6 V for the TEMPO·/TEMPO+ electrolyte. The exchange 

current density of the V4+/V5+ and the TEMPO·/TEMPO+ electrolytes was fitted within the range of exchange current densities reported. 

Additionally, a calibration was applied by tuning the electrical conductivity of the electrolytes in order to account for non-idealities occurring 

within the experiments, such as contact resistances, that are not captured within the numerical model. 

Table II. 1 - List of chemistry specific model parameters used within this study. Exp: experimental measurement, Fit: fitted value 

 𝐕𝟒+/𝐕𝟓+  Ref 𝐅𝐞𝟐+ 𝐅𝐞𝟑+⁄  Ref 𝐓𝐄𝐌𝐏𝐎 ·/𝐓𝐄𝐌𝐏𝐎+ Ref Units Description 

Type Aqueous [−] Aqueous [−] Organic [−] − − 

Electrolyte 1.0 M H2SO4 [−] 1.0 M NaCl [−] 1.0 M TEABF4 [−] − Used supporting electrolyte 

𝛒𝐥 992 Exp 1015 Exp 852 Exp kg m−3 Electrolyte density 

𝛒𝐬 480 Exp 480 Exp 480 Exp kg m−3 Electrode density 

𝐑𝐦 0.16 [81] 0.16 [81] 0.04 [81] Ω cm2 Membrane areal resistance 

𝛍 0.89 [−] 0.89 [−] 0.34 [−] mPa s Solvent viscosity 

𝛔𝐥 4.5 Fit 34 Fit 72 Fit mS cm−1 Bulk electrolyte conductivity 

𝛂𝐜 0.42 [82] 0.5 [−] 0.5 [−] − Cathodic transfer coefficient 

𝛂𝐚 0.42 [82] 0.5 [−] 0.5 [−] − Anodic transfer coefficient 

𝐃 V4+ 2.11 ∙ 10−10 

V5+ 2.11 ∙ 10−10 

[83] Fe2+ 5.7 ∙ 10−10 

Fe3+ 4.8 ∙ 10−10 

[84] TEMPO 1.3 ∙ 10−9 

TEMPO+ 1.3 ∙ 10−9 

[85] m2 s−1 Red/Ox diffusion coefficients in the 

electrolyte 

𝐣𝟎 0.39 [11] 23.0 [84] 375 [85] A m−2 Exchange current density 

𝐜𝐫𝐞𝐟 100 [−] 100 [84] 250 [−] mol m−3 Reference concentrations of active species 

𝐜𝐢𝐧 100 [−] 100 [−] 250 [−] mol m−3 Inlet concentrations of active species 
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III. Validation of the electrochemical performance of the phase separated 

electrode  

Limited experimental data was available for the recently discovered phase separated electrode. 

The phase separated electrode was validated for a voltage range of 0.0 to 0.1 V at an inlet 

velocity of 20 cm s-1, see Figure III. 1.  

 

Figure III. 1 – Polarization curve of the phase separated electrode using an iron electrolyte specified in Table III.1 at an inlet 

velocity of 20 cm s-1. The experimental datapoints correspond well with the simulated results. The simulated results are 

separated in the different contribution overpotentials in the right figure.  

Figure III. 1 reveals a good agreement between the model response and the experimental data 

of the phase separated electrode at non-rate limiting conditions (𝑣𝑖𝑛 = 20 cm s-1) Because of 

the improved wetting of the Because of the non-limiting conditions, it is hypothesized that the 

observed linear trend can be extrapolated for operation at voltages up to 1.0 V.  

Table III. 1 – Properties of the iron electrolyte used in the symmetric flow battery experiments for the phase separated 

electrode. The unreported properties are assumed similar to the iron electrolyte displayed in Table II.1. 

 𝐅𝐞𝟐+/𝐅𝐞𝟑+  Ref 

Electrolyte 2.0M HCl [−] 

𝛔𝐥 23.0 Fit 

𝐣𝟎 23.0 [11] 

𝐜𝐫𝐞𝐟 100 [−] 

𝐜𝐢𝐧 250 [−] 

  



xiii 

 

IV. Genetic optimization parameters  

The properties of the aqueous electrolyte, and the cell operating conditions that were used in 

the genetic optimization study are listed in Table V. 1. 

Table V. 1 – Properties of the aqueous electrolyte and the cell operating conditions used in the genetic 

optimization study.  

Parameter  Value  Unit 

𝐄𝐜𝐞𝐥𝐥  0.5  V 

𝐯𝐢𝐧   20  cm s−1 

𝐜𝐢𝐧  250  mol m−3 

𝑪𝒓𝒆𝒇  250  mol m−3 

𝛂𝐜  0.5  − 

𝛂𝐚  0.5  − 

𝐃  1.3∙10-9  𝑚2 𝑠−1 

𝐑𝐦  0.16  Ω 𝑐𝑚−2 

𝝆𝒍  1000  𝑘𝑔 𝑚−3 

 𝝁  8.9 ∙10-4  𝑃𝑎 𝑠 

𝝈𝒍  10  𝑆 𝑚−1 



 

 

 

  



 

 

 

 

 


