
 Eindhoven University of Technology

MASTER

Design of a distributed supply chain for spare parts

Jans, R.J.A.

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/10a00db7-b112-478e-be2d-1cde885d3ac0


Department of Industrial Engineering & Innovation Sciences
Master Operations Management & Logistics

Design of a distributed supply chain for
spare parts

R.J.A. (Robert) Jans

Supervisors:
Ahmadreza Marandi (TU/e)
Claudia Fecarotti (TU/e)

Niels Keijzer (Lely)
Robert Kuijpers (Lely)

Eindhoven, March 2023



Eindhoven University of Technology, School of Industrial Engineering
Series Master Theses Operations Management and Logistics

keywords:
distributed network, location-transportation problem, hierarchical clustering, demand
uncertainty, demand distributions, base stock level, holding cost, transportation cost,
availability, sustainability

i



Executive summary

In this master thesis, the need for multiple warehouses in a distributed network for the
spare parts of Lely is researched. The aim is to increase availability, fasten response time,
decrease costs and improve sustainability. Currently, all customers are served from a
single warehouse. Only customers in Europe are considered. Only parts for which all data
needed for the analysis was available. They also need to have the status active in 2020
and 2021, meaning that it was sold during those years and not in the introduction phase
or phasing out.

The problem sketched is the location transportation problem. Decisions on where to put
warehouses, how much stock they need to carry and transportation decisions are taken
simultaneously. No model fully corresponds to Lely’s situation. The model of Ghorbani &
Jokar (2016) is selected as the base model because it resembles Lely’s situation and it can
be solved heuristically within two hours for large instances.

Important input for the model is demand. The demand for spare parts is uncertain.
To capture the demand uncertainty, demand distributions are fit to historical data.
The mathematical model cannot handle 2,723 parts. Hierarchical clustering is used to
reduce the number of parts in the mathematical model. The parts are clustered on
their criticality level, lead time, part value, demand frequency, average usage per year,
and volume. Performing hierarchical clustering resulted in 24 clusters for the analysis.
Afterwards, a set of distributions is fit to the aggregated demand of 2020 and 2021 for
each cluster through maximum likelihood estimation. The five distributions fitted are
the normal distribution, the gamma distribution, the Poisson distribution, the negative
binomial distribution and the compound Poisson distribution. Based on the AIC, the
distribution with the best fit is selected. The clusters that did not get a good fit on
any distribution are, if necessary, separated based on the size of demand in case it is positive.

A few adaptations are made to the base model of Ghorbani & Jokar (2016) to make it
in line with the case of Lely. First, the shipment policies are changed. The routing part
is omitted from the model. Instead, direct shipment between warehouses and customers
is considered. Additionally, the adapted model restricts a supplier to deliver to one
warehouse only because this supports the consolidation of shipments. The introduction
of transhipment between warehouses allows for goods exchange between warehouses.
Furthermore, the capacity levels of the warehouses are omitted because they do not pose
a restriction.

The biggest adaptation is the introduction of stochasticity by including demand
distributions. Instead of calculating the inventory levels and backlog quantities in each
period, the inventory control policy is translated to calculating base stock levels for a
certain fill rate. Gzara et al. (2014) give an expression for the fill rate for demand under
a Poisson distribution. Given the mean demand λjc and stock levels Sjc for each part p
and each warehouse j, the service level can be defined as β(λjp,Sjc) = Pr(λ̃jc ≤ Sjc - 1).
The expected on-hand inventory is computed by taking the base stock level from which
the expected demand during lead time plus half a review period is subtracted.

The model is solved with a Simulated Annealing (SA) algorithm because it has a
strong local search ability (Ghorbani & Jokar, 2016). Hence, it can provide good
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solutions with a stochastic approach which allows for the continuation of the search
to a neighbouring state even if the move brings a worse solution. This feature avoids
getting trapped in a local optimum. Two methods for calculating base stock levels are
used. The first method is taking the fraction a part accounts for from the cluster base
stock level to calculate the base stock level per part. The second method is applying
a correction factor to the base stock levels from the model to correct for the clustering
effect. Applying a correction is necessary because the safety stock was now calculated
per cluster, while in reality a safety stock is calculated for each part individually. The
actual demand for 2022 is used for the simulation. A different dataset than the training
period of the built model is used to avoid overfitting. The simulation shows what the
actual costs and availability levels would be when the results of the model are implemented.

Results
The results showed where DCs should be placed and their corresponding base stock levels.
The model gives two options for placing a second DC, locations 50 and 51, next to the
option of not adding a second warehouse. The option with three warehouses was discarded
because the costs were too high. A simulation is conducted using the output from the
heuristic in terms of placement of warehouses, required base stock levels, and assignment of
suppliers and customers to warehouses. Data from 2022 is used as input for the simulation
because it is different data on which the model is built. The simulation shows that, at the
moment, it is not necessary to open a new DC because this would lead to a higher cost for
achieving the same availability.

The number of warehouses included in the model influences the total sum of the base stock
levels and, therefore, the holding cost. A higher base stock level leads to more holding
costs. The availability increases with the base stock level because the safety stock follows
the same trend. The emission of CO2 followed the same trend as the transportation cost.
An increase in the number of warehouses decreases the number of kilometres driven and,
hence, a lower CO2 emission.

Recommendations
At the moment, Lely should not invest in a second warehouse. With two warehouses, the
currently achieved availability cannot be reached at a lower cost. However, this decision
can be subject to change as it is a trade-off between holding and transportation costs. At
the moment, the holding costs are too high for a second warehouse. A change in factors
determining the holding cost, for example, squared metre price and labour cost, could
change the decision to invest in a second warehouse. The same holds for factors that
influence transportation costs, for example, fuel prices.

Secondly, it is recommended to gather more data on the criticality level, weight and volume
of parts. These features were sometimes missing in the data leading to the discarding
of parts for this research. Additionally, Lely should gather more detailed data about
the squared metre price and labour costs for the warehouses in Europe of their current
third-party logistics provider. More detailed data would lead to a more accurate analysis
of the distributed network.
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1 Introduction

This master thesis project is conducted at the supply chain operations division of Lely.
This department is responsible for the planning of the spare parts such that the local
warehouses (also referred to as Lely Centers) can perform maintenance and respond to
failures quickly. Currently, the Lely Centers are replenished from a single warehouse. This
thesis project aims to investigate the need for multiple warehouses in a distributed network
to increase availability, fasten response time, decrease costs and improve sustainability
(Nahmias & Olsen, 2015). Based on literature research, an existing model that resembles
Lely’s situation is selected as the base model. Afterwards, this model is adapted to fully
correspond to the context of Lely. The model is solved with a heuristic to determine if
and where warehouses should open and what their base stock levels should be. Finally, a
simulation is applied to test the solutions from the model and the sensitivity of the model.
This introduction further describes the project setting, after which the problem statement
is posited. Next, the scope is defined, followed by the formulation of the research questions.

1.1 Project setting

1.1.1 Lely International

Lely International is a production company for robots and data systems for dairy farmers.
The company was founded in 1948 by the brothers Arij and Cornelis van der Lely with the
invention of the finger wheel rake. Over the years, Lely continued facilitating farmers’ life
with innovations. In 1992, this led to a prototype of the first milking robot, the Astronaut
A1, which was marketed in 1995. Over the years, the focus of Lely shifted more and
more towards automation, which led to the introduction of manure robots and feeding
robots. In 2017, the forage harvesting machine division was sold to fully focus on the
dairy industry. As of 2022, the majority of the order book consists of milking robots. At
the moment, Lely produces the fifth generation of its milking robots, the Astronaut A5,
which is depicted in Figure 1.

Figure 1: Astronaut A5

Lely is one of the leading companies in the field of dairy farm automation. Its headquarter
is based on the Lely campus in Maassluis. One of the two production locations is on this
campus, while the other is in Pella in the USA. The annual sales in 2020 were 611 million
euros. Lely has 2,100 employees worldwide and serves farmers in 45 countries.
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Lely’s goal is to create innovative solutions to help their farmers excel in sustainable milk
production. Sustainability, enjoyability and profitability are key factors for achieving this
goal. The vision is to have fully robotised farms that are operative 24/7, which is important
as cows can get infections (in the worst case they can even die) if they do not get milked
on time. Therefore, spare parts for critical components should be available quickly in case
of a malfunction to keep the robots operative.

1.1.2 Lely Customer Care

The Lely Customer Care division supports a network of Lely Centers. Some Lely Centers
are owned by Lely, but most are franchise holders. The Lely Centers are responsible for
delivering spare parts and services for its farmers worldwide. Therefore, these Lely Centers
are the customer for Lely International when considering spare parts. The Lely Centers
deliver original spare parts guaranteeing high-quality maintenance for the machines. Fast
and reliable performance is important in ensuring maximum utilization of the robots. The
Lely Centers ship the spare parts to the farmer through their service technicians, who
repair the robots.

Figure 2: Current spare parts supply chain Lely

1.1.3 Current supply chain design

Figure 2 displays the current spare part supply chain. Almost all spare parts follow
the forward flow. For a stock keeping unit (SKU), the supplier delivers it to the local
warehouse. From there, the spare parts are shipped to the Lely Centers, which are
responsible for further distribution to the farmer. A small subset of parts can be sent
for repair when broken. They are sent to the warranty department in Maassluis for a
check. The part is scrapped if the warranty department deems it unrepairable. Parts
that are deemed repairable are sent back to the supplier for repair. It is repaired to an
as-good-as-new state and labelled as s-part (repaired part). Afterwards, it is shipped back
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to the warranty department in Maassluis for a final check. Afterwards, it is transferred to
the warehouse and ready for distribution.

1.1.4 Inventory management

The spare parts are divided into 36 categories based on criticality, cost and usage. Parts can
have criticality 1, 2, or 3. Criticality level 1 means the part is not critical for the machine
to be operative. Criticality level 2 means the part is important, but the malfunction will
not disrupt the operation of the machine in the short term. The part should be replaced
within a week. Criticality level 3 means the machine cannot run without it and immediate
replacement is necessary. Some parts are not classified in the criticality system and are
labelled as non-critical (level 1). Concerning the cost, a part can be cheap (under 5 euros),
middle-priced (between 5 and 150 euros) and expensive (above 150 euros). For usage, a
part can be ordered rarely (under 5 times per year), occasionally (between 5 and 150 times
per year) or frequently (above 150 times per year). One order can include more than one
part of the same SKU. It is also possible that a part is not ordered at all. An overview of
the classification of all 12,404 parts can be found in Tables 1 to 4. Specific parts can be
purchased to order (PTO) to reduce the number of stock locations needed in the warehouse.
This means that parts are only ordered at the supplier after demand comes in. The exact
number of parts demanded can be ordered and there is no need for stock. Parts can only
be PTO if they are non-critical, have a lead time of no more than four weeks and have
demand fewer than five times per year.

Table 1: Critical

Price
Frequency

>150 6-150 1-5 0

> 150 45 85 6 1 137
10-150 163 205 28 4 400
< 10 146 195 8 7 356

354 485 42 12 893

Table 2: Medium critical

Price
Frequency

>150 6-150 1-5 0

> 150 9 43 18 3 73
10-150 136 326 79 12 553
< 10 279 705 120 24 1.128

424 1.074 217 39 1.754
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Table 3: Non critical

Price
Frequency

>150 6-150 1-5 0

> 150 9 139 134 179 461
10-150 50 676 579 803 2.108
< 10 87 987 950 2.840 4.864

146 1.802 1.663 3.822 7.433

Table 4: PTO

Price
Frequency

>150 6-150 1-5 0

> 150 1 6 45 218 270
10-150 10 48 318 665 1.041
< 10 13 33 268 779 1.093

24 87 631 1.662 2.404

Lely uses a continuous review policy for order placement. The orders trigger out of the
material requirements planning (MRP) system based on the safety stock, forecast and
lead time. The method of forecasting differs per classification group. The economic order
quantity (EOQ) is used to determine the order quantity for replenishment. It is possible
to order multiple amounts of the EOQ. Sometimes this quantity is increased because
the minimum order quantity (MOQ) is higher than the EOQ. In that case, the MOQ is
ordered instead of the EOQ.

1.2 Problem statement

Currently, the network of spare parts is centrally organized. All spare parts suppliers
deliver their goods to a logistic service provider in the Netherlands. For the remainder
of this research project, this warehouse is referred to as warehouse X. From this central
location, the spare parts are shipped to customers worldwide. The shipments within
Europe are road shipments, while emergency shipments can, depending on the location of
the customer, be shipped by plane. For North America and Australia, the spare parts first
go to the central locations in these countries by boat before they are distributed to the
customers. Again, emergency shipments are distributed by plane.

Lely supply chain aspires to become more flexible by servicing the increasingly demanding
customers in a distributed network. Hence, a study into what a distributed network will
look like and what parameters are important to make decisions about forward stocking
locations is required. The lead times towards customers vary depending on how far away
they are located from the logistic service provider. At the moment, all the shipments go
directly to the customer. However, for shipment, it may be interesting to consolidate
customer orders per region and decouple them later on in the supply chain (Nahmias
& Olsen, 2015). To do this, Lely wants to investigate the possibility of placing more
distribution centres (DCs) between the suppliers and the Lely Centers. These DCs will be
in the same tier as the current logistic service provider and can transfer goods between
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them. A DC receives shipments for all Lely Centers in the area, after which the DC serves
the customer. The goal is to reduce the total cost in the supply chain, which consists of
operating costs, ordering costs, holding costs and transportation costs. It may not only
influence the costs but also reduce CO2 emissions.

Figure 3: Desired supply chain

To design the future supply chain, first, the desired supply chain is sketched. Figure 3
displays the desired supply chain for the spare parts for the future, which is a distributed
network. The supplier of a SKU now delivers the part to the closest local warehouse,
which does not necessarily have to be the current warehouse. The local warehouses are
allowed to perform lateral transhipment. This means that warehouses are allowed to share
stock in case of shortages. The delivery to the Lely Center and the reverse flow do not
change. After repair at the supplier, the part is not sent back to the warranty department
in Maassluis but is sent directly to the closest local warehouse from where it can be
delivered to the customer again. The reverse flow is brought back to a number of repaired
parts that enter the system again.

1.3 Scope

The scope of the research is determined such that the research questions can be answered
within the available amount of time and that the provided model includes the most
important requirements for Lely. The following decisions or assumptions are made to
scope down the project:

• The focus will be on the customers within Europe. Intercontinental customers are
excluded from the project because of low volumes and time constraints for this project.

• Parts that have not been sold since 2020 are considered to be inactive or phased out
and therefore left out of scope. The year 2020 is chosen, because by then the new
warehouse, which opened in 2019, was fully up and running.
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• Parts with criticality level 0 are not taken into account, because these parts are not
classified on their importance.

• Parts should have the status active for the years 2020 and 2021, meaning that they
are not in an introduction phase or phasing out during those years.

• The supply chain from the logistic service provider up to the customer (Lely Center)
is considered. The shipment from the Lely Center to the farmer is not taken into
account, because the Lely Centers are not owned by Lely International and therefore
Lely International does not have enough influence on them.

• The reverse flow is too small to take into account for the design of the supply chain.
However, the number of parts returning into the flow after repair can be important.

1.4 Research questions

A lot of factors need to be taken into account when introducing new DCs in the supply
chain, such as their placement, the radius in which they should serve the Lely Centers and
how much stock they should carry. The key performance indicators (KPIs) are availability,
cost and sustainability. This leads to the following research question:

How does the introduction of multiple distribution centres influence cost,
availability and sustainability?

To answer this question, several sub-questions are formulated. First, the performance of
the current supply chain will be mapped as a reference point for comparison, which leads
to the following research question:

RQ1: What is the performance of the current supply chain concerning cost,
availability and sustainability?

Given the current situation, there is uncertainty in the demand for spare parts. Hence,
a way method should be proposed to capture this uncertainty. Therefore, the second
research question is:

RQ2: How to capture the uncertain demand for each SKU for each Lely Center?

After a method for capturing the uncertainty has been established, it can be used for
modelling. The next step is to design the desired supply chain. This includes where to
put new DCs and determining their base stock levels if new DCs are required. Hence, the
third research question is:

RQ3: How many new DCs should be placed where and what should their
stock levels be?

The performance of the desired supply chain can be sensitive to its input. A change in
input parameters will influence availability, costs and sustainability. Therefore a sensitivity
analysis can show how the model reacts to changing input parameters. The fourth research
question is:
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RQ4: What is the sensitivity of the model with respect to different input
parameters?

The remainder of this thesis is organised as follows: Chapter 2 contains a short literature
review of the model selection. The method to handle the uncertain demand is discussed in
Chapter 3. Afterwards, Chapter 4 explains the mathematical model and the adaptations
made to it. The case study conducted at Lely and its results are described in Chapter 5,
which is followed by the conclusion and discussion in Chapter 6.

7



2 Literature review

This literature review addresses two topics that are relevant to this thesis project. The
first part concerns the location-transportation problem for network design. The second
part discusses clustering methods.

2.1 Location-transportation problem

For a long time, the location of warehouses and the determination of vehicle routes have
been addressed separately. With the progression of new optimization techniques, it is
now possible to integrate the problems into one as a location-transportation problem
(Prodhon & Prins, 2014). This problem involves decisions at multiple levels. The
strategic level decision includes the placement of warehouses, whereas inventory and
transportation decisions are taken on the tactical and operational levels. Salhi & Rand
(1989) were the first to quantitatively show that the location of depots and vehicle routes
are interdependent. Solving the two problems separately leads to suboptimal solutions.
Therefore, the Lely case concentrates on this location-transportation problem.

Cooper (1972) was the first to research the location-transportation problem. The problem
can also be referred to as the transhipment-location problem or the path location-routing
problem (Nagy & Salhi, 2007). In this problem, the amounts to ship from origins to
destinations are determined simultaneously with the optimal locations of facilities selected
from a known set of destinations. This implies that the approach should address the
interrelation of the location and transportation aspects of the problem for it to belong to
the location-transportation problem. The objective is to minimize the combination of both
transportation and investment costs (Ogryczak et al., 1989). Although this approach is
mainly used for consumer goods and parcels, it can also be used in other applications such
as healthcare, military and communications (Nagy & Salhi, 2007). Schittekat & Sörensen
(2009) demonstrate that the location-transportation problem can also be applied to the
distribution of spare parts through third-party logistic service providers.

Mara et al. (2021) developed an extensive taxonomy for the problem which classifies
19 features that can be included in the model. For the Lely case, the most important
features are a two-echelon system, stochastic data, the presence of inventory decisions and
multiple parts. Stochastic data is in the form of a probability distribution where the data
is represented by random variables. The decision on how much inventory each warehouse
should hold can be included. Besides optimizing the location cost and the transportation
cost, the inventory cost is minimized. The stochastic location-transportation problem
was introduced by Holmberg & Tuy (1999). They linearized a concave cost term in the
objective to obtain a linear problem. This was later extended to a multi-period stochastic
location-transportation by Klibi et al. (2010). They formulated it as a two-stage stochastic
program. As this problem belongs to the NP-hard problems, exact solving for larger
instances is not possible within a reasonable amount of time. They show that choosing
efficient heuristics can yield good results.

The stochastic location-transportation can also be extended by including multiple parts,
which is demonstrated by Gzara et al. (2014). They propose two models, one with a
part-warehouse inventory structure and one with a part-specific structure. Both are
widely observed in practice. By exploiting specific properties of nonlinear constraints, an
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equivalent linear problem can be formulated. The results obtained demonstrate that this
approach is effective both in terms of computation time and solution quality.

Considering both multiple time periods and multiple parts yields another class of models,
the multi-period multi-part location-transportation problem. Ghorbani & Jokar (2016)
introduced a mixed-integer programming formulation for this particular problem, also
including routing decisions. They found an efficient algorithm to evaluate this problem.
This model was extended by Jalal et al. (2022), who added multi-modality to the model.
Their results on a real-life case in the pharmaceutical industry show its effectiveness as it
outperforms the solver CPLEX in solution quality and solution time.

Over the last few years, robust optimization models have become more popular. Sun et al.
(2019) use robust optimization for the location-transportation problem for recharging
batteries from electric vehicles. They state the importance of choosing the right uncertainty
set such that the solutions are immune to demand uncertainty. The prespecified interval
used is the range forecast centred at the point forecast to capture the uncertain flow
demand. They reformulate the robust counterpart from a min/max inner optimization
problem to an integer program which preserves the computation tractability of the robust
approach.

Robust optimization can be extended to a multi-echelon setting, as demonstrated by
Tirkolaee et al. (2019). They use the method of Bertsimas & Sim (2003) in which
the objective function is a minimization function and both the objective function and
constraints contain uncertainty coefficients. Marandi & van Houtum (2020) have extended
the robust optimization method for the location-transportation problem to a problem
with integer-valued demands. They have combined this with a simplex-type method
that uses the convexity principle. They applied their model in the field of a distribution
network in e-commerce. They show that a multi-stage location-transportation problem
with integer-valued demands can be solved through adjustable robust optimization.
Additionally, they demonstrate that the multi-stage problem is computationally tractable
with a specific budget uncertainty set.

Lately, more attention has been paid to the closed loop supply chain design due to the
impact on the environment, which can be both in reduction of CO2 as well as the reuse
of resources. Fareeduddin et al. (2015) have created a model that optimizes both the
economic and environmental aspects. Amin & Zhang (2012) created a two-stage model
for the closed-loop supply chain to determine where to locate warehouses and refurbishing
centres and the number of parts and parts in each section of the network. Additionally, it
also considers the selection of suppliers. Pazhani et al. (2021) have developed two further
models for the closed loop supply chain network design. One has six echelons and separates
the forward and reverse flow, while the second one has four echelons and combines the
forward and reverse flow at hybrid facilities.

The model of Ghorbani & Jokar (2016) is used as a base model for the Lely case. It includes
multiple parts, which matches the Lely case. What plays a significant role is that this model
can be solved heuristically within two hours for large instances. Additionally, the quality
of the results is high as the gap towards the optimal solution for small instances is smaller
than 0.5%. Since the Lely case deals with large instances, this model is opted for.
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2.2 Clustering method

An increase in the number of parts affects the solvability of the model of Ghorbani &
Jokar (2016). Lely distributes 12,484 parts to its customers in Europe. This number
is too large for solving the mathematical model. Therefore, a reduction in the number
of parts is needed. To achieve this, parts can be clustered into groups for which the
main characteristics are similar. Machine learning can be exploited for this (Ahuja et al.,
2020). The two most widely used machine learning techniques for clustering are K-means
clustering and hierarchical clustering. Each is discussed in more detail below.

K-means Clustering
K-means clustering is an unsupervised learning technique (Ahuja et al., 2020). The
algorithm acts without supervision and no labelled or classified data is used. K-means
clustering aims to find a predefined number of groups denoted by k. First, any k points are
selected as initial centroids. Afterwards, based on a given set of features, each data point
is allocated to one of the k groups for which the centroid is closest based on the Euclidean
distance. Next, the centroid positions are recalculated and the points again are allocated
to the closest centroid. The algorithm stops when no improvements are observed. The
advantages of this method are its easy implementation and the fast running time for a high
number of instances with small values for k. The disadvantages include its inability to
work with categorical or non-contiguous data, getting stuck in local optima and deciding
on the initial value of k, because no algorithm calculates it upfront.

Hierarchical Clustering
Hierarchical clustering is an unsupervised learning technique that aims to cluster unlabeled
data points (Ahuja et al., 2020). Hierarchical clustering can be performed Agglomerative
or Divisive. The Agglomerative method starts by considering all data points as one cluster
and then breaking it into smaller clusters until each data point forms its own cluster.
The Divisive method uses a bottom-up approach in which all data points make their own
cluster, after which clusters are merged until one cluster with all data points remains.
The clusters are formed based on the distances between the data points. The result is a
dendrogram (Figure 4a), a visualisation of the clusters and their distances. The y-axis
shows the distance metric between clusters. The x-axis shows the clusters. The main
advantages of hierarchical clustering are its easy implementation and hierarchical output.
On the other hand, the method does not work well for large data sets and is very sensitive
to outliers.

To classify the parts into different clusters, hierarchical clustering is selected, because this
approach calculates the appropriate number of clusters in the algorithm. Furthermore,
the algorithm always yields the same result, which is not necessarily true for k-means
clustering. Hierarchical clustering has already been applied to spare parts by Raja et al.
(2016). Several clustering approaches are available to merge the clusters, namely single
linkage, maximum linkage, weighted linkage and ward method (Pezer, 2017). For the
purpose of interpretation, it is common practice to select Ward’s approach, because it
results in a dendrogram which helps to define clusters for the classification of inventory
parts (Narkhede & Rajhans, 2020). The agglomeration coefficient determines when
to stop combining clusters. A large increase in the coefficient suggests combining two
rather different clusters (Chavez et al., 2010). To visualise the agglomeration coefficient,
an elbow plot (Figure 4b) can be used. This example shows an optimal number of 3 clusters.
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(a) Dendrogram (b) Elbow plot

Figure 4: Dendrogram and Elbow plot (Saifuddin & Hassan, 2021)

Feature selection
The first step is to select the appropriate features for clustering. Raja et al. (2016) list
eleven features they use to cluster on and Bacchetti et al. (2010) consider three additional
ones. All features can be found in Table 5. Not all of them are relevant to this research.
Below, each of them is discussed shortly to explain why the feature is included or not.

Table 5: Clustering features

1. Part value 8. Size
2. Average usage per year 9. Current inventory policy
3. Number of suppliers 10. Current maximum inventory level
4. Lot size of purchasing 11. User of the part
5. Lead time 12. Sales cycle phase
6. Type of material 13. Demand frequency
7. Volume 14. Criticality

A few features are selected for the purpose of data cleaning only. The sales cycle phase
should be equal for all parts for fitting demand distributions. Hence only parts that have
had an active status for the whole of 2020 and 2021 are kept for the analysis. Furthermore,
only parts with a known criticality are considered. Concerning criticality, the parts are
split manually based on expert knowledge, because criticality is measured on a nominal
scale. Hence, parts are separated on criticality before applying the clustering algorithm.

The features selected for clustering are part value, average usage per year, lead time,
volume and demand frequency. Part value is an important feature for determining the
order-up-to level, as there are more costs for expensive parts. Hence this feature is
important for inventory control. Average usage per year is an important feature for
fitting demand distributions to the groups. The same goes for lead time and demand
frequency. For the fitting of demand distributions, the lead time and frequency of demand
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must not vary too much within the clusters. Volume is selected as a feature that can
be of importance in inventory control as bigger parts consume more space in the warehouse.

The remaining features are not selected. The number of suppliers is not considered because
each part is supplied by one supplier only. The lot size of purchasing is not included as
Lely wants to make them subject to change rather than as a given feature. The type of
material is irrelevant as all materials are treated the same. The size is considered to be
a similar feature as volume and is therefore not included. Current inventory policy and
current maximum inventory level are left out because of the creation of a new situation.
Lastly, the user of the part is not considered, because the only customers are Lely Centers
and therefore the user group is homogeneous.

Normalization
Each of the selected features is measured on a different scale. To properly cluster the
data, all features are required to be on the same scale. This is achieved by normalizing the
data, as previously demonstrated by Raja et al. (2016). For demand data, normalization
is necessary to ensure that the clusters are formed based on the shape of the demand
pattern, even though some might have high overall demand while others have low overall
demand (Steuer et al., 2018). Normalization is done through the Z-score. This method
uses the mean and standard deviation to rescale the data such that all features have a
zero mean and unit variance (Singh & Singh, 2020).

Multicollinearity
One of the assumptions of hierarchical clustering is the absence of interdependencies
among the features. Interdependence poses a problem because it means that multiple
features measure the same variance. A multicollinearity test can be applied to check for
independence. A formal test for multicollinearity is the variance inflation factor (VIF). A
VIF of five or higher indicates a problem with multicollinearity (Yu et al., 2015). The VIF
scores for the three criticality groups are shown in Table 6. All scores are well below the
threshold value of five, so multicollinearity is not a problem.

Table 6: VIF scores

Feature Criticality 1 Criticality 2 Criticality 3

Lead time 1.37 1.29 1.37
Demand frequency 1.31 1.22 1.21

Average usage per year 1.01 1.02 1.03
Part value 1.26 1.32 1.81
Volume 1.18 1.24 1.59
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3 Demand uncertainty

This chapter concerns demand uncertainty. The first part focuses on scaling down the
number of parts. The mathematical model of Ghorbani & Jokar (2016) cannot handle
2,723 parts because the computing time would be too long. Therefore, the number of parts
is reduced through clustering. Afterwards, the uncertainty of the demand for those groups
needs to be captured. Hence, demand distributions are fitted on the demand data of the
groups that resulted from the clustering analysis, similar to work by Turrini & Meissner
(2019).

3.1 Clustering results

Before clustering is applied, for each part the demand data is aggregated per week, which
makes it easier to fit demand distributions in a later stage. The hierarchical clustering
algorithm considers each feature to have equal weight. However, it is possible to adapt this
and assign weights to emphasize the importance of each feature (Murtagh & Contreras,
2012). All features play a role in inventory control, while lead time and demand frequency
are the two most important features for demand fitting. The weights are determined based
on expert knowledge from the company and me. Lead time is a major factor in determining
the base stock policy because parts with a long lead time need more safety stock than parts
with a short lead time. Therefore, lead time got assigned a weight of 2. Demand frequency
can distinguish between frequently occurring demand and intermittent demand. Hence,
demand frequency receives a weighting of 1.5. Since volume is less important than the
other features in inventory control as it only influences the space needed, which in turn
influences the holding cost, it got assigned a weighting of 0.5. Average usage per year and
part value receive the regular weighting of 1.

Figure 5: Elbow plot criticality 3 parts

Clustering is performed twice. Once for the optimal number of groups per criticality level
and once for fifteen clusters per criticality level. The purpose of creating fifteen clusters is
to check what the influence of providing more clusters is on the fitting of distributions as
the ranges are expected to become smaller. The clustering results for parts with criticality
3 are depicted in Figure 5 and Figure 6 in form of an elbow plot and a dendrogram. The
elbow plot shows that the optimal number of clusters is nine. This is represented by the
dotted lines in the figures. Table 7 shows the number of parts per cluster for the model with
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the optimal number of clusters. For the model with fifteen clusters per criticality level, the
number of parts per cluster is represented by the numbers on the x-axis of the dendrogram.
Figure 6 shows which clusters were split in order to get from nine to fifteen clusters. The
parts in cluster four of the optimal model remain one cluster and become cluster six in the
model with fifteen clusters per criticality level. Cluster nine of the optimal model is split
into two to get clusters fourteen and fifteen for the model with fifteen clusters per criticality
level. Some clusters are split twice such as cluster five of the optimal model, which becomes
clusters seven, eight and nine in the model with fifteen clusters per criticality level. The
results for parts with criticality 1 and 2 can be found in Appendix A.

Figure 6: Dendrogram criticality 3 parts

Table 7: Number of parts per cluster with optimal number of cluster for criticality 3

Cluster 1 2 3 4 5 6 7 8 9

Number of parts 165 2 32 11 53 1 61 10 371

Table 8: Ranges clusters criticality 3 parts

C Lmin Lmax Pmin Pmax Imin Imax Qmin Qmax Vmin Vmax

1 35 80 0.01X 157.21X 1.00 5.00 0.28 174.46 1 32584
2 205 210 0.05X 1.03X 1.13 1.57 4.44 20.37 1 22
3 76 140 0.02X 103.29X 1.00 3.06 0.62 116.51 1 31660
4 10 40 0.10X 86.79X 18.20 34.00 0.03 7.14 12 15157
5 5 65 38.54X 236.86X 1.00 10.78 0.10 45.29 1 145025
6 35 35 0.85X 0.85X 1.00 1.00 2931.67 2931.67 53 53
7 5 49 0.02X 44.50X 2.51 16.00 0.05 59.33 1 6670
8 10 65 0.15X 14.66X 1.00 5.33 183.06 1279.11 6 2000
9 4 35 0.00X 56.25X 1.00 4.04 0.19 290.68 1 16505
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Table 8 displays the ranges for each feature for the clusters for the model with nine clusters.
L denotes the lead time in days, P denotes the part value in euros, I denotes the demand
interval in weeks (a high number means low frequency and vice versa), Q denotes average
usage per year in the number of parts, and V denotes volume in cm3. For confidentiality
reasons, the real part values are not given. The minimum price of cluster one serves as
the default and is set to 0.01X. All part values are scaled accordingly. A value of 0.00X
means the part has a low value. The results in Table 8 show that, as a result of the applied
weightings, the ranges for lead time are the smallest while the ranges for volume are the
largest. Clusters might focus on a specific feature. Cluster eight has parts with a high
average usage per year, while cluster five includes parts with a high part value. However,
some ranges can be extensive, such as the lead time for clusters three and eight, or the price
of cluster one. Table 9 displays the ranges for each feature for the clusters for the model
with fifteen clusters. When comparing the ranges in Table 9 to the ranges in Table 8, it can
be noted that some ranges are split. This is the case for the lead time of clusters fourteen
and fifteen of the model with fifteen clusters for criticality three compared to cluster nine
of the model with nine clusters for criticality level three. Smaller ranges improve the
representability of a group for the parts in it. The results for parts with criticality 1 and 2
can be found in Appendix A.

Table 9: Ranges clusters criticality 3 parts

C Lmin Lmax Pmin Pmax Imin Imax Qmin Qmax Vmin Vmax

1 35 61 0.01X 72.44X 1.00 5.00 0.28 74.69 1 23891
2 60 70 0.11X 18.67X 1.00 2.81 0.84 174.46 1 4701
3 40 80 54.73X 157.22X 1.01 4.43 0.29 11.40 38 32584
4 205 210 0.05X 1.03X 1.13 1.57 4.44 20.37 1 22.00
5 76 140 0.02X 103.38X 1.00 3.06 0.63 116.51 1 31660
6 10 40 0.10X 86.79X 18.20 34.00 0.03 7.14 12 15157
7 10 30 38.54X 136.78X 1.00 6.80 0.18 38.48 1 56086
8 5 30 166.38X 236.86X 1.00 3.85 0.33 45.29 9198 45721
9 10 65 105.25X 174.00X 1.02 10.78 0.10 10.30 61029 145025
10 35 35 0.85X 0.85X 1.00 1.00 2931.67 2931.67 53 53
11 5 30 0.02X 21.24X 2.51 8.67 0.18 59.33 1 6224
12 10 49 0.09X 44.50X 6.80 16.00 0.05 0.50 1 6670
13 10 65 0.15X 14.66X 1.00 5.33 183.06 1279.11 6 2000
14 4 20 0.00X 56.25X 1.00 3.96 0.82 290.68 1 16505
15 20 35 0.00X 48.61X 1.00 4.04 0.19 168.34 1 15771

In Table 8, clusters one, three, five and eight have a large range for lead time. The clustering
algorithm opts to split clusters one and five to decrease the range in lead time for those
clusters in the model with fifteen clusters per criticality level. In Table 9, clusters one,
two and three originate from cluster one from Table 8. Apart from lead time, part value
is considered for the split. Clusters three and eight remain intact and become clusters five
and thirteen in the model with fifteen clusters per criticality level. These clusters do not
have priority to be split and the algorithm decides to split clusters one and five from the
optimal model. Except for the part value in cluster one, no clear reason is found for why
these specific clusters are prioritised for splitting. For this thesis, it is out of scope to find
this reason, but future research can dig deeper into an explanation for why priority is given
to prioritising certain clusters above others while they have similar ranges for features.

15



One direction could be research into a quantitative method for calculating weights for
features, which was done based on the judgement of experts, but not on a quantitative
method. Another direction could be research into other methods than applying weights to
emphasise certain features.

3.2 Demand fitting method

In a context where demand is uncertain, it is common practice to fit a distribution to the
known historical demand data. Turrini & Meissner (2019) list the five most widely used
distributions for spare parts: normal distribution, Poisson distribution, Negative binomial
distribution (NB), gamma distribution and the compound Poisson (CP) distribution.
Boon et al. (2020) describe how maximum likelihood estimation (MLE) can be applied for
the estimation of the parameters of these distributions. MLE makes use of the maximum
likelihood function which is also called the likelihood of the data. For a function with one
parameter, the derivative of the likelihood function is taken and set equal to zero to find
the estimator. For distributions that depend on more than one parameter, the partial
derivatives with respect to all parameters need to be set to zero. The Kolmogorov-Smirnov
(KS) test can be used to determine if there is a good fit or not. A p-value larger than 0.05
indicates a strong fit. A p-value larger than 0.01 but smaller than 0.05 indicates a good
fit (Turrini & Meissner, 2019). The Akaike Information Criterion (AIC) and Bayesian
information criterion (BIC) can be used to select the best fitting probability distribution
(Gupta et al., 2020). Both the AIC and BIC minimize the negative likelihood. The lower
the value for AIC the better the model fits the data. The same goes for BIC.

3.3 Demand fitting results

The demand of each part in a cluster is summed to get the total aggregated demand
for each week per cluster. The lead time, price and volume of a part are calculated as
a weighted average over the total demand. A part with a high overall demand for that
cluster has a bigger influence on these features than a part with a low overall demand. To
illustrate, if there are two parts in a cluster with one having a demand of 8 and lead time
of 4 and the other having a demand of 2 and lead time of 6, the lead time for that cluster
is calculated to be 8

10∗ 4 + 2
10∗ 6 = 4.4.

The normal distribution, gamma distribution, Poisson distribution, negative binomial
distribution and compound Poisson distribution are fitted to the clusters. These
distributions are chosen, because they are most commonly used for spare parts (Turrini &
Meissner, 2019). Appendix B contains the formulation of each of the demand distributions.
Below you can find the results for the clusters with criticality level three. Table 10 and
Table 12 display the AIC values for the fitted distributions. The numbers in black indicate
a strong fit for the data. The numbers in blue indicate a good fit, whereas the numbers
in red indicate no fit. For the gamma distribution, it was not always possible to fit a
distribution with MLE. In some cases, it was possible to fit one with the method of
moments. When this is the case, the AIC is shown in green if there was a good fit. In some
other cases, it was not possible to fit a gamma distribution, because the dataset contains
values of zero. The gamma distribution is only defined for values greater than zero. The
distribution can afterwards be corrected for by parameter q̂ = n0

n , which is the probability
of a zero value in the data (Husak et al., 2007). If the number of zero values was less than
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25% of the data, the zeros are removed and MLE is used to fit the gamma distribution.
When this is the case, the AIC is shown in grey if there was a good fit. Since data is
omitted for this approach, this distribution will only be picked when no other distribution
fits. When more than 25% of the data consists of zero values, no gamma distribution
could be fitted. The bold number in each row shows which distribution fits best because
it has the lowest AIC. Tables 11 and 13 display the parameters of the fitted distribution
for each cluster. The results for the clusters with criticality levels 1 and 2 can be found in
Appendix C.

Cluster four contains a lot of zero demand values, several small demand values and a few
large ones. No distribution could be fitted because of the odd values as shown in Table 11.
The same goes for cluster six in Table 13, because it is the same cluster as shown in the
dendrogram in Figure 6. It was also not possible to fit a demand distribution to cluster
twelve. Together with cluster eleven, it originates from cluster seven from the nine-cluster
model. Cluster seven is split on demand interval and average quantity. Cluster twelve
contains parts that do not occur frequently and if they do, demand is low.

Table 10: AIC fitting models criticality 3 clusters

Cluster Normal Gamma Poisson
Negative
binomial

Compound
Poisson

1 1540.09 1558.93 9532.39 1588.69 1551.63
2 996.30 859.60 2820.95 892.12 910.56
3 1307.12 1313.63 4289.87 1313.34 1309.40
4 1136.02 - 5927.47 349.29 1085.41
5 1159.87 1161.16 2239.61 1160.94 1158.48
6 1828.04 1371.86 75007.86 1821.33 1827.28
7 1539.77 1358.36 36467.59 1359.14 1363.96
8 1815.55 1824.79 40309.05 1824.75 1819.61
9 1839.90 1856.48 34765.59 1856.44 1855.86

Table 11: Parameters fitted distribution criticality 3 clusters

Cluster Distribution Parameter 1 Parameter 2 Parameter 3

1 Normal µ = 1758.57 σ = 363.97
2 Negative binomial p = 1.09 r = 0.0440
3 Normal µ = 452.83 σ = 119.87
4
5 Compound Poisson p = 1.5 µ = 257.67 ϕ = 0.9643
6 Negative binomial p = 3.68 r = 0.0013
7 Gamma k = 0.7104 β = 0.0029
8 Normal µ = 5076.71 σ = 1349.48
9 Normal µ = 7742.44 σ = 1515.38
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Table 12: AIC fitting models criticality 3 for 15 clusters

Cluster Normal Gamma Poisson
Negative
binomial

Compound
Poisson

1 1442.89 1455.80 16718.82 1455.52 1449.32
2 1388.20 1397.91 5687.69 1397.56 1391.72
3 836.20 836.61 951.19 836.01 833.70
4 996.30 859.60 2820.95 892.12 910.56
5 1307.12 1313.63 4289.87 1313.34 1309.40
6 1136.02 - 5927.47 349.29 1085.41
7 1075.68 1081.96 1714.65 1081.14 1104.49
8 981.27 977.22 1698.02 976.73 974.53
9 769.70 734.12 920.98 736.83 762.52
10 1828.04 1822.38 75007.86 1821.33 1827.28
11 1539.90 1351.24 36933.07 1352.38 1357.16
12 646.89 253.77 797.19 508.62 554.94
13 1815.55 1824.79 40309.05 1824.75 1819.61
14 1743.58 1751.20 24463.74 1751.16 1751.52
15 1680.37 1699.27 17646.87 1699.16 1696.18

Table 13: Parameters fitted distribution criticality 3 for clusters

Cluster Distribution Parameter 1 Parameter 2 Parameter 3

1 Normal µ = 1002.47 σ = 228.81
2 Normal µ = 706.79 σ = 176.36
3 Compound Poisson p = 1.3 µ = 49.32 ϕ = 1.11
4 Negative binomial p = 1.09 r = 0.0440
5 Normal µ = 452.83 σ = 119.87
6
7 Normal µ = 175.44 σ = 39.82
8 Compound Poisson p = 1.6 µ = 63.54 ϕ = 0.96
9 Gamma k = 4.63 β = 0.2548
10 Negative binomial p = 3.68 r = 0.0013
11 Gamma k = 0.6685 β = 0.0028
12
13 Normal µ = 5076.71 σ = 1349.48
14 Normal µ = 4286.40 σ = 957.95
15 Normal µ = 3456.04 σ = 708.95

The purpose of the demand distribution is to calculate a base stock level. Groups
with no demand distribution will get a different approach to calculating a base stock
level. Therefore, clusters that do not have a demand distribution are further analysed
on individual part level. In these clusters, there might be some parts with higher demand
than others. Therefore these clusters are split into multiple groups if necessary to create
groups that have the same demand pattern in terms of quantity. Hence, cluster four is split
into two groups, one with items that have a high demand if it occurs and one with a low
demand if it occurs. For the clusters in the other two criticality levels, cluster nineteen is
split into two groups as well based on the same logic, while cluster twenty-three is split into
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three groups because the differences were larger there. Cluster eleven remains one cluster.
The model with fifteen clusters per criticality level has a total of twelve groups for which
no demand distribution could be fitted. This makes it much more difficult to calculate
reliable base stock levels in the mathematical model. Therefore, these results are not used
in the mathematical model and the model that displays the optimal number of clusters per
criticality level is opted for.
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4 Mathematical model

This chapter addresses the mathematical model used to solve the network design problem.
First, the base model is presented, after which some adaptations are established to obtain
the final model, so it is in line with the case of Lely. Next, the solution method to solve the
mathematical model is posed. The last section describes the simulation model to evaluate
the performance of the results of the model.

4.1 Model description

The model of Ghorbani & Jokar (2016) is used as a basis (Appendix D). They provide a
mixed-integer programming formulation for the multi-part, multisource location inventory
routing problem. Customers demand multiple parts. The parts are grouped into clusters
for the mathematical model. Therefore, clusters are considered and customers demand
clusters. The customers are numbered 1 to K and K denotes the set of customers. The
clusters are numbered 1 to c and C denotes the set of clusters. Demand is served from
a warehouse selected from a set of candidate warehouses. The candidate warehouses are
numbered from 1 to J and J denotes the set of candidate warehouses. Customer demand
is fulfilled from stock. Each warehouse, therefore, has a base stock level for all clusters.
The base stock level can take the value of an integer in the range from 0 to Smax and S
denotes the set of base stock levels.

External suppliers supply the warehouses. An external supplier can deliver to one
warehouse only. External suppliers are always assumed to have enough stock available
for replenishment of the warehouses. The transportation cost per cluster per kilometre
between suppliers and warehouses is denoted by Csjc, where the distance is denoted by
dsjc. The other warehouses are replenished through transhipments between warehouses.
The transportation costs between two warehouses are not cluster-dependent and are only
per kilometre denoted by Cwjj′ , where the distance is denoted by dwjj′ . On top of that,
a fixed cost for driving between warehouses is incurred, which is expressed by ewjj′ . A
fixed order cost A is incurred for every order placed at a supplier or another warehouse in
case of transhipment. Clusters transhipped from one warehouse to the next need to be
unloaded and loaded. Handling costs hajc are incurred for this.

Customers place their orders every period. Hence, the review period (Rjc) is one period.
The average periodic demand of customers for a cluster is denoted by dkc. Binary
parameter gkc states whether this periodic demand is positive (with value 1 if periodic
demand is positive). After lead time tjc, the replenishment order arrives at the warehouse.
The transportation cost per cluster per kilometre between warehouses and customers is
denoted by Cdjkc, where the distance is denoted by ddjk.

Apart from order costs, handling costs and transportation costs, a periodic holding cost
hjp is incurred for the on-hand inventory. The on-hand inventory follows from the base
stock level. The base stock level is set such that the required availability level αjc is
reached. Furthermore, the base stock level depends on the demand distribution and its
parameters for the cluster. The input to get the unique solution for a base stock level
is denoted by ηs(αjc). The on-hand inventory is the base stock level minus the average
demand during lead time minus half the average demand during the review period.
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The company needs to make several decisions. The first decision is whether a warehouse is
opened at candidate location j, which is modelled with binary decision variable yj (with
value 1 if the warehouse is opened). The second decision is on which warehouse a supplier
is assigned to, which is modelled with binary decision variable Zjc (with value 1 if the
supplier of cluster c delivers to warehouse j). The third decision is on which warehouse a
customer is assigned to, which is denoted with binary decision variable Bjk (with value 1
if customer k is served by warehouse j). The fourth decision is on the base stock levels of
the warehouses, which is denoted by binary decision variable Vjcs (with value 1 if the base
stock level equals s). The final decisions are on three types of transportation movements.
The first type is transportation between the supplier of cluster c and warehouse j, which is
modelled by binary decision variable tsjc (with value 1 if transportation is required). The
second type is transportation between warehouse j and customer k, which is modelled by
binary decision variable tdjk (with value 1 if transportation is required). The third type is
transportation between warehouses, which is modelled with decision variable twjj′ (with
value 1 if transhipment between warehouses occurs).

Besides the model, the CO2 emission is calculated based on the driven distance and the
emission factor CO. Table 14, Table 15 and Table 16 summarise the notation used.

Table 14: Sets adapted model

J = {1,2,...,J} Set of warehouses
K = {1,2,...,K} Set of customers
C = {1,2,...,c} Set of clusters
S = {0,1,...,Smax} Set of base stock levels

Table 15: Parameters adapted model

hjc Inventory holding cost for cluster c at warehouse
j per time period

(e/cluster)

hajc Handling cost of cluster c at warehouse j in case
of transhipment from warehouse j to any other
warehouse

(e/cluster)

A Fixed cost for placing an order at supplier or
at other warehouse in case of transhipment
between warehouses

(e/order)

dsjc Distance between the supplier of cluster c and
warehouse j

(kilometres)

ddjk Distance between warehouse j and customer k (kilometres)
dwjj′ Distance between warehouse j and warehouse j′ (kilometres)
αjc Required availability level of cluster c at

warehouse j
Csjc Transportation cost of cluster c from the

supplier of cluster c to warehouse j
(e/cluster/kilometre)

Cdjkc Transportation cost of cluster c from warehouse
j to customer k

(e/cluster/kilometre)

Cwjj′ Transportation cost from warehouse j to
warehouse j′

(e/kilometre)
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ewjj′ Fixed transport cost from warehouse j to
warehouse j′

(e/shipment)

dkc Average periodic demand of cluster c from
customer k

(clusters)

tjc Lead time of cluster c for warehouse j (weeks)
ηs(αjc) input data for unique solution of fill rate β(ζc, s)

= αjc, where ζc denotes the input parameters for
the necessary distribution for cluster c

Rjc Review period for cluster c at warehouse j (weeks)
gkc binary parameter indicating if cluster c is

demanded by customer k
CO CO2 emission factor (kilogram/kilometre)
M Big value

Table 16: Decision variables adapted model

Zjc

{ 1 if cluster c is supplied to warehouse j
0 otherwise

yj

{ 1 if warehouse j is opened
0 otherwise

Bjk

{ 1 if customer k is assigned to warehouse j
0 otherwise

tsjc

{ 1 if transport happens between the supplier of cluster c and warehouse j
0 otherwise

tdjk

{ 1 if transport happens between warehouse j and customer k
0 otherwise

twjj′

{ 1 if transport happens between warehouse j and warehouse j′

0 otherwise

Vjcs

{ 1 if base-stock level is s for cluster c at warehouse j
0 otherwise

4.2 Adaptations

A couple of changes are proposed. First, the inventory control policy changes from
calculating inventory levels and backlog quantities to base stock levels. Additionally, the
deterministic model turns to a stochastic model by including demand distributions instead
of using demand realisations. Furthermore, the shipment policies are changed. In the
base model, suppliers may supply multiple warehouses. The adapted model restricts a
supplier to deliver to one warehouse only because this supports consolidation of shipments.
The introduction of transhipment between warehouses allows for goods exchange between
warehouses. Additionally, the capacity levels of the warehouses are omitted. Furthermore,
the routing part is omitted from the model. Each of the changes is explained in more detail.
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4.2.1 Transport & capacity levels

Contradictory to the model of Ghorbani & Jokar (2016), suppliers may deliver the clusters
to one open warehouse only instead of all opened ones. Constraints (1) occur for all suppliers
and warehouses j, where Zjc indicates if the supplier of cluster c is assigned to supply to
warehouse j.∑

j∈J
Zjc = 1 ∀c ∈ C (1)

Customers can only be served by one warehouse. The warehouse where the supplier
delivers the cluster might not necessarily be the warehouse from which every customer
is served. Therefore, transhipments between warehouses are allowed, which results in the
consolidation of shipments. Hence, there will be three sorts of transportation movements
instead of two, namely from the supplier of cluster c to warehouse j, from warehouse j to
customer k and from warehouse j to warehouse j′. The variables tsjp, tdjk and twjj′ are
introduced to denote if transport occurs between two nodes. They will be one if transport
occurs between the two nodes and zero otherwise. The cost of transportation between
suppliers and warehouses, as well as the cost of transportation between warehouses and
customers, is cluster-dependent and distance-dependent. The transportation cost between
warehouses is distance-dependent only, as there are special agreements about a fixed price
for setting up a shuttle service between warehouses. Last, each warehouse is large enough
to carry all inventory. Therefore, capacity levels are dropped from the model as they do
not pose a restriction.

4.2.2 Stochasticity

Instead of calculating the inventory levels and backlog quantities in each period, the
inventory control policy is translated to calculating base stock levels for a certain fill
rate. Gzara et al. (2014) give an expression for the fill rate for demand under a Poisson
distribution. Given the mean demand λjc and stock levels Sjc for each cluster c and each
warehouse j, the service level can be defined as β(λjc,Sjc) = Pr(λ̃jc ≤ Sjc - 1). In case
of a continuous review policy, such as used by Gzara et al. (2014), λjc denotes the lead
time demand for cluster c at warehouse j. However, this research considers replenishment
only once a week. Hence, a review period of one week is used. Therefore, the expression is
converted to make it suitable for a periodic review by letting λjc denote the demand during
lead time plus review period (Van Donselaar & Broekmeulen, 2008). A fill rate of αjc for
each cluster at each warehouse can be achieved when stock availability during lead time is
strictly larger than demand at least αjcṪhis results in a non-linear expression:

Sjc ≤ Smax ∗ yj , ∀j ∈ J , ∀c ∈ C (2)

Pr(λ̃jc ≤ Sjc − yj) ≥ αjc, ∀j ∈ J , ∀c ∈ C (3)

This non-linear expression can be reformulated in a linear one to make it suitable for a
mixed integer program. The fill rate function is equal to the probability density function,
which is:

β(λ, S) = e−λ
S−1∑
k=0

λk

k!
, λ ∈ [0,∞), S ∈ {1, 2, ...} (4)
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The fill rate equals one when the demand rate is zero and the fill rate tends to zero when
the demand rate tends to ∞. Additionally, the fill rate is strictly monotonically decreasing
with respect to the demand rate, because the derivative is negative for λ ∈ (0,∞), which
is displayed in equation (5). Equivalently, the cumulative distribution function must be
strictly monotonically increasing.

dβ(λ, S)

dλ
= −e−λ λS−1

S − 1!
< 0, λ ∈ [0,∞), S ∈ {1, 2, ...} (5)

This means that there is a unique solution for any α ∈ (0,1) for β(λ,S) = α, which can be
denoted by λ(S,α). For α = 0.9 and S = 1,2,...,6, this is demonstrated in Figure 7. Hence,
the following linear expression is formulated to replace the expressions in Equations (2)
and (3):∑

s∈S
Vjcs ≤ yj , ∀j ∈ J , ∀c ∈ C, (6)

λjp ≤
∑
s∈S

λs(αjc) ∗Vjcs, ∀j ∈ J , ∀c ∈ C, (7)

where the binary variable Vjcs takes the value one if the base stock level for cluster c in
warehouse j is s and zero otherwise. Equation (6) ensures that only one base stock level
is selected for each cluster at each warehouse. Equation (7) sets the binary variable Vjcs

at one for the lowest base stock level that ensures the fill rate αjc for demand during lead
time plus review period λjc, which is λs(αjc).

Figure 7: Graph of β(λ, S) with respect to λ for S = 1,2,...,6 and α = 0.9 (Gzara et al.,
2014)

This method can also be applied to other demand distributions as long as their equivalent
fill rate function has the same properties. The cumulative distribution function must be
strictly monotonically increasing, which is the case as long as you have a distribution where
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the probability density function is not 0 because Pr(X≤x) = Pr(X≤y) + Pr(y≤X≤x)for
y≤x. Montgomery & Runger (2010) show that this holds for discrete distributions
such as the Poisson distribution and the negative binomial distribution and continuous
distributions such as the normal distribution, gamma distribution and compound Poisson
distribution. Therefore, the cumulative distribution function is monotonically strictly
increasing and hence the fill rate distribution is monotonically strictly decreasing.

The derivation for Equation (7) is from the Poisson distribution. Because the model
includes multiple distributions, we generalize the constraints. Let djc denote the average
demand for cluster c realised in warehouse j. λjc is generalised to djc, which denotes the
average demand for a product at a warehouse. So, djc =

∑
k∈Kdkc ∗ Bjk.

∑
k∈Kdkc is

calculated from the data. The demand distributions from chapter 3 are calculated for all
warehouses combined. To get djc, the distributions need to be scaled per warehouse. Let
the scaling factor for each warehouse and each cluster be denoted by θjc, which equals

djc∑
k∈K dkc

. For the Poisson distribution, both the mean and variance are denoted by λ.

Therefore the parameter can be scaled to θjc∗ dkc to get the scaled distribution. For
the other distributions, the scaling is not so straightforward and more computations are
needed. Appendix B explains the derivations for the scaled parameters for each distribution.

From the expression in Equation (7), λs(αjc) is also generalised to make it suitable for
more distributions. It is denoted by ηs(αjc) which is the unique solution of fill rate β(ζc, s)
= αjc, where ζc denotes the input parameters for the necessary distribution for cluster c.
Hence, Equation (7) can be translated to Equation (8) to make it applicable to all used
distributions.∑

k∈K
dkp ∗ Bjk ≤

∑
s∈S

ηs(αjc) ∗Vjcs ∀j ∈ J , ∀c ∈ C (8)

Equation (8) cannot be used for clusters that do not have a demand distribution. For
those clusters, the safety stock is set to two times the average in case of a positive demand
value (Q). Two times Q is opted for because two standard deviations correspond with a
fill rate of more than 95% for the normal distribution. Therefore, S becomes λjc + 2 ∗ Q.
When this results in a decimal number, it is rounded up to the next integer.

4.3 Final model

Applying the changes explained before to the model of Ghorbani & Jokar (2016), the
following mixed-integer linear program is obtained:

4.3.1 Objective

The previously defined sets, parameters and decision variables are used to construct the
objective function. The overall objective is to minimise the total costs of the network.
The objective function consists of eight components. Each of them is discussed separately.

The base stock level contains items in the warehouse and in the pipeline, which means they
have already been ordered but have not yet arrived in the warehouse because of the lead
time. Holding costs will only be paid for the items physically present in the warehouse.
Therefore, the on-hand inventory needs to be calculated from the base stock levels. In case
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of a fill rate close to 100%, the expected on-hand inventory (E[IOH ]) can be computed by
taking the base stock level from which the expected demand during lead time plus half a
review period is subtracted (Equation (9) (Van Donselaar & Broekmeulen, 2019)). The fill
rates aimed for by Lely are close to 100%, so this method can be applied.

E[IOH ] = s ∗Vjcs − (tjc + 0.5 ∗ Rjc) ∗
∑
k∈K

djk ∗ Bjk (9)

Holding costs are only charged for the items that are physically present in the warehouse
and not for the entire base stock level. Equation (10) shows the expression for the total
holding cost.∑
s∈S

∑
c∈C

∑
j∈J

hjc ∗ (s ∗Vjcs − (tjc + 0.5 ∗ Rjc) ∗
∑
k∈K

dkc ∗Bjk) (10)

Equation (11) displays the total order cost for placing orders at the suppliers. This objective
is also referred to as order cost 1.∑
j∈J

∑
c∈C

A ∗ Zjp ∗ tsjp (11)

Equation (12) displays the total order cost for making a distribution order for clusters
transported between warehouses. This objective is also referred to as order cost 2.∑
j∈J

∑
j′∈J

∑
c∈C

A ∗ Zjc ∗ twjj′ (12)

Equation (13) displays the total handling cost at the first warehouse for clusters that require
transport between warehouses.∑
j∈J

∑
j′∈J

∑
k∈K

∑
c∈C

hajc ∗ Zjc ∗ twjj′ ∗ dkc ∗ Bj′k (13)

Equation (14) displays the transportation cost for transport between suppliers and
warehouses. The expected amount to be transported per period is the average demand
per period. This objective is also referred to as transportation cost 1.∑
j∈J

∑
k∈K

∑
c∈C

dsjc ∗ Csjc ∗ dkc ∗ Zjc (14)

Equation (15) displays the transportation cost for transport between warehouses and
customers. This objective is also referred to as transportation cost 2.∑
j∈J

∑
k∈K

∑
c∈C

ddjk ∗ Cdjkc ∗ dkc ∗ Bjk (15)

Equation (16) displays the distance-dependent transportation cost for transport between
two warehouses. This objective is also referred to as transportation cost 3.∑
j∈J

∑
j′∈J

∑
k∈K

∑
c∈C

dwjj′ ∗ Cwjj′c ∗ twjj′ (16)

Equation (17) displays the fixed cost for transportation between two warehouses. This
objective is also referred to as transportation cost 4.∑
j∈J

∑
j′∈J

ewjj′ ∗ twjj′ (17)
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4.3.2 Constraints

Below, each of the constraints is addressed separately. Constraints (18) ensure that each
customer is assigned to one warehouse only.∑
j∈J

Bjk = 1 ∀k ∈ K (18)

Constraints (19) ensure that a customer can only be assigned to a warehouse if this
warehouse is opened.

Bjk ≤ yj ∀j ∈ J , ∀k ∈ K (19)

Constraints (20) ensure that each supplier can supply to one warehouse only.∑
j∈J

Zjc = 1 ∀c ∈ C (20)

Constraints (21) ensure that each warehouse can place orders with suppliers only if it is
opened.

Zjc ≤ yj ∀j ∈ J , ∀c ∈ C (21)

Constraints (22) allow positive stock levels for open warehouses only.∑
s∈S

Vjps ≤ yj ∀j ∈ J , ∀c ∈ C (22)

Constraints (23) ensures that only one base stock level can be selected for each cluster at
each warehouse such that the required availability level is respected.

(tjc +Rjc) ∗
∑
k∈K

dkc ∗ Bjk ≤
∑
s∈S

ηs(αjp) ∗Vjcs ∀j ∈ J , ∀c ∈ C (23)

Constraints (24) tracks if transport occurs between the supplier of cluster c and warehouse
j.∑
k∈K

gkc ∗ Zjc ≤ M ∗ tsjc ∀j ∈ J , ∀c ∈ C

−
∑
k∈K

gkc ∗ Zjc ≤ M ∗ (1− tsjc) ∀j ∈ J , ∀c ∈ C
(24)

Constraints (25) tracks if transport occurs between warehouse j and customer k.∑
c∈C

gkc ∗ Bjk ≤ M ∗ tdjk ∀j ∈ J , ∀k ∈ K

−
∑
c∈C

gkp ∗ Bjk ≤ M ∗ (1− tdjk) ∀j ∈ J , ∀k ∈ K
(25)

Constraints (26) tracks if transport occurs between warehouse j and warehouse j′.∑
c∈C

∑
k∈K

gkc ∗ Bj′k ∗ Zjc ≤ M ∗ twjj′ ∀j ∈ J , ∀j′ ∈ J

−
∑
c∈C

∑
k∈K

gkc ∗ Bj′k ∗ Zjc ≤ M ∗ (1− twjj′) ∀j ∈ J , ∀j′ ∈ J
(26)

Constraints (27) impose the integrality restrictions.

Zjc, yj ,Bjk, tsjc, tdjk, twjj′ ,Vjcs ∈ {0, 1} ∀j ∈ J , ∀j′ ∈ J , ∀c ∈ C, ∀s ∈ S (27)
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4.3.3 Correction base stock level

Applying a correction factor serves as the third method for the calculation of base stock
levels. The higher the number of parts in a cluster, the higher the correction factor needs
to be, because the aggregation effect increases with the number of parts. The variability
of the distribution is also considered. The variability is represented by the coefficient of
variation, which is the standard deviation divided by the mean. A distribution with a large
coefficient of variation needs more correction than a distribution with a small coefficient of
variation. It seems intuitive to include the target availability, where a cluster with a higher
target availability needs a stronger correction. Two correction models were applied, one
including the target availability and one that did not. The model that does not consider
availability performed better because the target availability remains unchanged.

CFcu = 1 +
(Xc − 1)

Xav
∗ (cfu) ∗ CVc (28)

Equation (28) displays the calculation for the correction factor. The one at the start of
the equation ensures that each cluster starts with its original base stock level as a basis.
Xc represents the number of SKUs in a cluster. It is subtracted by one because there is
no need for a correction for a cluster existing of only one SKU. Xav is the average number
of SKUs per cluster. The factor cfu represents the correction needed for a model with u
open warehouses, which is the fraction of the sum of the base stock levels when calculated
individually per SKU and the base stock levels that resulted from the model without
correction. CVc is the coefficient of variation of a cluster. For the base stock calculation
with correction, the base stock level is calculated as CFcu ∗ s ∗ Vjps. The constraints in
Equation (23) therefore changes to the expression in Equation (29).

CFcu ∗ ((tjc +Rjc) ∗
∑
k∈K

dkc ∗ Bjk ≤
∑
s∈S

ηs(αjc) ∗Vjcs) ∀j ∈ J , ∀c ∈ C (29)

The correction factor also needs to be included in the objective function for the holding
cost. Therefore, the objective in Equation (10) changes to the expression in Equation (30).∑
s∈S

∑
c∈C

∑
j∈J

hjc ∗ (CFcu ∗ s ∗Vjcs − (tjc + 0.5 ∗ Rjc) ∗
∑
k∈K

dkc ∗Bjk) (30)

4.3.4 Sustainability

Equation (31) displays a side objective is constructed to keep track of the CO2 emission,
which is calculated per driven kilometre. This objective equation is not minimised.

CO ∗
∑
j∈J

∑
c∈C

dsjc ∗ tsjc +CO ∗
∑
j∈J

∑
k∈K

ddjk ∗ tdjk +CO ∗
∑
j∈J

∑
j′∈J

dwjj′ ∗ twjj′ (31)

4.4 Solution method

This problem belongs to the NP-hard problems. Therefore, large-scale instances cannot be
solved efficiently. The model is solved with a Simulated Annealing (SA) algorithm because
it has a strong local search ability (Ghorbani & Jokar, 2016). Hence, it can provide good
solutions with a stochastic approach which allows for the continuation of the search to a
neighbouring state even if the move brings about a worse solution. This feature avoids
getting trapped in a local optimum. At the start, this feature allows the algorithm to
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jump over peaks in the cost function, while later on, it focuses on finding solutions close
to the so-far found optimum. Figure 8 visually represents the algorithm. At the start,
there exists a possibility of accepting a solution that is worse than the current one to avoid
getting trapped in a local optimum. The possibility of accepting a worse solution decreases
with the temperature. Table 17 describes the parameters of the algorithm.

Figure 8: SA algorithm (Blocho, 2020)

Table 17: parameters SA algorithm

T0 Initial temperature
T Current temperature
CS Decreasing rate of current temperature
FT Freezing temperature
MNSA Maximum number of accepted solutions at each temperature
cSA Counter for number of accepted solutions at each temperature
X Current solution

The algorithm contains the following steps. First, the initial solution X0 is obtained
according to the steps of section 4.4.1 and also set as best solution Xbest. This solution is the
basis for generating a new solution Xnew according to one of the five methods described in
section 4.4.2. It is accepted and set as the best solution if it is better than the obtained best
solution. It can also be accepted if it is close to but not better than the current solution.
The closer it is, the higher the chance of acceptance. This process continues until the
maximum number of solutions at a temperature is reached. At that point, the temperature
is decreased. The algorithm runs until the stopping criterion is reached. Figure 9 shows a
flowchart of the process. The pseudocode for this algorithm is displayed below, where C is
the total cost of the solution and U(0,1) is a uniform distribution between zero and one.

• Step 1: Obtain initial solution X0 according to section 4.4.1 and set Xbest = X0 and
X = X0.

• Step 2: Generate new solution Xnew in the neighbourhood of X according to section
4.4.2.
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Figure 9: Flowchart heuristic
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• Step 3: Let ∆C = C(Xnew) - C(X).
if ∆C ≤ 0, X = Xnew. if C(Xnew) ≤ C(Xbest), Xbest = X and cSA = cSA + 1.

if ∆C > 0, y ←− U(0,1), w = e−
∆C
T , if y < w, X = Xnew and cSA = cSA + 1.

• Step 4: Is the number of iterations in temperature T not greater than MNSA? If yes,
go to Step 2; else go to Step 5.

• Step 5: Update temperature T = T ∗ CS, where T starts at T0.

• Step 6: Is the stopping criterion T < FT met? if yes, stop; else go to Step 2.

4.4.1 Determine initial solution

First, the number of warehouses to be opened is determined, denoted by u. Afterwards,
some warehouses are opened randomly until the number of opened warehouses equals
u. There exist two variants of choosing which warehouses to open. The first one is to
select them randomly. The second one requires warehouse X to open first, after which
the remaining warehouses are selected randomly. Next, customers are assigned to an open
warehouse. There are two variants of assigning customers to open warehouses. They can
be assigned randomly or to the closest open warehouse. Hereafter, the base stock level
for each cluster at each open warehouse is calculated based on the demand distribution
and required availability level. Next, suppliers are assigned to an open warehouse. There
are three variants of assigning suppliers to an open warehouse. They can be assigned
randomly, they can be assigned to the closest open warehouse, or all suppliers must deliver
to warehouse X. This option is only available in case warehouse X needs to be selected. The
next step is to calculate the on-hand inventory of each cluster at each open warehouse from
the earlier computed base stock levels by subtracting average demand during lead time
plus half a review period from the base stock level. The final steps concern transportation.
First, for each supplier and each open warehouse, it is determined if transportation occurs
between the supplier and warehouse. Second, for each open warehouse and each customer,
it is determined whether transportation occurs between the warehouse and customer.
Third, for all open warehouses, it is determined whether transportation occurs between
two warehouses.

• Step 1: Let u be the number of warehouses to open.

• Step 2: Open u warehouses.

• Step 3: Assign each customer to an open warehouse.

• Step 4: Calculate base stock levels of each cluster at each warehouse according to
the demand distribution and required availability level of the cluster. In other words,
determine for which s Vjcs should be one for all combinations of open warehouses
and suppliers and set base stock level S to that value.

• Step 5: Assign each supplier to an open warehouse.

• Step 6: Calculate on-hand inventory of each cluster at each warehouse:
IOHjc = Sjc - (tjc + 0.5 ∗ Rjc) ∗

∑
k∈K dkc ∗ Bjk

• Step 7: Determine if transport occurs between supplier and warehouse for each
supplier and open warehouse:
tsjc = 1, if

∑
k∈K gkc ∗ Zjc > 0; else 0.

31



• Step 8: Determine if transport occurs between warehouse and customer for each open
warehouse and each customer:
tdjk = 1, if

∑
c∈C gkc ∗ Bjk > 0; else 0.

• Step 9: Determine if transport occurs between two warehouses for all open
warehouses:
twjj′ = 1, if

∑
k∈K

∑
c∈C gkc ∗ Bj′k ∗ Zjc > 0; else 0.

4.4.2 Generate neighbourhood solution

A solution in the neighbourhood of the last solution is generated. This can be done
according to one of the following five solution methods.

• All decisions are are made according to section 4.4.1.

• Randomly select two warehouses and exchange their assigned customers and their
base stock levels. Afterwards continue at Step 5 of section 4.4.1.

• Randomly select a closed and an opened warehouse. The opened warehouse is closed
and its customers and base stock levels are assigned to the new one. Afterwards
continue at Step 5 of section 4.4.1.

• Randomly a closed warehouse is opened and an opened one is closed. The customers
assignment and calculation of base stock levels is redone. Continue at Step 3 of
section 4.4.1.

• The opened warehouses remain unchanged. The customers assignment and
calculation of base stock levels is redone. Continue at Step 3 of section 4.4.1.
This option cannot be chosen if customers and suppliers are assigned to the closest
warehouse because it will yield the same solution.

A roulette wheel method based on the method of Martins et al. (2019) is used to select
one of the five solution methods. Let the set of solution methods be denoted by F =
{1,2,3,4,5}. At the start, each solution method has an equal chance of being chosen. Every
50 iterations, the possibilities of selecting the methods are updated using Equation (32),
where Φf denotes the probability of solution method f being selected and ρf denotes the
weight of solution method f . As a result, solution methods that provide good solutions
have a higher chance of being chosen as the algorithm progresses.

Φf =
ρf∑

f∈F ρf
(32)

After 50 iterations, the weights ρf are updated according to Equation (33) and the scores
are reset to zero for the round of iterations. Here, Θf denotes how often solution method
f is selected. The parameter ν denotes the reaction factor that controls how much the
weights influence the performance. The higher ν, the more emphasis on the most recent
observations. a low ν focuses more on the past values of the weights.

ρf = (1− ν)ρf + ν ∗
Ψf

max(1,Θf )
(33)

The starting value of the weights is one. During the algorithm, the weights are updated
dynamically. Each solution method f has a score Ψf that is updated each time the method
is applied:
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Ψf + υ1, if the method generates a new best solution

Ψf + υ2, if the method generates a accepted solution

4.5 Simulation

A discrete event simulation is used to evaluate the performance of the results of the
mathematical model. The opened warehouses with their base stock levels, supplier
assignments to warehouses and customer assignments to warehouses are the input for the
simulation. Additionally, the clusters are ungrouped and each part is treated individually.
Let the parts be numbered from 1 to p and P denotes the set of parts. There are three
methods to calculate the base stock level of a single part. The first method takes the
fraction of demand the part accounts for in the cluster from the base stock level to get the
base stock level for an individual part. In case of a decimal number, rounding to the nearest
integer is applied. A base stock level can become zero due to rounding. In that case, it
is rounded to one because it is undesirable to have an availability level of zero. Equation
(34) shows this calculation, where Sjp denotes the base stock level of an individual part p
at warehouse j and κpc denotes the fraction of demand of part p within cluster c.

Sjp = max(round(Sjc ∗ κpc), 1) (34)

The second method calculates the new base stock levels according to the demand
distribution of the part and its required availability level as described in step 4 of the
section 4.4.1, but now for each part individually. This results in much higher base stock
levels as the safety stocks are now calculated for every single part and not for each cluster
combined. The costs and availability are expected to be higher with this second method.

The third method is applying the correction factor to calculate the new base stock levels
for individual parts per warehouse. Equation (35) can be used to calculate the base stock
levels for individual SKUs by multiplying the cluster base stock level by the correction
factor and the fraction of demand for the SKU within the cluster.

Sjp = max(round(Sjc ∗ CFcu ∗ κpc), 1) (35)

The actual demand for 2022 is used for the simulation. A different dataset than the training
period of the built model is used to avoid overfitting. The simulation shows what the actual
costs and availability levels would be when the results of the model are implemented. The
simulation runs on weekdays. Therefore, demand occurring at the weekend is treated as
if it occurs on the Friday before. Warehouses can order from the suppliers once a week
on Thursday. Thursday is opted for as this is five days after the start of the simulation.
For each part, an order is placed if the inventory position is below base stock level S. The
order quantity is such that the inventory position is raised to the base stock level S. The
order arrives at the warehouse after the lead time has passed. Once a week, a transhipment
between two warehouses takes place if required. Customer orders are served from stock. In
case of shortages, the order is split into two orders. The first order’s quantity is as high as
the available stock and is served immediately. The second order’s quantity consists of the
remaining unserved demand and is served as soon as new stock arrives at the warehouse.
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5 Case study

This chapter describes the case study conducted at Lely. The first section explains the
values for the parameters. Next, the mathematical model of Chapter 4 is solved to
determine the locations of the warehouses, their base stock levels and the assignment of
suppliers and customers to the warehouses. Two different methods for the calculation
of base stock levels are applied. The results from the case study are presented and
discussed. Afterwards, a simulation evaluates the results obtained from the model. First,
the simulation is validated, after which the three settings for calculating the base stock levels
are used for the simulation. A sensitivity analysis of the different calculation methods for
the base stock level is performed, and the simulation results are discussed.

5.1 Parameter estimation

For confidentiality reasons, the actual values of the parameters are not presented. The
inventory holding cost (hjp) has three components. The first component concerns the
storage cost and depends on the squared metre price that differs per region. The squared
metre price for warehouse X is taken as a basis and converted for the location of the
potential warehouse according to the prices stated by Beyerle & Lieser (2021). The second
component concerns all costs that have to do with personnel. The wage in the country
where warehouse X is located is taken as a basis and converted per country (Clark, 2022).
The third component exists of the remaining costs that are the same for all warehouses.
The handling cost (hajp) also includes personnel and hence is based on the wages of the
country where the potential warehouse is located. The fixed costs for placing an order (A)
are calculated based on the average time for a planner to make an order and the wage of
a planner.

The distances between all nodes (dsjp, ddjk, dwjj′) are calculated with the haversine
method (Prasetya et al., 2020), which corrects for the curvature of the Earth. The haversine
method can be found in Appendix E. The transportation cost per item per kilometre
(Csjp, Cdjkp) are calculated based on the weight of a product and a standard tariff per
kilogram. The transportation cost between warehouses consists of two components. The
kilometre price between warehouses (Cwjj′), which is independent of the weight and
number of items and a fixed transport cost (ewjj′) for transportation between warehouses.
Both the kilometre price and the fixed transportation cost are based on the current tariffs
for transportation between the current warehouse and the factory.

The target availability levels (αjp) are based on the current availability levels, which are
between 90% and 99.9%. The lead times (tjp) correspond with the agreed lead times for
each part. The review period (Rjp) is one week for all items. The average periodic demand
(dkp) and unique solution of the fill rate (ηs(α)) follow from the distributions of the clusters.

5.2 Heuristic results

Eight scenarios of the model are considered, which differ in the number of warehouses and
the assignment of suppliers and customers. Additionally, some include the restriction that
it is compulsory to open warehouse X. This allows for sensitivity analysis of how the model
reacts to different assignment methods for suppliers and customers. The notation is in
the format ABc. The first character (A) denotes if warehouse X is required to be opened
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(Y) or not (N). The second character (B) denotes if the supplier is assigned randomly
(R), to the closest warehouse (C) or to warehouse X (X). The customers follow the same
assignment rule, except when the supplier is assigned to warehouse X. In that case, the
customer is assigned to the closest warehouse. The subscript (c) denotes the number of
open warehouses. Table 18 shows an overview of the scenarios.

Table 18: Scenarios

Scenario name # warehouses Warehouse X
required

Supplier
assignment

Customer
assignment

NC1 1 No Closest Closest
NR2 2 No Random Random
NC2 2 No Closest Closest
YR2 2 Yes Random Random
YC2 2 Yes Closest Closest
YX2 2 Yes Closest Warehouse X
YC3 3 Yes Closest Closest
YX3 3 Yes Closest Warehouse X

First, an initial investigation of the model is performed by using the base stock levels
without the correction factor. Because of a mistake in one of the demand distributions, the
numbers are not correct. However, they do provide some first insights into the scenarios.
The results of the initialization phase can be found in Appendix F. The initialization shows
that the scenarios with random assignment (NR2 and YR2) do not yield good results
because the model chooses two warehouses close to the centre of supply and demand
because of the random assignment. On average, warehouses at the centre of supply and
demand will do better at random assignment. Warehouses not located in the centre might
suffer from bad random assignments from customers and suppliers. Another reason for not
finding good results under random assignment is that the SA algorithm does not converge
within the time frame.

Scenarios NR2 and YR2 are discarded as their objectives are the highest because the SA
algorithm does not converge well under random assignment. Hence, the solutions from
scenarios NC1, NC2, YC2, YX2, YC3 and YX3 are selected to continue with. For those
scenarios, the heuristic is performed with the correction factor for the base stock levels
and the right demand distributions. The results are presented in Table 19 and Table 20 in
terms of the weekly cost of the system. Because of confidentiality reasons, the warehouses
are represented by a number. Total S denotes the sum of all base stock levels. For
confidentiality reasons, the real costs are not mentioned. Scenario NC1 is the benchmark
and therefore the total cost of scenario NC1 is set to 100%. All costs in all scenarios are
scale accordingly.

The costs in Table 19 and Table 20 cannot be compared with the realised costs in
2022. There are differences because of the assumptions made. The realised costs
include omitted parts and customers from outside of Europe. Scenario NC1 serves as a
benchmark because it only includes warehouse X and hence represents the current situation.

The holding cost increases with the number of warehouses because each warehouse carries
its own safety stock. As a result, the sum of all base stock levels increases with the number
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Table 19: Results heuristic with correction factor scenarios NC1, NC2 and YC2

Scenario NC1 NC2 YC2

Opened warehouses X X & 51 X & 51

Holding cost 35.85% 40.04% 40.04%
Order cost 1 0.02% 0.02% 0.02%
Order cost 2 - 0.02% 0.02%
Handling cost - 3.53% 3.53%
Transportation cost 1 7.27% 7.27% 7.27%
Transportation cost 2 57.13% 51.33% 51.33%
Transportation cost 3 - 1.75% 1.75%
Transportation cost 4 - 0.91% 0.91%

Total cost 100% 104.87% 104.87%

Total S 1,095,639 1,337,038 1,337,038

CO2 1,290 kg 1,141 kg 1,141 kg

Table 20: Results heuristic with correction factor scenarios YX2, YC3 and YX3

Scenario YX2 YC3 YX3

Opened warehouses X & 50 X & 51 & 55 X & 51 & 55

Holding cost 39.79% 42.95% 42.95%
Order cost 1 0.02% 0.02% 0.02%
Order cost 2 0.02% 0.03% 0.03%
Handling cost 3.97% 7.61% 7.61%
Transportation cost 1 7.27% 7.27% 7.27%
Transportation cost 2 49.97% 45.83% 45.83%
Transportation cost 3 1.50% 2.84% 2.84%
Transportation cost 4 0.91% 1.82% 1.82%

Total cost 103.44% 108.47% 108.47%

Total S 1,339,759 1,514,806 1,514,806

CO2 1,119 kg 1,014 kg 1,014 kg

of warehouses. The ordering cost increases with the number of warehouses as more orders
are placed between warehouses. The number of orders at the supplier stays the same as the
supplier may only deliver at one warehouse. The handling cost increases with the number
of warehouses because the number of parts transported between warehouses increases. The
transportation costs from supplier to warehouse and warehouse to customer decrease as the
number of warehouses increases. Because of the assignment to the closest warehouse, the
number of kilometres driven decreases when the number of warehouses increases. Instead,
transport between warehouses is introduced. The number of transportation movements
between warehouses increases with the number of warehouses. However, the combined
costs for transportation get lower with the number of warehouses. Simultaneously, the
emission of CO2 decreases because the total number of kilometres driven decreases.

The scenario with one warehouse is the cheapest, followed by the scenarios with two
warehouses. Even though it is not compulsory to choose warehouse X in scenario NC2,
the model selects it as the best option. Therefore, scenarios NC2 and YC2 have the
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same solution. The scenarios with three warehouses also yield the same solution because
the scenario YC3 opts for a combination of warehouses where all suppliers are closest to
warehouse X. For both the scenarios with two and three warehouses, the model yields
the best results when all suppliers need to supply to warehouse X. This is a result of
the current situation where most suppliers are geographically close to warehouse X. The
scenarios with three warehouses perform worse in terms of total cost than the scenarios
with two warehouses. Therefore, the simulation is conducted for scenarios with only one
or two warehouses. Since scenarios NC2 and YC2 yield the same results, they are referred
to as scenario NC2/YC2 for the simulation.

5.3 Results simulation

First, the simulation is conducted with demand sampled from the demand distributions to
validate the simulation. For each criticality level, the target availability level is the weighted
average of the availability level per cluster. The simulation is validated when it reaches
the target availability levels. It is unnecessary to prove this for every scenario because
they all behave similarly regarding availability. Therefore, only scenario NC1 is used for
validation because it yields the least cost in the model without the correction factor. Five
simulations with one year of demand (short runs) and one with four years of demand (long
run) are conducted to omit the effects of good or bad luck during sampling. Table 21 shows
the results of the simulation runs. For both the short runs and the long run, criticality 3
reaches its target. For the short runs, the target is also reached for criticality 1. Criticality
2 and the total combination of criticalities do not reach their target. For the short runs, the
total combination of criticalities is close. Simulation data is only available for short runs
of one year, where all targets except the ones for criticality 2 and the total combination of
criticalities are reached. Overall, the targets are reached or close enough to the target to
continue with the simulation. Hence, the simulation is validated.

Table 21: Availability validation simulation

Scenario YX2 short runs long run Target

Opened warehouses X X X

Criticality 3 99.06% 98.39% 98.97%
Criticality 2 98.40% 98.01% 99.19%
Criticality 1 99.03% 98.44% 98.91%

All criticalities 98.80% 98.18% 99.02%

The validation allows us to proceed to the first run of simulations, which uses the first
base stock calculation method. The base stock level for each SKU is the fraction of the
cluster base stock level that resulted from the heuristic solution. Again, this an initial
investigation of the simulation because of a mistake in one of the demand distributions, the
numbers are not correct. However, they do provide some first insights. The results of the
initialization phase can be found in Appendix G. The availability levels are far below the
targets. Therefore, a second initial investigation simulation is conducted with the second
method for base stock calculation. The base stock levels are calculated according to the
demand distribution of the part and its required availability level. The results of the second
initialization phase can be found in Appendix G. The availability levels are much closer to
the targets now. The availability level of criticality two items is lower than the other ones.
This is due to the mistake in the demand distribution of cluster fifteen, which belongs to
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criticality level 2. The results show that a correction is needed. Therefore, a third method
for base stock calculation that uses the correction factor CFc to recalculate the base
stock levels from the heuristic is applied. As is the case for the heuristic, this method is
performed with the right demand distributions. The results can be found in Table 22 and
the availability levels in Table 23. Again, scenario NC1 is the benchmark and therefore
the total cost of scenario NC1 is set to 100%. All costs in all scenarios are scale accordingly.

Table 22: Results simulation with third base stock calculation method

Scenario NC1 YR2/YC2 YX2

Opened warehouses X X & 51 X & 50

Holding cost 38.15% 42.60% 42.50%
Order cost 1 0.62% 0.60% 0.59%
Order cost 2 - 0.25% 0.30%
Handling cost - 2.80% 3.60%
Transportation cost 1 6.57% 6.57% 6.57%
Transportation cost 2 54.66% 48.60% 47.62%
Transportation cost 3 - 1.28% 1.10%
Transportation cost 4 - 0.67% 0.67%

Total cost 100% 103.37% 102.97%

Total S 1,095,649 1,337,249 1,339,910

CO2 69,610 kg 63,080 kg 64,557 kg

The total costs sketch the same image as the results from the heuristic without correction.
Scenario NC1 gets the lowest total cost followed by scenario YX2 and scenarios NC2/YC2

give the highest cost. As expected, the holding costs are higher with two warehouses.
The sum of the base stock levels is higher because it is necessary to carry more safety
stock. Therefore, the total sum of base stock levels in scenarios NC2/YC2 and YX2

are 22.05% and 22.29% higher. The holding cost in scenarios NC2/YC2 and scenario
YX2 increases by 11.66% (42.60/38.15) and 11.40% (42.50/38.15) when compared to the
holding cost of scenario NC1. Additionally, the handling cost for parts transported between
warehouses is incurred in a situation with more than one warehouse. However, the overall
transportation cost decreases with the addition of a second warehouse. The transportation
cost for scenarios NC2/YC2 and scenario YX2 decreases by 6.71% (57.12/61.23) and 8.61%
(55.86/61.23) compared to the overall transportation cost of scenario NC1. Order cost 1
is much higher in the simulation than in the mathematical model because all parts are
ordered individually instead of per cluster.

Table 23: Availability simulation with third base stock calculation method

Scenario NC1 YR2/YC2 YX2

Opened warehouses X X & 51 X & 50

Criticality 3 89.09% 90.06% 90.09%
Criticality 2 96.84% 97.26% 97.15%
Criticality 1 96.68% 96.03% 96.12%

All criticalities 93.43% 94.01% 93.97%
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Figure 10: Availability warehouse X with third base stock calculation method

The warm-up period for the simulation is 50 days, denoted by the vertical dotted line
in Figure 10. Hence, the period after the warm-up is considered for the annual holding
cost and availability levels. The availability plot over time for the other scenarios looks
similar. The availability levels in Table 10 are a bit lower than the target availability
levels from Table 21. They are also lower than the realised availability of 2022, which
was 96.73%. A slight deviation from the realised availability is possible because the
realised availability also includes the orders that were out of scope for this thesis
project. Since the correction factor is a general estimation to calculate new base stock
levels, it is not surprising that the availability levels are lower than their targets. The
base stock level might be a bit higher than necessary for some SKUs, while for other
SKUs, the base stock levels might be a bit lower than desired. Scenarios YR2/YC2 and
YX2 have a 0.58% and 0.54% higher availability than the scenario with only one warehouse.

Table 24 displays the target and realised availability levels per cluster. The clusters with
their number displayed in green are the clusters that reached their target availability level,
while the clusters with their number displayed in red did not. Only nine clusters reached
their target availability. The clusters with a normal distribution or gamma distribution
perform well. Six of them reached their target and three of them are not far from it. Only
cluster eight has a low realised availability level. The clusters with a negative binomial
distribution or compound Poisson distribution perform poorly. Especially for the negative
binomial distribution, the correction factor is too weak. All except one cluster do not
reach their target availability. The correction factor partially functions, but there is still
room for improvement. The clusters with no distribution do not perform well, which could
be due to the alternative base stock calculation method. The type of distribution seems
to have a big influence on the performance in inventory control because each distribution
performs differently. Another reason for some parts not to reach the target availability
level could be a change in demand pattern. When the demand pattern behaves differently
in the tested year 2022 compared to the demand in 2020 and 2021 on which the model
was built, differences in availability levels occur.

Overall, the simulation paints the picture that, at the moment, investment in a second
warehouse is not financially viable because a similar availability is achieved at a higher
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cost. The decision on how many warehouses to open is always a trade-off between holding
costs and transportation costs. Other parameter settings might lead to a different result
in future work/simulations.

Table 24: Availability per cluster with third base stock calculation method

Cluster 1 2 3 4.1 4.2 5 6
Distribution Normal NB Normal None None CP NB
Target αjp 95% 97.5% 99% 96% 96% 97.5% 99%
Realised αjp 95.85% 55.96% 96.20% 57.14% 50.00% 76.86% 100%

Cluster 7 8 9 10 11 12 13
Distribution Gamma Normal Normal Normal Gamma None NB
Target αjp 99% 99% 99.9% 98% 95% 96% 95%
Realised αjp 99.08% 40.02% 99.91% 98.63% 93.61% 100% 49.35%

Cluster 14 15 16 17 18 19.1 19.2
Distribution Gamma NB Normal Normal NB None None
Target αjp 90% 99.5% 99.5% 98% 95% 96% 96%
Realised αjp 90.13% 72.66% 99.68% 96.89% 86.34% 46.67% 58.62%

Cluster 20 21 22 23.1 23.2 23.3 24
Distribution NB CP Normal None None None NB
Target αjp 99% 95% 99% 96% 96% 96% 99%
Realised αjp 98.96% 81.69% 98.56% 97.73% 91.11% 51.85% 95.91%
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6 Conclusion & discussion

This section contains the discussion and conclusion of this research project. First, the
conclusion per research question is discussed. Afterwards, the limitations of this research
project are stated. Next, recommendations for Lely are discussed. The final section states
some future research directions.

6.1 Conclusion

This thesis aimed to investigate if Lely needs to invest in new warehouses for its European
supply chain. Currently, they serve all customers from one central warehouse. This
research investigates the possibility of a distributed network with multiple warehouses.
The research question to answer was

How does the introduction of multiple distribution centres influence cost,
availability and sustainability?

Four sub-questions were formulated to answer this question. The answers to each of the
sub-research questions are given

RQ1: What is the performance of the current supply chain concerning cost,
availability and sustainability?

Currently, Lely delivers all demand from one central warehouse. In 2022, the availability
was 96.73%. The realised costs in 2022 also include costs made for parts and customers
that were out of scope. Therefore, a comparison between different models is more telling,
especially because model one resembles the current situation and can serve as a benchmark
for comparison.

RQ2: How to capture the uncertain demand for each SKU for each Lely Center?

Hierarchical clustering was used to reduce the number of parts in the mathematical
model. Demand data for 2020 and 2021 and data on features of parts served as input.
Only active parts from which all the necessary data was available were included. The
parts were clustered into 24 groups based on their criticality level, lead time, part value,
demand frequency, average usage per year, and volume. Afterwards, a set of distributions
was fit to the aggregated demand of 2020 and 2021 for each cluster through maximum
likelihood estimation. The five distributions fitted were the normal distribution, the
gamma distribution, the Poisson distribution, the negative binomial distribution and the
compound Poisson distribution. Based on the AIC, the distribution with the best fit was
selected. Four of the five distributions were used. The Poisson distribution could not be
fit to any cluster. The clusters that did not get a good fit on any distribution were, if
necessary, further separated based on the size of demand in case it is positive.

RQ3: How many new DCs should be placed where and what should their
stock levels be?

The demand distributions from the previous research question were used as input for
the adapted version of the location-transportation model of Ghorbani & Jokar (2016).
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The major adaptions were changing the transportation procedure, removing the capacity
restrictions and introducing stochasticity. Stochasticity was introduced using the demand
distributions to calculate the base stock levels necessary to achieve the target fill rate. A
simulated annealing heuristic was applied to solve the model. The results showed where
DCs should be placed and their corresponding base stock levels. The model gave two
options for placing a second DC, locations 50 and 51, next to the option of not adding
a second warehouse. The option with three warehouses was discarded because the costs
were too high. A simulation was conducted using the output from the heuristic in terms
of placement of warehouses, required base stock levels, and assignment of suppliers and
customers to warehouses. Data from 2022 was used as input for the simulation because
it is different data on which the model was built. The simulation shows that, at the
moment, it is not necessary to open a new DC because this would lead to a higher
cost for achieving the same availability. The holding costs increase with the number
of warehouses, while the transportation costs decrease. At the moment, the increase
in holding cost is larger than the decrease in transportation cost when a warehouse is added.

RQ4: What is the sensitivity of the model with respect to different input
parameters?

The number of warehouses included in the model influences the total sum of the base
stock levels. The base stock level directly influences the on-hand inventory and, therefore,
the holding cost. A higher base stock level leads to more holding costs. More inventory
is needed when the number of warehouses increases because each warehouse carries its
own safety stock. Hence, the holding costs increase with the number of warehouses. The
availability increases with the base stock level because the safety stock follows the same
trend. The emission of CO2 followed the same trend as the transportation cost. An
increase in the number of warehouses decreases the number of kilometres driven and,
hence, a lower CO2 emission.

6.2 Limitations

The exact data for the squared metre price and labour costs at the third-party logistics
service provider was not known. Therefore, the holding cost is based on estimations of the
squared metre price and labour costs across Europe from other data sources. Hence, the
numbers can be slightly inaccurate.

Additionally, parts were omitted if data on at least one of the necessary features was
unavailable. Parts that are very influential because of high demand or lead time could
have been discarded for this thesis. As a result, the model’s accuracy might be harmed.

Furthermore, supply disruptions were not taken into account. It was assumed the supplier
could always deliver the right amount within the lead time. However, especially in
the last couple of years, disruptions prove to be an increasing problem in supply chain
management because of poor raw material availability and major disruption events such
as the COVID-19 pandemic and the war in Ukraine.

Lastly, the model was built on only two years of data because of major changes in inventory
management at Lely in 2019 due to the movement from the previous warehouse to the
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current one. Ideally, a larger data set is used to construct the model to reduce the bias in
the model. Consequently, this would provide the opportunity to use a dataset consisting
of multiple years of demand data for the simulation.

6.3 Recommendations

At the moment, Lely should not invest in a second warehouse in Europe. With two
warehouses, the currently achieved availability cannot be reached at a lower cost. However,
this decision can be subject to change as it is a trade-off between holding and transportation
costs. At the moment, the holding costs are too high for a second warehouse. A change
in factors determining the holding cost, for example, squared metre price and labour cost,
could change the decision to invest in a second warehouse. The same holds for factors that
influence transportation costs, for example, fuel prices.

Secondly, it is recommended to gather more data on the criticality level, weight and volume
of parts. These features were sometimes missing in the data leading to the discarding
of parts for this research. Additionally, Lely should gather more detailed data about
the squared metre price and labour costs for the warehouses in Europe of their current
third-party logistics provider. This would lead to a more accurate analysis of the distributed
network.

6.4 Future research

The first future research direction concerns the clustering algorithm. It is unclear why
certain clusters are prioritised over others for splitting when they have similar ranges for
all features. One direction could be research into a quantitative method for calculating
weights for features, which was done based on the judgement of experts, but not on
a quantitative method. Another direction could be research into other methods than
applying weights to emphasise certain features.

A further future research direction focuses on demand fitting. More research on the
compound Poisson distribution could be conducted. In this thesis project, the compound
Poisson distribution did not perform well, while theoretically, it seems to have the potential
for intermittent demand. Another method to cover demand uncertainty that could be
considered is robust optimization. Compared to stochastic models, it is more stable when
input parameters change.

Another direction for future research focuses on the decomposition of base stock levels from
clusters into base stock levels for SKUs. The same correction factor was applied to all four
distributions (normal, gamma, negative binomial and compound Poisson). This correction
factor did not capture all properties of the distributions. A different correction factor could
be found for each distribution to more accurately estimate the base stock level for each
SKU.
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Appendix A: Results clustering

Figure 11: Elbow plot criticality 2 parts

Figure 12: Dendrogram criticality 2 parts

Table 25: Number of parts per cluster with optimal number of cluster for criticality 2

Cluster 10 11 12 13 14 15 16 17

Number of parts 191 10 4 78 18 10 594 442
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Table 26: Ranges clusters criticality level 2

C Lmin Lmax Pmin Pmax Imin Imax Qmin Qmax Vmin Vmax

10 45 100 0.00X 53.22X 1.00 18.40 0.07 498.90 1 167725
11 112 335 0.10X 129.47X 1.00 11.00 0.09 27.88 2 96460
12 20 90 0.31X 5.35X 60.00 95.00 0.03 0.10 45 295
13 5 90 0.00X 59.24X 12.25 41.50 0.03 0.65 1 276762
14 10 80 45.04X 337.35X 1.02 32.33 0.03 6.11 4900 1295600
15 15 60 0.01X 0.47X 1.00 2.56 603.89 2112.28 1 1440
16 4 35 0.00X 20.82X 1.00 9.60 0.06 561.8 1 46136
17 5 50 0.01X 70.04X 1.00 12.00 0.02 233.21 1 219960

Table 27: Ranges clusters criticality level 2

C Lmin Lmax Pmin Pmax Imin Imax Qmin Qmax Vmin Vmax

16 65 100 0.01X 32.06X 1.00 11.44 0.09 497.90 1 7786
17 45 70 0.00X 53.22X 1.00 18.40 0.07 100.34 1 167725
18 112 205 0.10X 129.47X 1.00 11.00 0.09 27.88 2 96460
19 335 335 4.38X 4.38X 4.90 4.90 0.35 0.35 27 27
20 20 90 0.31X 5.35X 60.00 95.00 0.03 0.10 45 295
21 11 90 0.16X 19.81X 25.25 41.50 0.03 0.24 4 5489
22 5 48 0.00X 59.24X 12.25 26.00 0.03 0.65 1 276762
23 30 35 45.04X 148.32X 10.40 32.33 0.03 0.10 957600 1295600
24 16 51 285.51X 337.35X 1.78 16.75 0.04 0.76 46080 337980
25 10 80 93.69X 187.06X 1.02 13.43 0.12 6.11 4900 418015
26 20 60 0.01X 0.48X 1.00 1.06 606.89 1173.39 1 1440
27 15 40 0.01X 0.29X 1.00 2.56 1187.70 2112.28 25 116
28 4 35 0.00X 20.82X 1.00 9.60 0.06 561.80 1 46136
29 10 30 0.01X 29.94X 6.00 12.00 0.03 19.85 1 219960
30 5 50 0.01X 70.04X 1.00 9.80 0.03 233.21 1 37145

Figure 13: Elbow plot criticality 1 parts

48



Figure 14: Dendrogram criticality 1 parts

Table 28: Number of parts per cluster with optimal number of cluster for criticality 1

Cluster 18 19 20 21 22 23 24

Number of parts 40 33 3 134 334 17 113

Table 29: Ranges clusters criticality level 1

C Lmin Lmax Pmin Pmax Imin Imax Qmin Qmax Vmin Vmax

18 50 100 0.01X 41.32X 1.00 15.33 0.04 81.82 1 829847
19 2 50 0.01X 13.25X 27.00 51.50 0.03 0.40 1 14589
20 15 15 0.00X 0.41X 1.00 5.88 394.49 1870.57 4 189936
21 5 25 0.00X 22.94X 8.00 26.00 0.03 16.93 1 19742
22 2 25 0.00X 40.05X 1.00 11.44 0.03 631.28 1 347861
23 2 40 45.15X 164.39X 1.46 23.00 0.03 4.70 225 1140480
24 15 49 0.01X 45.08X 1.00 34.00 0.03 79.55 1 2700000
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Table 30: Ranges clusters criticality level 1

C Lmin Lmax Pmin Pmax Imin Imax Qmin Qmax Vmin Vmax

31 90 100 0.01X 11.38X 1.66 13.67 0.08 4.99 1 1524
32 50 90 0.01X 41.32X 1.00 15.33 0.04 81.82 1 829847
33 2 50 0.01X 13.25X 27.00 51.50 0.03 0.40 1 14589
34 15 15 0.00X 0.41X 1.00 5.88 394.49 1870.57 4 189936
35 7 15 0.00X 7.20X 8.00 15.80 0.03 16.93 1 19742
36 5 25 0.00X 22.94X 12.29 26.00 0.03 1.95 1 16402
37 2 12 0.00X 40.05X 1.00 11.44 0.05 194.34 1 48725
38 10 20 0.01X 0.39X 1.00 7.42 51.98 631.28 1 169
39 14 25 0.00X 32.39X 1.00 10.78 0.03 107.88 1 347861
40 5 40 32.11X 164.39X 1.46 10.56 0.10 3.16 12285 1140480
41 2 40 45.15X 97.50X 3.22 23.00 0.03 4.70 225 939170
42 25 40 0.01X 27.14X 1.00 12.88 0.04 79.55 1 78408
43 20 20 9.34X 9.34X 19.20 19.20 0.03 1.15 2700000 2700000
44 15 35 0.01X 17.76X 6.38 19.80 0.03 0.30 1 96481
45 15 49 0.01X 45.08X 12.13 34.00 0.05 0.05 1 865800

50



Appendix B: Demand distributions

Normal distribution
Normal distribution behaves identically left and right of the mean with parameters µ and
σ denoting the mean and variance. The parameters, expected value and variance are:

Parameter 1: -∞ < µ <∞

Parameter 2: σ2 > 0

Expected Value = µ

Variance = σ2

Let θ be the parameter for which the distribution is scaled, where θ > 0. µ must be scaled
by θ and becomes θ ∗ µ to get the scaled expected value. To get the scaled variance, first
σ must be squared before it can be multiplied by θ. Afterwards the square root of this
can be taken get the scaled value for σ. The scaled value becomes

√
θ ∗ σ2. The scaled

parameters, expected value and variance are:

Parameter 1: -∞ < θ ∗ µ <∞

Parameter 2:
√
σ2 ∗ θ > 0

Expected Value = θ ∗ µ

Variance = θ ∗ σ2

Gamma distribution
The gamma distribution is a non-negative distribution with shape parameter α. and rate
parameter β, where β = 1

λ The parameters, expected value and variance are:

Parameter 1: α > 0

Parameter 2: λ > 0

Expected Value = α
λ

Variance = α
λ2

Let θ be the parameter for which the distribution is scaled, where θ > 0. For both the
expected value and the variance, α can be scaled by θ to get the scaled expected value
and scaled variance. Hence, α becomes α ∗ θ. The scaled parameters, expected value and
variance are:

Parameter 1: α ∗ θ > 0

Parameter 2: λ > 0

Expected Value = α∗θ
λ

Variance = α∗θ
λ2
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Negative binomial distribution
This negative binomial distribution counts the number of independent Bernoulli
experiments with equal success probability p needed to arrive at a prespecified number
r of successful experiments. The parameters, expected value and variance are:

Parameter 1: 0 ≤ p ≤ 1

Parameter 2: r = 1,2,...

Expected Value = r
p

Variance = r(1−p)
p2

Let θ be the parameter for which the distribution is scaled, where θ > 0. For both the
expected value and the variance, r can be scaled by θ to get the scaled expected value
and scaled variance. Hence, r becomes r ∗ θ. The scaled parameters, expected value and
variance are:

Parameter 1: 0 ≤ p ≤ 1

Parameter 2: r ∗ θ = 1,2,...

Expected Value = r∗θ
p

Variance = (r∗θ)(1−p)
p2

Compound Poisson distribution
The compound Poisson model does not assume independence between the cases compared
to the Poisson distribution. It uses a two-level counting system. Power parameter p being
larger than 1 but smaller than 2 indicates it is compound Poisson. Parameters µ and ϕ
denote the mean and dispersion. The parameters, expected value and variance are:

Parameter 1: 1 < p < 2

Parameter 2: 0 < µ <∞

Parameter 3: ϕ > 0

Expected Value = µ

Variance = ϕ ∗ µp

Let θ be the parameter for which the distribution is scaled, where θ > 0. µ must be scaled
by θ and becomes θ ∗ µ to get the scaled expected value. To get the scaled value of ϕ,
the new expression µ ∗ θ is filled in in the variance and afterwards the equation ϕ ∗ µp =
θ ∗ ϕnew ∗ (µ ∗ θ)p can be solved to obtain the scaled value of ϕ. The scaled parameters,
expected value and variance are:

Parameter 1: 1 < p < 2

Parameter 2: 0< θ ∗ µ <∞

Parameter 3: ϕ
θ ∗

µp

(µ∗θ)p > 0

Expected Value = µ ∗ θ

Variance = ϕ
θ ∗

µp

(µ∗θ)p ∗ (µ ∗ θ)
p
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Appendix C: Distribution parameters

Table 31: AIC fitting models criticality 2 clusters

Cluster Normal Gamma Poisson
Negative
binominal

Compound
Poisson

10 1700.46 1702.42 22175.02 1702.40 1702.41
11 988.92 968.18 1574.06 968.83 984.62
12 351.65 - 178.04 62.61 118.40
13 799.70 676.86 1328.00 711.79 725.03
14 783.05 750.05 926.80 752.76 768.44
15 2061.18 2052.23 164380.80 2050.21 2068.44
16 1994.61 2007.90 83483.20 2006.50 2002.03
17 1663.40 1672.26 16311.40 1672.18 1670.24

Table 32: Parameters fitted distribution criticality 2 clusters

Cluster Distribution Parameter 1 Parameter 2 Parameter 3

10 Normal µ = 3071.39 σ = 780.13
11 Gamma k = 8.32 β = 0.1159
12
13 Negative binominal r = 1.18 p = 0.1150
14 Gamma k = 5.71 β = 0.2663
15 Negative binominal r = 7.1 p = 6.096 ∗ 10−4

16 Normal µ = 13545.80 σ = 3165.78
17 Normal µ = 3046.59 σ = 653.90

Table 33: AIC fitting models criticality 1 clusters

Cluster Normal Gamma Poisson
Negative
binominal

Compound
Poisson

18 1224.39 1208.27 4293.75 1208.03 1227.33
19 709.04 - 1106.13 426.34 606.11
20 1916.77 1890.85 124741.90 1890.84 1893.55
21 1326.55 1063.65 11411.04 1066.00 1070.99
22 1892.50 1894.69 71244.16 1894.11 1894.80
23 972.69 699.89 2500.81 722.91 755.15
24 1290.14 1286.87 5487.93 1286.10 1297.17

53



Table 34: Parameters fitted distribution criticality 1 clusters

Cluster Distribution Parameter 1 Parameter 2 Parameter 3

18 Negative binominal r = 5.23 p = 0.0290
19
20 Negative binominal r = 3.10 p = 8.112 ∗ 10−4

21 Compound Poisson p = 1.9 µ = 46.23 ϕ = 1.71
22 Normal µ = 5826.23 σ = 1946.76
23
24 Negative binominal r = 5.42 p = 0.0204

Table 35: AIC fitting models criticality 2 for 15 clusters

Cluster Normal Gamma Poisson
Negative
binominal

Compound
Poisson

16 1662.62 1654.474 22312.97 1654.472 1667.1
17 1451.89 1456.37 6864.79 1456.24 1453.20
18 264.29 - 176.16 155.79 182.05
19 988.91 968.22 1578.32 968.87 984.34
20 351.65 - 178.04 62.61 118.40
21 540.56 - 502.82 251.35 527.39
22 782.82 649.63 1250.73 689.29 705.13
23 271.84 - 246.20 248.20 280.05
24 769.70 734.12 920.98 736.83 762.52
25 783.07 747.29 937.76 750. 26 779.16
26 1900.40 1896.34 80788.98 1896.09 1895.63
27 1991.44 1969.48 148439.20 1969.34 1971.76
28 1994.61 2007.90 83483.20 2006.50 2002.03
29 1360.61 1078.34 14562.80 1080.61 1090.48
30 1656.50 1664.73 15592.44 1664.64 1661.74
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Table 36: Parameters fitted distribution criticality 2 for 15 clusters

Cluster Distribution Parameter 1 Parameter 2 Parameter 3

16 Negative Binominal r = 9.95 p = 0.0049
17 Normal µ = 1030.91 σ = 238.84
18
19 Gamma k = 8.24 β = 0.1154
20
21
22 Negative binominal r = 1.14 p = 0.1245
23
24
25 Gamma k = 5.26 β = 0.2575
26 Compound Poisson p = 1.8 µ = 5328.99 ϕ = 1.04
27 Negative binominal r = 4.28 p = 6.791 ∗ 10−4

28 Normal µ = 13545.80 σ = 3165.78
29 Compound Poisson p = 1.9 µ = 49.49 ϕ = 1.74
30 Compound Poisson p = 1.6 µ = 2987.94 ϕ = 0.9647

Table 37: AIC fitting models criticality 1 for 15 clusters

Cluster Normal Gamma Poisson
Negative
binominal

Compound
Poisson

31 780.57 650.74 1224.54 698.15 715.95
32 1222.05 1204.36 4374.06 1204.03 1221.96
33 709.04 - 1106.13 426.34 606.11
34 1916.77 1890.85 124741.90 1890.84 1893.55
35 1319.71 981.26 11521.54 995.74 1022.74
36 1009.43 726.91 2928.09 762.74 806.30
37 1781.31 1739.51 63870.72 1737.15 1744.82
38 1785.83 1792.09 57006.25 1789.43 1783.49
39 1605.73 1597.12 20875.82 1597.11 1597.42
40 670.15 416.89 841.06 510.18 561.06
41 969.00 568.38 2618.762 615.62 695.11
42 1286.04 1280.59 5393.83 1279.85 1289.44
43 728.16 543.05 1100.31 628.32 662.50
44 485.52 - 406.15 325.09 346.29
45 -22.82 - 42.45 44.44 41.55
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Table 38: Parameters fitted distribution criticality 1 for 15 clusters

Cluster Distribution Parameter 1 Parameter 2 Parameter 3

31 Negative binominal r = 1.25 p = 0.1297
32 Negative binominal r = 4.81 p = 0.0282
33
34 Negative binominal r = 3.10 p = 8.112 ∗ 10−4

35 Compound Poisson p = 1.9 µ = 31.99 ϕ = 1.92
36 Compound Poisson p = 1.8 µ = 10.58 ϕ = 1.64
37 Negative binominal r = 3.41 p = 0.0018
38 Compound Poisson p = 1.8 µ = 2635.91 ϕ = 1.04
39 Negative binominal r = 6.53 p = 0.0051
40
41
42 Negative binominal r = 5.41 p = 0.0210
43 Compound Poisson p = 1.6 µ = 6.58 ϕ = 1.77
44
45
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Appendix D: Mathematical model Ghorbani & Jokar (2016)

Index sets

Table 39: Sets base model

I Set of suppliers
J Set of warehouses
K Set of customers
N Set of capacity levels
H Merged set of customers and warehouses, i.e. K ∪ J
T Set of time periods
P Set of items
V Set of vehicles

Parameters

Table 40: Parameters base model

Can Capacity associated with capacity level n for
each depot

(items)

VC Maximum vehicle capacity (items)
hjp Per period inventory holding cost for product p in

warehouse j
(e/item)

Aij Fixed cost for placing an order from warehouse j to
supplier i

(e/order)

πkp Backlog cost of product p for customer k (e/item)
Fn
j Periodic operating cost for warehouse j with capacity

level n
(e/warehouse)

Prip Cost of purchasing product p from supplier i (e/item)

dsij Distance between supplier i and warehouse j (kilometres)
ddhk Distance between node h and k (kilometres)
Gp Volume of product p (m2)
Cijp Transportation cost of product p from supplier i to

warehouse j
(e/item/kilometre)

Crhk Transportation cost from node h to node k (e/kilometre)
Dkpt Demand of customer k for product p in period t (items)
Uipt Capacity of supplier i for product p in period t (units)
α Allowable backlog percentage for each customer for

each product
M Big value
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Decision variables

Table 41: Decision variables base model

Sjpt Final inventory level of product p in warehouse j in
period t

(items)

Orijpt Order quantity of warehouse j to supplier i for
product p in period t

(items)

Ekϑpt Backlog quantity of product p for customer k on the
route of vehicle ϑ in period t

(items)

Ljkpt Backlog quantity of product p for customer k
assigned to warehouse j in period t

(items)

Zijpt

{ 1 if supplier i is assigned to warehouse j in order
to supply product p in period t

0 otherwise

An
j

{ 1 if warehouse j is opened with capacity level n
0 otherwise

Bk
j

{ 1 if customer k is assigned to warehouse j
0 otherwise

Xhkϑt

{ 1 if h precedes k immediately in route of vehicle ϑ
in period t

0 otherwise

Mkϑt Auxiliary non-negative variable used for sub-tour
elimination in the route of vehicle ϑ in period t

Objective

Min:
∑
t∈T

∑
p∈P

∑
j∈J

hjp ∗ Sjpt +
∑
t∈T

∑
i∈I

∑
j∈J

Aij min

∑
p∈P

Zijpt, 1


+
∑
t∈T

∑
j∈J

∑
n∈N

An
j ∗ Fn

j ∗ T+
∑
t∈T

∑
i∈I

∑
j∈J

∑
p∈P

dsij ∗ Cijp ∗Orijpt

+
∑
ϑ∈V

∑
t∈T

∑
k∈H

∑
h∈H

ddhk ∗ Crhk ∗Xhkϑt +
∑
t∈T

∑
p∈P

∑
j∈j

∑
i∈I

prip ∗Orijpt

+
∑
ϑ∈V

∑
t∈T

∑
k∈K

∑
p∈P

πkp ∗ Ekϑpt

(36)

The first component displays the holding cost of products over all periods, and the second
component concerns the total ordering cost. The third component considers the total
operating cost of depots over all periods according to their capacity levels. The fourth
component shows the total transportation cost from suppliers to warehouses over all
periods, while component five displays the routing cost from warehouses to customers over
all periods. Component six considers the purchasing cost of products over all periods. The

58



seventh component shows the total backlog cost of products over all periods.

Constraints∑
j∈J

Bjk = 1 ∀k ∈ K (37)

Bjk ≤
∑
n∈N

An
j ∀j ∈ J, ∀k ∈ K (38)

Zijpt ≤
∑
n∈N

An
j ∀j ∈ J, ∀i ∈ I, ∀p ∈ P, ∀t ∈ T (39)

∑
ϑ∈V

∑
h∈H

Xhkϑt = 1 ∀k ∈ K, ∀t ∈ T (40)

∑
n∈N

∑
k∈K

Xhkϑt ≤ 1 ∀ϑ ∈ V, ∀t ∈ T (41)

∑
n∈N

An
j ∀j ∈ J (42)

∑
j∈J

Orjpt ≤ Uipt ∀p ∈ P, ∀i ∈ I, ∀t ∈ T (43)

Orjpt ≤ M ∗ Zijpt ∀p ∈ P, ∀i ∈ I, ∀t ∈ T (44)∑
p∈P

Ljkpt ≤ M ∗ Bjk ∀j ∈ J, ∀t ∈ T, ∀k ∈ K (45)

Ljkpt ≤ αDkpt ∀p ∈ P,∀j ∈ J, ∀t ∈ T, ∀k ∈ K (46)∑
j∈J

Ljkpt =
∑
ϑ∈V

Ekϑpt ∀k ∈ K,∀p ∈ P, ∀t ∈ T (47)

∑
p∈P

Ekϑpt ≤ M ∗
∑
h∈H

Xhkϑt ∀ϑ ∈ V, ∀t ∈ T, ∀k ∈ K (48)

Sjpt = Sjp(t−1) +
∑
i∈I

Orijpt −
∑
k∈K

Dkpt ∗ Bjk −
∑
k∈K

Ljkp(t−1) +
∑
k∈K

Ljkpt

∀p ∈ P, ∀j ∈ J, ∀t ∈ T

(49)

∑
p∈P

(∑
k∈K

Dkpt ∗ Bjk

)
Gp ≤

∑
n∈N

Can ∗An
j ∀j ∈ J, ∀t ∈ T (50)

∑
p∈P

∑
k∈K

(
Dkpt ∗Gp

∑
h∈H

Xhkϑt

)
−
∑
p∈P

∑
k∈K

Ekϑpt +
∑
p∈P

∑
k∈K

Ekϑp(t+1) ≤ VC

∀ϑ ∈ V, ∀t ∈ T

(51)

∑
k∈H

Xhkϑt −
∑
k∈H

Xkhϑt = 0 ∀ϑ ∈ V,∀h ∈ H, ∀t ∈ T (52)
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∑
h∈H

Xhkϑt +
∑
h∈H

Xkhϑt − Bjk ≤ 1 ∀ϑ ∈ V, ∀j ∈ J, ∀k ∈ K, ∀t ∈ T (53)

Mkϑt −Mhϑt + |K| ∗Xkhϑt ≤ |K| − 1 ∀h ∈ H, ∀k ∈ K, ∀ϑ ∈ V, ∀t ∈ T (54)

Sjp0 = 0,Ljkp0 = 0,Ekϑp0 = 0 ∀p ∈ P, ∀j ∈ J, ∀k ∈ K, ∀ϑ ∈ V (55)

Ljϑpt,Ekϑpt, Sjpt,Yijpt ≥ 0 ∀i ∈ I, ∀p ∈ P, ∀j ∈ J, ∀k ∈ K, ∀ϑ ∈ V,

∀t ∈ T
(56)

Zijpt,Yip,Ajn,Bjk,Xhkϑt ∈ {0, 1} ∀i ∈ I, ∀p ∈ P, ∀j ∈ J, ∀t ∈ T (57)

Constraints (37) ensure that each customer is assigned only to one depot. Constraints (38)
ensure that a customer can only be assigned to a depot if this depot is opened. Constraints
(39) make sure that each depot could place orders with suppliers only if it is opened.
Constraints (40) make sure that each customer is placed on exactly one vehicle route per
period. Constraints (41) ensure that only one depot is included in each route per period.
Constraints (42) imply that each depot can be assigned to at most one capacity level.
Constraints (43) are the capacity constraints associated with the suppliers for each product
per period. Constraints (44) are added to ensure linearisation. Constraints (45) allow a
depot to backlog a fraction of the demand of any customer assigned to it. Constraints
(46) ensure that the backlog quantity of each product for each customer per period is less
than his allowable backlog quantity. Constraints (47) state that the backlog quantity of
a customer assigned to a depot is equal to that of this customer assigned to the vehicle
starting its route from this depot. Constraints (48) ensure that the backlog quantity of a
customer for each product per period on a vehicle route could be positive if this route exists.
Constraints (49) impose the inventory equality between consecutive periods. Constraints
(50) are the capacity constraints associated with the depots. Constraints (51) are the
vehicle capacity ones ensuring that the total deliveries of customers on each vehicle route
do not exceed the vehicle capacity. Constraints (52) are flow conservation ones ensuring
that whenever a vehicle enters a node in the network, it must leave it again, so that the
routes remain circular. Constraints (53) link the allocation and routing components in each
period: customer k is assigned to depot j if vehicle visiting customer k starts its trip from
depot j per period. Constraints (54) are the sub-tour elimination ones. Constraints (55)
state that the backlog quantities of products for all customers are equal to zero as well as
the final inventory level of all products in all depots. Constraints (56) and (57) impose the
non-negativity and integrality restrictions, respectively.
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Appendix E: Haversine method

The haversine formula for distance calculation is displayed in Equation (58). Here ϕ1

denotes the x-coordinate of node one, ϕ2 denotes the x-coordinate of node two, ∆ϕ denotes
the difference between the x-coordinates of the two nodes, ∆λ denotes the difference
between the y-coordinates of the two nodes and R is the radius of the earth, which is
6371km. The factor 1.3 represents the correction factor needed because the haversine
formula considers straight-line distance instead of road distance.

a = sin2(
∆ϕ

2
) + cos(ϕ1) ∗ cos(ϕ2) ∗ sin2(

∆λ

2
)

c = 2 ∗ atan2(
√
a,
√
1− a)

distance = R ∗ c ∗ 1.3
(58)
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Appendix F: Results initial investigation heuristic

Table 42: Results heuristic scenarios NC1-YR2

Scenario NC1 NR2 NC2 YR2

Opened warehouses X 2 & 4 X & 57 1 & X

Holding cost 7.79% 9.38% 9.53% 9.32%
Order cost 1 0.02% 0.02% 0.02% 0.02%
Order cost 2 - 0.02% 0.02% 0.02%
Handling cost - 6.52% 2.95% 5.29%
Transportation cost 1 7.02% 6.97% 6.02% 7.00%
Transportation cost 2 53.10% 53.17% 43.75% 53.09%
Transportation cost 3 - 0.10% 2.54% 0.03%
Transportation cost 4 - 0.91% 0.91% 0.91%

Total cost 67.92% 77.10% 65.74% 75.67%

Total S 384,674 417,968 412,702 417,877

CO2 1,290 kg 1,292 kg 1,141 kg 1,290 kg

Table 43: Results heuristic scenarios YC2-YX3

Scenario YC2 YX2 YC3 YX3

Opened warehouses X & 57 X & 70 X & 57 & 71 X & 20 & 70

Holding cost 9.53% 9.32% 11.08% 10.88%
Order cost 1 0.02% 0.02% 0.02% 0.02%
Order cost 2 0.02% 0.02% 0.03% 0.03%
Handling cost 2.95% 2.77% 2.98% 6.49%
Transportation cost 1 6.02% 7.02% 6.02% 7.02%
Transportation cost 2 43.75% 41.97% 40.40% 36.33%
Transportation cost 3 2.54% 1.81% 5.74% 2.84%
Transportation cost 4 0.91% 0.91% 1.82% 1.82%

Total cost 65.74% 63.82% 68.09% 65.44%

Total S 412,702 412,208 428,714 441,116

CO2 1,141 kg 1,144 kg 1,124 kg 969 kg
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Appendix G: Results initial investigation simulation

Table 44: Results simulation with first base stock calculation method

Scenario NC1 YR2/YC2 YX2

Opened warehouses 3 3 & 57 3 & 70

Holding cost 10.03% 11.99% 11.73%
Order cost 1 0.62% 0.60% 0.60%
Order cost 2 - 0.26% 0.24%
Handling cost - 2.73% 2.61%
Transportation cost 1 6.57% 6.89% 6.57%
Transportation cost 2 53.83% 43.89% 42.54%
Transportation cost 3 - 1.68% 1.32%
Transportation cost 4 - 0.67% 0.67%

Total cost 71.05% 68.71% 66.28%

Total S 384,769 413,280 412,836

CO2 72,200 kg 67,753 kg 66,187 kg

Table 45: Availability simulation with first base stock calculation method

Scenario NC1 YR2/YC2 YX2

Opened warehouses 3 3 & 57 3 & 70

Criticality 3 77.32% 77.30% 77.35%
Criticality 2 69.28% 69.51% 69.54%
Criticality 1 79.79% 78.48% 78.67%

All criticalities 73.53% 73.54% 73.59%

Figure 15: Availability warehouse X with first base stock calculation method
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Table 46: Results simulation with second base stock calculation method

Scenario NC1 YR2/YC2 YX2

Opened warehouses X X & 57 X & 70

Holding cost 45.22% 67.68% 66.00%
Order cost 1 0.62% 0.60% 0.60%
Order cost 2 - 0.26% 0.26%
Handling cost - 2.73% 2.61%
Transportation cost 1 6.57% 6.89% 6.57%
Transportation cost 2 54.45% 44.48% 43.10%
Transportation cost 3 - 1.70% 1.32%
Transportation cost 4 - 0.67% 0.67%

Total cost 106.86% 125.02% 121.14%

Total S 924,431 1,229,748 1,229,748

CO2 69,142 kg 65,054 kg 63,493 kg

Table 47: Availability simulation with second base stock calculation method

Scenario NC1 YR2/YC2 YX2

Opened warehouses X X & 57 X & 70

Criticality 3 97.10% 96.98% 96.99%
Criticality 2 93.22% 93.56% 93.53%
Criticality 1 98.01% 97.77% 97.77%

All criticalities 95.25% 95.35% 95.34%

Figure 16: Availability warehouse X with second base stock calculation method
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Table 48: Availability per cluster with second base stock calculation method

Cluster 1 2 3 4.1 4.2 5 6
Distribution Normal NB Normal None None CP NB
Target αjp 95% 97.5% 99% 96% 96% 97.5% 99%
Realised αjp 96.62% 66.97% 100% 50.00% 50.00% 68.53% 100%

Cluster 7 8 9 10 11 12 13
Distribution Gamma Normal Normal Normal Gamma None NB
Target αjp 99% 99% 99.9% 98% 95% 96% 95%
Realised αjp 96.86% 99.96% 99.98% 99.36% 95.95% 50.00% 46.45%

Cluster 14 15 16 17 18 19.1 19.2
Distribution Gamma NB Normal Normal NB None None
Target αjp 90% 99.5% 99.5% 98% 95% 96% 96%
Realised αjp 96.63% 2.28% 99.89% 94.21% 99.18% 40.00% 55.17%

Cluster 20 21 22 23.1 23.2 23.3 24
Distribution NB CP Normal None None None NB
Target αjp 99% 95% 99% 96% 96% 96% 99%
Realised αjp 99.83% 37.34% 99.63% 97.73% 66.67% 57.40% 99.83%
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