
 Eindhoven University of Technology

MASTER

The Practicality of Reduction Rules for the Directed Feedback Vertex Set Problem

Tanja, Stefan A.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/42c01301-dd67-4c2c-bd7b-89006f33e20d

Department of Mathematics and Computer Science
Algorithms, Geometry & Applications

The Practicality of Reduction Rules for the
Directed Feedback Vertex Set Problem

Master’s thesis

S.A. Tanja

8-9-2022

Supervision:
dr. K.A.B. Verbeek

Assessment committee:
dr. K.A.B. Verbeek
dr. M.J.M. Roeloffzen
dr.ir. J.J.A. Keiren

Credits: 30

This is a public Master’s thesis.

This Master’s thesis has been carried out in accordance with the rules of the
TU/e Code of Scientific Conduct.

Abstract

Kernelizations have been used as a form of preprocessing for NP-hard
problems, to enable the usage of exact methods, such as Integer Linear Pro-
gramming (ILP) algorithms, by shrinking the input as much as possible. The
application of kernelizations is mostly theoretical, so it is relatively unclear
how practical kernelizations are, and when they enable the practical use of
exact algorithms. In this thesis we investigate how effective kernelizations
are in obtaining practical exact algorithms. We focus on the Directed
Feedback Vertex Set problem. We design and implement a kerneliza-
tion, together with an ILP-based algorithm, and a Branch & Bound algo-
rithm, which both use our kernelization. We then evaluate both algorithms
with and without reductions, and we submit our best performing algorithm
to the Parameterized Algorithms and Computational Experiments challenge
to evaluate its performance. We determine that reductions certainly can
accelerate an exact algorithm, such as a Branch & Bound algorithm, but
already practical ILP-based algorithms can be obtained in conjunction with
a strong ILP solver without applying any reductions at all.

i

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Overview . 3

2 Preliminaries 5
2.1 Graph Definitions . 5
2.2 Fixed-Parameter Tractability 8
2.3 Reduction Rules . 9

2.3.1 Towards Optimization Problems 9
2.4 Exact Algorithmic Techniques 10

2.4.1 Integer Linear Programming 11
2.4.2 Branch & Bound . 11

2.5 Simulated Annealing . 13

3 Kernelization 16
3.1 Relation to Vertex Cover . 16
3.2 Reduction Rules . 17
3.3 Split & Reduce . 19
3.4 Extra Reduction Rules . 26

4 Integer Linear Programming 28
4.1 Edge Cycle Covers . 28
4.2 Computing an Upper Bound 30

4.2.1 Simulated Annealing for Hitting Set 31
4.3 Improving ILP Relaxation . 34
4.4 The Algorithm . 35

5 Branch & Bound 38
5.1 Branch & Reduce . 38
5.2 Lower Bounds . 40
5.3 Upper Bounds . 41

ii

6 ILP Evaluation 44
6.1 PACE . 44

6.1.1 Results . 46
6.2 Evaluation . 46
6.3 Instances . 49

6.3.1 Tournaments . 49
6.3.2 Cyclic Grids . 50
6.3.3 Amending the Tournaments and Cyclic Grids 50
6.3.4 Instance Selection . 51
6.3.5 Measurement Deviations 52

6.4 Results . 53
6.4.1 PACE Instances . 53
6.4.2 Tournaments . 55
6.4.3 Cyclic Grids . 57

6.5 Conclusion . 58

7 Branch & Reduce Evaluation 61
7.1 Evaluation . 61
7.2 Instances . 63

7.2.1 Tournaments . 64
7.2.2 Cyclic Grids . 65
7.2.3 Measurement Deviations 65

7.3 Results . 66
7.3.1 PACE Instances . 66
7.3.2 Tournaments . 68
7.3.3 Cyclic Grids . 69

7.4 Conclusion . 70

8 Conclusion 72
8.1 Future Work and Improvements 73

Bibliography 74

iii

Chapter 1

Introduction

The past few decades, the field of Parameterized Algorithms has made sig-
nificant progress in finding algorithms for NP-hard problems that run in
polynomial time given a fixed parameter k, which captures the hardness
of the instances. Unfortunately, the hidden constant in the running time,
which is a function of k, is usually exponential. Furthermore, most of the
algorithmic results within this field are mainly of theoretical nature. It
is therefore unclear whether these algorithmic results are practical, i.e., in
terms of running time and ease of implementation.

One technique from this field is to use a preprocessing algorithm, called
a kernelization, which is composed out of several reduction rules. The goal
of a kernelization is to reduce, i.e., shrink, the size of an input instance such
that the resulting reduced instance has the same yes or no answer (in the
context of decision problems). Additionally, the kernelization has hopefully
reduced the size of an instance to a sufficiently small size so that any exact
algorithm will terminate in reasonable time on this reduced instance. In
1998, Bertossi [2] discussed that a kernelization may sufficiently shrink the
size of an instance so that slow exact algorithms can solve the remainder, or
the remainder is already so small that it can be solved by hand . However,
there are a few problems with a kernelization.

It may not always be the case that a reduced instance is easier for an
exact algorithm. Hespe et al. [11] determined that their Branch & Bound
algorithm with integrated kernelizations sometimes required more time to
find an optimal solution of a Vertex Cover instance compared to when
the kernelization was not performed.

In this thesis, we aim to determine when a kernelization can be useful
to obtain more practical exact algorithms, i.e., in terms of running time or
memory usage, using different exact algorithmic techniques as a comparison.
We will focus on the Directed Feedback Vertex Set problem, which
asks us to find a smallest set of vertices of a directed graph to remove to make
the remainder acyclic. The choice of this problem is motivated by this year’s
(2022) Parameterized Algorithms and Computational Experiments (PACE)

1

challenge, which focuses on the Directed Feedback Vertex Set prob-
lem. One aim of the international challenge is to bridge the gap between
theory and practice, i.e., produce practical implementations of exact algo-
rithms for NP-hard problems.

The primary contributions of this thesis are as follows. We first deter-
mine whether a kernelization can accelerate solving an ILP-based algorithm
and a Branch & Bound algorithm for the Directed Feedback Vertex
Set problem. Additionally, since we indeed want to generate a subset of the
constraints for the ILP-formulation of the Directed Feedback Vertex
Set problem, we investigate whether a kernelization is indeed helpful to
generate smaller ILP models. For the Branch & Bound algorithm we inves-
tigate whether kernelizations can be used sparingly throughout the search
tree or are needed at each level. Kernelizations may not necessarily be cheap
in terms of running time, and may not always manage to significantly reduce
the current instances.

In addition to our primary contributions, our secondary contribution is
to design an ILP-based algorithm and Branch & Bound algorithm that is as
efficient as possible. The PACE challenge is an ideal opportunity to evaluate
our best performing algorithm1.

1.1 Related Work

Some work already has been performed in determining when a kernelization
may be useful to apply. As already mentioned, Bertossi [2] determined that
a kernelization was highly practical, and Hespe et al. determined that a
kernelization may also sometimes increase the running time of a Branch &
Bound algorithm.

Ferizovic et al. [7] discuss that a kernelization for the Maximum Cut
problem allowed the speed up of several orders of magnitude on state-of-
the-art exact solvers, together with managing to solve three instances in
two seconds that remained unsolved with a ten-hour time-limit.

Strash [14] determined that the primary strength of a kernelization dur-
ing a Branch & Reduce comes from the initial kernelization, but not so
much the subsequent kernelizations. Additionally, Strash showed that most
real-world instances already benefit significantly from a small set of reduc-
tion rules. Most of these works have, however, not compared different exact
methods with and without kernelizations in great detail.

Regarding the Directed Feedback Vertex Set problem, Fleischer
et al. [8] propose six reduction rules. Four of the six reduction rules were
either already implicitly present in literature, or were modified from the
undirected problem, the Feedback Vertex Set problem. The remaining

1As per the competition’s rules, we cannot submit multiple algorithms that share a
significant portion of the same code base.

2

two reduction rules are based on pairwise-disjoint cycles starting in the same
vertex. Such cycles can be computed using flow algorithms.

Recently, Bergougnoux et al. [1] investigated whether there exists a poly-
nomial kernel for the Directed Feedback Vertex Set problem. Some
of their given reduction rules match the reduction rules given by Fleischer,
or make some reduction rules stronger.

Reduction rules can be helpful to apply in both heuristics, as well as
exact algorithms. Galinier et al. [10], give a heuristic to find a directed
feedback vertex set. In order to improve the performance of the heuristic
(in terms of solution-size), they apply some basic reduction rules. They
then find a directed feedback vertex set by searching for topological ordering
using as many vertices as possible, and returning the vertices excluded in
the topological ordering.

Razgon [12] showed that the Directed Feedback Vertex Set prob-
lem could be solved in O∗(1.9977n), i.e., an algorithm whose exponential
factor is 1.9977n. A minimum Directed Feedback Vertex Set (DFVS) is
found using a Branch & Bound algorithm, which identifies many cases to
branch on.

Later, Chen et al. [4] designed a Fixed-Parameter tractable algorithm
for the decision version of the Directed Feedback Vertex Set problem
with a running time of 4kk! · nO(1), where k is the solution size. However,
Fleischer et al. [8] showed that an implementation of this algorithm quickly
slows down for larger density graphs, and when k ≥ 8.

During the first iteration of the PACE challenge, in 2016, the Feedback
Vertex Set problem was one of the competition’s problems. The ILP-
based algorithm implemented by Dell et al. [5] was competitive with the best
submitted solvers, of which all relied on different techniques than an ILP.
This ILP formulation can be directly applied to the Directed Feedback
Vertex Set problem.

1.2 Overview

Firstly, in Chapter 2 we discuss the notation we will be using in the thesis,
how we define reduction rules in optimization problems, and the algorithmic
toolkit we will be using. In Chapter 3 we discuss which reduction rules we
will be applying on instances of the Directed Feedback Vertex Set
problem. In Chapter 4 we discuss our implementation of an ILP-based al-
gorithm for the problem, which became our best performing algorithm. In
Chapter 5, we implement a straightforward Branch & Bound solver, inte-
grating reductions and also ideas from our ILP-based algorithm. In Chapter
6 we discuss and evaluate the performance of our ILP-based algorithm in
the context of the PACE challenge, and analyze how effective our kerneliza-
tion is at decreasing the running time of an ILP solver, and whether smaller

3

linear models are produced when a kernelization is used. In Chapter 7 we
analyze the performance of reduction rules in a Branch & Bound algorithm,
and investigate whether kernelizations can be used sparingly throughout the
search tree or are needed at each level.

4

Chapter 2

Preliminaries

While this thesis is focused on analyzing the effectiveness of kernelizations,
also known as data reductions, stemming from the field of Fixed-Parameter
Tractability, we require some basic concepts and algorithmic techniques from
other domains. In this chapter we make the reader familiar with the relevant
concepts (for this thesis) related to graph theory, Fixed-Parameter Tractabil-
ity, data reductions, exact algorithms, and heuristics. In Section 2.1 we in-
troduce all relevant graph definitions we will be using going forward in the
thesis, and we introduce the Directed Feedback Vertex Set problem
formally. In Section 2.2, we briefly introduce the field of Fixed-Parameter
Tractability and a commonly used technique known as data reductions for
decision problems, followed by defining the technique for optimization prob-
lems. We then discuss two common exact algorithmic techniques, Integer
Linear Programming and Branch & Bound, which can solve optimization
problems, in Section 2.4. We will need both techniques to evaluate the ef-
fectiveness of data reductions for the Directed Feedback Vertex Set
problem. Finally, in Section 2.5 we briefly discuss the heuristic technique
Simulated Annealing, which we can use to improve the performance of both
an Integer Linear Program and a Branch & Bound algorithm.

2.1 Graph Definitions

An undirected graph is an ordered pair G = (V,E) where V is a set whose
elements are called vertices, and E is an unordered pair of edges. A directed
graph is also an ordered pair G = (V,E), but where E is an ordered pair
of edges, i.e., the edges have a direction. To make the distinction in which
direction the edges are oriented, we let N+(v) be the set of vertices for
which v has an outgoing edge, and let N−(v) be the set of vertices for which
v has an incoming edge, in some directed graph. We denote the closed
forward neighborhood of a vertex v as N+[v] = N+(v) ∪ {v}. Additionally,
to disambiguate between the neighborhood of different graphs, we write the
graph in the subscript, e.g., N+

G (v) for some directed graph G = (V,E).

5

e

e′

Figure 2.1: A graph with two bidirectional edges.

Since we may consider multiple graphs at once, we need to easily dis-
ambiguate between the vertex and edge sets of several graphs. Hence, we
also denote the set of vertices and edges of a graph G as V (G) and E(G),
respectively.

Furthermore, given a graph G = (V,E), we denote the induced graph
of G, given a set of vertices X ⊆ V , as G[X], where V (G[X]) = X and
E(G[X]) = {(u, v) ∈ E | u ∈ X ∧ v ∈ X}. Additionally, we abbreviate
the union of two graphs G1 = (V1, E1) and G2 = (V2, E2) as G1 + G2 =
(V1 ∪ V2, E1 ∪ E2).

Definition 2.1. A directed graph G = (V,E) is simple if and only if every
edge (u, v) ∈ E occurs exactly once, i.e., E is not a multiset, and if (u, u) /∈ E
for every u ∈ V . A directed graph is non-simple if at least for one u ∈ V
we have (u, u) ∈ E, or when E is a multiset.

Definition 2.2. Given a directed graph G = (V,E), we say that an edge
e = (u, v) ∈ E is monodirectional if (v, u) /∈ E. Furthermore, we say that
an edge e = (u, v) ∈ E is bidirectional if e′ = (v, u) ∈ E, and we say that e
is bidirectional with e′.

Consider the graph G in Figure 2.1, here the edge e is a bidirectional
edge, and it is bidirectional with e′. Note that this relation is symmetric,
hence, G has two bidirectional edges.

When we only have bidirectional edges in the graph, we have a graph
that is very similar to an undirected graph: any path in an undirected graph
can be reversed, and the same holds here. We therefore make the following
distinction. On the other hand, we can also have a graph without any
bidirectional edges.

Definition 2.3. A directed graph G = (V,E) is bidirected, if for every edge
e ∈ E, e is bidirectional. A directed graph G is monodirected if G does not
have any bidirectional edges.

As an example, we have a monodirected graph G in Figure 2.2. Observe
that for any edge e = (u, v) ∈ E, we have (v, u) /∈ E.

From a directed graph, we can obtain an induced undirected graph, which
we define as follows.

Definition 2.4. Let G = (V,E) be a directed graph, then its induced
undirected graph is given by U(G) = (V,E′) with E′ = {(u, v) | (u, v) ∈
E ∨ (v, u) ∈ E}.

6

Figure 2.2: A monodirected graph.

Definition 2.5. Given an undirected graph G = (V,E), a set of vertices
Q ⊆ V is a clique if and only if (u, v) ∈ E, for every u, v ∈ Q, with u ̸= v.

Definition 2.6. Let G = (V,E) be a directed graph. Let Q ⊆ V be a set of
vertices. We say that Q is a clique when we have (u, v) ∈ E and (v, u) ∈ E,
for every u, v ∈ Q, with u ̸= v.

As an easy example, we see that the graph G in Figure 2.1 is a clique.
Since we are interested in cycles in directed graphs, we introduce two

related definitions.

Definition 2.7. A cycle C = (v1, . . . , vk) in a directed graph G = (V,E) is
an ordered sequence of vertices such that (vi, vi+1) ∈ E for every i ∈ [k] and
(vk, v1) ∈ E, with k ≥ 1. Furthermore, we write vi ∈ C if the cycle C uses
vi somewhere along its path. A cycle is called simple if the cycle consists of
k distinct vertices, i.e., each vi ∈ C occurs exactly once in C.

Definition 2.8. A directed graph G = (V,E) is acyclic if there does not
exist a cycle C in G.

Finally, we define a strongly connected component of a directed graph,
and we define a cut. We will later see that it is useful to compute cuts usin
Finally, we define a cut.

Definition 2.9. Given a graphG, a partition ofG is a pair (X,Y) consisting
of two sets of vertices X ⊆ V (G) and Y ⊆ V (G) such that X ∪ Y = V (G)
and X ∩ Y = ∅.

Definition 2.10. Given a graph G and a partition (X,Y), a cut (X,Y)G
is the set of edges

(X,Y)G = {(u, v) ∈ E(G) | (u ∈ X ∧ v ∈ Y) ∨ (u ∈ Y ∧ v ∈ X)}.

We also write that the cut (X,Y)G is an (X,Y)G-cut. If it is clear which
graph is used, then we omit the subscript.

As an example, see Figure 2.3.

7

X Y X Y

Figure 2.3: A directed graph G = (V,E). The cut between the partition
(X,Y) is exactly the set of blue edges, shown in the right-hand side.

The Directed Feedback Vertex Set Problem Let G = (V,E) be a simple
directed graph. The Directed Feedback Vertex Set problem asks for
a minimum-sized set X ⊆ V such the induced graph G[V \X] is acyclic. We
will refer to X as being an optimal “solution” or optimal DFVS (short for
Directed Feedback Vertex Set).

2.2 Fixed-Parameter Tractability

The field Fixed-Parameter Tractability has been focusing on the discovery
of efficient algorithms when we are also given a parameter that captures
the hardness of a decision problem, called a parameterized problem. Its
definition is as follows.

Definition 2.11. A parameterized problem is a language L ⊆ Σ∗×N, where
Σ is a fixed, finite alphabet. For an instance (x, k) ∈ Σ∗ ×N, k is called the
parameter.

As a simple example, for the parameterized variant of the Directed
Feedback Vertex Set problem, the Parameterized Directed Feed-
back Vertex Set problem, we are asked whether there exists a DFVS X
of a directed graph G = (V,E) such that |X| ≤ k, given a (fixed) parameter
k ∈ N. Related to parameterized problems, we have the complexity class of
Fixed-Parameter tractable problems.

Definition 2.12. A parameterized problem L ⊆ Σ∗ × N is called fixed-
parameter tractable (FPT) if there exists an algorithm A (called a fixed-
parameter tractable algorithm), a computable function f : N → N, and a
constant c such that, given (x, k) ∈ Σ∗×N the algorithm A correctly decides
whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The complexity class
containing all fixed-parameter tractable problems is called FPT.

Note that for an FPT problem, by fixing the constant k, we obtain a
polynomial time algorithm in terms of the input size, since f only depends on

8

k. However, f(k) will usually be exponential in k, especially considering NP-
hard problems. Furthermore, not every parameterized problem is in FPT
(unless P = NP). One such problem is the k-Coloring problem, where we
aim to decide whether an undirected graph admits a coloring of at most
k colors, since otherwise 3-Coloring, an NP-complete problem, admits a
polynomial time algorithm.

2.3 Reduction Rules

In the construction of FPT algorithms, data reductions play an important
role. A data reduction, or simply a reduction rule, transforms an instance
(I, k) of a parameterized problem Q into an equivalent instance (I ′, k′) of Q
in polynomial time of |I|. Two instances (I, k) and (I ′, k′) are equivalent if
and only if (I, k) ∈ Q⇔ (I ′, k′) ∈ Q. A reduction rule that transforms one
instance (I, k) into an equivalent instance (I ′, k′) is called safe.

Using reduction rules, we can design a preprocessing algorithm, called a
kernelization, that reduces the size of the input instance as much as possible.
Hopefully, the instance-size has decreased sufficiently enough that an exact
algorithm, like a Branch & Bound algorithm, now terminates in reasonable
time. We say that the resulting instance obtained from the kernelization is
a kernel of the original instance, or simply a kernel. Alternatively, we may
also refer to the kernel as the reduced instance, or the reduced graph, when
talking about graphs.

2.3.1 Towards Optimization Problems

Thus far, we have only discussed what reduction rules are for a decision
problem, but since we are working in the context of an optimization problem,
we need to slightly modify the definition of a safe reduction rule. Note that
for an optimization problem, we want to guarantee that we can recover
an optimal solution of the original instance, but it can be one of many
optimal solutions. With this in mind, we can formulate our definition in the
context of the Directed Feedback Vertex Set problem. We first define
the notion of a reduction rule for the Directed Feedback Vertex Set
problem that produces a set of forced vertices.

Definition 2.13 (Optimization Reduction Rule). Given a directed graph
G = (V,E), Let ϕ be a reduction rule that produces a modified graph
G = (V ′, E′), with V ′ ⊆ V , and a set S ⊆ V such that S ∩ V ′ = ∅. We say
that S is a set of forced vertices if there exists an optimal solution Z of G
such that S ⊆ Z.

Intuitively speaking, the set of forced vertices is a set of vertices for which
we can decide that this set must belong to at least one optimal solution of

9

the input graph, i.e., vertices with a self-loop in non-simple directed graphs
must occur in an optimal solution. We can now define a safe reduction rule
for the Directed Feedback Vertex Set problem.

Definition 2.14. Given a directed graph G = (V,E), Let ϕ be a reduction
rule that produces a modified graph G = (V ′, E′) and a set of forced vertices
S. Let Z be any optimal solution of G′. We say that ϕ is safe if Z ∪S is an
optimal solution of G.

Observe that it is not sufficient to require that opt(G) = opt(G′)+ |S|,
where opt(·) denotes the size of an optimal DFVS of a graph, namely,
we do not have the guarantee that an optimal solution Z for G′, together
with S, yields an optimal solution of G. Using Definition 2.14 we can show
that the composition, i.e., the sequential application, of two reduction rules
results in a safe reduction rule.

Theorem 2.1. Let G be a directed graph. Let ϕ1 and ϕ2 be two safe reduc-
tion rules. Then the composition ϕ1 ∥ ϕ2 is safe.

Proof. Let G1 and S1 be the resulting graph and set of forced vertices after
applying ϕ1 on G, respectively. Similarly, let G2 and S2 be the resulting
graph and set of forced vertices after applying ϕ2 on G1, respectively.

Since ϕ2 is safe, it follows that an optimal DFVS Z of G2, together with
S2 is an optimal solution of G1, or simply put, Z ∪S2 is an optimal solution
of G1. Clearly, since Z ∪ S2 is an optimal solution of G1, and since ϕ1 is
safe, it follows that Z ∪ S2 ∪ S1 is an optimal solution of G.

As a consequence, we can safely compose any sequence of safe reduction
rules, transforming G into a reduced graph G′ and collecting a set of forced
vertices S. We can then recover an optimal solution for G′, by finding an
optimal solution Z of G′, and returning Z ∪ S.

Furthermore, while we may be able to exploit the parameter of a param-
eterized problem to design reduction rules, we obviously lack this parameter
in an optimization problem. One possible solution is to compute an upper
bound of a DFVS of G, but we will simply only cover parameter-free reduc-
tion rules, e.g., vertices without edges can safely be removed in the graph
without any knowledge of a parameter.

2.4 Exact Algorithmic Techniques

In order to evaluate the effectiveness of reduction rules in exact algorith-
mic techniques, we obviously require an exact algorithm where we integrate
reduction rules. In this thesis we will be using two such exact algorith-
mic techniques, namely Integer Linear Programming, for which there exists
a large number of commercial and open source solvers, and the paradigm

10

known as Branch & Bound. We briefly discuss the fundamentals of both
approaches.

2.4.1 Integer Linear Programming

In an integer linear program, we aim to minimize or maximize a linear ob-
jective function, subject to a set of linear constraints, under the additional
constraint that every variable is integer valued. For the Directed Feed-
back Vertex Set problem, we require that all variables are either 0 or 1
valued.

Let G = (V,E) be a directed graph. For each vi ∈ V , let xi denote
whether vi belongs to the optimal solution. Let Γ be the set of all simple
cycles of G (not necessarily ordered). Firstly, we want to minimize the
number of vertices in the solution S. Secondly, for every simple cycle, we
want to adopt at least one of its vertices into the solution, breaking the cycle
in G[V \S]. Thus, for every cycle in Γ, we can easily construct a constraint,
namely we take the sum over all variables whose vertex is in the cycle and
require that this sum is at least equal to 1. The integer linear program for
Directed Feedback Vertex Set can then be formulated as follows.

Minimize:

|V |∑
i=1

xi

Subject to:
∑
vi∈C

xi ≥ 1 ∀C : C ∈ Γ

xi ∈ {0, 1} ∀i : vi ∈ V.

We can then solve the integer linear program, and extract the optimal
solution of G by computing X = {vi | xi = 1}. One immediate problem with
this formulation is that the set Γ may be too large to compute. Consider the
directed graph Kn = (V,En) where V = {v1, . . . , vn} and for every u, v ∈ V
we have the edge (u, v) ∈ En. Observe that for every subset C ⊆ V , we
have |C|! permutations of the same vertex set. Hence, we need to find a
smaller set of suitable cycles to use instead of Γ. In Chapter 4 we discuss
how we improve on our choice of cycles to obtain an optimal solution more
efficiently.

2.4.2 Branch & Bound

The idea of a Branch & Bound algorithm is to create an exhaustive search
tree to find the optimal solution for some optimization problem. There are
two parts to any Branch & Bound algorithm, firstly, the “Branch” part is
considered as exhausting all possible search possibilities per item, e.g. ver-
tices, and solving the resulting subproblem after choosing said item. From

11

each branch, we obtain a candidate solution (possibly empty), and using
our previous choices, we can recover a solution for the subproblem of the
respective branch. In the end, the overall optimal solution is collected.

In the context of the Directed Feedback Vertex Set problem, one
possible Branch & Bound formulation is branching on vertices, and deciding
whether the selected vertex belongs or does not belong to the solution. For
the former, we remove the vertex from the graph, and for the latter, we
require the vertex to be in the graph. We then find the smallest set of vertices
to make the two resulting graphs acyclic, or None, if there does not exist
such a set of vertices. Note that for the starting graph G there always exists
a solution (removing all vertices from G), but that in subsequent branches,
we may accidentally require two or more vertices that have a cycle to never
be removed, and thus no solution exists. After collecting both results, recall
that we included one vertex in the solution. We therefore include that vertex
to the solution of its respective branch, and the smallest of the two solutions
is then returned, or we return None if both branches yielded None.

Pruning It is clear that the size of the search space in the above example is
already 2n. To explore fewer parts of the search tree, also known as pruning
the search space, we compute a lower bound ℓ of the number of vertices in
an optimal DFVS of G, and a good upper bound M of G. We can use the
upper bound as a budget k: in each branch we are looking for a solution of
size at most k, if it exists. Each time we make a choice to include a vertex
in the solution in a branch, we decrease k by 1.

Clearly, for any part of the search tree for which the subproblem (a
directed graph) contains a cycle and the remaining budget is 0, we can stop
including additional vertices in the solution, because we are not going to
find a solution that is smaller than M if we collect all the vertex choices up
to the root of the search tree.

Given a lower bound ℓ, we may already preemptively decide that a par-
ticular branch requires us to include more vertices in the solution than we
have budget for, this prevents exploring additional parts of the search tree.
It is therefore important to ensure that the lower bound and upper bound
are as tight as possible. The earlier we decide that we exceed our budget
the more we can prune from the search tree.

Branch & Reduce To further attempt to speed up a Branch & Bound, we
can integrate reduction steps into the algorithm, obtaining what is known
as a Branch & Reduce algorithm. Reducing has two possible advantages,
firstly, we hopefully shrink the size of the graph, and therefore of the search
space, and secondly, it allows us to further prune branches. At the very
start, we reduce our directed graph, and obtain a set of forced vertices in
our solution S. If |S| exceeds our budget, we can cut off the branch, since

12

|S| is a lower bound. If |S| does not exceed our budget, we reduce our
budget by |S|, and proceed as normal. In some cases however, reducing is
not guaranteed to speed up a Branch & Bound [11].

2.5 Simulated Annealing

As mentioned above, we can use a heuristic to improve the performance of
both an ILP and a Branch & Bound algorithm. A heuristic is a method of
exploring the solution search space of an optimization problem, exploiting
specific aspects of the problem. Additionally, heuristics do not have quality
guarantee of the output, but we hope that the output is of very good qual-
ity. Furthermore, we hope that the computational effort of finding a good
solution is low.

There are many approaches to construct a heuristic for an optimization
problem, such as a greedy algorithm, a local search, or a simulated annealing
algorithm. We focus on a simulated annealing algorithm, given its large
flexibility to tune its running time, but possibly at the cost of obtaining
worse solutions. However, we first need to discuss some terminology, and
what a local search is, since a simulated annealing builds on top of a local
search.

We first define a search space S as the set of all possible solutions for a
given problem. For the Directed Feedback Vertex Set problem, we
have that S contains all directed feedback vertex sets of a given directed
graph G. Additionally, we are given an objective function f : S → R that
we aim to minimize or maximize, which may for instance be the size of the
solution. For each solution x ∈ S, we can define a neighborhood N(x) of
solutions that are reachable from x, i.e., we can transform, x into a solution
y ∈ N(x) according to some criteria. Starting from an initial solution
x0, we move to a next possible solution x1, and continue moving towards
subsequent solutions, until some stopping criterion is met.

The key idea of a local search is to define a small neighborhood for each
solution with respect to size of the search space. For example, one possible
neighborhood definition is the set of all directed feedback vertex sets differing
only by one vertex, given some initial solution Z.

We can now discuss what a simulated annealing algorithm is. A simu-
lated annealing algorithm aims to minimize a given objective function. As
explained above, we start with an initial solution and define an appropriate
objective function, and we define how we move from one solution to the
next. Like in a local search, we define a small neighborhood, as to how we
move from one solution to another solution. If this new solution is a better
solution, e.g., a smaller solution in the context of the Directed Feedback
Vertex Set problem, it is immediately accepted.

The key idea to a simulated annealing algorithm is that worse moves

13

may be accepted, i.e., we replace our current solution with a worse solution,
with a small probability, depending on some temperature T ∈ R.1 Let the
energy variation δ be defined as δ := f(x′)− f(x), when we move from one
solution x to a new solution x′. The acceptance probability is then given by

p = min(1, e−δ/T), (2.1)

which is also known as theMetropolis Rule. Observe that as the temperature
T decreases, so does the acceptance probability p.

Cooling scheme During the simulated annealing algorithm, we aim to
decrease the temperature to reduce the probability of moving towards a
worse solution. This method of changing the temperature is called a cool-
ing scheme. There four important decisions to be made when designing the
cooling scheme, namely:

1. the starting temperature,

2. when to decrease the temperature,

3. how to decrease the temperature,

4. and when we stop the search.

Firstly, the starting temperature must be high enough such that the search
initially resembles a random search, i.e., randomly sampling another solution
from the search space. Additionally, we want to be able to reach all solu-
tions. However, the starting temperature must not be too high, otherwise
we perform a random search for too long.

Secondly, there are two options when we decrease the temperature. For
the first option, we can decrease the temperature after every iteration, giving
us great flexibility in controlling the running time of the simulated annealing
algorithm, at the cost of possibly worse solutions. For the other option, we
can decide to decrease the temperature after an equilibrium is reached, i.e.,
we are no longer able to accept a new solution, or every after attempted
move.

Thirdly, there are two common ways how we can decrease the temper-
ature. We can either use a linear law Ti+1 = Ti − α, or a geometric law
Ti+1 = α ·Ti, where i denotes the iteration number and α is a constant. Ob-
serve that the constant α controls how quickly the temperature decreases,
which brings us to the final point.

Finally, we need to ensure that the temperature is low enough when we
stop searching, such that near the end of the search, the search resembles
random iterative improvement, i.e., only accepting random local moves that

1The term simulated annealing has its origins in metallurgy; the process of annealing
is a heat treatment.

14

improve the current solution. One option is to specify the end temperature
by choosing a final acceptance probability pe, determining the smallest cost
difference (∆f)min, if it exists, and setting

Te =
(∆f)min

ln pe
,

and choosing α accordingly for both the linear law and the geometric law.
Observe that indeed

e(∆f)min/Te = e(∆f)min/((∆f)min/ ln pe) = eln pe = pe.

On the other hand, we can stop when no improvement has occurred in a
significant number of iterations, or a good number of equilibriums have been
reached.

Concluding, there are four important components of a simulated anneal-
ing algorithm. Namely,

1. defining an appropriate objective function,

2. choosing the initial solution,

3. defining how we move from one solution to the next,

4. and finally, choosing the cooling scheme.

We will discuss all these points in more detail in Chapter 4.

15

Chapter 3

Kernelization

In this chapter we discuss the reduction rules we will be using to reduce Di-
rected Feedback Vertex Set instances. Firstly, we discuss the equiv-
alence of finding a DFVS on bidirected graphs and the solving Vertex
Cover problem on its induced undirected graph. We then discuss some
simple reduction rules for the Directed Feedback Vertex Set prob-
lem. Using a modified version of these reduction rules, we can split a di-
rected graph G = (V,E) into a monodirected graph Gd = (Vd, Ed) and a
bidirected graph Gb = (V,Eb), with Vd ⊆ V , such that an optimal solution
for the graph Gc = Gb +Gd, together with a forced set of vertices S, is an
optimal solution of G. After we have split G, we can apply a vertex cover
solver on the induced undirected graph U(Gb) to hopefully obtain a DFVS of
Gd. Finally, we conclude with a brief discussion of possible extra reduction
rules that could have been implemented.

3.1 Relation to Vertex Cover

In the Vertex Cover problem, we are given an undirected graph G =
(V,E), and asked to find a minimum-sized set X ⊆ V such that for every
(u, v) ∈ E we have u ∈ X or v ∈ X.

When G = (V,E) is bidirected, we can prove that an optimal DFVS of
G is an optimal vertex cover of U(G), and vice versa. We will be using this
property frequently going forward, and it admits the use of reduction rules
for the Vertex Cover problem in this specific situation. We first make
the following observation.

Lemma 3.1. Let G = (V,E) be a directed graph. Let G′ := U(G) be its
induced undirected graph. A vertex cover S of G′ is always a DFVS of G,
but not necessarily optimal.

Proof. Since S is a vertex cover of G′, this means that the graph G′[V \ S]
has no edges. Since for every edge (u, v) ∈ E, we have that G′ has an
undirected edge (u, v), it follows that the graph G[V \ S] also has no edges,
and thus S is a DFVS of G, but not necessarily optimal.

16

Theorem 3.1. Let G = (V,E) be a bidirected graph and let G′ := U(G) =
(V,E′) be the induced undirected graph obtained from G. We have that S is
an optimal DFVS of G if and only if S is an optimal vertex cover of G′.

Proof. (⇒) Suppose S is an optimal DFVS of G. Since for every (u, v) ∈ E,
we have (v, u) ∈ E, i.e. a cycle consisting of u and v, it must follow that
either u ∈ S or v ∈ S. Hence by construction, S must be a vertex cover of
G′.

Suppose, towards a contradiction, that S is not an optimal vertex cover
of G. As per the above argument, S is indeed a vertex cover, so it must be
that there is a vertex cover S′ of G′ such that |S′| < |S|. We know that S′

is also a DFVS by Lemma 3.1, but then S was not an optimal DFVS of G,
which is a contradiction.

(⇐) Suppose S is an optimal vertex cover of G′. Analogous to previous
argument, for every (u, v) ∈ E′, either u ∈ S or v ∈ S. Since we only have
edges between u and v in G if they have an undirected edge in G′, it must
follow that G′[V \ S] has no edges. Hence, S is a DFVS of G. Note that S
is also an optimal solution, since any DFVS of G must include at least one
of each endpoint for each edge.

3.2 Reduction Rules

For the reduction rules, we use parameter-free reductions commonly found in
the literature [1, 10]. Due to the reduction rules G can become non-simple,
i.e., self-loops or parallel edges are introduced. We can easily prevent insert-
ing parallel edges, so we treat this as an extra step in the following reduction
rules, if applicable. The reduction rules are to be applied exhaustively, i.e.,
until no reduction rule can make any progress in removing vertices or edges.
Our first reduction rule is based on strongly connected components.

Reduction 3.1. Let C = {C1, . . . , Ck} be the strongly connected components
of a directed graph G = (V,E). For every 1 ≤ i ≤ k, remove all edges in
the cut (Ci, V \Ci)G. If Ci = {v} and v does not have a self-loop, remove v
from G. The set of forced vertices S = ∅.

Before proving the correctness of this reduction rule, we first show that
only cycles exist within strongly connected components, that is, no cycle
traverses more than one strongly connected component.

Lemma 3.2. Given a directed graph G, let R be a cycle. Then there exists
exactly one strongly connected component C of G such that R ⊆ C.

Proof. Suppose, towards a contradiction, that there exist at least two strongly
connected components C1 and C2 such that R ⊆ C1 and R ⊆ C2 with
C1 ̸= C2. Let u ∈ C1, and let v ∈ C2. Since R is a cycle, and since C1 and

17

C2 are strongly connected components, there exists a path from u to v, and
vice versa. Observe then that C1 is not a largest set, which is required for
C1 to be a strongly connected component, which is a contradiction, so there
exists at most one strongly connected component C of G, such that R ⊆ C.

Clearly, since R is a cycle, there must exist a strongly connected com-
ponent containing all vertices of R. This concludes the proof.

We can now prove that Reduction 3.1 is safe.

Lemma 3.3. Reduction 3.1 is safe.

Proof. Let G = (V,E) be the original graph, and let G′ = (V ′, E′) be the
resulting graph after the reduction. It remains to show that an optimal
solution of G′ is an optimal solution of G. Let X be an optimal DFVS of
G, and let Z be an optimal DFVS of G′.

We can almost directly show that Z is an optimal solution of G, by
showing that |X| = |Z|, and that Z is indeed a DFVS of G, proving our
claim. Observe that G′ is a subgraph of G, since we only remove edges and
vertices of G to obtain G′. Hence, we have that |X| ≥ |Z|.

It remains to show that Z is a DFVS ofG, immediately proving |Z| ≥ |X|
and the claim. Suppose, towards a contradiction, that Z is not a DFVS of G.
Then there exists a cycle M in G[V \Z]. By Lemma 3.2, M is contained in
a single strongly connected component C of G (with |C| ≥ 2), or M = {v}.
By construction, if M = {v}, then v has a self-loop, and so G[{v}] is a
subgraph of G′. In the second case, we also have that G[C] is a subgraph of
G′. So for both cases, G′[V ′ \Z] must then contain the cycle M , which is a
contradiction. Hence, Z is a DFVS of G, and since Z is not necessarily an
optimal DFVS of G, it follows that |X| ≤ |Z|. This concludes the proof.

The following three reduction rules are found in literature and are fre-
quently used [1, 10]. Observe that Reduction 3.2 produces a set of forced
vertices. When applying all the reduction rules exhaustively, we can easily
compute the union of all these forced sets of vertices, and return it as a
single set.

Reduction 3.2. If v ∈ V contains a self-loop, remove v with all its incident
edges from G and include v in the set of forced vertices S.

Reduction 3.3. If N+(v) = {u} for some v ∈ V with u ̸= v, then redirect
all vertices in N−(v) to u and remove v from G. The set of forced vertices
S = ∅.

Reduction 3.4. If N−(v) = {u} for some v ∈ V with u ̸= v, then redirect
u to all vertices in N+(v) and remove v from G. The set of forced vertices
S = ∅.

18

It is straightforward to prove the safety of these three reduction rules.
Obviously, vertices with a self-loop must be included in any optimal solution.
And for the other two reduction rules, observe that if there is a cycle going
through v, then the same cycle must also use u, hence, we can safely remove
v from the graph, and redirected its edges.

We can integrate these reductions in a kernelization algorithm. Each
time we apply a reduction on G, instead of creating a new graph G′, we
simply make the changes on G directly. By the end of the algorithm, G
is the reduced graph G′. We also test whether some reduction rules are
applicable. This simply amounts to checking whether the conditions for a
reduction rule are met, e.g., verifying whether there exists a vertex v ∈ V
such that v has a self-loop.

3.3 Split & Reduce

In this section we discuss how we can split and reduce a directed graph G =
(V,E) into a monodirected graph Gd and a bidirected graph Gb such that we
can still recover an optimal solution for G. Let G′ = (V ′, E′) be the resulting
graph after exhaustively applying all the reductions, and let S be the set of
forced vertices. Observe that Reductions 3.3 and 3.4 introduce additional
edges, hence, G′ may contain significantly more bidirectional edges compared
to G. Our goal is to exploit this property, using, what we call, a splitting
reduction.

The goal of the splitting reduction is to further reduce G′, and obtain two
graphs, a monodirected graph Gd = (Vd, Ed) and a bidirected graph Gb =
(Vb, Eb) from a the reduced directed graph G′. The resulting monodirected
graph Gb ideally becomes completely empty, but then this means that we
managed to split and reduce G′ into a bidirected graph Gb, thus a vertex
cover of U(Gb), together with all forced vertices, is an optimal DFVS of
G′. We maintain that Vd ∪ Vb ⊆ V ′, but in general Vd and Vb may become
completely disjoint. The construction is then as follows.

We give a schematic of the splitting reduction in Figure 3.1. We start
the process from the reduced graph G′. We then create a directed graph
Gb without any edges using the vertices of a directed graph G′, and we
then relabel G′ to Gd = (Vd, Ed) for convenience. Then, for each pair of
bidirectional edges (u, v) ∈ Ed and (v, u) ∈ Ed, we include these edges in Eb,
and we remove these edges from Ed, and the endpoints u and v are included
in the set of restricted vertices R. For restricted vertices, only Reductions
3.1 and 3.2 are applicable. Essentially, we restrict the above given reductions
to a smaller set of vertices. We call these restricted reductions for clarity.
We then further reduce Gd using these restricted reductions. We will later
see that we can also reduce Gb using these restricted reductions. The set of
forced vertices is collected, and the process of finding all bidirectional edges

19

G′ = (V ′, E′)Gb = (V ′, ∅)

Gb = (Vb, Eb) Gd = (Vd, Ed)

Bidirectional edges of Ed

RGb = (Vb, E
′
b) Gd = (Vd, E

′
d)

Restricted reductions

S

Figure 3.1: Schematic of the splitting reduction.

of Gd can start again. When Gd no longer has any bidirectional edges, we
stop. In the end, Gb is a bidirected graph since we included only bidirectional
edges.

We can formalize the restricted reductions as follows. The first reduc-
tion is not per se a reduction, but it allows us to prove that we can move
bidirectional edges from a directed graph Gd to another bidirected graph
Gb. We will not explicitly use this reduction, but we will integrate it in the
algorithm to compute the bidirected graph Gb.

Reduction 3.5. If e = (u, v) ∈ E(Gd) is a bidirectional edge with e′ =
(v, u), then remove e and e′ from Gd, add u and v to Gb, and insert e and
e′ in Gb. Include u and v to the set of restricted vertices R.

Reduction 3.6 (Restricted Reduction 3.1). Let C = {C1, . . . , Ck} be the
strongly connected components of Gd. For every 1 ≤ i ≤ k, remove all edges
in the cut (Ci, V \Ci)Gd

. If Ci = {v} and v does not have a self-loop, remove
v from G.

Reduction 3.7 (Restricted Reduction 3.2). If v ∈ V (Gd) contains a self-
loop, remove v with all its incident edges from Gd and Gb and include v in
the solution S.

20

Algorithm 1 Reduce & Split

Require: A directed graph G = (V,E).
1: procedure Splitting(G)
2: (G′, S)← Reduce(G)
3: Gb = (V,Eb) with Eb ← ∅
4: R← ∅
5: while G′ contains bidirectional edges do
6: for each pair of bidirectional edges (u, v) and (u, v) of G′ do
7: Eb ← Eb ∪ {(u, v), (v, u)}
8: Remove the edges (u, v) and (v, u) from G′

9: R← R ∪ {u, v}
10: (G′, Gb, S

′)← RestrictedReduce(G′, Gb, R)
11: S ← S ∪ S′

12: return (G′, Gb, S)

Reduction 3.8 (Restricted Reduction 3.3). If N+
Gd

(v) = {u} for some

v ∈ V (Gd) with u ̸= v and v /∈ R, then redirect all vertices in N−
Gd

(v) to u
and remove v from Gd.

Reduction 3.9 (Restricted Reduction 3.4). If N−
Gd

(v) = {u} for some

v ∈ V with u ̸= v and v /∈ R, then redirect u to all vertices in N+
Gd

(v) and
remove v from Gd.

Since we restricted the reductions to split the graph, it therefore makes
sense to only apply the splitting reduction after we have exhaustively applied
the nonrestricted reductions first, followed by splitting the graph. Putting
it all together, to the original input graph G into a monodirected graph and
a bidirected graph, we use Algorithm 1.

Restricted Reductions While this may seem to heavily restrict the pro-
ceeding reduction process, this is actually not the case. We can prove that
restricted vertices can still be removed from the graph if they either belong
to a strongly connected component consisting of only itself, or these vertices
can be adopted into the solution because they have a self-loop. The latter is
initially impossible, since the graph is exhaustively reduced, but the former
may kickstart the reduction process.

The reason why we restrict the number of applicable reduction rules is
because moving the bidirectional edges over to Gb is not a safe reduction
if we only consider the remainder of G′. Consider the directed graph G in
Figure 3.2. Here, the bidirectional edges of v are removed, and v and v′

marked as restricted and depicted in red. According to Reduction 3.4 or
Reduction 3.3, we can redirect the edge from (w, v) to (w, u) and remove
v. We can do apply the same reduction to v′, obtaining the graph shown

21

v
u

w

v′

w′

u′

Figure 3.2: A directed graph G where we remove and remember the direc-
tional edges (v, v′) and (v′, v).

v
u

w

v′

w′

u′

Figure 3.3: The resulting graph after applying Reduction 3.4 on v and v′.

in Figure 3.3, but recall that we still need to include either v′ or v in our
solution to break that cycle. Note that we now require at least 3 vertices in
our solution, whereas the optimal solution contains exactly 2 vertices, since
there are two independent cycles that can be broken with v′ and v in the
solution.

Correctness Since we splitG′ into two graphsGb andGb, we need a slightly
different definition to prove that the performed reduction rules are safe.

Definition 3.1. Let ϕ be a reduction rule that takes a directed graph Gd =
(Vd, Ed) and a bidirected graph Gb = (Vb, Eb) and produces modified graphs
G′

d = (V ′
d, E

′
d) and G′

b = (V ′
b , E

′
b), and a set of forced vertices S ⊆ Vd with

S ∩ V ′
d = ∅ and S ∩ V ′

b = ∅. Let Z be an optimal solution of G′
d + G′

b. We
say that ϕ is safe if Z ∪ S is an optimal solution of Gd +Gb.

Initially, we set Gb = (V, ∅), and set Gd = G′, where G′ is the graph
after exhaustively applying Reductions 3.1, 3.2, 3.3 and 3.4. We can now
prove the correctness of the restricted variants.

Lemma 3.4. Reduction 3.5 is safe.

Proof. Let e = (u, v) ∈ E be a bidirectional edge with e′ = (v, u) ∈ E in
the graph Gd. Let G′

d be the graph with e and e′ removed, and let G′
b be

the graph obtained from inserting the bidirectional edges (u, v) and (v, u)
in Gb. Observe that Gd + Gb = G′

d + G′
b. Hence, an optimal solution Z of

G′
d +G′

b is an optimal solution of Gd +Gb, that is, S = ∅.

Before we prove the correctness of Reduction 3.6 we make a few obser-
vations. A strongly connected component C of Gd may belong to a larger

22

Figure 3.4: Five strongly connected components of the graph Gd that belong
to the same strongly connected component in the graph Gd + Gb. Not all
vertices are drawn.

strongly connected component from Gd + Gb because we now include the
bidirectional edges, see Figure 3.4. Furthermore, after we cut the black
edges from the graph shown in Figure 3.4, we obtain three strongly con-
nected components in the reduced graph G′

d + G′
b. Observe that still one

strongly connected component of Gd is either a strongly connected compo-
nent of G′

d+G′
b, or it is part of a strongly connected component of G′

d+G′
b.

Lemma 3.5. Reduction 3.6 is safe.

Proof. Let X be an optimal solution of Gc := Gd + Gb, and let Z be an
optimal solution of G′

c := G′
d + G′

b. Observe that G′
c is a subgraph of Gc,

since we only remove edges and vertices. Hence, X must a DFVS of G′
c, and

so |X| ≥ |Z|, since X is not necessarily an optimal solution of G′
c.

It remains to show that Z is a DFVS of Gc. We first observe that
Gb = G′

b, since we only cut edges in the graph Gd to obtain G′
d. Suppose,

towards a contradiction, that Z is not a DFVS of Gc = (Vc, Ec), then there
must exist a cycle L in the graph Gc[Vc \ Z]. Then there is a strongly
connected component C such that L ⊆ C.

Observe that Z definitely breaks all the cycles in the strongly connected
components of Gd, since each such strongly connected component may be-
long to a larger strongly connected component in G′

c. Hence, Lmust traverse
over multiple strongly connected components of Gd[L]. We observe that L
traverses over at least one pair of vertices (u, v) with u, v ∈ R such that
both e = (u, v) and e′ = (v, u) are edges of Gb, and therefore also G′

b. It
cannot be the case that both e and e′ are not edges of G′

b and Gb, then e
and e′ must be edges of Gd, and so Z must break this cycle. Since Z is at
least a vertex cover of G′

b and Gb, and so Z also breaks the cycle between u
and v in Gb. Hence, R cannot possibly use u or v, and so R is not a cycle
in Gc[C]. Which is a contradiction. Therefore, Z is a DFVS of Gc, and so

23

|Z| ≥ |X|, since Z is not necessarily an optimal solution of G′
c. It follows

that |Z| = |X|, and since Z is a DFVS of Gc, Z must be an optimal DFVS
of Gc.

Lemma 3.6. Reduction 3.7 is safe.

Proof. Let v ∈ V (Gd) be a vertex with a self-loop. Let X be an optimal
solution of Gd + Gb, and let Z be an optimal solution of G′

d + G′
b, with

S = {v}. We first show that |Z ∪ S| = |Z| + 1 ≤ |X|. Observe that the
graph G′

d+G′
b is a subgraph of Gb+Gd, since we only removed v. Secondly,

we have that v ∈ X, otherwise X is not a DFVS of Gd+Gb. Hence, X \{v}
is a solution of G′

d +G′
b. We therefore conclude that

|Z ∪ S| = |Z|+ 1 ≤ |X \ {v}|+ 1 = |X| − 1 + 1 = |X|.

It remains to show that Z ∪S is a DFVS of Gc := Gd+Gb, showing that
|Z ∪ S| ≥ |X|. Let Vc = V (Gc). Suppose that Z ∪ S is not a DFVS of Gc,
and let C = (v1, . . . , vk) be a cycle in the graph Gc[Vc \ (Z ∪ S)]. Clearly
C ∩ S = ∅, since we removed v from both Gd and Gb, which has a self-loop.
Observe that every edge used in the cycle C is present in the graph G′

d+G′
b

since we removed all incident edges of v in both Gd and Gb, resulting in G′
d

and G′
b, respectively. Hence, Z is therefore not a DFVS of G′

d +G′
b, which

is a contradiction. Hence, Z ∪S is a DFVS of Gc. This concludes the proof.

Lemma 3.7. Reduction 3.8 is safe.

Proof. Let X be an optimal solution of Gd + Gb, and let Z be an optimal
solution of G′

d + G′
b. Let v be a vertex such that N+

Gd
(v) = {u} with v /∈

R in the graph Gd. Observe that v /∈ V (Gb), otherwise v ∈ R, and by
construction, Gb = G′

b. Let C be a cycle in Gd such that v ∈ C. Since
v /∈ R, it must be that N+

Gd
(v) = N+

Gd+Gb
(v) = N+

Gd+G′
b
(v) = {u}. Since

N+
Gd+G′

b
(v) = {u}, it follows that u ∈ C as well. Secondly, observe that C

also exists in the graph Gd+Gb = Gd+G′
b. By redirecting all the incoming

edges from v to u, we have that C \ {v} is a cycle of G′
d + Gb = G′

d + G′
b.

We can now show that Z is an optimal solution of Gd +Gb.
We first show that Z is a DFVS ofGd+Gb. Let C be as defined above. As

already mentioned, C \{v} is a cycle of G′
d+G′

b, so Z∩C ̸= ∅. Furthermore,
any cycle C ′ in Gd +Gb with C ′ ∩ {v} = ∅ also exists in G′

d +G′
b. Hence, Z

is indeed a DFVS of Gd+Gb. Hence, |X| ≤ |Z|, since Z may not necessarily
be an optimal solution for Gd +Gb.

To show that Z is indeed an optimal solution, we show that X is also a
DFVS of G′

d + G′
b. Let C be a cycle in the graph G′

d + G′
b. If C does not

exist in Gd, then we know that we need v to complete the cycle C in Gd.

24

Here we need a case distinction. If v /∈ X, we already must have C ∩X ̸= ∅.
On the other hand, suppose that v ∈ X.

We know that u ∈ C, sinceN+
Gd+G′

b
(v) = {u}. Note that we can exchange

v for u in X and still have that X is a DFVS of Gd + Gb using the same
number of vertices. And thus we return to the first case where v /∈ X.
Finally, if C is a cycle in Gd + Gb, i.e., C is a cycle that does not use v
in Gd + Gb, then we also must have C ∩ X ̸= ∅. Hence, X is a DFVS of
G′

d +G′
b, and so |Z| ≤ |X|. This concludes the proof.

Lemma 3.8. Reduction 3.9 is safe.

Proof. The proof is analogous to the proof of Lemma 3.7.

We have now shown correctness of all the restricted variants of the reduc-
tion rules. This is sufficient to show that the splitting algorithm is correct.

Theorem 3.2. Let S, Gd and Gb, be the set of forced vertices, the monodi-
rected graph, and the bidirected graph after performing the splitting reduction
on G, respectively. Let Z be an optimal DFVS of the graph Gd + Gb, then
Z ∪ S is an optimal DFVS of G.

Proof. Let G′ = (V ′, E′) be the graph after initially reducing G using the
nonrestricted reduction rules, and let S0 be the first set of forced vertices. We
have that Reductions 3.5, 3.7, 3.8 and 3.4 are safe, and so we can merge all
forced vertices in a single set S′ — different than the set S which we return.
Since initially Gd = G′ and Gb = (V ′, ∅). We can now trivially apply the
construction of Theorem 2.1, and obtain that Z ∪S′ is an optimal DFVS of
G′. Since all the initial reductions are safe, we obtain that Z ∪ S′ ∪ S0 is an
optimal DFVS of G. Finally, we have that S0∪S′ = S, which concludes the
proof.

As mentioned above, we aim to find a vertex cover of U(Gb), which hope-
fully results in recovering an optimal DFVS of G. The following theorem
proves that we can indeed do this, given that the vertex cover is a DFVS of
Gd, i.e., we do not need to verify whether it is a DFVS for the graph Gd+Gb

Theorem 3.3. Let S be set of forced vertices collected after applying Algo-
rithm 1. Suppose Z is an optimal vertex cover of U(Gb), with Gb = (Vb, Eb).
If Z is a DFVS of Gd = (Vd, Ed), then Z ∪ S is an optimal DFVS of G.

Proof. The main goal of the proof is to show that Z is an optimal DFVS
of the graph Gd + Gb, from there we can directly apply Theorem 3.2 and
obtain the desired result. Let X be an optimal DFVS of the graph Gd+Gb.
We show that Z is an optimal DFVS of Gd +Gb by showing that |Z| = |X|
and that Z is a DFVS of Gd +Gb.

By correctness of the splitting reduction, observe that we need to break
at least all the edges (which are actually cycles of two bidirectional edges)

25

in Gb, so a vertex cover of U(Gb) must be a lower bound, i.e., we have
|Z| ≤ |X|.

Consider the graph Gc = (Gd+Gb) = (Vc, Ec). We show that Gc[Vc \Z]
is acyclic. Suppose, towards a contradiction, that Gc[Vc \Z] contains a cycle
C = (v1, . . . , vk). Since Z is a vertex cover of Gb, it follows that Gb[Vb \ Z]
has no edges. Hence, the cycle C must use edges remaining in Gd[Vd \ Z],
but since Z is also a DFVS of Gd, there does not exist a cycle, obtaining
our contradiction. This gives that |Z| is in fact a DFVS for Gd + Gb, and
so |Z| ≥ |X|. This gives that |X| = |Z|. Clearly, Z is an optimal DFVS of
Gd +Gb, and by Theorem 3.2, we obtain our desired result.

We can now construct our first algorithm to obtain a DFVS of the graph
G, using the Vertex Cover solver of Hespe et al. [11], which is based on
multiple phases of Branch & Reduce and Branch & Bound. If we fail to find
a DFVS of Gd, we will use an integer linear program formulation, which we
will discuss in the next chapter.

3.4 Extra Reduction Rules

After the conclusion of the Parameterized Algorithms and Computational
Experiments, we were able to see which reduction rules other teams used. We
give a very brief summary of possible additional reduction rules that could
have been used together with our reduction rules. Several teams adapted
reduction rules for the Vertex Cover problem to be suitable for the Di-
rected Feedback Vertex Set problem — but it not quite clear how
they realized their adaptations. Fellows et al. [6] give an extensive list of re-
duction rules for the Vertex Cover problem. For example, their reduction
rule based crown decomposition was successfully applied to the Directed
Feedback Vertex Set problem, with some modifications. A crown de-
composition is a partition of a nonempty independent set C, called a crown,
a head H, and a remainder R that does not share any edges between C.
The crown C has a matching into H, i.e., the edges between C and H have
a matching of size |H|. The crown can then be adopted into the solution,
and both the head and the crown can then be removed from the graph.

Furthermore, Reduction 7 of Fellows et al. [6] was also successfully
applied. The reduction rule states that, given an undirected graph G and
two adjacent vertices u and v, if N(u) ⊆ N [v], then u can be adopted into
the solution and can be removed from G with all its incident edges.

Besides adapting reduction rules for the Vertex Cover problem, some
teams also managed to adapt reduction rules for the Maximum Indepen-
dent Set problem. The Maximum Independent Set problem can be
seen as the complement of the Vertex Cover problem: if S ⊆ V is a
maximum independent set, i.e., all vertices of S do not share any edges, of
an undirected graph G = (V,E), then V \ S is a minimum vertex cover.

26

At least one team managed to reduce cliques using a reduction rule from
Butenko et al. [14].

27

Chapter 4

Integer Linear Programming

In the previous chapter we explained how we reduce a directed graph G into
a monodirected graph Gd and a bidirected graph Gb. If an optimal vertex
cover of Gb is not a DFVS of Gd, we need a different approach to solving
the problem exactly. As the title of the chapter suggests, we will be using a
standard Integer Linear Programming formulation, as explained in Chapter
3. In this chapter, we discuss how we generate the cycles which we will be
using in the ILP, as well as how we try to improve the performance of the
ILP by generating additional constraints.

4.1 Edge Cycle Covers

Let us first recall the Integer Linear Programming (ILP) formulation from
Chapter 3. Given the set of all simple cycles Γ of a directed graph G =
(V,E), we can find an optimal DFVS of G by solving the following ILP
formulation:

Minimize:

|V |∑
i=1

xi

Subject to:
∑
vi∈C

xi ≥ 1 ∀C : C ∈ Γ

xi ∈ {0, 1} ∀i : i ∈ {1, . . . , |V |},

and where we collect the solution X = {vi | xi = 1}.
Unfortunately, the size of Γ may be too large to efficiently compute.

Instead, we can use a constraint generation scheme, that is, we generate
a cycle of G, solve the ILP, extracting the optimal solution X, and verify
whether it results in a DFVS of G, and if not, we include another cycle
disjoint from X into the same ILP, and repeat this process until X is a
DFVS of G.

28

An immediate issue with this approach is that we need to restart the ILP
a significant number of times. To remedy this, we are looking to compute a
set of (multiple) cycles using significantly fewer cycles compared to Γ, but
which is still large enough to significantly reduce the number of times we
restart the ILP.

In the remainder of the section, we design an algorithm to compute a
small set of cycles. Later, we discuss how we are going to use this algorithm
to generate our constraints, as this algorithm may report a set of cycles that
is actually too small, i.e., we do not obtain a DFVS of G after solving the
ILP and extracting its solution. At the basis of our algorithm, we are going
to use a set of cycles derived from an edge cycle cover. The resulting set of
cycles will not necessarily be an edge cycle cover, however.

Definition 4.1. An edge cycle cover C is a family of cycles of a graph G
such that ⋃

C∈C
E(G[C]) = E(G).

Observe that not every directed graph has an edge cycle cover. If a di-
rected graph has strongly connected components with a single vertex (with-
out a self-loop), then we cannot find a cycle that contains any of those
incident edges. For our purposes, the absence of an edge cycle cover is not
necessarily problem, we just need to include every edge that is part of a
cycle into at least one constraint.

Fortunately, however, since we exhaustively applied all reduction rules,
Gd contains only strongly connected components, and has no edges between
any other strongly connected component. Hence, we can conclude the fol-
lowing fact.

Observation 4.1. The monodirected graph Gd has an edge cycle cover.

To construct an edge cycle cover, it suffices to use a trivial algorithm,
which turns out to be quite efficient. For every edge (u, v), we construct a
cycle of the graph by finding a (shortest) path from v to u. Observe, however,
that two cycles using the same set of vertices but different edges generate
exactly the same constraint. It therefore does not make much sense in using
this complete edge cycle cover. From this set of cycles, we will therefore
only use only cycles with a distinct set of vertices, which is therefore not
necessarily an edge cycle cover.

Furthermore, we want to limit the size of the generated cycles in the
edge cycle cover, so that we reduce the number of variables used in the
constraints. If we find a cycle C, we attempt to find a smaller cycle C ′ that
uses a subset of the vertices of C. In Figure 4.1, this would be the cycle
from v to w, using the edge a = (w, v). We can find these shortcuts easily
by checking whether there exists an edge, from a vertex other than v and
to a vertex other than w. Hence, starting from an edge cycle cover, we can

29

u ve

a

w

Figure 4.1: Finding a smaller cycle using the shortest path from v to u in a
directed graph.

reduce the cover by trying to find these smaller cycles, if they exist, and
using those cycles instead. Again, we ensure that the resulting set of cycles
contains only cycles with a distinct set of vertices. We call this set of cycles
a shortcut cycle set, and it is also the resulting set of cycles we will be using
in the coming sections.

For bidirected graphs, we can use a more straightforward algorithm to
compute the shortcut cycle set. Observe that for Gb, we compute the edge
cycle cover consisting of every vertex pair that share two bidirectional edges,
since for every edge (u, v) in Gb, we already have the edge (v, u), and since
Gb does not have any self-loops, this is the smallest cycle. In other words, for
every pair of bidirectional edges (u, v) and (v, u), we either create the cycle
(u, v) or (v, u) — depending on the order of iteration. Therefore, we can
simply use E(Gb) as the shortcut cycle set — for every edge (u, v) ∈ E(Gb)
we have that (u, v) is also a cycle.

Secondly, observe that we construct exactly the vertex cover constraints
when we use the shortcut cycle set of E(Gb) in the ILP. So we are guaranteed
to obtain a DFVS of Gb from the ILP. Suppose that π is a path between
two vertices u and v, then we write V (π) as the set of all vertices traversed
by π, including u and v. Tying everything together, we obtain the following
algorithm to construct a shortcut cycle set for any directed graph G, see
Algorithm 2. In order to test whether a cycle C uses a distinct set of vertices,
we sort C, and test using a hash function whether we already included the
same order of vertices in the shortcut cycle set, if not, we include C — a
different order of vertices causes the hash to be different.

4.2 Computing an Upper Bound

As mentioned above, computing a single shortcut cycle set C for a directed
graph G = (V,E) may not result in finding a DFVS of G after solving the
corresponding ILP. We can run an efficient heuristic over the ILP to obtain
a reasonably small upper bound Z, which allows us to verify whether Z is
a DFVS of G. If Z is not a DFVS of G, we compute a shortcut cycle set
of G[V \ Z], until we manage to find a DFVS of G. The hope is then that

30

Algorithm 2 Shortcut Cycle Set Construction

Require: A directed graph G.
1: procedure SCS(G)
2: if G is bidirected then
3: return E(G)
4: C ← ∅
5: for (u, v) ∈ E(G) do
6: Find the shortest path π from v to u in G, if it exists
7: Let C be the smallest cycle in the graph G[V (π)]
8: if C ̸= ∅ then
9: Sort C

10: if C /∈ C then ▷ Decide using a hash function.
11: C ← C ∪ {C}
12: return C

we increase the likelihood that an optimal solution of the generated ILP is
then also a DFVS.

Hitting Set We first observe that the standard ILP formulation is equiv-
alent to the Hitting Set problem. In the Hitting Set problem we are
given a universe U and a family of sets F such that F ⊆ U for every F ∈ F .
The task is to find a smallest set X ⊆ U such that for every F ∈ F we have
F ∩X ̸= ∅. For simplicity, we say that (U,F) is a Hitting Set instance.
Observe that we can immediately transform the shortcut cycle set that we
have into a Hitting Set instance, which also must be an optimal solution
for the ILP that we generate using the same shortcut cycle set. We will
therefore design a heuristic for the Hitting Set problem.

4.2.1 Simulated Annealing for Hitting Set

To find an upper bound of a Hitting Set instance, we will be designing
and using a simulated annealing algorithm. Recall from Chapter 2 the four
key components of a simulated annealing algorithm:

1. defining an appropriate objective function,

2. choosing the initial solution,

3. defining how we move from one solution to the next,

4. and finally, designing the cooling scheme.

The first point is easily solved, namely, we define the objective function as
the size of the current hitting set, which we obviously aim to minimize. It
remains to discuss how we choose the initial solution, how we move from
one solution to the next, and how we choose the cooling scheme.

31

Initial Solution Two standard initial solutions are either a random solu-
tion, or solution obtained by a greedy algorithm. We will use a simple greedy
algorithm, to compute the initial solution, which may not necessarily be a
minimal solution, but it will be sufficient to start the simulated annealing
from. We will later modify this algorithm to make it suitable for finding
moves.

We iteratively select elements from U that cover as many sets of F that
are currently not hit, until we hit every set F ∈ F . The pseudocode is given
in Algorithm 3.

Algorithm 3 Greedy Hitting Set

Require: A Hitting Set instance universe (U,F)
1: procedure GreedyHS(U,F)
2: S ← ∅
3: F ′ ← F
4: while F ′ ̸= ∅ do
5: x← argmaxu∈U\S |{F ∈ F ′ | u ∈ F}|
6: F ′ ← F ′ \ {F ∈ F ′ | x ∈ F}
7: S ← S ∪ {x}
8: return S

Moves Let S be the current solution. The idea is to choose an element
u ∈ S uniformly at random, i.e., with probability p = 1/|S|, to take out
from S. Since Algorithm 3 generally gives decent solutions, we are going to
modify it slightly to obtain a new candidate solution S′ such that u /∈ S′,
resulting in Algorithm 4. Note that we are only interested in hitting just the
sets in M = {F ∈ F | F ∩S \ {u} = ∅}, and that we need to exclude u from
U \S′. In general, it may be the case that there does not exist such a hitting
set S′, since there may exists an F ∈ F with F = {u}. One can apply a
reduction rule at the start to include all such elements in the solution, but
since we are including cycles of at least two vertices at all times, we will
not apply such a reduction. Hence, there always exists a hitting set S′ with
u /∈ S′. The pseudocode is given in Algorithm 4.

Additionally, we will maintain a data structure to efficiently determine all
the sets in M . We create an adjacency list for each element in U containing
all the sets it hits. When we take out an element u ∈ S, clearly only those
sets that u hits might become unhit. Furthermore, we maintain a data
structure that counts how many variables of the current solution hit each
set of F . Clearly, when the count is equal to 1 for one of the sets that u
hits, this set becomes unhit when u is removed from S. After accepting a
move, we update the counts, which is a fairly efficient operation.

Given S′ and S, we can compute δ = |S′| − |S|, and decide with proba-
bility p = min(1, e−δ/T) to accept this move. Assuming we accept this move,

32

Algorithm 4 Greedy Fixing Hitting Set

Require: A Hitting Set instance (U,F) such that |F | ≥ 2 for every
F ∈ F , a current hitting set S, and an element u ∈ S.

Ensure: A hitting set S′ with u /∈ S′.
1: procedure FixGreedyHS(U,F , S, u)
2: S′ ← S \ {u}
3: F ′ ← {F ∈ F | F ∩ S′ = ∅}
4: while F ′ ̸= ∅ do
5: x← argmaxu∈(U\S′)\{u} |{F ∈ F ′ | u ∈ F}|
6: F ′ ← F ′ \ {F ∈ F ′ | x ∈ F}
7: S′ ← S′ ∪ {x}
8: return S′

we replace S by S′. During the search, we keep track of our best hitting set
S∗, and if |S′| < |S∗|, we replace S∗ by S′.

Cooling Scheme Recall that there are four key elements of the cooling
scheme, namely,

1. the starting temperature,

2. when to decrease the temperature,

3. how to decrease the temperature,

4. and when we stop the search.

We will first go over the last three points, before determining the starting
temperature. After each time we select an element out of S, we are going
to decrease the temperature. Next, we will be using the geometric law to
Ti+1 = α · Ti quickly stop performing the random search given our starting
temperature (which we choose later).

Furthermore, we want to stop searching after a fixed number of iterations
k. Since we want that the final temperature to be low after these k iterations,
we are going to choose our target temperature Te, and derive the constant
α. We recall that we need to choose a small final acceptance probability
pe and determine the smallest cost difference (∆f)min in order to determine
the target temperature Te. Observe that for each local move, we decide to
remove one element u from our hitting set S, and thus (∆f)min = −1. For
our final acceptance probability, we choose pe = 10−9. We then obtain that
our target temperature Te is given by

Te = −
1

ln 10−9
.

33

We can now derive the constant α. Observe that Ti = αi · T0, where
T0 is the starting temperature, and recall that we have a fixed number of
iterations k, so we want that Tk = Te. Observe that for α = (Te/T0)

1/k, we
indeed have that

Tk = αk · T0 = ((Te/T0)
1/k)k · T0 = (Te/T0) · T0 = Te.

Finally, it remains to choose the starting temperature. We choose the
starting temperature T0 = 5, which is high enough such that, initially, the
search resembles a random search, and it is low enough that we are only
performing a random iterative improvement later in the search.

Tying it all together Now that all essential parts of the simulated annealing
algorithm have been discussed, we can give the resulting algorithm. We
choose k = 106, and is chosen such that the implementation of the algorithm
completes within a second in many instances. The final algorithm is then
given in Algorithm 5.

Algorithm 5 Simulated Annealing Hitting Set

1: k ← 106

2: T ← 5
3: Te ← −1/ ln 10−9

4: α← (Te/T)
1/k

5: S ← GreedyHS(U,F)
6: S∗ ← S
7: for i = 1 to k do
8: Let u ∈ S be a uniformly randomly selected element
9: S′ ← FixGreedyHS(U,F , S, u)

10: δ ← |S′| − |S|
11: if δ ≤ 0 or e−δ/T ≥ rand(0, 1) then
12: S ← S′

13: if |S| < |S∗| then
14: S∗ ← S
15: T ← α · T
16: return S∗

4.3 Improving ILP Relaxation

Many ILP solvers include solving the ILP relaxation as a means to compute
a lower bound, which is then subsequently used to prune the search space
the ILP solver explores. For our problem that means relaxing xi ∈ {0, 1}
to xi ∈ [0, 1] for every i ∈ {1, . . . , |V |}. The objective value

∑|V |
i=1 xi is then

a lower bound for the number of required vertices in the optimal solution,

34

after which it can function as a way to prune the search space of the ILP.
Hence, if we can minimize the difference between this lower bound and the
optimal (integer) solution, we may obtain a significantly faster algorithm.
For this purpose, we are including extra constraints to the ILP, which we
can compute efficiently as well.

Suppose we have a directed graph G = (V,E) consisting of a clique of n
vertices, then the optimal solution for G is n−1 vertices. When we relax the
ILP, the optimal objective value is 1/2 · n, since for every pair (vi, vj) ∈ E,
we need xi + xj ≥ 1, and this is satisfied by choosing xi = 1/2 for every
i ∈ {1, . . . , n}. Therefore, the larger the cliques in a directed graph, the
worse the lower bound of the relaxation becomes.

Obviously, finding all cliques of the graph is too time consuming, so
we are going to restrict ourselves to computing all cliques of three vertices
of the graph Gb — observe that Gd does not have any cliques since it is a
monodirected graph. Henceforth, we call a clique of three vertices a 3-clique.
For every 3-clique {vi, vj , vk}, we can include the constraint xi+xj +xk ≥ 2
to the ILP.

Since Gb is bidirected, there exists a fairly simple algorithm to efficiently
compute the set of all 3-cliques of Gb. Let (u, v) ∈ E(Gb) be an arbitrary
edge. Then for every w ∈ N+

Gb
(v), we test whether w ∈ N+Gb(u), and if

it is, then {u, v, w} is a 3-clique, and we can construct the corresponding
constraint.

Technically, we can also include constraints for all the 4-cliques, but
experiments showed that this rarely resulted in better lower bounds over
including the constraints generated by the 3-cliques.

4.4 The Algorithm

In Chapter 3 we have seen how we can shrink the input graph G into two
smaller graphsGd = (V,Ed), Gb = (V,Eb), and obtain a set of forced vertices
S, which left us to find an optimal DFVS of Gc = (V,Ed ∪ Eb), since we
could not recover a DFVS using the vertex cover of U(Gb). Now that we
have seen how we can create a small set C of cycles by computing shortcut
cycle sets, and verifying whether the ILP using C has a small solution that is
a DFVS, we can formulate an exact algorithm for the Directed Feedback
Vertex Set problem, see Algorithm 6.

It remains to show that Algorithm 6 terminates, since this is not clear
from lines 3-6 and 13-19, and that it is indeed correct. We first show that
the algorithm terminates.

Theorem 4.1. Algorithm 6 terminates.

Proof. To prove that Algorithm 6 terminates, it is sufficient to show that
the loops in line 3-6 and lines 13-19 eventually terminate — for all other

35

Algorithm 6 ILP

Require: A directed graph Gd = (V,Ed), a bidirected graph Gb = (V,Eb),
and a set of forced vertices S

Ensure: An optimal DFVS for the original graph G
1: C ← SCS(Gd) ∪ SCS(Gb) ▷ Shortcut Cycle Set computations.
2: Z ← HittingSet-SA(V, C) ▷ Simulated Annealing Algorithm.
3: while Z is not a DFVS of Gd do
4: C′ ← SCS(Gd[V \ Z])
5: C ← C ∪ C′
6: Z ← HittingSet-SA(V, C)
7: Create the ILP with the cycles C
8: Add constraints generated by 3-cliques of Gb to the ILP
9: Set Z as the initial solution of the ILP

10: Let X be the optimal solution of the ILP
11: if |X| = |Z| then
12: return Z ∪ S
13: while X is not a DFVS of Gd do
14: C′ ← SCS(Gd[V \X])
15: C ← C ∪ C′
16: Include C′ to the ILP
17: L← HittingSet-SA(V, C)
18: Set L as the new initial solution of the ILP
19: Let X be the optimal solution of the ILP
20: return X ∪ S

routines and instructions it is easy to see that they terminate. Observe that
each time that Z (or X) is not a DFVS of Gd, we compute another shortcut
cycle set, which consists of at least one simple cycle. Clearly, Gd only has a
finite number of simple cycles, and so eventually, we must find a DFVS of
Gd, showing that the algorithm terminates.

Now that we have shown that the algorithm terminates, it remains to
show that the algorithm is correct, that is, when we return Z ∪ S or X ∪ S,
we return an optimal solution for the original input graph G.

Lemma 4.1. If X is an optimal solution of the ILP generated in Algorithm
6 and X is a DFVS of Gd, then X is an optimal DFVS of the graph Gc =
(V,Ed ∪ Eb).

Proof. Observe that the ILP contains a strict subset of the cycles present in
Gc, namely for every cycle C ∈ C, we have that the cycle C uses only edges
of Gb or only edges of Gd, but not both. Hence, if X is a DFVS of Gc, then

36

it must be an optimal DFVS of Gc since it is an optimal solution of the ILP.
It therefore remains to show that X is a DFVS of Gc.

Suppose, towards a contradiction, that X is not a DFVS of Gc. As
mentioned above, after solving the ILP and collecting the optimal solution
X, we are guaranteed to find a vertex cover of Gb. Therefore, the graph
Gb[V \X] cannot have any edges. Hence, if there is a cycle C in the graph
Gc[V \X], it must only use edges present in Gd. But since X is a DFVS of
Gd, it must be the case that X ∩ C ̸= ∅, which is a contradiction that C is
a cycle of Gc[V \X].

While X may not necessarily be a DFVS of Gd, we know that the found
upper bound Z satisfies the ILP and is a DFVS of Gd. Thus, if |X| = |Z|,
then we have that Z is an optimal solution of the ILP such that Z is a DFVS
of Gd. Hence, we obtain the following corollary from Lemma 4.1.

Corollary 4.1. If X is an optimal solution of the ILP generated in Algo-
rithm 6 and Z is a DFVS of Gd, and satisfies the ILP with |X| = |Z|, then
Z is an optimal DFVS of the graph Gc(V,Ed ∪ Eb).

Theorem 4.2. Algorithm 6 is correct.

Proof. By Lemma 4.1, Corollary 4.1, and by the correctness of the reduction
step (see Theorem 3.2), Algorithm 6 indeed reports an optimal DFVS for
the original input graph G.

37

Chapter 5

Branch & Bound

In this chapter, we describe our other exact algorithm, based on the Branch
& Bound principle. Recall that a Branch & Bound algorithm is an ex-
haustive search where we select a set of vertices H (possibly a singleton) to
include in our solution of the current subproblem, and subsequently compute
the subproblem that does not contain any vertices of H, and for which we
aim to find an optimal solution. The set of vertices that we remove depends
on our branching strategy. A good branching strategy may significantly im-
prove the running time. Furthermore, we need to compute good lower and
upper bounds to prune the search space as much as possible. It is important
that the lower and the upper bounds are as close as possible to each other
to seriously prune the search space.

We first discuss how we can integrate the reduction rules of Chapter
3 into a Branch & Bound algorithm, the branching strategy we use, and
how we can compute new subproblems and find optimal solutions for each
subproblem. We then discuss how we can find a lower bound for a directed
graph. Finally, we discuss how such a lower bound, in conjunction with an
upper bound can be used to significantly prune the search space.

5.1 Branch & Reduce

As the very first step, even before we start the Branch & Reduce routine
that we will be designing in this section, we apply only the nonrestricted
reduction rules defined in Chapter 3 on the input graph G, we defer the
majority of the reduction work to the initial calls of the Branch & Reduce
algorithm. After we have reduced G to G′ and a set of forced vertices S,
we compute all strongly connected components C of G′. Observe that we
only need to find an optimal solution for each of the strongly connected
components of G′, together with S, to find an optimal solution of G. We
also compute an upper bound for each strongly connected component in C,
see also Section 5.3. We supply these strongly connected components to the
Branch & Reduce algorithm.

38

At each recursive call, the first operation is to apply the complete ker-
nelization, i.e., starting with the nonrestricted reduction rules, followed by
splitting the resulting graph into a monodirected graph Gd and a bidirected
graph Gb, together with all forced vertices S — see also the Reduce & Split
algorithm in Chapter 3. This kernelization in each recursive call is what
makes a Branch & Bound algorithm a Branch & Reduce algorithm. We will
later see how we construct another directed graph from Gd and Gb to use
as the input for the Branch & Reduce algorithm.

Branching Strategy We now discuss our branching strategy. Suppose that
Gd+Gb is not acyclic. Suppose that there exists a bidirectional edge (u, v) ∈
E(Gb). Then, if we do not want to choose u to belong in the solution of
Gd + Gb, then all of N+

Gb
(u) must be at least in the solution, otherwise we

cannot make Gb acyclic. Hence, either u or all of N+
Gb
(u) are part of an

optimal solution of Gd + Gb. We can quickly find such vertices, if they
exists.

Clearly, it may be the case that there does not exist such a u in Gb.
Instead, we will branch over a smallest cycle of Gd. Clearly, at least one
vertex of any cycle must be removed, and by choosing the smallest cycle, we
hopefully do not create too many subsequent branches, therefore limiting the
search space. Observe that we can find a smallest cycle of Gb by computing
the shortcut cycle set of Gb, as described in Chapter 4. Recall that this
set is constructed by selecting only the smallest cycles with a distinct set of
vertices from an edge cycle cover of Gd+Gb, which exists. We then sort this
set of cycles in ascending order in terms of the size of the cycles. We can
additionally sort the vertices of the smallest cycle in ascending order in terms
of their in-degree and out-degree: namely we use the key |N−

Gd
(u)| · |N+

Gd
(u)|

to sort these vertices. The intuition behind this key is that we want to branch
over vertices with both a high in-degree and out-degree. If the sum were to
be used instead, we may branch over a vertex with a very high out-degree,
but a very small in-degree, possibly breaking relatively few cycles.

Computing new subproblems Suppose that we have chosen a set of ver-
tices H to include in the solution of our current subproblem. Clearly, it
remains to find an optimal solution Z for the graph Gc := Gd + Gb that
does not contain any vertices of H, which is the next subproblem we want
to solve. When we combine Z with H, we have obtained a possible solution
for Gc. We will therefore construct these subproblems as follows.

We firstly create the new graph Gc, and then remove H from this graph.
Each time we branch, we create a new copy of Gc, to prevent Gc changing
throughout the recursive call as we also apply reductions on the obtained
subproblems, which ultimately also change Gc. This is by far the easiest so-

39

lution, and is even used by winning solvers of the PACE challenge [11]1. The
subsequent search tree is then tasked to find an optimal DFVS Z for this re-
sulting subproblem. Then, a candidate solution for our current subproblem
is Z ∪H.

After having computed the solutions of several subproblems, which may
also be None for reasons that we will see later, we need to construct an
optimal solution for our current subproblem. To do this, we will keep track
of a current best solution, initially set at None. Each time we find a solution
Z (that is not None) after a branch, we determine whether Z ∪ H is a
smaller solution, and if so, we use Z ∪H as our best solution. Observe that
we recover an optimal solution for the original problem in this way. For
each cycle we need to at least remove one vertex, and by obtaining smallest
solutions for each branch, we can eventually construct a smallest solution
for our original problem.

5.2 Lower Bounds

In Chapter 4 we have discussed that the ILP relaxation gives a lower bound
for the number of required vertices in the optimal solution. Recall that we
repeatedly compute an upper bound Z for the Hitting Set instance, using
the simulated annealing algorithm we defined, consisting of all the shortcut
cycle sets that we want to use in our ILP. When Z is a DFVS of Gd, we
believe that we have a suitable set of cycles to use in our ILP. We can use
this set of cycles to use as a lower-bound computation.

However, in the context of a Branch & Bound where we frequently will
need to compute a lower bound, it does not make much sense to spend
a significant amount of computing upper bound Z, which is a DFVS of
Gb. Observe that we may both require the computation of many shortcut
cycle sets until Z is a DFVS of Gd, and additionally, running the simulated
annealing algorithm may also be slow when many iterations are used, i.e.,
106. For both reasons, we fix the number of iterations to find the upper
bound Z at a small number, e.g., five iterations, and reduce the number
of iterations of the simulated annealing by a factor 100, which reduces the
running time by about a factor 100 as well. Experiments showed that 106

iterations required about 700ms, and 7ms per branch is acceptable. We
adjust the cooling scheme accordingly.

Having computed an appropriate set of cycles, we can also include the
3-cliques of Gb to improve the lower bound. After this, we construct the
relaxed ILP-formulation, and solve it, obtaining a lower bound ℓ ∈ R. Ob-
serve that ⌈ℓ⌉ is also a lower bound, so we return this value as our lower
bound. The pseudocode to compute a lower bound for Gd+Gb is then given
in Algorithm 7 (we do not explicitly need to compute Gd + Gb). Observe

1We inspected their source code to conclude this fact.

40

that in the event that Gb is not empty, we first need to run a simulated
annealing algorithm before verifying whether Z is a DFVS of Gd, otherwise
we will probably have a very small set of cycles to compute our lower bound
for. We will account for one iteration of the 5 when Gb is not empty.

Algorithm 7 ILP-relaxation

Require: A monodirected graph Gd = (V,E), a bidirected graph Gb

1: procedure Lower(Gd, Gb)
2: C ← SCS(Gd) ∪ SCS(Gb) ▷ Shortcut Cycle Set computations.
3: k ← 5
4: Z ← ∅
5: if E(Gb) ̸= ∅ then
6: Z ← HittingSet-SA(V, C, 104)
7: k ← 4
8: while Z is not a DFVS of Gd and k > 0 do
9: Z ← HittingSet-SA(V, C, 104)

10: C′ ← SCS(Gd[V \ Z])
11: C ← C ∪ C′
12: k ← k − 1
13: Create the ILP with the cycles C, with variables xi ∈ [0, 1]
14: Add constraints generated by 3-cliques of Gb to the ILP
15: Solve the ILP, and let ℓ be its optimal objective value
16: return ⌈ℓ⌉

5.3 Upper Bounds

Recall from Chapter 2 that we can use upper bounds as a budget k to prune
the search space. We may also supply budgets that are smaller than an
actual upper bound in order to prune the search space even more. However,
we may then determine that a subproblem does not admit a solution of size
k, e.g., if we have that Gd or Gb contains a cycle but a budget of 0, we can
stop the search for a solution. In such a situation we return None, thus
each recursive call may output an optimal DFVS of its subproblem of size at
most k, or None if its subproblem does not admit a DFVS of size at most
k. In the remainder of this section we discuss how we aim to exploit upper
bound computations to prune the search space as much as possible.

Initially, we can compute an upper bound of Gd +Gb after applying our
initial reductions before starting the Branch & Reduce algorithm. We have
two choices of algorithms here, the simulated annealing algorithm of Galinier
et al. [10], and adapting Algorithm 6 to return the found upper bound Z,
see Algorithm 8. In practice, the simulated annealing algorithm of Galinier
et al., based on maintaining topological orderings, sometimes manages to

41

give better solutions, but showed to be significantly slower. While it is very
important to prune the search space as much as possible, we do want to find a
good upper bound quickly. Algorithm 8 manages to terminate significantly
faster, while still giving many solutions close to optimal, or optimal. We
use this algorithm to compute an upper bound for each strongly connected
component of G′, i.e., the graph obtained by only applying the nonrestricted
reduction rules. Since Z is an actual upper bound (and not just the size of
an upper bound), we can instruct our Branch & Reduce algorithm to search
for a solution of size at most |Z| − 1, if it exists. If such a solution does not
exist, it must be that Z is an optimal solution, which we can immediately
return.

Algorithm 8 Finding a Hitting Set based upper bound of Gd +Gb

Require: A monodirected graph Gd = (V,E), a bidirected graph Gb

Ensure: A DFVS Z of Gd +Gb

1: procedure Upper(Gd, Gb)
2: C ← SCS(Gd) ∪ SCS(Gb) ▷ Shortcut Cycle Set computations.
3: Z ← ∅
4: if E(Gb) ̸= ∅ then
5: Z ← HittingSet-SA(V, C, 106)
6: while Z is not a DFVS of Gd do
7: Z ← HittingSet-SA(V, C, 106)
8: C′ ← SCS(Gd[V \ Z])
9: C ← C ∪ C′

10: return Z

Furthermore, observe that Algorithm 7 gives an upper bound Z for the
Hitting Set instance, which may also be a DFVS ofGd, but not necessarily.
Rather than computing a new upper bound, which is relatively costly, we
can use Z instead. We may possibly improve current budget for this branch,
and subsequent branches, but if not, we are not going to spend additional
time to look for a good upper bound of our current subproblem. Spending
more time to find an upper bound for each node of the search tree to tighten
our budget is too costly. We hope that our initial upper bound is of sufficient
quality such that we already have very tight budgets at each recursive call.
When we have managed to find a DFVS Z with |Z| < k, where k is our
current budget, we can apply the same trick as above, where we tighten the
budget to |Z| − 1. If Z is not a DFVS of Gd, we simply continue searching
for a DFVS of size at most k.

Additionally to (possibly) using the DFVS of Algorithm 7, we can use
the solution X of a recursive call, if it exists, and replace our budget with
|X|−1, and proceed to our next branches. Observe that we keep tightening
our budgets as much as possible each time we have a candidate solution.
Note that, this is also a smaller solution than our best solution found thus

42

far.
Finally, recall that we can prune the search space using the set of forced

vertices, and our computed lower bounds. If |S| > k, or ℓ > k, we can
stop the search and return None. Since we want to stop searching as soon
as possible, we perform both of these checks immediately after running the
kernelization. When |S| ≤ k or ℓ ≤ k, we start branching, and recover the
smallest solution, if it exists.

43

Chapter 6

ILP Evaluation

In this chapter we aim to evaluate the effectiveness of our kernelization for
our ILP-based algorithm. We analyze whether the use of a kernelization
can reduce the running the time of our ILP-based algorithm presented in
Chapter 4, and whether the models that we require to solve the problem are
smaller in size. First however, we briefly discuss the results of the Parameter-
ized Algorithms and Computation Experiments challenge, as our ILP-based
algorithm was the best performing exact algorithm. We then discuss how
we evaluate our ILP-based algorithm, and which instances we will be using.
After, we gather and briefly discuss all the results. Finally, we conclude how
effective our reductions proved to be.

GitHub Repository https://github.com/satanja/Thesis.

6.1 PACE

This year’s edition of the Parameterized Algorithms and Computation Ex-
periments challenge (PACE 2022) hosts the Directed Feedback Vertex
Set problem. The challenge consists of two categories. The first category
is the exact track, where the goal is to design an efficient as possible exact
solver — this is also the track we participated in. And secondly, a heuristic
track, where the goal is to give a DFVS that is as close to optimal as pos-
sible, but not necessarily optimal. Since our focus is on the exact track, we
will henceforth only focus on the exact track.

For evaluation, 200 instances were used in the challenge, of which 100
public instances were released in February 2022 for participants to test their
algorithms against — we later discuss how these instances were selected.
Participants were required to submit their solver (as an executable) to the
platform Optil.io1. For each instance, the solver had a maximum time limit
of 30 minutes to find a solution. Participants were scored by the total
number of solutions found within this time limit per instance.

1https://optil.io

44

https://github.com/satanja/Thesis
https://optil.io

Additionally, the platform would give feedback about the correctness
and optimality of the computed solutions for the public instances, i.e., users
could see per instance whether the computed solution used as many vertices
as the smallest known solution, whether the solution used more vertices than
the smallest known solution, or whether the solution was not a DFVS of the
input graph. While highly unlikely, it may therefore be that the reported
solution is marked as optimal, while it was not optimal; the solution may
have been the smallest known solution for that particular instance. Solvers
were required to give optimal solutions at all times, and were subject to
disqualification if they failed to produce optimal solutions.

Furthermore, submitted solvers could only use open source libraries or
dependencies. This constitutes source code that is publicly and freely ac-
cessible under an open source license. Closed source Integer Linear Pro-
gramming solvers, such as Gurobi2, were therefore prohibited to use. Ad-
ditionally, per team, at most three solvers could be submitted that did not
share a significant part of each other’s code base. Finally, solvers were pro-
hibited from using multithreading techniques, with two small exceptions:
other threads and processes may be started as long as there is exactly one
non-blocking process or thread, or as long as their purpose is to pipe input
and output between other threads and processes.

With these rules in mind, we decided to use COIN-OR’s Mixed Integer
Linear Programming solver Cbc3. This was the best performing open source
ILP library for which a Rust4 interface existed, in the form of a so called
wrapper. Unfortunately, very few performant open source ILP library wrap-
pers exist for Rust, excluding options like Google’s OR-Tools5 or SCIP6.
We later see that using a good ILP solver may contribute significantly in
obtaining good results in the competition.

Instances Schulz et al. [13], the program committee of this year’s chal-
lenge, generated a large pool of (synthetic) instances, using KaGen [9]. Ini-
tially, a large pool of instances were generated. From this pool, instances
that had fewer than 1000 strongly connected components, had more edges
than vertices, and were of at most 50MB were selected. Then, the exact
solver of the organization was used to exclude instances that were solvable
within a second. Instances were then uniformly sampled at random. In par-
ticular, the instance pool eventually contained both easy and hard instances
[13].

2https://www.gurobi.com
3https://github.com/coin-or/Cbc
4https://www.rust-lang.org/
5https://developers.google.com/optimization/
6https://www.scipopt.org/

45

https://www.gurobi.com
https://github.com/coin-or/Cbc
https://www.rust-lang.org/
https://developers.google.com/optimization/
https://www.scipopt.org/

6.1.1 Results

During development of the solver, it became clear that an earlier version of
Algorithm 6 already managed to find the most solutions compared to the
Branch & Reduce algorithm. For this reason, we decided to focus on an ILP-
based algorithm, and improve it as much as possible, obtaining Algorithm
6.

As mentioned in Chapter 3, we use the vertex solver of Hespe et al. for
finding a vertex cover of the induced undirected graph of Gb, which hopefully
is a DFVS of Gd. In some situations, however, their solver already exceeds
the time limit of 30 minutes, while it may not even be the case that a
vertex cover of Gb gives us a DFVS of Gd. To possibly improve the solver’s
performance for the challenge, we apply a fixed time limit of 5 minutes for
the vertex cover solver, and simply continue with the ILP as if a vertex
cover of Gb is not a DFVS of Gd. After 5 minutes, it was generally highly
likely that the vertex cover solver would exceed the 30 minute time limit.
We break off the search in the hope that Cbc can find the solution, even if
it is very unlikely to.

In total, 13 teams participated in the exact track, all results can be seen
in Table 6.1. Three teams were disqualified due to computing a suboptimal
on exactly one of the 100 private instances. Unfortunately, this includes our
solver as well. This was due to a small bug in the restricted version of a
reduction rule that ultimately did not contribute much to solving instances
more quickly using the ILP-based algorithm. For this reason, we omitted
this reduction rule from the thesis and the solver.

If we disregard our unfortunate disqualification, we see that the solver
managed to produce an acceptable number of 144 solved instances out of
200 instances. Without the disqualification, this would have resulted in an
acceptable 5th position — or a 7th position if the other the disqualification of
the two disqualified solvers are disregarded as well. It is clear that our ILP-
based algorithm is indeed a relatively efficient solver on synthetic instances,
but it is unclear how the solver performs in real-world applications. It would
have, in fact, been the best solver written in Rust, as the other teams have
used C++, C or Java as their programming language of choice.

6.2 Evaluation

In addition to the PACE challenge, we want to evaluate our ILP-based
algorithm more in-depth. We have two primary goals, based on analyzing
the performance of our ILP-based algorithm when the original instance has
been reduced, and when it has not been reduced. Since our ILP-based
algorithm requires a monodirected and a bidirected graph and a set of forced
vertices, we transform a directed a directed graph G into a monodirected
graph and a bidirected graph. Instead of applying a kernelization on the

46

Rank Team Solver Points

1 A. Schidler, R. Kiesel raki123 185
2 E. Gerhard et al. grapa-java 165
3 S. Angrich et al. mt-doom 152

4 R. Červený et al. goat exact 151
5 H. Froese et al. THS exact 140
6 T. Behr mndmky 130
7 H. Dickel et al. DUM 125
8 Y. Mizutani yos 120
9 R. Götz rubengoetz 88
10 A. Jain et al. DRIP 32
- A. Meiburg Timeroot DQ (175)
- S. Swat swats DQ (160)
- S.A. Tanja satanja DQ (144)

Table 6.1: Results of the PACE 2022 Challenge, exact track. Disqualified
solvers were later resubmitted, and their number of solved instances is given
between parentheses. (Only the first initial of the other participants are
known.)

input graph, we simply move all bidirectional edges to a new graph, which
gives us a monodirected and a bidirected graph. This is hardly a reduction,
and requires very little time. Furthermore, the set of forced vertices that we
supply is empty when no reductions are performed. Our research goals are
then as follows.

1. Firstly, we want to determine whether enabling reduction rules can be
used to speed up an exact solver, and in this case, whether Algorithm
6 manages to find an optimal solution for a kernel of a particular
instance more quickly than for the instance itself. Henceforth, for
clarity, we write AlgILP and AlgILP + K when we run our ILP-
based algorithm on the original instance or its kernel, respectively. We
measure the entire running time of our ILP-based algorithm since even
if the last ILP model is easier to solve, we may have had a higher cost
setting up that model, which is not desirable.

In line with the PACE challenge, we also want to decide whether turn-
ing the reductions on leads to the solver finding more solutions within
the specified time limit.

2. Secondly, we want to investigate how the resulting models, i.e., the
models that yielded a DFVS, of the original instance and its kernel
compare. We will measure the number of constraints in those models,
and the number of alive variables. We call variables that appear at
least once in a constraint alive variables. This number may be smaller

47

than the number of vertices, e.g., when a vertex is not part of any
cycle its variable will also not be contained in any constraint.

3. Thirdly, we also investigate how many ILP solver restarts are required
to recover a DFVS of Gd by solving the ILP. Recall, in Algorithm 6,
after we start solving the ILP, we may need to generate additional
shortcut cycles sets until the ILP finally manages to find a DFVS of
Gd, restarting the ILP solver each time. Clearly, restarting the ILP
solver is costly, and each time we require more shortcut cycle sets, we
say that we required an additional ILP restart

During development of the solver, we naively implemented the reduc-
tions. On the public instances of the PACE challenge, the reductions
typically completed within one minute, which was of acceptable per-
formance. However, for significantly larger graphs, we expect that the
reductions will require a significant amount of time to complete. The
used reduction rules can however be implemented more efficiently. We
therefore simply ignore the running time of the reductions themselves,
and only consider the ILPs generated on the reduced graphs, and the
time for the ILP solver to recover an optimal solution.

Algorithm Modifications As per the rules of the challenge, we were re-
stricted in choosing only open source ILP solvers. For our own purposes,
however, we will be using Gurobi version 9.5.2 instead of Cbc, which is
known as one of the best ILP solvers in the market.

Additionally, since Gurobi managed to find solutions for all bidirected
graphs of the public instances of the PACE challenge, we disabled finding a
vertex cover for Gb during our reductions, and immediately continue with
solving the ILP. Gurobi, unfortunately, does not necessarily report optimal
solutions by default. During its execution a lower bound ℓ and an upper
bound m are computed. When (m − ℓ)/m is within a certain threshold
MIPGap, the solution is assumed to be optimal. By default, MIPGap is set to
10−4, and so for large solutions, like some solutions for instances of the PACE
challenge, we may obtain a suboptimal solution. Hence, we set MIPGap to
0, which also affects the running time of Gurobi.

Environment All our experiments will be performed on an AMD 5900x
processor, a 12 core and 24 thread processor, at factory settings — the
processor supports overclocking7. Additionally, this system has a total of
16 GB of memory at its disposal. The system runs Windows 11. Due to
the large volume of instances of the PACE challenge and the other instance
pools we will be generating, we will run 20 solvers (each as a single thread)
receiving their own instance at a time — each time an instance finishes, we

7Increasing the base CPU clock frequency.

48

start a new solver thread on the next instance, if it exists. However, the
more solver threads we run, the slower their individual running time, due to
limited cache capacity per core, context switching of the operating system,
and the CPU lowering its clock speed automatically. When performing our
experiments on a smaller instance pool of at most 15 instances, we will
run 10 solver threads instead, giving a more accurate representation of the
running time.

6.3 Instances

After the submission deadline of the PACE challenge, all 200 instances were
made publicly available. We will thus be using all of these instances. In ad-
dition to these instances we will be generating other instances how AlgILP
+ K compares to AlgILP. We will consider two classes of graphs, namely
tournaments and cyclic grids.

6.3.1 Tournaments

A tournament is a directed graph G = (V,E) such that for every u, v ∈ V ,
either (u, v) ∈ E or (v, u) ∈ E, but not both. Intuitively, we can see the
directed edges as the relation “u beat v”. Given a number of vertices n,
we can generate a tournament very easily. For every u, v ∈ V , decide with
equal probability to include (v, u) or (u, v). Since this results in very dense
graphs, we can additionally supply a density parameter d, where

d =
|E|

1/2 · n(n− 1)
=

2|E|
n2 − n

.

Note that the maximum number of edges in a tournament is 1/2n(n − 1).
If we sample every possible edge with probability d, we obtain that the
expectation of the number of edges is our desired number of edges. This is
slightly more straightforward to implement than selecting d · 1/2 · n(n− 1)
monodirectional edges uniformly at random, at the cost of only obtaining
an approximate density — which we have regardless since we introduce
bidirectional edges with some probability p.

Without inserting bidirectional edges, it is unlikely that our reductions
manage to reduce a relatively dense tournament. There are going to be few
strongly connected components, and the probability that each vertex has at
least two ingoing or outgoing edges is high. However, since we know that
we can split off the bidirectional edges of the tournament, the hope is that
we can at least make some progress reducing such a graph, especially when
the probability to introduce a bidirectional edge is high.

49

Figure 6.1: A cyclic grid. Observe that for any grid square, we either have
a clockwise or a counter-clockwise cycle.

6.3.2 Cyclic Grids

We place k2 vertices in a 2-dimensional grid with size k × k. Then, for
each square of 4 vertices, we can construct a cycle between those vertices
such that we only need monodirectional edges, see Figure 6.1. Observe that
our kernelization work really well on these graphs, see Figure 6.2. Recall
that our kernelization first applies all nonrestricted reduction rules on the
directed graph. Using only these nonrestricted reduction rules, we can al-
ready completely reduce the input graph. Starting from the corners, we
can apply Reduction 3.3 and Reduction 3.4, until we obtain a self-loop on a
vertex, which we can reduce using Reduction 3.2.

Figure 6.2: Completely reducing a 3× 3 cyclic grid using only nonrestricted
reduction rules.

Note that the way we generate our constraints, we include a cycle for
each grid cell. When additionally bidirectional edges are introduced, those
smaller constraints will instead be used initially, reducing the amount of
available information to recover a DFVS of the graph. We expect that
additional constraints will be generated using the Hitting Set simulated
annealing algorithm. Hopefully, when the graph is reduced, significantly
fewer constraints will be needed.

6.3.3 Amending the Tournaments and Cyclic Grids

For cyclic grids, reduction rules are very effective, i.e., it can be shown that
the reduced graph is empty. On the other hand, tournaments are generally

50

hard to solve using AlgILP and AlgILP + K.
We can introduce bidirectional edges to a tournament in order to hope-

fully obtain an easier instance, since we can move these bidirectional edges
to another graph. We can also introduce bidirectional edges to cyclic grids
in order to prevent the cyclic grid from being completely reduced. For every
edge in the resulting graph, we can decide with probability 0 ≤ p < 1 to
introduce the reverse direction to the graph. We choose p < 1, otherwise
the graph becomes bidirected, for which we already established that Gurobi
already performs really well (using the constraints we generate).

6.3.4 Instance Selection

We generated tournaments of 500 and 1000 vertices, with a density d starting
from 0.05, up to 1 with increments of 0.05, and p starting from 0.2, up to
0.9, with increments of 0.05. We then selected the 15 slowest instances for
which we could find their solution within 5 minutes using AlgILP. The
specifications of these instances can be found in Table 6.2. The number of
vertices and edges are given for both the original graph, and its kernel, the
latter being denoted by |Vk| and |Ek|, respectively. These instances were
sorted by the difference (AlgILP + K)−AlgILP in ascending order, and
were then labeled.

Instance |V | |E| |Vk| |Ek| d p

t 01 500 3684 492 3321 0.25 0.55
t 02 1000 4842 832 3304 0.15 0.7
t 03 1000 5821 936 4724 0.2 0.5
t 04 500 3087 467 2721 0.25 0.3
t 05 500 2017 353 1385 0.2 0.2
t 06 500 2243 412 1810 0.2 0.25
t 07 500 2914 482 2316 0.2 0.7
t 08 500 2802 465 2090 0.2 0.65
t 09 500 2428 443 1942 0.15 0.85
t 10 500 3150 487 2947 0.25 0.35
t 11 500 2779 465 2572 0.25 0.2
t 12 500 2444 447 2052 0.15 0.9
t 13 500 2925 466 2692 0.25 0.25
t 14 500 3653 491 3293 0.25 0.5
t 15 1000 6136 956 5036 0.2 0.55

Table 6.2: Specification of the selected tournament instances.

The cyclic grids turned out to be relatively easy to solve, especially for
graphs with few vertices, so we generated fairly large graphs starting from
10,000 vertices, up to 50,000 vertices with increments of 500. For a particular
choice of number of vertices n, we would create a ⌈

√
n⌉×⌈

√
n⌉ grid, slightly

51

using more vertices when n was not a perfect square. The probability to
introduce bidirectional edges was limited to starting from 0.1 up to 0.5,
again with increments of 0.05. Again, we selected the 15 slowest instances
for which we could find their solution within 5 minutes using AlgILP. The
specifications of these instances can be found in Table 6.3. These instances
were sorted by the difference (AlgILP + K)−AlgILP in ascending order,
and were then labeled.

Instance |V | |E| |Vk| |Ek| p

gr 01 15129 33043 13148 28834 0.1
gr 02 47524 108786 41852 94477 0.15
gr 03 46656 106684 41312 93102 0.15
gr 04 18225 39768 15896 34753 0.1
gr 05 44521 101859 39584 89179 0.15
gr 06 49284 112955 43361 97633 0.15
gr 07 48400 110857 43146 97290 0.15
gr 08 11025 24047 9243 20269 0.1
gr 09 49729 113934 43853 98993 0.15
gr 10 45796 104931 40352 90942 0.15
gr 11 48841 111771 43472 97978 0.15
gr 12 4096 8465 2987 6300 0.05
gr 13 17689 38621 15616 34195 0.1
gr 14 20164 44125 17554 38474 0.1
gr 15 13689 29911 11988 26281 0.1

Table 6.3: Specification of the selected cyclic grid instances.

6.3.5 Measurement Deviations

In the subsequent sections we run the experiments once. We measured the
running the time of AlgILP + K, starting with 10 threads like in most
experiments. We picked one of our generated instances, namely t 07, and
measured a standard deviation of 142ms over 7 separate runs, see Table
6.48. Henceforth, we assume that the single measurements are therefore
fairly accurate, but running times that are close to each other, i.e., within
300ms, about twice the standard deviation, should be considered to be about
the same.

8We have a higher running time in Table 6.8 than all these 7 measurements, which is
most likely due to higher ambient temperatures, and the CPU reducing its maximum clock
speed a little because of it. Most of the experiments were conducted during a heatwave,
while we measured the standard deviation after the heatwave.

52

Run Running time

1 20.15
2 19.78
3 20.01
4 19.72
5 19.94
6 19.95
7 19.92

Table 6.4: Running times (in seconds) of instance t 07 when started in a
pool of 15 instances and 10 available threads.

6.4 Results

6.4.1 PACE Instances

We first analyze the results for the instances of the PACE challenge, for both
the original instances and their kernels. In line with the PACE challenge,
we enforce a time limit of 30 minutes on the input instances.

For all original graphs, AlgILP managed to find a total of 187 solutions
out of 200 instances within 30 minutes per instance, significantly outper-
forming Cbc. Using AlgILP + K instead, a total of 189 solutions were
found. For each original graph for which we could find a solution using Al-
gILP, we also managed to find the solution using AlgILP + K, but also
found two additional solutions, showing that it can certainly be beneficial
to use reductions to accelerate an exact solver.

In order to compare the results further, we exclude those instances for
which we were unable to reduce the input instance or for which we failed to
compute a solution within 30 minutes. This yielded a pool of 184 instances,
i.e., only three instances were unable to be reduced. We then compared
the running time of AlgILP and AlgILP + K. In Table 6.5, we show all
instances where AlgILP + K was faster or slower by at least 30 seconds.
These instances are again sorted by the difference (AlgILP + K)−AlgILP
in ascending order.

Unfortunately, we see that applying the kernelization may also increase
the running time significantly for a good number of instances. We also see
that a good number of instances benefitted from being reduced. For the
remaining instances not included in the table, the reductions do not seem to
have had a very significant effect in reducing the overall running time. For
119 instances, the absolute difference was within 1 second.

We choose the first 5 instances and the last 5 instances from Table 6.5
to investigate further. We will measure how many alive variables and con-
straints there are in the generated models for both AlgILP and AlgILP
+ K. We write m0 and n0 for the number of constraints and alive variables

53

Instance AlgILP AlgILP + K

e 189 537.35 167.09
e 187 432.97 125.32
e 174 384.37 137.67
e 182 363.85 170.62
e 167 396.38 212.94
e 110 240.76 140.10
e 149 278.91 178.60
e 121 220.81 131.56
e 183 208.69 124.80
e 105 124.33 76.66
e 165 105.93 59.87
e 173 1371.05 1328.60
e 177 408.82 372.73
e 175 73.24 41.73
e 170 74.98 43.91

e 153 258.70 332.77
e 180 264.13 340.51
e 148 74.25 293.49
e 181 474.85 911.05
e 172 822.16 1280.06
e 186 132.81 767.18

Table 6.5: Running time (in seconds) for some instances of the PACE chal-
lenge, for both AlgILP and AlgILP + K.

of the ILP models generated by AlgILP, respectively. Similarly, we define
mk and nk, but for AlgILP + K instead. We also give the relative dif-
ference rm and rn for both the number of constraints and alive variables,
respectively. The results are given in Table 6.6.

It is immediately clear that the reductions proved to be very effective
in reducing the first 5 instances. We see that the number of constraints
are decreased by several hundreds, and the same holds for the number of
variables, with large relative differences. Frequently, more than half of the
number of alive variables was reduced. For the last 5 instances, this is com-
pletely different. The number of constraints barely decreases, and neither
do the number of variables. The relative differences are also significantly
smaller. It is obvious that reductions are most effective when they manage
to significantly reduce the input graph, and therefore the required number
of constraints and alive variables in the resulting linear models, to reduce
the running time. On the other hand, when not so much progress is made
in reducing the input graphs, the kernels may be harder to solve.

Finally, we determined how many ILP solver restarts are required for

54

Instance m0 n0 mk nk rm (%) rn (%)

e 189 2062 661 1451 243 29.63 63.24
e 187 3247 712 2442 427 24.79 40.03
e 174 2191 652 1574 236 28.16 63.80
e 182 1699 673 1374 240 19.13 64.34
e 167 4497 821 4173 563 7.20 31.43

e 180 467435 32765 467220 32717 0.05 0.15
e 148 27506 2033 27351 2010 0.56 1.13
e 181 468490 32767 468314 32731 0.04 0.11
e 172 127581 4095 127565 4091 0.01 0.10
e 186 21917 2023 21769 1971 0.68 2.57

Table 6.6: The total number of required constraints and alive variables
produced by AlgILP and AlgILP + K for the PACE instances.

during the execution of AlgILP and AlgILP + K, see Table 6.7. As can
clearly be seen, the instances that benefitted the most from the reductions
required no ILP solver restarts. Additionally, we see that we may need more
ILP solver restarts for AlgILP + K compared to AlgILP, see instance
e 186.

Instance AlgILP AlgILP + K

e 189 3 0
e 187 1 0
e 174 0 0
e 182 5 0
e 167 2 0

e 180 0 0
e 148 0 0
e 181 0 0
e 172 0 0
e 186 0 1

Table 6.7: Number of constraint generation rounds needed to find a DFVS
for the PACE instances.

6.4.2 Tournaments

For the selected tournaments, the reductions seemed to be relatively effective
at accelerating the required solve time, see Table 6.8. For the first instance,
already 50 seconds was saved by computing its kernel. For the last instance,
however, the solve time exceeded the 5 minute limit by 9 seconds, being a
little over 20 seconds slower. It is again clear that some of these instances

55

Instance AlgILP AlgILP + K

t 01 299.55 249.76
t 02 297.06 267.33
t 03 108.06 86.18
t 04 29.52 13.78
t 05 22.49 9.88
t 06 10.83 4.62
t 07 23.34 20.50
t 08 7.59 6.03
t 09 5.91 5.28
t 10 6.35 10.21
t 11 190.54 194.63
t 12 20.95 26.72
t 13 11.60 21.52
t 14 82.31 100.52
t 15 288.91 309.82

Table 6.8: Running time (in seconds) of both AlgILP and AlgILP + K
for the tournament instances.

benefitted more from the reductions than others.
Secondly, we determine the number of constraints and alive variables for

both AlgILP and AlgILP + K, see Table 6.9. We can clearly see that
the vast majority of the models that AlgILP + K produced required fewer
constraints and alive variables. However, for t 13, we see that the number
of constraints has actually gone up by 7.08%, so in some circumstances, the
reductions do not necessarily reduce the number of constraints in our ILP-
formulation. This can be due to the fact that we may need to compute more
shortcut cycle sets for the initial set of cycles that we use for the constraint
generation — no ILP restarts were needed to solve this instance when using
AlgILP + K.

Additionally, we see that the relative difference in the number of con-
straints and variables does not always need to be very significant in order to
save much time. The kernel of instance t 01 already saved about 50 seconds,
but only 1.31% and 1.40% of the constraints and variables were removed,
respectively. On the other hand, even if relatively more constraints and
variables were removed, such as for instance t 15, it may still be the case
that AlgILP + K needs more time.

Finally, it remains to determine the number of ILP solver restarts we
need when using AlgILP and AlgILP + K. Unfortunately, we observe
again that we may need additional ILP solver restarts for AlgILP + K
compared to AlgILP for some instances, see Table 6.10. We also observe
that when the number of ILP solver restarts decreased, the running time

56

Instance m0 n0 mk nk rm (%) rn (%)

t 01 1602 499 1581 492 1.31 1.40
t 02 2010 987 1652 832 17.81 15.70
t 03 2355 993 2171 936 7.81 5.74
t 04 1754 496 1507 467 14.08 5.85
t 05 1285 475 816 353 36.50 25.68
t 06 1015 485 875 412 13.79 15.05
t 07 1197 494 1158 482 3.26 2.43
t 08 1105 496 1029 465 6.88 6.25
t 09 1110 495 971 443 12.52 10.51
t 10 1509 498 1502 487 0.46 2.21
t 11 3000 497 2804 465 6.53 6.44
t 12 1151 494 1026 447 10.86 9.51
t 13 1667 498 1785 466 −7.08 6.43
t 14 1614 499 1561 491 3.28 1.60
t 15 2445 996 2344 956 4.13 4.02

Table 6.9: The total number of required constraints and alive variables
produced by AlgILP and AlgILP + K for the tournaments.

generally improves.

6.4.3 Cyclic Grids

While the reductions seemed relatively effective to accelerate the ILP solver
for the tournaments, this is not the same story for the cyclic grids. Against
our expectations, the reductions were not of significant aid here. The run-
ning times of AlgILP and AlgILP + K are given in Table 6.11. For the
last instance, finding the optimal solution using AlgILP + K required a
total of 16 minutes and 23 seconds, significantly worse than the original
instance.

Looking at the number of constraints and alive variables in the resulting
models, see Table 6.12, we see that introducing the bidirectional edges made
the instances significantly harder to reduce. Even though at least 10% of
the number of alive vertices were removed for the kernels, AlgILP + K
required more time than AlgILP for a lot of the instances. Even for gr 12,
where 27.04% of the number of alive variables were removed for the model
produced by AlgILP + K, this was still not enough to result in a faster
solve time. Additionally, we expected a larger decrease in the number of
constraints.

If we look at the number of ILP solver restarts, see Table 6.13, we can
see that for the majority of the instances additional ILP solver restarts were
needed. Even for instances that terminated faster, such as gr 02, additional
ILP solver restarts were needed.

57

Instance AlgILP AlgILP + K

t 01 0 0
t 02 0 0
t 03 0 0
t 04 2 0
t 05 0 0
t 06 0 0
t 07 0 0
t 08 0 0
t 09 0 0
t 10 0 0
t 11 4 7
t 12 0 0
t 13 0 0
t 14 0 0
t 15 0 0

Table 6.10: The number of ILP solver restarts for AlgILP and AlgILP +
K for the tournaments.

6.5 Conclusion

It is clear that the ILP-based algorithm preforms fairly well when Cbc was
used, and performs exceptionally well when Gurobi was used instead of Cbc,
managing to even more solutions than the best solver of the PACE challenge,
but we are most likely using a better system.

Furthermore, Gurobi even managed to outperform the vertex cover solver
from Hespe et al., managing to find a DFVS of a bidirected graph quicker
than the vertex cover solver could find a vertex cover for its induced undi-
rected graph.

Regarding the reduction rules, we also saw that reduction rules can in-
deed be used to find solutions for what would have been otherwise too hard
instances for the 30 minute time limit, but this number was limited to 2
instances. Especially for the instances where many constraints and alive
variables were removed from the resulting ILP models, the running time
drastically decreased.

However, when few constraints or alive variables are pruned, the re-
ductions can either cause the solve time to decrease or increase. Clearly, we
cannot know how many constraints and alive variables are needed to recover
a DFVS before applying AlgILP or AlgILP + K. Additionally, sometimes
even more ILP solver restarts were needed for the kernels, further increasing
the running time required.

We can conclude that when the reductions manage to cause a significant

58

Instance AlgILP AlgILP + K

gr 1 119.12 79.67
gr 2 55.42 27.75
gr 3 67.98 48.57
gr 4 36.46 30.15
gr 5 34.23 42.72
gr 6 39.70 58.72
gr 7 39.28 59.58
gr 8 34.18 60.68
gr 9 38.00 65.73
gr 10 33.91 72.97
gr 11 53.24 106.99
gr 12 117.44 176.80
gr 13 42.44 111.81
gr 14 67.89 229.11
gr 15 52.51 983.00

Table 6.11: Running time (in seconds) of both AlgILP and AlgILP + K
for the cyclic grids.

reduction in the size of the graph the running time may very well decrease.
On the other hand, when the instances are already “hard”, and the reduc-
tions do not manage to significantly reduce the graph, the resulting running
time may very well increase compared to the original instance.

Additionally, the question is raised whether a few reduction rules should
even be implemented when an already strong ILP solver is used, such as
Gurobi. Considering that without any reductions Gurobi already managed
to recover 187 solutions of the PACE challenge, one may be better off gen-
erating a good ILP model before spending time implementing reductions.
Such an ILP solver is already highly optimized, and it may prove itself useful
without much work already. It seems that already the “generic” ILP reduc-
tions, which have no information about the fact that we are attempting
to solve the Directed Feedback Vertex Set problem, are sufficiently
strong to already make AlgILP practical.

We do observe that reductions manage to generally shrink the required
models to solve the problem, which is indeed desirable, especially when
models may be very large. A potential sacrifice of running time may be
worth the reduction in required memory in some situations.

Future work should determine whether a set of very strong reductions
rules, that managed to significantly reduce the input graph on a large range
of instances, can significantly reduce the running time of already hard in-
stances.

59

Instance m0 n0 mk nk rm (%) rn (%)

gr 01 12762 15100 11623 13146 8.92 12.94
gr 02 38676 47340 36648 41850 5.24 11.60
gr 03 38081 46471 36132 41309 5.12 11.11
gr 04 15380 18202 14103 15896 8.30 12.67
gr 05 36352 44354 34758 39580 4.38 10.76
gr 06 40203 49077 37972 43360 5.55 11.65
gr 07 39595 48222 37841 43140 4.43 10.54
gr 08 9286 11007 8198 9239 11.72 16.06
gr 09 40637 49556 38497 43849 5.27 11.52
gr 10 37300 45609 35266 40347 5.45 11.54
gr 11 39869 48670 37995 43470 4.70 10.68
gr 12 3629 4094 2765 2987 23.81 27.04
gr 13 14912 17664 13819 15613 7.33 11.61
gr 14 17047 20117 15601 17551 8.48 12.76
gr 15 11561 13667 10652 11988 7.86 12.29

Table 6.12: The total number of required constraints and alive variables
produced by AlgILP and AlgILP + K for the cyclic grids.

Instance AlgILP AlgILP + K

gr 01 0 0
gr 02 0 1
gr 03 0 0
gr 04 0 0
gr 05 0 0
gr 06 0 1
gr 07 0 0
gr 08 0 1
gr 09 0 1
gr 10 0 0
gr 11 0 2
gr 12 0 0
gr 13 0 0
gr 14 0 0
gr 15 0 2

Table 6.13: The number of ILP solver restarts for AlgILP and AlgILP +
K for the tournaments

60

Chapter 7

Branch & Reduce Evaluation

Recall that we integrated the kernelization from Chapter 3 in each recursive
call of a Branch & Bound algorithm, obtaining a Branch & Reduce algorithm
in Chapter 5. In this chapter we discuss how effective and practical our
reduction rules are for a Branch & Bound algorithm. We first discuss how
we will evaluate our original Branch & Bound algorithm, and the Branch
& Reduce algorithm. We then discuss which instances we will be using and
how they are generated. We then gather and discuss the results, followed
by a conclusion of the most important results.

7.1 Evaluation

Let us first briefly recall how the Branch & Reduce algorithm from Chapter
5 works. Initially, we first perform a simple kernelization using only the
nonrestricted reduction rules. Then, this resulting graph is partitioned into
its strongly connected components, and then for each of those components
we compute a good upper bound and start the Branch & Reduce algorithm.
During each recursive call of the Branch & Reduce algorithm we first apply
the complete kernelization, see Split & Reduce 1, obtaining Gd and Gb.
We then test whether we already exceeded our budget, or our lower bound
exceeds the budget. If we did not exceed our budget for both cases, we
choose a set of vertices H to be part of the solution of Gd + Gc, which we
remove from a copy of Gd+Gb, obtaining the next subproblem. We maintain
the smallest solution of Gd+Gb, if it exists, and return it. In the end, all the
results of the Branch & Reduce applications or the upper bounds, if proven
optimal, for each strongly connected component are then combined with the
set of forced vertices found during the simple kernelization, recovering the
optimal solution.

For our experiments, we disable this initial simple kernelization. Ad-
ditionally, we can easily revert our Branch & Reduce algorithm back to a
Branch & Bound algorithm by taking out the kernelization at each node of
the search tree. Instead of applying the kernelization, we simply split the

61

current directed graph G′ into a monodirected and a bidirected graph Gd

and Gb by moving all bidirectional edges to a new graph Gb, similar to our
approach in Chapter 6. Since we have no set of forced vertices, we no longer
verify whether we already exceed the budget.

Furthermore, we decide to leave out the Vertex Cover solver of Hespe
et al. we included in our kernelization (see also Chapter 3), since their algo-
rithm runs in several Branch & Reduce and Branch & Bound phases, making
it unclear for us which of both of their algorithms managed to produce the
solution. We have the following two objectives in our analysis.

1. Firstly, we aim to investigate whether a kernelization may accelerate a
Branch & Bound algorithm, in the form a Branch & Reduce algorithm.
We will measure the running time of an instance for both the Branch &
Bound algorithm and the Branch & Reduce algorithm. We will later
refer to the Branch & Reduce algorithm and the Branch & Bound
algorithm, i.e., without any enabled reduction rules, as “BnR” and
“BnB” respectively.

2. Secondly, we investigate whether a kernelization can be used more
sparingly in a Branch & Bound to further decrease the running time.

To elaborate on the second objective, we note that our kernelization
algorithm can be made significantly more efficient, like we briefly discussed
in Chapter 6. This may mean that during the Branch & Reduce algorithm
we spend a significant amount of time verifying whether we can apply each
reduction rule, without eventually reducing the graph. Clearly, this is costly
when performed at each node of the search tree.

Additionally, another problem with our Branch & Reduce algorithm is
that the vertices which we include for our current subproblem and remove
from its copy to obtain our next subproblem are not necessarily good vertices
to remove for the kernelization: these vertices may not enable any reduction
rules, or may only enable a limited amount of applications, compared to
another vertex occurring in at least one cycle. It is however hard to decide
beforehand what would be a good choice of a vertex for the kernelization.

Hence, given both problems, it may be better to alternate our Branch &
Reduce algorithm with our Branch & Bound algorithm, e.g., every 2 levels,
see Figure 7.1. Here, we consider a search tree where we have sufficiently
many vertices in the bidirected graph Gb, causing the consistent fan-out of
two branches at a time, but the number of branches per node may be larger
when we need to branch over a smallest cycle of Gd.

Not only do we prevent verifying whether any reduction rule is even
applicable, we hopefully have managed to create a subproblem where we
can perform a significant amount of work on later on. On the other hand
however, we may inadvertently increase the running time because we are
not applying the kernelizations frequently enough. We will always start

62

Figure 7.1: Alternating a Branch & Reduce with a Branch & Bound algo-
rithm every 2 levels of the resulting search tree. All the blue nodes in the
search tree are the nodes where we use the Branch & Reduce algorithm on
the current graph.

with a Branch & Reduce algorithm, and then use a Branch & Bound every
k ∈ {5, 10, 15, 20, 25} levels. For clarity, we will henceforth denote this
hybrid variant as BnR/k.

7.2 Instances

In Chapter 6 we generated two sets of instances, tournaments and cyclic
grids. As a relatively fair comparison, we aim to reuse these instances — we
refer to Section 6.3 for the structure of these graphs. However, since BnB
is rather slow compared to our ILP-based algorithm, we generate two new
pools of instances such that we obtain a good set of instances for BnB. We
shortly describe the parameters used to generate the new pools of instances
and our expectations for how well BnR works on these instances. Instances
were selected in a similar fashion compared to Chapter 6. In order to gather
the results as quickly as possible, we used 20 solver threads on the initial
instance pools. These resulting running times were used to collect the slow-
est 15 instances using BnB. Subsequent experiments were performed with
at most 10 solver threads at a time.

Additionally, we will also use the PACE instances, and we further inves-
tigate the 15 slowest instances that terminate within 30 minutes for BnR.
This set includes six instances for which BnB exceeded the 30 minute time-
limit.

We do note that we use 20 threads to collect all results of the PACE
instances, which skews the running times a little more, but all solutions are
found within the first 105 instances, so this should not matter significantly.
For the 15 selected PACE instances, we use 10 threads again.

63

7.2.1 Tournaments

Recall that we require the number of vertices, an approximate density 0 ≤
d ≤ 1 and a probability 0 ≤ p < 1 to introduce a bidirectional edge in
the tournament. We generated tournaments starting with 200 vertices, up
to 700 vertices, with increments of 50 vertices. For the density d, we start
from 0.05, up to 0.3, with increments of 0.05. Finally, the probability to
introduce a bidirectional edge p starts from 0.2, up to 0.5, with increments
of 0.05. The selected instances1 are then as follows, see Table 7.1. Instances
were labeled according the ascending order in the running time difference
between BnR and BnB + K.

Since these tournaments are relatively hard instances for our kerneliza-
tion, we expect that the resulting subproblems after selecting and removing
one or more vertices are also relatively hard instances for our kernelization.
Therefore, we expect that the BnR and the BnB algorithm perform about
equally well. Furthermore, we therefore expect that using the kernelizations
more sparingly will probably decrease the running time, since we no longer
spend as much time on the kernelizations.

Instance |V | |E| d p

bt 01 650 3089 0.20 0.30
bt 02 550 2318 0.20 0.20
bt 03 650 3586 0.20 0.50
bt 04 550 3403 0.25 0.30
bt 05 700 3113 0.20 0.20
bt 06 350 2218 0.25 0.50
bt 07 250 1319 0.25 0.30
bt 08 350 2254 0.25 0.45
bt 09 450 2826 0.25 0.35
bt 10 550 3531 0.25 0.35
bt 11 300 2249 0.30 0.35
bt 12 300 2427 0.30 0.45
bt 13 200 1537 0.30 0.50
bt 14 200 1235 0.30 0.20
bt 15 400 2277 0.25 0.25

Table 7.1: Specification of the selected tournaments.

1While we intended to disable all reduction rules, we accidentally still enabled the
initial simple kernelization. We will, however, keep the same set of instances. We will
refer to the algorithm with these settings as BnB + K.

64

7.2.2 Cyclic Grids

For the Cyclic grids, recall that we choose the number of vertices n as ⌈
√
x⌉2

for some number x. We let x start at 400, up to 10,000, with increments of
200. Additionally, the probability to introduce a bidirectional edge starts
from 0.05, up to 0.8, with increments of 0.05. The selected instances are
then as follows, see Table 7.2. Similarly to the selected tournaments, these
instances were labeled according the ascending order in the running time
difference between BnR and BnB.

Recall that the cyclic grids were designed such that they were easy to
reduce with the simple kernelization, i.e., before splitting the directed graph.
By introducing the bidirectional edges, we made these graphs harder to re-
duce, but most likely not impossible to be reduced. Especially with repeated
applications of the complete kernelization, we expect that these instances
can be significantly reduced further down the search tree. Therefore, we ex-
pect that BnB will be significantly slower than the BnR algorithm on many
of these instances. Furthermore, by delaying the kernelizations in the search
tree, we expect that the running time will significantly increase the longer
we delay the kernelizations.

Instance |V | |E| p

bgr 01 3844 13217 0.75
bgr 02 3249 10855 0.70
bgr 03 2601 8668 0.70
bgr 04 6241 19706 0.60
bgr 05 3600 12722 0.80
bgr 06 3249 10533 0.65
bgr 07 2601 9429 0.85
bgr 08 1225 2492 0.05
bgr 09 2401 8462 0.80
bgr 10 3600 10984 0.55
bgr 11 3481 11321 0.65
bgr 12 2809 9696 0.75
bgr 13 5625 17294 0.55
bgr 14 5476 14559 0.35
bgr 15 6241 20389 0.65

Table 7.2: Specification of the selected cyclic grids.

7.2.3 Measurement Deviations

In the subsequent sections we run the experiments once, as we did in Chapter
4. We measured the running time of BnR on all tournament instances,
starting with 10 threads like in most experiments, and picked one instance,

65

Run Running time

1 23.39
2 22.29
3 23.67
4 23.78
5 23.65
6 23.86

Table 7.3: Running times (in seconds) of instance bt 02 when started in a
pool of 15 instances and 10 available threads.

namely bt 02, and measured a standard deviation of 580ms over 6 separate
runs, see Table 7.3. Henceforth, we assume that the single measurements
are therefore relatively accurate, but running times that are close to each
other, i.e., within 1 second, about twice the standard deviation, should be
considered about the same.

7.3 Results

7.3.1 PACE Instances

Using BnB, we managed to find 65 solutions, and BnR managed to find 76
solutions. We observe that BnR also managed to find the solutions BnB
found, clearly showing the strength of applying reductions in a (general)
Branch & Bound algorithm. We compare the running time of all 76 solu-
tions, assigning a default of 1800 seconds when BnB did not recover the
solution, but BnR did.

For those 11 solutions that could only be found with BnR, the amount of
time saved is significant, saving −1700 to −1600 seconds. Additionally, only
the two instances required more time when using BnR: an additional 0.45s,
and 0.68s, respectively. This is a clear indication that including reductions
in a Branch & Bound algorithm is a very good choice to reduce the total
running time, even if more computational work is performed per node of the
search tree. For the remaining instances, a smaller decrease in the running
time was observed, saving between 50 seconds and 1.34 seconds.

When looking at the results of the PACE challenge, this solver would
have obtained a second-to-last place with 76 solved instances, see Table 6.1.
The major difference between our current solver and the best performing
Branch & Reduce algorithms is that those teams used significantly more
reduction rules, some of which we discussed in Chapter 3. The winner of
last year’s competition [3], which focused on theCluster Editing problem,
managed to already completely reduce their input graph on many instances
before even starting a Branch & Reduce algorithm. Furthermore, their

66

lower bounds and upper bounds were also very strong, i.e., equal in size in
many cases, which contributed to solving the instances more easily. Clearly,
achieving such results requires a significant cost in development.

Finally, we take the 15 slowest instances for which BnR managed to
find a solution within 30 minutes per instance. For 6 instances, namely
e 065, e 077, e 086, e 096, e 097, and e 098, BnB failed to obtain a solution
within 30 minutes. The other 9 instances contain instances for which BnB
algorithm was either not significantly slower or was significantly slower.

Since the solutions were all recovered within 5 minutes, we enforce a time
limit of 10 minutes when delaying the kernelization. For most instances,
alternating BnR with BnB hardly matters in the running time. However,
for e 105, we see that we fail to obtain a solution within 10 minutes for
BnR/5, but for the others we manage to obtain a solution significantly
faster compared to BnR.

For e 065, an instance for which BnB failed to report a solution within
30 minutes, alternating BnR with BnB does not really seem to affect the
solvability of the instance. For BnR/25, only 33.70 seconds are needed to
solve the instance. On the other hand, for e 077, we see that the running
time significantly increases the more we wait with a kernelization. This
suggests that it is vital that the kernelization is performed as early as possible
in the search tree.

Ins. BnR BnR/5 BnR/10 BnR/15 BnR/20 BnR/25 Class.

e 008 14.52 13.39 13.56 13.45 13.42 13.74 o
e 065 12.22 12.29 17.02 29.58 16.87 33.70 -
e 068 10.07 11.34 13.98 13.69 20.21 20.80 -
e 073 12.07 11.52 12.12 12.39 12.19 13.02 o
e 077 77.79 89.13 140.19 224.96 418.72 453.38 -
e 080 39.89 23.43 17.67 17.75 18.21 17.97 +
e 081 19.07 15.82 19.72 21.38 30.77 22.52 -
e 082 9.60 9.01 8.90 9.24 9.44 9.57 o
e 086 187.54 211.44 272.85 277.88 467.03 - -
e 093 76.35 72.87 75.72 75.93 75.73 76.45 o
e 096 20.00 19.64 20.28 21.58 20.91 21.13 o
e 097 48.72 46.37 48.63 48.14 50.02 49.44 o
e 098 108.09 104.56 107.80 107.56 112.53 111.10 o
e 099 10.06 9.90 10.10 10.12 10.41 9.85 o
e 105 295.51 - 399.03 182.07 186.44 184.84 -/+

Table 7.4: Running time (in seconds) of BnR and BnR/k, where k ∈
{5, 10, 15, 20, 25}, for the PACE instances.

67

7.3.2 Tournaments

As briefly mentioned during the instance selection of the tournaments, we
also compute the running time of the BnB algorithm with the initial simple
kernelization, i.e., BnB + K. The instances are sorted in ascending order by
the difference between the running time of the BnB + K and the Branch &
Reduce algorithms.

We first observe that BnR is slower on only one instance compared to
BnB, namely for bt 07. This clearly shows that sometimes a kernelization
may not be effective. In general, it is clear that using the kernelizations
still helped reducing the running time of these instances compared to BnB,
which we did not necessarily expect. This may be due to the fact that
eventually, in the search tree, we have removed sufficiently many vertices to
start reducing more. For the last 4 instances, BnR is marginally faster with
a difference of at most 10 seconds.

If we compare the BnB + K algorithm to our Branch & Reduce algo-
rithm, we see that only for instance bt 15 did the Branch & Reduce require
more time, and only just under 2 seconds. Clearly, this shows that it is
beneficial to continue using kernelizations instead of only using them before
running BnB. The BnB + K algorithm is however slower on three instances
compared to BnB, but for BnR these same instances are faster than BnB,
stressing the fact performing the kernelization frequently is important.

We now focus on whether we can use a kernelization more sparingly, and

Instance BnB BnB + K BnR

bt 01 226.46 160.47 59.04
bt 02 30.56 81.64 19.78
bt 03 238.01 189.75 143.53
bt 04 203.47 184.85 143.00
bt 05 948.07 187.74 151.34
bt 06 129.58 122.80 88.92
bt 07 1.90 45.29 21.83
bt 08 92.82 88.24 70.23
bt 09 55.18 68.30 51.10
bt 10 88.99 67.27 57.50
bt 11 75.75 69.27 60.03
bt 12 80.51 78.82 70.15
bt 13 78.17 72.70 65.53
bt 14 67.92 61.52 55.59
bt 15 51.51 45.95 47.65

Table 7.5: The running time (in seconds) of BnB, the Branch & Bound
algorithm with the initial simple kernelization enabled (BnB + K), and
BnR for the tournaments.

68

alternate the Branch & Reduce algorithm with a Branch & Bound algorithm,
see Table 7.6. While for some number of instances, such as bt 14 and bt 15,
delaying the kernelization barely matters. For the majority of the instances,
alternating BnR with BnB definitely has a negative impact in the running
time, such as for instances bt 03, bt 04 and bt 05, that each time require
more solve time. This again suggests that further down the search tree, we
can start reducing more.

The large exception is instance bt 01, that needed almost an entire
minute when the kernelization was applied every level of the search tree,
to needing under 4 seconds when the kernelization was only applied every
25 levels. This instance clearly benefitted from the fact that we waited
with applying a kernelization — although the running time did increase for
BnR/5. This may be due to the fact that we were able to find a good set
of vertices to remove which enabled the use of many applications of the
reduction rules.

Ins. BnR BnR/5 BnR/10 BnR/15 BnR/20 BnR/25 Class.

bt 01 59.04 77.92 5.10 4.41 4.01 3.77 +
bt 02 19.78 14.52 24.14 31.79 54.43 34.30 -
bt 03 143.53 149.81 149.34 158.85 182.23 187.37 -
bt 04 143.00 149.68 151.71 155.28 165.59 170.66 -
bt 05 151.34 167.14 161.95 171.91 161.90 177.66 -
bt 06 88.92 102.16 107.78 98.84 108.92 116.10 -
bt 07 21.83 26.21 28.31 30.91 31.39 29.50 -
bt 08 70.23 77.63 79.52 79.57 79.72 83.65 -
bt 09 51.10 50.43 52.18 79.70 50.50 52.61 o
bt 10 57.50 51.57 54.35 50.45 52.06 57.58 +
bt 11 60.03 62.35 64.29 62.29 67.32 70.58 -
bt 12 70.15 72.81 77.92 76.45 72.97 74.94 -
bt 13 65.53 67.54 70.99 71.64 70.94 72.76 -
bt 14 55.59 55.13 57.70 55.79 56.71 57.24 o
bt 15 47.65 47.52 47.69 50.07 45.31 49.19 o

Table 7.6: Running time (in seconds) of BnR and BnR/k, where k ∈
{5, 10, 15, 20, 25}, for the tournaments.

7.3.3 Cyclic Grids

For the cyclic grids, the results are more in line with our expectations. In
Table 7.7 we determined the running time for BnR and BnB. As mentioned
above, we labeled and sorted the instances according to their difference
— the smaller the better the BnR performed. We observe that for every
instance a significant amount of time was saved by applying the kernelization
at each node of the search tree, as expected. The smallest difference, i.e.,

69

Instance BnB BnR

bgr 01 284.73 67.65
bgr 02 254.07 54.02
bgr 03 229.35 33.32
bgr 04 298.45 119.89
bgr 05 234.51 65.30
bgr 06 203.47 35.84
bgr 07 202.21 44.62
bgr 08 160.33 4.77
bgr 09 155.06 38.25
bgr 10 147.07 38.97
bgr 11 146.73 41.75
bgr 12 142.09 37.16
bgr 13 158.73 97.35
bgr 14 142.93 89.24
bgr 15 141.83 112.70

Table 7.7: Running time (in seconds) of BnB and the BnR for the cyclic
grids.

for bgr 15, was already a decrease in just under 30 seconds when using BnR.
For bgr 01 almost 2 minutes were saved.

When we look at whether the kernelization can be delayed, we see that
for the majority of instances we indeed increase the running time the longer
we wait with applying a kernelization again, see Table 7.8. Only for two
instances, bgr 14 and bgr 15, the running time slightly decreased.

7.4 Conclusion

We have seen that a kernelization is definitely a very useful tool in accelerat-
ing a Branch & Bound algorithm. Even for instances that are hard to reduce,
such as our tournaments, the repeated application of a kernelization in our
BnR algorithm proved to be helpful. In some situations however, a Branch
& Reduce may actually be slower than the Branch & Bound algorithm, but
this was a rare occurrence for the investigated instances. However, to truly
obtain a practical Branch & Reduce algorithm, one may need to invest a
large amount of time in the development of good reduction rules, upper
bounds and lower bounds.

What was particularly clear for the PACE instances is that the kernel-
izations need to be applied as early as possible to see a good decrease in
the running times. However, as we saw for both the tournaments and cyclic
grids, the running time can be further improved for a select number of in-
stances by delaying the kernelization. This should, perhaps be decided with

70

Ins. BnR BnR/5 BnR/10 BnR/15 BnR/20 BnR/25 Class.

bgr 01 67.65 66.67 67.31 71.14 70.99 78.56 -
bgr 02 54.02 58.08 60.05 63.65 65.57 75.31 -
bgr 03 33.32 35.38 40.95 41.60 42.60 46.84 -
bgr 04 119.89 118.41 116.25 116.52 116.10 117.52 o
bgr 05 65.30 68.94 70.83 73.83 77.28 84.74 -
bgr 06 35.84 34.92 38.29 36.49 37.94 42.84 -
bgr 07 44.62 50.16 54.63 57.36 63.24 71.38 -
bgr 08 4.77 7.14 9.97 10.70 13.92 10.84 -
bgr 09 38.25 39.13 43.91 47.31 49.46 53.54 -
bgr 10 38.97 37.10 38.56 37.60 39.27 40.10 o
bgr 11 41.75 41.66 42.55 42.28 43.81 44.65 -
bgr 12 37.16 38.75 42.04 43.45 45.61 49.69 -
bgr 13 97.35 97.50 94.36 96.87 94.06 97.57 o
bgr 14 89.24 87.51 84.05 85.68 84.90 86.11 +
bgr 15 112.70 112.22 108.72 110.91 108.62 109.47 +

Table 7.8: Running time (in seconds) of BnR and BnR/k, where k ∈
{5, 10, 15, 20, 25}, for the cyclic grids.

a different metric than the current depth of the search tree, as still the ma-
jority of instances did not see any benefit when delaying the kernelization.

71

Chapter 8

Conclusion

The goal of this thesis was to determine whether the kernelization of a Di-
rected Feedback Vertex Set instance could accelerate common exact
algorithmic methods, like an ILP algorithm or a Branch & Bound algorithm.
Additionally, for the ILP algorithm, we wondered whether the resulting ILP
models were actually smaller when a kernelization was used, given that we
were computing a subset of all the possible constraints to solve the ILP.
For the Branch & Bound algorithm, we wondered about the necessity of
applying the reduction rules as frequently as possible. Before coming to the
overall conclusions, we briefly summarize all our previous work.

In Chapter 3, we have seen that a directed graph G can be reduced and
split into a monodirected graph Gd, a bidirected graph Gb, and a set of
forced vertices S, such that an optimal solution of Gd + Gb, together with
S is an optimal solution of G.

We then designed an ILP-based algorithm that generated a relatively
good set of cycles based on finding an edge cycle cover of Gd+Gb. Additional
sets of cycles, and thus constraints, were generated when a relatively smaller
upper bound of the current constraints did not turn out to be a DFVS of
Gd, or when the exact solution of the ILP was not a DFVS of Gd.

For our Branch & Bound algorithm, we integrated the kernelization in
each recursive call, obtaining a Branch & Reduce algorithm. To prune the
search space, we drew inspiration form our ILP-based algorithm to compute
relatively good upper and lower bounds.

In Chapter 6, we concluded that while kernelizations certainly can ac-
celerate the overall running time of the ILP-based algorithm (including the
ILP solver), this was usually only limited to instances that were signifi-
cantly reduced. When the kernelization does not manage to significantly
reduce the input graph, a strong ILP solver, like Gurobi, may not benefit
from the kernelization. We determined that Gurobi has sufficiently strong
generic preprocessing, that reductions may not even be necessary to obtain
an efficient algorithm.

Additionally, the resulting models after the kernelization generally used

72

fewer variables and constraints for all but one of the investigated instances.
As a bonus, we also determined that our ILP-based algorithm manages to
outperform the best solver of the PACE 2022 challenge.

However, for our Branch & Reduce algorithm we determined that a
kernelization is certainly useful to accelerate a Branch & Bound algorithm.
We have also seen that for some instances we can definitely refrain from
applying a kernelization in each level of the Branch & Reduce search tree, but
generally speaking, the more the kernelizations are performed early in the
search tree, the smaller the running time. Unfortunately, to truly obtain a
practical Branch & Reduce algorithm, it is key to have very strong reduction
rules. In that case, setting up an ILP-based algorithm may be easier, as
reductions may not even be necessary to implement: setting up a good
model is far more important.

8.1 Future Work and Improvements

Given that our kernelization has been implemented relatively naively, we
disregarded the running time of the kernelization during our evaluation of
the ILP-based algorithm. However, this is certainly a contributing cost.
Since we also need more reduction rules to see a significant decrease in the
running time of purely the ILP-based algorithm, the question is therefore
whether we will see an overall decrease in the running time in this situation,
i.e., more reductions but a more efficient kernelization.

For the Branch & Reduce algorithm, more efficient kernelizations also
help in determining whether we can use the kernelizations more sparingly
throughout the search tree. Additionally, we can possibly further accelerate
the Branch & Reduce algorithm by choosing vertices occurring in a cycle
that enable the application of many reduction rules. Our branching strategy
is in this sense decoupled from the kernelizations we designed, which may
not be ideal.

Finally, to the best of our knowledge, we have not seen a “revert ker-
nelization” data structure to efficiently revert the kernelization process, or
general vertex deletion operations. Such a data structure may be useful
in a Branch & Reduce algorithm, i.e., primarily for reducing the number
of copies of our graphs that we make throughout the search. These copies
are especially costly as they require the operating system to allocate new
memory, in the worst case, an exponential number of times.

73

Bibliography

[1] Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Or-
dyniak, and M. S. Ramanujan. Towards a polynomial kernel for directed
feedback vertex set. Algorithmica, 83(5):1201–1221, may 2021.

[2] Alan A. Bertossi. Covering trains by stations or the power of data
reduction. 1998.

[3] Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael
Hamann, Tobias Heuer, Jonas Spinner, Christopher Weyand, and Mar-
cus Wilhelm. A branch-and-bound algorithm for cluster editing. In
SEA, 2022.

[4] Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Raz-
gon. A fixed-parameter algorithm for the directed feedback vertex set
problem. J. ACM, 55(5), nov 2008.

[5] Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Chris-
tian Komusiewicz, and Frances A. Rosamond. The First Parameterized
Algorithms and Computational Experiments Challenge. In 11th Inter-
national Symposium on Parameterized and Exact Computation (IPEC
2016), volume 63 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 30:1–30:9, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[6] Michael R. Fellows, Lars Jaffke, Aliz Izabella Király, Frances A. Rosa-
mond, and Mathias Weller. What Is Known About Vertex Cover Ker-
nelization?, pages 330–356. Springer International Publishing, Cham,
2018.

[7] Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich,
Christian Schulz, and Darren Strash. Engineering Kernelization for
Maximum Cut, pages 27–41.

[8] Rudolf Fleischer, Xi Wu, and Liwei Yuan. Experimental study of FPT
algorithms for the directed feedback vertex set problem. In Algorithms
- ESA 2009, pages 611–622, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

74

[9] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Dar-
ren Strash, and Moritz von Looz. Communication-free massively
distributed graph generation. In 2018 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC,
Canada, May 21 – May 25, 2018, 2018.

[10] Philippe Galinier, Eunice Lemamou, and Mohamed Wassim Bouzidi.
Applying local search to the feedback vertex set problem. Journal of
Heuristics, 19(5):797–818, Oct 2013.

[11] Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash.
WeGotYouCovered: The Winning Solver from the PACE 2019 Chal-
lenge, Vertex Cover Track. 2020.

[12] Igor Razgon. Computing A Directed Feedback Vertex Set in
O∗(1.9977n), pages 70–81. in Proceedings of the 10th Italian Conference
on Theoretical Computer Science. World Scientific, 2007.

[13] Christian Schulz, Ernestine Großmann, Tobias Heuer, and Darren
Strash. Private Communication, June 2022.

[14] Darren Strash. On the power of simple reductions for the maximum
independent set problem. In Computing and Combinatorics, pages 345–
356, Cham, 2016. Springer International Publishing.

75

	Introduction
	Related Work
	Overview

	Preliminaries
	Graph Definitions
	Fixed-Parameter Tractability
	Reduction Rules
	Towards Optimization Problems

	Exact Algorithmic Techniques
	Integer Linear Programming
	Branch & Bound

	Simulated Annealing

	Kernelization
	Relation to Vertex Cover
	Reduction Rules
	Split & Reduce
	Extra Reduction Rules

	Integer Linear Programming
	Edge Cycle Covers
	Computing an Upper Bound
	Simulated Annealing for Hitting Set

	Improving ILP Relaxation
	The Algorithm

	Branch & Bound
	Branch & Reduce
	Lower Bounds
	Upper Bounds

	ILP Evaluation
	PACE
	Results

	Evaluation
	Instances
	Tournaments
	Cyclic Grids
	Amending the Tournaments and Cyclic Grids
	Instance Selection
	Measurement Deviations

	Results
	PACE Instances
	Tournaments
	Cyclic Grids

	Conclusion

	Branch & Reduce Evaluation
	Evaluation
	Instances
	Tournaments
	Cyclic Grids
	Measurement Deviations

	Results
	PACE Instances
	Tournaments
	Cyclic Grids

	Conclusion

	Conclusion
	Future Work and Improvements

	Bibliography

