
 Eindhoven University of Technology

MASTER

Hamming-Metric Codes for Quantum Channels

Bachoríková, Lenka

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/faffa67d-fdb4-41ef-9b38-886a7d8b8caa

Master Industrial and Applied Mathematics
Cryptography and Coding Theory

Hamming-Metric Codes for Quantum
Channels
Master Thesis

Lenka Bachoríková
21 July 2022

Supervision:
E. Berardini
A. Ravagnani

Assessment Committee:
A. Abiad
E. Berardini
A. Ravagnani

Credits: 30

This is a public Master’s thesis.

This Master’s thesis has been carried out in accordance with the rules of the TU/e Code of
Scientific Conduct

.

Abstract

In this thesis, CSS error-correcting codes are studied. The definition of a CSS code is
generalized for any field with q elements, and it is shown that CSS codes are also error-
correcting over these fields. Compared to the original definition by Calderbank and Shor,
the requirements on dimension and minimum distance are relaxed. The main result of
this thesis is an approximation of the number of error-correcting CSS codes which is based
on a lower bound.

2

Contents

Introduction 4

1 Classical linear codes 6
1.1 Notation . 6
1.2 Linear codes . 6
1.3 Number of linear codes . 7

2 Quantum codes 9
2.1 Qubits . 9
2.2 Qudits . 11
2.3 Quantum errors . 12
2.4 Quantum error-correcting codes . 13

3 Correcting quantum errors with classical codes: the CSS construction 16
3.1 Definition by Calderbank and Shor . 16
3.2 Definition by Steane . 20
3.3 CSS codes over Fq . 22
3.4 Correcting quantum errors with classical codes . 22

4 Lower bound for the number of CSS codes 25
4.1 Equality for CSS codes . 25
4.2 Approximating the number of CSS codes . 26

4.2.1 Lower bounds for the number of codes C1 and the number of codes C2 26
4.2.2 Examples of the bounds for the number of C1 and C2 28
4.2.3 Lower bound for the number of CSS codes . 29

5 Counting the number of CSS codes 31
5.1 Description of the SageMath code countallpairs . 31

5.1.1 SageMath code for Fq . 34
5.2 Results . 34

6 Conclusion 37

3

Introduction

Quantum error correction is the field of Coding Theory that deals with protecting quantum information.
The importance of quantum error correction arose with the development of quantum computers, which are
computers that operate with qubits instead of bits. They are much more efficient than classical computers
for certain computational tasks, such as integer factorization [7]. However, compared to classical computers,
quantum computers require error correction. Errors occur during quantum computing due to quantum noise
and interference from the environment [1]. Therefore, quantum error-correcting codes were developed to
correct these errors.

CSS codes are a family of quantum codes which are derived from two binary linear codes C2 ⊆ C1. They
were first introduced by Calderbank and Shor in 1996 [4]. Around the same time, Steane worked on the same
subject independently of Calderbank and Shor and he introduced these codes with a different definition [15].
This later turned out to be equivalent to the construction by Calderbank and Shor and therefore these
codes are named after the initials of the three researchers. Some work has been undertaken on CSS codes,
considering different families of linear codes from which the quantum codes are derived. To mention some of
them, there are examples of CSS codes generated from linear Reed-Muller codes [5, 14], from Reed-Solomon
codes [6], from algebraic-geometric codes [2] and from LDPC codes [10].

CSS codes are quantum error-correcting codes, which means that they were designed to correct quantum
errors. Calderbank and Shor prove in [4, Theorem 1] that if the binary codes C1 and C⊥

2 with C2 ⊆ C1

satisfy three conditions, then the CSS code QC1,C2
is error-correcting. The three conditions are namely

that C1 and C⊥
2 must have the same length n, the same dimension n− k and the same minimum distance d.

More precisely, if these three conditions are satisfied, the QC1,C2 can correct up to ⌊d−1
2 ⌋ errors. Many

existing examples of error-correcting CSS codes are based on a self-orthogonal linear code C, however, self-
orthogonality is not required by Calderbank and Shor. Such CSS codes can be seen for example in [8,
Example 13.1.6 and 13.1.7] or in the Steane code [15].

In this thesis we generalize the construction of CSS codes presented by Calderbank and Shor. We provide a
relaxation of the conditions in [4, Theorem 1], more precisely, we drop the condition on the minimum distance
of C1 and C⊥

2 , and we generalize CSS codes over larger fields using Steane’s definition. Moreover, we show
that there exist CSS codes which are not based on a self-orthogonal code and therefore self-orthogonality is
not a necessary condition for CSS error-correcting codes.

Since self-orthogonality is not a requirement, the number of CSS codes is larger than the number of
self-orthogonal linear codes. Therefore, we can ask the following question: How many CSS codes are there?
In this thesis we derive a lower bound for the number of CSS codes for some fixed parameters based on
results from the paper by Byrne and Ravagnani [3]. Besides, we implement a program in the SageMath
computer algebra system to count the exact number of CSS codes, in order to see if the lower bound is a
good approximation for the number of CSS codes.

Outline of the thesis

The content of the thesis is organized in six chapters. We first introduce classical linear error-correcting
codes in Chapter 1 and then we proceed with defining quantum errors and quantum error-correcting codes
in Chapter 2. In Chapter 3 we introduce the CSS construction over the binary field, both by Calderbank and
Shor, and by Steane, and then we generalize CSS codes over non-binary fields. At the end of this chapter
we discuss how binary CSS codes correct quantum errors and whether this is the case also for CSS codes

4

over non-binary fields. Finally, in the last two chapters we present the results of this thesis. In Chapter 4 we
prove that counting the number of CSS codes is the same as counting the pairs of linear codes for these CSS
codes, and we derive a lower bound for the number of error-correcting CSS codes. Then, in Chapter 5 some
results of the lower bound from Chapter 4 are compared to the real numbers of the CSS codes found by the
SageMath computer algebra system. The thesis ends with a conclusion.

5

Chapter 1

Classical linear codes

In this chapter we give some basic definitions and propositions on linear error-correcting codes. This is
necessary so that we can define quantum codes which are derived from linear codes. The Chapter is split in
three sections. In Section 1.1, we introduce the basic notation that will be used throughout the thesis. In
Section 1.2 we provide definitions on linear codes. Most of these definitions are standard and can be found
in Introduction to Coding Theory by van Lint [16] or in the Coding Theory lecture notes by Ravagnani [12].
Finally, in Section 1.3 we present some propositions related to counting or approximating the number of
linear codes. These will be used to approximate the number of CSS codes in Chapter 4. The theorems and
propositions in this section are from the paper by Byrne and Ravagnani [3].

1.1 Notation

Throughout the thesis we use the notation Fq for the field with q elements where q is a power of a prime
number p. We denote the field of complex numbers by C. Matrices and vectors are denoted by uppercase
and lowercase letters respectively, the zero vector is denoted by 0 and the identity matrix by I. The i-th
entry of a vector v is denoted as (v)i. A transposed vector of a vector v is denoted by vT . The inner product
of two vectors v1, v2 is denoted by ⟨v1, v2⟩. More notation will be introduced together with the definitions.

1.2 Linear codes

In this section we provide standard definitions on linear error-correcting codes according to Introduction to
Coding Theory by van Lint [16] or the Coding Theory lecture notes by Ravagnani [12].

Definition 1.2.1. A linear code (or a code) C is a linear subspace of Fn
q , where n is a positive integer. The

vectors c ∈ C are called codewords. The dimension of a code C is its dimension as a linear subspace over Fq.
If a linear code C2 is a subspace of a linear code C1, we denote it by C2 ⊆ C1 (or by C2 ⊊ C1 if C2 ̸= C1)
and say that C2 is a subcode of C1.

Definition 1.2.2. A generator matrix G of a linear code C is a full rank matrix with entries in Fq such that
its rows generate the codewords of C.

Generator matrices are not unique, one code can have multiple generator matrices. However, we can
select the standard generator matrix of a code by putting the matrix into reduced row echelon form. Since
reduced row echelon form is unique, every code will have one unique standard generator matrix, which we
will from now on call the generator matrix.

Remark 1.2.3. Note that a linear code C can also be defined as the set C =
{
vG | v ∈ F1×dim(C)

q

}
, where G

is the generator matrix of C.

In the following definitions we state some basic properties of linear codes.

6

Definition 1.2.4. The distance between two codewords c1, c2 ∈ C is defined as

d(c1, c2) := |{i | (c1)i ̸= (c2)i}|.

Definition 1.2.5. Let us take a code C ⊆ Fn
q . The support of a codeword c denoted by supp(c) is defined

as follows
supp(c) := {i ∈ {1, . . . , n} | (c)i ̸= 0}.

If the support of one codeword a is contained in the support of another codeword b, we will denote it by a ≤ b.

Definition 1.2.6. The weight of a codeword c ∈ C, denoted wt(c), is the size of its support, i.e.

wt(c) := |supp(c)|.

Note that the distance between the zero vector and a codeword c is the same as the weight of c, since we
have d(0, c) = |i | (c)i ̸= 0| = wt(c). For this reason we use weight in the following definition.

Definition 1.2.7. The minimum distance of a code C is defined as

d(C) := min
0 ̸=c∈C

{wt(c)}.

In Proposition 1.3.3, we will need to know the number of codewords that are within a certain distance
around a fixed codeword. This is given in the next definitions.

Definition 1.2.8. Let x ∈ Fn
q and let r be a positive integer. The ball of radius r around a vector v ∈ Fn

q is
the set

B(x, r) := {y ∈ Fn
q | d(x, y) ≤ r} ⊆ Fn

q .

We set b(r) := |B(x, r)| for any vector x ∈ Fn
q .

Remark 1.2.9. Note that for a positive integer r we have

b(r) = |B(x, r)| for any x ∈ Fn
q

= |B(0, r)|
= |{y ∈ Fn

q | d(0, y) ≤ r}|
= |{y ∈ Fn

q |wt(y) ≤ r}|

=

r∑
i=0

(q − 1)i
(
n

i

)
.

This is because for a fixed weight i, there are
(
n
i

)
options for how the i number of nonzero elements can be

positioned in the n entries of a codeword, and for each of these positions we have (q− 1) options, namely on
each of the nonzero i positions there can be q − 1 nonzero elements.

1.3 Number of linear codes

In this section we introduce some propositions about the number of linear codes. Most of the results are
from Byrne and Ravagnani [3]. We will use these propositions in Chapter 4 to approximate the number of
CSS codes.

Proposition 1.3.1. Let n, k be fixed positive integers such that k ≤ n. Then there exist(
n

k

)
q

=
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)

codes C ⊆ Fn
q of dimension dim(C) = k.

7

Proof. First we find the number of all linearly independent sets {v0, v1, . . . , vk−1} of Fn
q consisting of k vectors.

To construct such a set, we have (qn − 1) options to pick v0, since there are qn vectors in Fn
q , hence q

n − 1
nonzero vectors. For v1 we have exactly qn − (q − 1)− 1 = qn − q options, since we have to exclude (q − 1)
vectors linearly dependent to v0 and the zero vector. Similarly, for picking vector v2 we have qn− q2 options,
and so on. Since we are picking k vectors, the number of such sets is

(qn − 1)(qn − q) . . . (qn − qk−1).

Note that this number describes the ordered sets, so for example {v0, v1, . . . , vk−1} and {v1, v0, . . . , vk−1}
are counted as two different sets. Hence we still have to exclude the sets that consist of the same k vectors.
There are k! re-orderings of the k vectors vi, hence we have that there are

M =
(qn − 1)(qn − q) . . . (qn − qk−1)

k!

linearly independent subsets of Fn
q consisting of k elements.

Fix one code C ⊆ Fn
q of dimension k, then there are different linearly independent sets of vectors that

span C, say N . Since C has dimension k and hence qk elements, then by the same logic as above, we have
that

N =
(qk − 1)(qk − q) . . . (qk − qk−1)

k!
.

Dividing M by N gives the number of generator sets, that generate a different k dimensional code, and this
is exactly

(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
,

which is the same as
(
n
k

)
q
.

The following two propositions are from the paper by Byrne and Ravagnani [3]. They approximate the
number of codes that share the same fixed subcode.

Proposition 1.3.2 (Proposition 2.5 from [3]). Let C2 ⊆ Fn
q be a linear code with dim(C2) = k2 < n. Fix

an integer k1 such that k2 ≤ k1 ≤ n and set Fk1 := {C1 ⊆ Fn
q |C2 ⊆ C1,dim(C1) = k1}. Then

|Fk1 | =
(
n− k2
k1 − k2

)
q

.

Proposition 1.3.3 (Theorem 5.1 from [3]). Let C2 ⊆ Fn
q be a linear code with dim(C2) = k2 such that we

have 0 ≤ k2 < n and such that d(C2) ≥ 2. Let k1, d be integers such that k2 ≤ k1 ≤ n and 2 ≤ d ≤ d(C2).
We define Fk1 := {C1 ⊆ Fn

q |C2 ⊆ C1, dim(C1) = k1} and Fk1,<d := {C1 ∈ Fk1 | d(C1) < d}. Then

|Fk1,<d|/|Fk1 | ≤
qk1 − qk2

(q − 1)(qn − qk2)
(b(d− 1)− 1).

In particular, the number of codes C ⊆ Fn
q of dimension k such that d(C) < d, where 0 ≤ k ≤ n and d ≥ 2,

is at most
qk − 1

(qn − 1)(q − 1)

(
n

k

)
q

(b(d− 1)− 1).

Linear codes play an important role in the construction of CSS codes, which are the main topic of this
thesis. For that we first need to understand quantum errors and quantum error-correcting codes. This is the
goal of the next chapter.

8

Chapter 2

Quantum codes

In this chapter we introduce the notation for describing quantum information and we define quantum codes.
It is important to understand quantum codes before we move on to CSS codes, which are a family of quantum
codes.

The content of this chapter is organized in four sections, which mostly follow the information in Quantum
error-correcting codes and their geometries by Ball, Centelles and Huber [1]. In Section 2.1, qubits and their
notation are explained. In Section 2.2, we define the generalization of qubits to non-binary fields, which are
called qudits. A presentation of qudits can also be found in Qudits and high-dimensional quantum computing
by Wang [17]. Section 2.3 is devoted to the different types of quantum errors, this is explained according to
Quantum computation and quantum information by Nielsen and Chuang [9, Chapter 2]. Finally, Section 2.4
provides the definition of quantum codes and their properties. These are described according to Self-dual
codes and invariant theory by Nebe, Rains and Sloane [8, Chapter 11].

2.1 Qubits

In this section we introduce qubits according to the theory in Quantum error-correcting codes and their
geometries by Ball, Centelles and Huber [1, Chapter 1].

A qubit is a two-state quantum mechanical system. It can describe quantum mechanical phenomena such
as the spin of an electron or light polarization. In reality, a continuum of different photon polarizations or
spin-directions is possible, however for both of these phenomena we can only observe two outcomes. Namely,
electron spin can be measured as “spin up” and “spin down” and light polarization as vertical or horizontal.
Qubits can mathematically represent the outcomes of this phenomena.

Single qubits are represented by the so-called “ket” notation |0⟩ , |1⟩. These symbols actually represent
the standard basis vectors in C2 or in F2

2, namely

|0⟩ =
[
1
0

]
, and |1⟩ =

[
0
1

]
. (2.1)

Any quantum state can be represented as the linear combination over C of the two kets of the standard basis

|ψ⟩ = ψ0 |0⟩+ ψ1 |1⟩ , (2.2)

where ψ0, ψ1 ∈ C are such that |ψ0|2 + |ψ1|2 = 1. Recall that the absolute value of a complex number is
defined as |ψi| = ψiψ̄i where ψ̄i is the complex conjugate of ψi. The values |ψ0|2 and |ψ1|2 are the probabilities
with which we can measure outcomes |0⟩ and |1⟩, respectively. For instance, if we consider the state

|ψ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ ,

then outcomes |0⟩ and |1⟩ can be measured with equal probability 1
2 .

9

Associated to the ket notation we have the “bra” notation, denoted ⟨·|. The bra ⟨α| is a row vector whose
entries are the complex conjugates of the entries in |α⟩. For instance, we have

⟨0| =
[
1 0

]
, and ⟨1| =

[
0 1

]
. (2.3)

By putting the bra and the ket together, we obtain the so-called “braket” ⟨·|·⟩. This notation is equivalent
to the scalar product of two vectors. For instance, we have

⟨0|1⟩ =
[
1 0

] [
0 1

]T
= 0.

The space where qubits live is called a quantum Hilbert space. To define this space in more detail, we first
have to define what a Hilbert space is. This is done in the following definition.

Definition 2.1.1. A Hilbert space is a complex inner product space (i.e. a vector space provided with an
inner product), that is also a complete metric space.

The vector space spanned by |0⟩ and |1⟩ such as in Equation 2.2 together with the braket ⟨.|.⟩ is a Hilbert
space. This Hilbert space is denoted by H2.

Just as bits form bit-strings, quantum information is stored in strings of qubits. This can be done by
tensoring single qubits together, i.e. by doing the cross product of multiple qubits

|b0 b1 . . . bn−1⟩ := |b0⟩ ⊗ |b1⟩ ⊗ · · · ⊗ |bn−1⟩ ,

where bi ∈ {0, 1}. For example the 2-qubit vector |10⟩ represents the following vector in C4 or in F4
2

|10⟩ = |1⟩ ⊗ |0⟩

=
[
0 1

]T ⊗
[
1 0

]T
=
[
0 0 1 0

]T
,

and the ket |101⟩ consisting of 3 qubits represents the following vector in C8 or in F8
2

|101⟩ = |1⟩ ⊗ |0⟩ ⊗ |1⟩

=
[
0 0 1 0

]T ⊗
[
0 1

]T
=
[
0 0 0 0 0 1 0 0

]T
.

Note that an n-qubit vector represents a vector of length 2n, which makes it an elements of C2n or F2n

2 .
Similarly as before, any n-quantum state |ψ⟩ can be represented as the linear combination of the 2n

kets |x0⟩ , . . . , |x2n−1⟩ over C
|ψ⟩ = ψ0 |x0⟩+ · · ·+ ψ2n−1 |x2n−1⟩ , (2.4)

where xi is the binary representation of i ∈ {0, . . . , 2n − 1} and where ψi ∈ C are such that
∑n−1

i=0 |ψi|2 = 1.
Moreover, for two vectors α = [α0 . . . αn−1] and β = [β0 . . . βn−1] the braket is computed as follows

⟨α|β⟩ = ᾱ0β0 + ᾱ1β1 + · · ·+ ᾱn−1βn−1.

Let us denote the standard basis vectors of Cn (or Fn
2) by e0, e1, . . . , en−1, where ei denotes the vector of

length n that has a 1 on the i-th position and 0 elsewhere. Namely, if n = 2 then we get

e0 =
[
1 0

]T
, e1 =

[
0 1

]T
.

Note that for a binary vector x ∈ Fn
2 , we have |x⟩ = ei ∈ F2n

2 where x is the binary representation of the
integer i ∈ {0, . . . , 2n − 1}.

Now we can finally define a quantum Hilbert space.

Definition 2.1.2. If we denote the binary representation of the integer i by xi, then the quantum Hilbert
space Hn

2 is defined by basis vectors |xi⟩ for i ∈ {0, 1, . . . , 2n − 1}. This space is naturally a tensor product
of n Hilbert spaces H2.

10

Example 2.1.3. Let us take n = 2. Then the basis elements for the quantum Hilbert space H2
2 are the

vectors |00⟩ , |01⟩ , |10⟩ , |11⟩, where we have:

|00⟩ = [1000]T ,

|01⟩ = [0100]T ,

|10⟩ = [0010]T ,

|11⟩ = [0001]T .

In the next section, we will generalize qubits and the quantum Hilbert space over non-binary fields.

2.2 Qudits

This section follows the theory in Quantum error-correcting codes and their geometries by Ball, Centelles
and Huber [1, Chapter 5] and Qudits and high-dimensional quantum computing by Wang [17].

Quantum information can also be stored in so-called qudits. These are quantum mechanical systems
that can attain more than two states, compared to qubits. Qudits provide an alternative to qubit-based
computers. Advantages of using this technology include the reduction of the complexity of the circuits and
the simplification of the experimental setup [17]. This opens up different ways for designing new quantum
computers.

Qudits have a slightly different mathematical notation compared to qubits. Instead of considering vectors
over the binary field F2, we take them over any field Fq with q = pr for a prime number p and some positive
integer r. In this case, if we write Fq = {b0, b1, . . . , bq−1}, we have

|b0⟩ =

1
0
...
0
0

 , |b1⟩ =

0
1
0
...
0

 , . . . |bq−1⟩ =

0
0
...
0
1

 .

So |b0⟩ , |b1⟩ , . . . |bq−1⟩ represent the standard basis vectors ei in Fn
q or Cn. The quantum states can be

represented as

|ψ⟩ =
q−1∑
i=0

ψi | bi ⟩ , (2.5)

where ψi ∈ C with
∑q−1

i=0 |ψi|2 = 1. Similarly as for F2, the qudits |bi⟩ span a Hilbert space according to
Equation 2.5 with braket being the inner product. This Hilbert space is denoted by Hq.

Quantum information is again stored in strings of the form∣∣bi0 bi1 . . . bin−1

〉
:= |bi0⟩ ⊗ |bi1⟩ ⊗ · · · ⊗

∣∣bin−1

〉
.

Moreover, the bra and the braket notation remain the same as discussed in Section 2.1.

Remark 2.2.1. For a, b ∈ Fn
q we have that |a⟩ = |b⟩ if and only if a = b since |a⟩ and |b⟩ are standard basis

vectors and hence are orthogonal.

We also generalize the quantum Hilbert space, which is the space of qudits. This is done in the definition
below.

Definition 2.2.2. The quantum Hilbert space Hn
q is defined by basis vectors |xi⟩ for i ∈ {0, 1, . . . , 2q − 1}.

This space is naturally a tensor product of n Hilbert spaces Hq.

With the notion of qubits and qudits, we can now discuss quantum errors.

11

2.3 Quantum errors

In this section we discuss the different types of errors that can occur during quantum computations. We first
introduce them for quantum codes over F2 and afterwards we expand this over Fq. We follow the theory
from Quantum computation and quantum information by Nielsen and Chuang [9, Chapter 2] and Quantum
error-correcting codes and their geometries by Ball, Centelles and Huber [1, Chapter 5].

Quantum errors can be represented by matrices that are so-called unitary. Therefore we first introduce
a couple of definitions from Self-dual codes and invariant theory by Nebe, Rains and Sloane [8, Chapter 11]
before discussing the types of quantum errors.

Let us consider a quantum Hilbert space Hn
q . Let M be a linear operator on Hn

q . We define M† to be

the Hermitian conjugate of M if ⟨Mu|v⟩ =
〈
u
∣∣M†v

〉
for any vectors u, v ∈ Hn

q . We say that M is Hermitian

ifM† =M . Note that for vectors and matrices whose elements are real numbers, the Hermitian conjugate † is
the same as the transpose T . Therefore we will from now on only use the notation † in also for the transpose.

Definition 2.3.1. A linear operator M on a Hilbert space Hn
q is unitary if MM† =M†M = I.

Definition 2.3.2. A linear operator M is locally unitary if it can be written as a tensor product of unitary
matrices acting independently, namely if M =M1 ⊗ · · · ⊗Mr where Ui are unitary matrices.

If we consider binary linear codes, flipping a bit from 0 to 1 (or the opposite) is the only type of error
that can occur. In binary quantum codes however, we recognize two types of errors: the bit-flip error X and
the phase-flip error Z.

The quantum bit-flip is an error type that is equivalent to the bit-flip error in linear codes. In binary
quantum codes this corresponds to flipping between the kets |0⟩ and |1⟩. Consequently, we define the action X
as

X : C2 −→ C2.

|0⟩ 7−→ |1⟩
|1⟩ 7−→ |0⟩

Let |ψ⟩ = α0 |0⟩ + α1 |1⟩ be a qubit state with α0, α1 ∈ C such that |α0|2 + |α0|2 = 1. Applying the bit flip
to the qubit state yields

X |ψ⟩ = α0X |0⟩+ α1X |1⟩ = α0 |1⟩+ α1 |0⟩ .

Note that the bit-flip action X can be represented by the following unitary matrix

X =

[
0 1
1 0

]
,

which thus describes the action on all vectors in C2 or F2
2.

The phase-flip error has no classical analogy. The action Z in binary quantum codes acts only on the
sign of the ket |1⟩, so it can be defined as

Z : C2 −→ C2.

|0⟩ 7−→ |0⟩
|1⟩ 7−→ − |1⟩

Let us again take the qubit state |ψ⟩ = α0 |0⟩+α1 |1⟩, then the phase-flip Z acts on the qubit state as follows

Z |ψ⟩ = α0Z |0⟩+ α1Z |1⟩ = α0 |1⟩ − α1 |0⟩ .

Similarly as before, note that this action can also be represented by the unitary matrix

Z =

[
1 0
0 −1

]
,

12

which acts on vectors in C2 or F2
2.

Matrices X and Z are two out of the three so-called Pauli matrices X, Y and Z. These matrices are
very useful in the study of quantum errors, since every quantum error (also non-unitary) can be written as
a linear combination of these matrices. The Pauli matrices can be seen bellow in Equation 2.6.

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (2.6)

The actions X and Z can also be extended over Fq with q = pr > 2. The equivalent to the bit-flip error
is the dit-flip. This can be represented by a unitary matrix that acts on a codeword |x⟩ as a permutation of
its entries. Namely, if we label the elements of Fq by {b0, b1, . . . , bq−1}, then for each bi ∈ Fq we can define
a q × q matrix X(bi) that is obtained by permuting the columns of the q × q identity matrix by i positions
to the right.

Example 2.3.3. If q = 3, then b0 = 0, b1 = 1, b2 = 2 are the elements of F3. Hence we have

X(0) =

1 0 0
0 1 0
0 0 1

 , X(1) =

0 1 0
0 0 1
1 0 0

 , X(2) =

0 0 1
1 0 0
0 1 0

 .
The equivalent to the phase-flip error over Fq is also called the phase-flip and it can be represented by a

matrix Z(b). We define Z(b) to be a q×q diagonal matrix such that its i-th entry on the diagonal is ωTrFq/Fp (ib)

for each b ∈ Fq. Here ω = e2πi/p is a primitive p-th root of unity, and the trace TrFq/Fp
is defined as follows

TrFq/Fp
(α) :=

n−1∑
i=0

αpi

.

Example 2.3.4. If we again consider q = 3, then we find

Z(0) =

1 0 0
0 1 0
0 0 1

 Z(1) =

1 0 0
0 ω 0
0 0 ω2

 Z(2) =

1 0 0
0 ω2 0
0 0 ω

Note that over F2 the matrices X(a) and Z(b) give the same matrices as the matrices X and Z. It is very

important to distinguish these two types of errors and know how they work, in order to be able to correct
them. In Chapter 2.4 we will define quantum error correcting codes and discuss some of their properties.

2.4 Quantum error-correcting codes

With the use of definitions in Section 2.1 and Section 2.2 we can finally define quantum codes in this section.
Then, we introduce some properties of quantum codes. In this section we follow the definition in Self-dual
codes and invariant theory by Nebe, Rains and Sloane [8, Chapter 11]. Quantum codes are also defined
in other literature, for instance in the original paper by Calderbank and Shor about CSS codes [4] or in
Quantum error-correcting codes and their geometries by Ball, Centelles and Huber [1].

The definitions that we provide in Definition 2.4.1 and Definition 2.4.2 are standard definitions for a
quantum code and error-correcting quantum code.

Definition 2.4.1. Let Hn
q be a quantum Hilbert space. A quantum code Q is any subspace of Hn

q .

Definition 2.4.2. Let Hn
q be a quantum Hilbert space. A quantum t-error-correcting code Q is a linear

subspace of Hn
q of which t errors on qubits can be corrected. The dimension of Q is the dimension of the

subspace.

We will now discuss some mathematical aspects of quantum error-correcting codes. The theory that
follows is from Nebe, Rains and Sloane [8, Chapter 11] is slightly different than in other literature about
quantum error-correcting codes, such as the theory in [1, 4, 13].

13

Let us consider a quantum Hilbert space Hn
q = Hq,1 ⊗ · · · ⊗Hq,n. Let M be a linear operator on Hn

q . If
B is the orthonormal basis of Hn

q , then the trace of M is defined to be

Tr(M) :=
∑

|u⟩∈B

⟨u|M |u⟩ .

Now let us write Hn
q = V1 ⊗ V2 as a tensor product of two quantum Hilbert spaces. The partial trace TrV2 is

the unique Hermitian operator on V1 such that

Tr(M(N ⊗ I)) = Tr(TrV2
(M)N)

for all Hermitian operators N on V1,M on Hn
q and I the identity matrix. We define similarly TrV1

(M) on V2.
Notice that Tr∅ = I and Tr{1,...,n} = Tr.

Definition 2.4.3. Let α ⊆ {1, . . . , n}. Then αC denotes the complement of α in {1, . . . , n}. We say that Q
can correct the erasure of α if the partial trace TrαC (uu†) is independent of u for all unit vectors u ∈ Q.
Here TrαC (uu†) is shorted for TrHq,j1⊗Hq,j2⊗... with α

C = {j1, j2, . . . } and Hn
q = Hq,1 ⊗ · · · ⊗Hq,n.

Definition 2.4.4. We say Q is pure with respect to α if for all unit vectors u ∈ Q, we have TrαC (uu†) = λI for
some scalar λ and the identity matrix I. We say Q has minimal distance ≥ d if for all α such that |α| < d the
code Q can correct the erasure of α. We say Q has minimal distance equal to d if it has minimal distance ≥ d
but not ≥ d+ 1.

Note that Hermitian operator M can be uniquely written in the following way

M =
∑
i,j,k,l

aij,kl(ei ⊗ fj)(ek ⊗ fl)
†, (2.7)

where {ei}i∈I and {fj}j∈J are the orthogonal bases for V1 and V2 respectively and aij,kl are unique complex
coefficients. Then the partial traces of M are of the following forms:

TrV1(M) =
∑
i,j,l

aij,ilfjf
†
l , TrV2(M) =

∑
i,j,k

aij,kjeie
†
k. (2.8)

Example 2.4.5. (Example 13.1.4 from [8]) Take H = H1 ⊗ H2 such that both Hi = C2. Denote their
orthonormal bases by {ei}1i=0 and {fi}1i=0, respectively. Then we know that

e0 = f0 = |0⟩ =
[
1 0

]†
,

e1 = f1 = |1⟩ =
[
0 1

]†
.

The basis elements for H are denoted by eij as follows

e00 = e0 ⊗ f0 =
[
1 0

]† ⊗ [1 0
]†

=
[
1 0 0 0

]†
e01 = e0 ⊗ f1 =

[
1 0

]† ⊗ [0 1
]†

=
[
0 1 0 0

]†
e10 = e1 ⊗ f0 =

[
0 1

]† ⊗ [1 0
]†

=
[
0 0 1 0

]†
e11 = e1 ⊗ f1 =

[
0 1

]† ⊗ [0 1
]†

=
[
0 0 0 1

]†
Let the quantum code Q be Q = ⟨e00 + e11⟩. We claim that the minimal distance of Q is ≥ 2. For that
we need to check whether Q corrects erasure of all α such that |α| < 2. That means we only need to check
it for α = 1, those are the subsets {1} and {2}. Hence we need to compute Tr{1}C (uu†) = TrH2

(uu†)

and Tr{2}C (uu†) = TrH1
(uu†) for all unit vectors u ∈ Q and see if they both are proportional to identity.

First of all, note that Q is generated by one vector, so there is only one unit vector namely

u =
1

||e00 + e11||
(e00 + e11) =

1√
2

[
1 0 0 1

]†
14

for which we need to check the property above. Then we have

uu† =
1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .
Now we find the constants aij,kl from Equation (2.7)

uu† =
∑
i,j,k,l

aij,kl(eij)(ekl)
†

= a00,00
[
1000

]† [
1000

]
+ a00,01

[
1000

]† [
0100

]
+ · · ·+ a11,11

[
0001

]† [
0001

]
=

1

2

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

+

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

Note that only the coefficients a00,00 = a00,11 = a11,00 = a11,11 = 1
2 , otherwise all other coefficients aij,kl = 0.

We proceed with filling in aij,kl into Equation (2.8),

TrH1
(uu†) =

∑
i,j,l

aij,ilfjf
†
l

= a00,00
[
1 0

]† [
1 0

]
+ a00,01

[
1 0

]† [
0 1

]
+ a01,00

[
0 1

]† [
1 0

]
+

+ a01,01
[
0 1

]† [
0 1

]
+ a10,10

[
1 0

]† [
1 0

]
+ a10,11

[
1 0

]† [
0 1

]
+

+ a11,10
[
0 1

]† [
1 0

]
+ a11,11

[
0 1

]† [
0 1

]
=

1

2

[
1 0
0 0

]
+ 0 + · · ·+ 0 +

1

2

[
0 0
0 1

]
=

1

2

[
1 0
0 1

]
.

Similarly,

TrH2(uu
†) =

∑
i,j,k

aij,kjeie
†
k

=
1

2

[
1 0
0 0

]
+ 0 + · · ·+ 0 +

1

2

[
0 0
0 1

]
=

1

2

[
1 0
0 1

]
.

Hence both TrH1
(uu†) and TrH2

(uu†) are proportional to identity, so Q has minimal distance ≥ 2.
We can also show that Q has minimal distance not ≥ 3, which was not shown in the original example

from [8]. Assume that |α| = 2, hence Tr{1,2}C (uu†) = Tr∅(uu
†) = λI for the unit vector u as above. However,

we know that Tr∅ = Id, which leads to a contradiction since uu† cannot be written as λI. This shows that
the minimal distance of Q is d = 2.

15

Chapter 3

Correcting quantum errors with
classical codes: the CSS construction

The CSS codes, named after Calderbank, Shor and Steane, are a class of quantum error-correcting codes
derived from classical linear codes. Their construction was first introduced by Calderbank and Shor [4] and
independently by Steane [15]. The two constructions are different but turn out to be equivalent after a base
change. In this chapter we introduce both definitions in Section 3.1 and Section 3.2, following the original
papers [4, 15]. The original papers only use classical linear codes over the binary field F2 which gives CSS
codes with qubits. In Section 3.3 we generalize this construction using codes defined over Fq. Therefore the
CSS codes will use qudits instead of qubits. Finally, in Section 3.4 we introduce the Theorem of Calderbank
and Shor about error-correcting CSS codes and we generalize it to Fq.

3.1 Definition by Calderbank and Shor

In this section we introduce the original construction of a CSS code by Calderbank and Shor [4]. This
construction is performed using linear codes defined over the binary field F2. In this way, we obtain quantum
codes using qubits, which were introduced in Section 2.1.

Definition 3.1.1. Let us take a quantum Hilbert space Hn
2 = H2 ⊗ · · · ⊗H2 with basis vectors |xi⟩, where

for any integer i ∈ {0, 1, . . . 2n−1} we have that xi is the binary representation of i. For a linear code C ⊆ Fn
2

we define the quantum Hilbert subspace HC ⊆ Hn
2 in the following way: For every codeword c ∈ C we let |c⟩

be a basis vector for HC .

Let us take a quantum Hilbert subspace HC1 ⊆ Hn
2 . For every vector w ∈ Fn

2 we define a quantum state
as follows

|cw⟩ = 2− dim(C1)/2
∑
c∈C1

(−1)⟨c,w⟩ |c⟩ .

where ⟨c, w⟩ denotes the inner product of vectors c and w. This construction has two important properties
which will be shown in the following lemmas. The properties are stated in the paper by Calderbank and
Shor [4]. In this section we will develop all the details of the proofs of these properties, which are not given
in the paper.

Lemma 3.1.2. (Property 1) For vectors w1, w2 ∈ Fn
2 and a codeword c ∈ C ⊆ Fn

2 , we have that

|cw1⟩ = |cw2⟩ ⇐⇒ w1 + w2 ∈ C⊥.

Proof. First, notice that by the definition of the dual code of C we know that w1 + w2 ∈ C⊥ if and only
if ⟨c, (w1 + w2)⟩ = 0 for any c ∈ C. This is equivalent to ⟨c, w1⟩ = ⟨c, w2⟩ for all c ∈ C. Finally, by the
definition of |cw⟩, we have ⟨c, w1⟩ = ⟨c, w2⟩ for all c ∈ C if and only if |cw1⟩ = |cw2⟩.

In order to prove the second property, we need the following lemma.

16

Lemma 3.1.3. For a code C ⊆ Fn
2 with a generator matrix G of size k × n, and a vector w ∈ Fn

2 , we have∑
c∈C

(−1)⟨c,w⟩ =
∑
v∈Fk

2

(−1)vGw = 0,

unless for all c ∈ C we have ⟨c, w⟩ = 0.

Proof. The first equality follows from the fact that every codeword c ∈ C can be written as vG for some v ∈ Fk
2 .

For proving the second equality, assume first that for all v ∈ Fk
2 we have vGw = 0. Then∑

v∈Fk
2

(−1)vGw =
∑
v∈Fk

2

1 = 2k ̸= 0.

Now assume that there exists a vector v1 such that v1Gw ̸= 0, then in particular we must have Gw ̸= 0.
Let Gw have a 1 in the j-th position. Then if v1 has a 1 in j-th position, i.e. (v1)j = 1, we get

v1Gw =

k∑
i=1

(v1)i · (Gw)i =
k∑

i=1
i̸=j

(v1)i(Gw)i + (v1)j(Gw)j =

k∑
i=1
i ̸=j

(v1)i(Gw)i + 1.

However, if we take a vector v2 such that it has the exact same entries as v1 apart of the j-th coordinate,
which is (v2)j = 0, then we have

v2Gw =

k∑
i=1

(v2)i · (Gw)i

=

k∑
i=1
i ̸=j

(v2)i(Gw)i + (v2)j(Gw)j

=

k∑
i=1
i ̸=j

(v2)i(Gw)i + 0

=

k∑
i=1
i ̸=j

(v1)i(Gw)i

= v1Gw − 1.

Finally, the following chain of equalities concludes the proof:∑
v∈Fk

2

(−1)vGw =
∑
v∈Fk

2

(v)j=1

(−1)vGw +
∑
v∈Fk

2

(v)j=0

(−1)vGw

=
∑
v∈Fk

2

(v)j=1

(−1)vGw +
∑
v∈Fk

2

(v)j=1

(−1)vGw−1

=
∑
v∈Fk

2

(v)j=1

(−1)vGw
(
1 + (−1)−1

)

=
∑
v∈Fk

2

(v)j=1

(−1)vGw (1− 1)

= 0.

17

We are now ready to prove the second property.

Lemma 3.1.4. (Property 2) For vectors w1, w2 ∈ Fn
2 and a codeword c ∈ C ⊆ Fn

2 , we have that

w1 + w2 ̸∈ C⊥ =⇒ ⟨cw1
|cw2

⟩ = 0

Proof. Let dim(C) = k, and take w1, w2 ∈ Fn
2 such that w1 + w2 ̸∈ C⊥, then

|cw1
⟩ = 2−

k
2

∑
ci∈C

(−1)⟨c,w1⟩ |ci⟩ ,

|cw2
⟩ = 2−

k
2

∑
cj∈C

(−1)⟨c,w2⟩ |cj⟩ .

Considering the braket of the two quantum states gives

⟨cw1 |cw2⟩ =

〈
2−

k
2

∑
ci∈C

(−1)⟨ci,w1⟩ |ci⟩

∣∣∣∣∣∣2− k
2

∑
cj∈C

(−1)⟨cj ,w2⟩ |cj⟩

〉

=
1

2k

〈∑
ci∈C

(−1)⟨ci,w1⟩ |ci⟩

∣∣∣∣∣∣
∑
cj∈C

(−1)⟨cj ,w2⟩ |cj⟩

〉

=
1

2k

 2k∑
i=1

2k∑
j=1

(−1)⟨ci,w1⟩+⟨cj ,w2⟩ ⟨ci|cj⟩

=

1

2k

2k∑
i=1

(
(−1)⟨ci,w1+w2⟩ ⟨ci|ci⟩

)
+

+
1

2k

2k∑
i,j
i ̸=j

(
(−1)⟨ci,w1⟩+⟨cj ,w2⟩ ⟨ci|cj⟩+ (−1)⟨cj ,w1⟩+⟨ci,w2⟩ ⟨cj |ci⟩

)
.

First, note that ⟨ci|ci⟩ = ||ci||2 = 1 since every ket has norm 1. Secondly, note that ⟨ci|cj⟩ with i ̸= j is the
inner product of two standard basis vectors in F2n

2 (see Section 2.1). Hence ⟨ci|cj⟩ = ⟨ei′ |ej′⟩ = 0 where i′, j′

are different since i ̸= j. Therefore the second sum is equal to 0. Thus we are left with proving that

⟨cw1 |cw2⟩ =
1

2k

 2k∑
i=1

(−1)⟨ci,w1+w2⟩

 (3.1)

is equal to zero. Since we assume w1+w2 ̸∈ C⊥
1 , that means that there exists a c ∈ C for which ⟨c, w1+w2⟩ ≠ 0

and hence by Lemma 3.1.3 it follows that the sum in the right side of Equation (3.1) is 0. This concudes the
proof.

The two properties from Lemma 3.1.2 and Lemma 3.1.4 are crucial for finding the basis for a quantum
Hilbert subspace. In order to do that, we first have to define cosets. This is possible since every code is an
abelian group.

Definition 3.1.5. Let C2 ⊆ C1 ⊆ Fn
q be two linear codes. We define C1/C2 := {x+C2 |x ∈ C2} and we say

that the elements of C1/C2 are the cosets of C1.

Definition 3.1.6. Let C2 ⊆ C1 ⊆ Fn
q be two linear codes. We say that two codewords w,w′ are equivalent

in C1/C2 if w − w′ ∈ C2.

In the following lemma we find the basis for the quantum Hilbert space HC1
that we have defined at the

beginning of this section.

18

Lemma 3.1.7. For a code C ⊆ Fn
2 and vectors w ∈ Fn

2/C
⊥, the quantum states |cw⟩ form a basis for HC .

Proof. Let us take w,w′ ∈ Fn
2 . If w + w′ ∈ C⊥ then by Lemma 3.1.2 we have that the codewords |cw⟩

and |cw′⟩ are equal. If w +w′ ̸∈ C⊥, then by Lemma 3.1.4 the two codewords |cw⟩ and |cw′⟩ are orthogonal.
That shows that all |cw⟩ with w ∈ Fn

2/C
⊥ are orthogonal. Moreover, note that by the definition their norm is

equal to 1 and hence the |cw⟩’s are orthonormal vectors. Finally, the codewords |cw⟩ for all w ∈ C⊥ span the
whole space HC by definition, therefore we conclude that the |cw⟩ for w ∈ Fn

2/C
⊥ form a basis for HC .

After we have found the basis of HC1
, we can finally proceed with the CSS construction. Let C2 be a

linear code such that C2 ⊆ C1 ⊆ Fn
2 . Following the construction by Calderbank and Shor, we define the

quantum code to be the following

Qcs
C1,C2

:= {|cw⟩ | w ∈ C2
⊥} = {|cw⟩ | w ∈ C⊥

2 /C
⊥
1 },

where the second equality holds since from Lemma 3.1.2 we know that |cw⟩ = |cw′⟩ if and only if the sum
of w and w′ is in C⊥.

Remark 3.1.8. Note that by definition of Qcs
C1,C2

we have

|Qcs
C1,C2

| = |C⊥
2 /C

⊥
1 | = |C⊥

2 |/|C⊥
1 |,

and hence dim(Qcs
C1,C2

) = dim(C⊥
2)− dim(C⊥

1) = (n− dim(C2))− (n− dim(C1)) = dim(C1)− dim(C2).

Example 3.1.9. Let C1 ⊆ F5
2 be a binary linear code with the following generator matrix

G1 =

1 0 0 1 0
0 1 0 0 1
0 0 1 1 1

 .
The code C1 has parameters [n, k, d] = [5, 3, 2]. It consists of the codewords

C1 = {[00000], [10010], [01001], [11011], [00111], [10101], [01110], [11100]}.

Let us take C2 with generator matrix

G2 =

[
1 0 0 1 0
0 1 0 0 1

]
.

So C2 = {[00000], [10010], [01001], [11011]}. Note that C2 ⊆ C1. To find the quantum code Qcs
C1,C2

, we find

find C⊥
2 and C⊥

1 . We have that

C⊥
2 = {[0, 0, 0, 0, 0], [1, 0, 0, 1, 0], [0, 1, 0, 0, 1], [1, 1, 0, 1, 1], [0, 0, 1, 0, 0], [1, 0, 1, 1, 0], [0, 1, 1, 0, 1], [1, 1, 1, 1, 1]},

C⊥
1 = {[0, 0, 0, 0, 0], [1, 0, 1, 1, 0], [0, 1, 1, 0, 1], [1, 1, 0, 1, 1]}.

Therefore, the elements of the set C⊥
2 /C

⊥
1 are

C⊥
2 /C

⊥
1 = {[0, 0, 0, 0, 0], [1, 1, 1, 1, 1]},

where we leave out the +C⊥
1 in the notation of the elements. The reason why we only have these two elements

in C⊥
2 /C

⊥
1 is that [0, 0, 0, 0, 0] is also equivalent to [1, 0, 1, 1, 0], [0, 1, 1, 0, 1], [1, 1, 0, 1, 1] and [1, 1, 1, 1, 1] is also

equivalent to [1, 0, 0, 1, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 1]. Therefore, the quantum code Qcs
C1,C2

has dimension 1 and

consists of exactly 2dim(C1)−dim(C2) = 23−2 = 2 codewords, namely

|c0⟩ =
∣∣c[00000]〉 = 1√

8
(|00000⟩+ |10010⟩+ |01001⟩+ |11011⟩+ |00111⟩+ |10101⟩+ |01110⟩+ |11100⟩) ,

|c1⟩ =
∣∣c[11111]〉 = 1√

8
(|00000⟩+ |10010⟩+ |01001⟩+ |11011⟩ − |00111⟩ − |10101⟩ − |01110⟩ − |11100⟩) .

19

3.2 Definition by Steane

A different definition of CSS codes is the construction proposed by Steane [15]. In this section we present
the definition as formalised in [9]. Then we show the equivalence within Steane’s construction and the one
from Calderbank and Shor presented in Section 3.1.

Take linear codes C2 ⊆ C1 ⊆ Fn
2 and let w ∈ C1. We define the quantum state

|w + C2⟩ :=
1√
|C2|

∑
c∈C2

|w + c⟩ ,

where the + in the ket notation denotes digit-wise addition modulo 2. For quantum codewords of this form
a useful property holds, which is crucial in defining the CSS quantum code. In the proof of Lemma 3.2.1 we
give the details on this property which is only stated and very briefly explained in the book [9].

Lemma 3.2.1. (Property) For linear codes C2 ⊆ C1 ⊆ Fn
2 and vectors w,w′ ∈ C1, we have that

w + w′ ∈ C2 ⇐⇒ |w + C2⟩ = |w′ + C2⟩ .

Proof. Suppose c̄ = w + w′ ∈ C2. Then for all c ∈ C2 we have that w + c = w′ + (c̄ + c) which implies
that |w + c⟩ = |w′ + (c̄+ c)⟩. Therefore

1√
|C2|

∑
c∈C2

|w + c⟩ = 1√
|C2|

∑
c∈C2

|w′ + (c̄+ c)⟩ ,

which is by relabeling the same as

1√
|C2|

∑
c∈C2

|w + c⟩ = 1√
|C2|

∑
c∈C2

|w′ + c⟩ .

Hence, we find |w + C2⟩ = |w′ + C2⟩.
For the other direction, assume w + w′ /∈ C2. Suppose for contradiction that there exist c, c′ ∈ C2

such that w + c = w′ + c′. Then w + w′ = c + c′ ∈ C2 which is a contradiction. Therefore there are no
codewords c, c′ ∈ C2 such that w + c = w′ + c′ and hence we must have that |w + C2⟩ ≠ |w′ + C2⟩.

By Lemma 3.2.1 it follows that the natural index set for |w + C2⟩ is the set of cosets w ∈ C1/C2 as defined
in Definition 3.1.5. Naturally, the CSS code is then defined as follows

Qs
C1,C2

= {|w + C2⟩ |w ∈ C1/C2}.

It follows that the number of quantum codewords in Qs
C1,C2

is the same as |C1/C2| and hence similarly as in
Remark 3.1.8 we have that

dim(Qs
C1,C2

) = dim(C1)− dim(C2).

Example 3.2.2. Let us take the same codes C2 ⊆ C1 ⊆ F5
2 as in Example 3.1.9. Then the codewords

of Qs
C1,C2

are the following:

|[00000] + C2⟩ =
1

2
(|00000⟩+ |10010⟩+ |01001⟩+ |11011⟩) ,

|[00111] + C2⟩ =
1

2
(|00111⟩+ |10101⟩+ |01110⟩+ |11100⟩) .

The dimension of Qs
C1,C2

is 1. Note that Qcs
C1,C2

from Example 3.1.9 is not equal to the code Qs
C1,C2

of this
example.

As mentioned previously, Steane’s definition of CSS code is equivalent to Canderbank and Shor’s definition
from Section 3.1. Before we prove this explicitly, we need to define what equivalence in the quantum world
means. The quantum equivalence is defined in Definition 3.2.3, which is equivalent to the definition from to
Quantum computation lecture notes by Preskill [11, Section 7.9.1].

20

Definition 3.2.3. Two quantum codes Q and Q′ are equivalent if they differ by a locally unitary matrix
and a permutation.

In the following proposition we will show that the Steane construction is equivalent to the Calderbank
and Shor construction by showing that Qcs and Qs are equivalent.

Proposition 3.2.4. Let C2 ⊆ C1 ⊆ Fn
2 be classical linear codes. Then Qcs

C1,C2
is equivalent to Qs

C⊥
2 ,C⊥

1
.

Proof. Let us consider the quantum Hilbert subspace HC1
⊆ Hn

2 . Let us take a CSS code Qcs
C1,C2

. We will
apply the following change of the basis of HC1

|0⟩ 7−→ 1√
2
(|0⟩+ |1⟩) ,

|1⟩ 7−→ 1√
2
(|0⟩ − |1⟩)

to the codewords of Qcs
C1,C2

. Recall that Qcs
C1,C2

= {|cw⟩ |w ∈ C⊥
2 /C

⊥
1 }. By [4, Section 3], applying the

change of basis to the codewords |cw⟩ gives

|cw⟩ = 2− dim(C1)/2
∑
c∈C1

(−1)⟨c,w⟩ |c⟩ 7−→ |sw⟩ = 2(dim(C1)−n)/2
∑

u∈C⊥
1

|u+ w⟩ .

Note that dim(C1)−n = −dim(C⊥
1) and hence 2− dim(C⊥

1)/2 = 1√
|C⊥

1 |
. Therefore we find that |sw⟩ is actually

equal to
∣∣w + C⊥

1

〉
∈ Qs

C⊥
2 ,C⊥

1
. Moreover, note that the change of basis corresponds to the Hadamard matrix

1√
2

[
1 1
1 −1

]
,

which is unitary. Therefore, the linear operator that maps |cw⟩ to |sw⟩ composed of n of these matrices
tensored, and hence the linear operator is locally unitary. This shows the equivalence between the two
constructions.

Example 3.2.5. Take C1, C2 such as in Example 3.1.9. Then we have seen that Qcs
C1,C2

contains two
codewords, namely

|c0⟩ =
∣∣c[00000]〉 = 1√

8
(|00000⟩+ |10010⟩+ |01001⟩+ |11011⟩+ |00111⟩+ |10101⟩+ |01110⟩+ |11100⟩) ,

|c1⟩ =
∣∣c[11111]〉 = 1√

8
(|00000⟩+ |10010⟩+ |01001⟩+ |11011⟩ − |00111⟩ − |10101⟩ − |01110⟩ − |11100⟩) .

By applying the change of basis from Proposition 3.2.4, the codewords |cw⟩ ∈ Qcs
C1,C2

change to the following
codewords ∣∣s[00000]〉 = 1

2
(|00000⟩+ |10010⟩+ |01001⟩+ |11011⟩) ,∣∣s[11111]〉 = 1

2
(|11111⟩+ |01101⟩+ |10110⟩+ |00100⟩) .

Note that these codewords are equal to codewords in the Steane construction of CSS codes, namely∣∣s[00000]〉 = ∣∣[00000] + C⊥
1

〉
,∣∣s[11111]〉 = ∣∣[11111] + C⊥

1

〉
and that implies that under the change of basis from Proposition 3.2.4, the CSS code Qcs

C1,C2
is the same

code as Qs
C′

1,C
′
2
with C ′

1 = C⊥
2 and C ′

2 = C⊥
1 , which corresponds to the result in Proposition 3.2.4.

21

3.3 CSS codes over Fq
In this section we generalize the CSS construction using classical linear codes defined over Fq for any q = pr

with p a prime number and r a positive integer. Since Qcs and Qs are equivalent, we will denote both by Q
and in what follows we will use the construction by Steane introduced in Section 3.2.

Definition 3.3.1. Take linear codes C2 ⊆ C1 ⊆ Fn
q and let w ∈ C1. Then we define the quantum state

|w + C2⟩ :=
1√
|C2|

∑
c∈C2

|w + c⟩ ,

where the + in the ket notation denotes digit-wise addition modulo p. Then the CSS code is defined as

QC1,C2
:= {|w + C2⟩ |w ∈ C1/C2}.

Similar results to the binary case hold when we move to Fq. For instance, the reason for taking w from
the cosets C1/C2 is the same as in the binary case, which was shown in Lemma 3.2.1. In the following lemma
we generalize the property from Lemma 3.2.1 for linear codes over Fq.

Lemma 3.3.2. (Property) Let C2 ⊆ C1 ⊆ Fn
q . For w,w

′ ∈ C1 we have

w − w′ ∈ C2 ⇐⇒ |cw⟩ = |cw′⟩ .

Proof. Assume w − w′ ∈ C2, so for some c̄ ∈ C2 we have c̄ = w − w′. Then for all c ∈ C2 we have
that w + c = w′ + (c̄+ c) which immediately gives |w + c⟩ = |w′ + (c̄+ c)⟩. Therefore we find that

1√
|C2|

∑
c∈C2

|w + c⟩ = 1√
|C2|

∑
c∈C2

|w′ + (c̄+ c)⟩ ,

which by relabeling is the same as

1√
|C2|

∑
c∈C2

|w + c⟩ = 1√
|C2|

∑
c∈C2

|w′ + c⟩ .

Hence, we find |w + C2⟩ = |w′ + C2⟩.
For the other direction, assume w − w′ /∈ C2. Then suppose for contradiction that there are c, c′ ∈ C2

such that w + c = w + c′. Then w − w′ = c − c′ ∈ C2 which is a contradiction. Therefore there are no
codewords c, c′ ∈ C2 such that w + c = w′ + c′ and hence we must have that |cw⟩ ≠ |cw′⟩.

By the the previous lemma we know that counting quantum codewords |cw⟩ is the same as counting linear
codewords w ∈ C1/C2. Hence the number of codewords in QC1,C2

is |QC1,C2
| = |C1|/|C2| = qdim(C1)−dim(C2).

We conclude as in Remark 3.1.8 that the dimension of QC1,C2 is dim(QC1,C2) = dim(C1)− dim(C2).
The definition of CSS codes provided in this section is the generalization of the Steane construction. We

have previously shown in Proposition 3.2.4 that over the field F2, the Steane and the Calderbank and Shor
constructions are equivalent. The construction by Calderbank and Shor can also be generalised to Fq, and it
can be shown that it is equivalent to the generalized Steane construction in Definition 3.3. However, showing
it is beyond the scope of the thesis.

3.4 Correcting quantum errors with classical codes

In their pivotal paper [4], Calderbank and Shor prove that the CSS construction over F2 gives quantum error-
correcting codes whose error correction capacity depends on a pair of two linear codes and their parameters.
They present this in [4, Theorem 1]. In this section we will discuss which conditions are necessary for
a quantum code to be error-correcting and which conditions of this theorem we can relax. Moreover, we
will generalize the theorem to quantum CSS codes Q constructed from linear codes defined over Fq, as in
Proposition 3.4.2.

See the original theorem by Calderbank and Shor bellow in Theorem 3.4.1.

22

Theorem 3.4.1. (Theorem 1 from [4]) Let C1, C2 be binary linear codes such that C2 ⊆ C1 ⊆ Fn
2 and C1,C

⊥
2

have both length n, dimension n − k and minimum distance d. Then the quantum code QC1,C2
can correct

up to t = ⌊d−1
2 ⌋ errors.

The Calderbank and Shor construction presented in Section 3.1 gives a CSS code Q which is according

to Theorem 3.4.1 a t-error-correcting code with t = ⌊d(C1)−1
2 ⌋. In Theorem 3.4.1 two conditions on linear

codes C1 and C2 are posed. We will now discuss the importance of these conditions to show where they can
be relaxed.

The first condition states that C1 and C2 are such that C2 ⊆ C1 ⊆ Fn
2 . This is a crucial part of the

definition of the CSS code in Section 3.1 and Section 3.2, since C2 ⊆ C1 implies C⊥
1 ⊆ C⊥

2 and then we can
take the set C⊥

2 /C
⊥
1 to be the index set for each codeword |cw⟩. One could argue that instead of taking the

dual of some code C1 to be inside C⊥
2 , we can take any code C ⊆ C⊥

2 . In this case the natural index set
would be C⊥

2 /C. However, this is only a matter of labeling as any code inside C⊥
2 can be written as the dual

of another code that contains C2, namely as the dual of its dual code since in finite dimensional codes we
have (C⊥)⊥ = C for every linear code C ⊆ Fn

2 .
The second condition states that C1 must have the same parameters as C⊥

2 , that is same length, dimension
and minimum distance. First, the equal length n follows directly from the condition of C2 being a subcode
of C1. Secondly, the condition that dim(C1) = dim(C⊥

2) = n − k is taken by Calderbank and Shor for
simplicity, however they state in [4, Section 4] that it is not necessary. Therefore this condition can later be
dropped. Finally, the minimum distance must satisfy d(C1) = d(C⊥

2) = d for QC1,C2
to correct t = ⌊d−1

2 ⌋
errors. This condition can be relaxed to taking d := min{d(C1), d(C

⊥
2)}.

We relax Theorem 3.4.1 by dropping two conditions and by generalizing C1 and C2 to be defined over Fq.
The relaxed version of Theorem 3.4.1 is presented in the following Proposition 3.4.2.

Proposition 3.4.2. (Generalization of Theorem 3.4.1) Let C1, C2 be linear codes with C2 ⊆ C1 ⊆ Fn
q .

Fix d := min{d(C1), d(C
⊥
2)}. Then, the quantum code QC1,C2

can correct up to t = ⌊d−1
2 ⌋ errors.

Before proving Proposition 3.4.2, we need the following lemma that is an extension to Fq of [4, Lemma 1]
that is used in the proof of Theorem 3.4.1. The use of this lemma is not directly mentioned in this thesis,
because it does not differ from how it is used in the original proof.

Lemma 3.4.3. Let C ⊆ Fn
q be a linear code and e, E ∈ Fn

q be two vectors such that e ≤ E. Assume

that wt(E) ≤ d(C⊥). Then there exists a codeword ve such that ve|supp(E)
= e.

Proof. Let the projection map onto the support of E be

πE : Fn
q −→ Fn

q |supp(E)

v 7−→ v|supp(E)

and assume that πE |C is not surjective. Then we have

d′ := dim(πE(C)) < dim
(
Fn
q |supp(E)

)
,

where Fn
q |supp(E)

= {v ∈ Fn
q | vi = 0 if i /∈ supp(E)}. That means that πE(C) is generated by d′ number of

standard basis vectors ei, thus there is at least one j ∈ supp(E) such that for all c ∈ πE(C) we have (c)j = 0.
Note that since πE is a projection, we have that if i ∈ supp(E) then (c|supp(E)

)i = (c)i and 0 otherwise, so
this implies that for all c ∈ C we have (c)j = 0. Then we have

⟨ej |c⟩ =
n∑

i=1

(ej)i · (c)i = (ej)j · (c)j = 0,

hence ej ∈ C⊥. Recall that we take ej from Fn
q |supp(E)

so we have wt(ej) ≤ wt(E). By our assumption on

the weight of E, we get wt(ej) ≤ wt(E) < d(C⊥) which is a contradiction. Therefore πE |C is surjective and
consequently for every e such that e ≤ E we can find w ∈ C such that w|supp(E)

= e.

23

Now we are ready to prove Proposition 3.4.2. The proof is very similar to the one of [4, Theorem 1],
therefore we will not provide a full proof, but we will only focus on the parts that differ from the original proof
by Calderbank and Shor. In what follows we will use the notation for CSS codes as defined in Definition 3.3.1.

Proof. Let us take |w + C2⟩ with w ∈ C1/C2 and let E be a vector in Fq such that there is a nonzero element
from Fq on those qubits where the error happened and the other entries are zero. Then supp(E) represents
the set of the indexes where the error occurred. Since we want to correct t errors, we assume wt(E) = t. The
proof is split into two parts: first we correct the bit-flip errors, secondly the phase-flip errors.

The codeword |w + C2⟩ with errors, denoted by the the action D, looks as follows

D |w + C2, a0⟩ =
1√
|C2|

∑
c∈C2

∑
e≤E

|w + c+ e⟩
∣∣∣ac|supp(E)

,e

〉
, (3.2)

where |ai⟩ denotes the state of the environment with |a0⟩ being the initial state. To restore |w + C2⟩, note
that w ∈ C1 and every c ∈ C2 ⊆ C1, hence also w + c ∈ C1. Then since d ≤ d1 and t = ⌊d−1

2 ⌋ we
obtain 2t < d ≤ d1, which means the minimum distance between two codewords in C1 is more than two times
larger than t, which is the weight of E. Hence we can uniquely decode every w+ c+ e to w+ c. This corrects
the bit-flip errors in |w + C2⟩. This is done by applying a unitary operation Rbf after which the quantum
state looks as follows

RbfD |w + C2, a0⟩ =
1√
|C2|

∑
c∈C2

∑
e≤E

|w + c⟩
∣∣∣ac|supp(E)

,e

〉
|Ae⟩ , (3.3)

where |Ac⟩ is the set of ancilla qubits where we record the error e.
In the second part, following the proof of [4, Theorem 1] we have to change the basis of |w + C2⟩ in order

to be able to correct the phase-flip errors. This is because correcting the bit-flip error in the codeword with
changed basis is actually the same as correcting the phase-flip error in the original basis. The change of basis
looks as follows

|w + c⟩ = 1√
|C2|

∑
u∈Fn

q /C2

|u+ C2⟩ .

After applying the decoding and obtaining what is written in Equation (3.3), we apply substitution with the
new basis and we get the following equation

Rbf(D |w + C2⟩) =
1

|C2|
∑
c∈C2

∑
e≤E

∣∣∣ac|supp(E)
,e

〉
|Ae⟩

∑
u∈Fn

q /C2

|u+ C2⟩ . (3.4)

Next, we show that there is at most one w ∈ C1/C2 such that we can correct |u+ C2⟩ to |w + C2⟩ for
every u ∈ Fn

q /C2. Assume w1, w2 ∈ C1/C2 are such that

u = w1 + e1 + c1

u = w2 + e2 + c2

Then

e1 + (q − 1)e2 = q · u− (w1 + (q − 1)w2)− (c1 + (q − 1)c2)

= −(w1 + (q − 1)w2)− (c1 + (q − 1)c2) ∈ C1.

Note however that wt(e1+e2) ≤ wt(e1)+wt(e2) ≤ 2t, and since we know d1 ≥ d ≥ 2t, this shows that e1 = e2.
That implies w1 + w2 ∈ C2 and |w1 + C2⟩ = |w2 + C2⟩. This shows that every |u+ C2⟩ with u ∈ Fn

2/C
⊥
1 in

Equation (3.4) can be uniquely corrected to a |w + C2⟩ ∈ QC1,C2
, since there is at most one w with d(w, u) < t.

Finally, we have corrected the bit-flip and phase-flip error, which shows that QC1,C2 is a t-error-correcting
quantum code.

24

Chapter 4

Lower bound for the number of CSS
codes

The CSS construction uses a pair of linear codes such that C2 ⊆ C1 ⊆ Fq. We have also seen that the
correction capacity of a CSS code is based on the minimum distances of C1 and C⊥

2 . Namely, a CSS code can
correct up to ⌊d−1

2 ⌋ errors, where d := min(d(C1), d(C
⊥
2)). A direct way to obtain a CSS code that satisfies

the necessary condition and that maximizes the correction capacity is to replace the pair (C1, C2) by (C⊥, C)
with a self-orthogonal code C. For this reason most of the work on CSS codes has been focusing on self-
orthogonal codes. Such CSS codes can be seen for example in [8, Example 13.1.6 and 13.1.7] or in the Steane
code [15]. Even though these examples of CSS quantum codes use self-orthogonal codes, self-orthogonality is
not stated as a necessary condition for the CSS construction. The construction also works for pairs (C1, C2)
where C1 ̸= C⊥

2 with C2 self-orthogonal. Some work has been undertaken in this direction, an example of
CSS code derived from two LDPC codes C1, C2 such that C1 ̸= C⊥

2 can be found in [10].
Using a self-orthogonal code is useful, because we only need one code and the minimum distance of the

quantum code is the same as the one of the code we fixed. However, self-orthogonal codes are not dense, and
considering only them is very restricting for the CSS construction. Therefore, it is natural to ask whether
there are many pairs of codes which can be used to construct CSS codes without restricting to self-orthogonal
codes. In this chapter we approximate the number of such codes. First, in Section 4.1, we investigate when
two CSS codes QC1,C2

and QC′
1,C

′
2
are equal. Then, in Section 4.2, we prove a lower bound on the number

of CSS codes.

4.1 Equality for CSS codes

In this section we study when two CSS codes are equal. It is important to know the relation between two
pairs of linear codes (C1, C2) and (C ′

1, C
′
2) when two CSS codes QC1,C2

, QC′
1,C

′
2
are equal, so that we are able

to count the number of CSS codes based on the number of pairs (C1, C2). We use the definition of CSS codes
over Fq as given in Definition 3.3.1.

Proposition 4.1.1. Let C2 ⊆ C1 ⊆ Fn
q and C ′

2 ⊆ C ′
1 ⊆ Fn

q be linear codes. Let us consider the CSS
codes QC1,C2

, QC′
1,C

′
2
. Then the following holds

QC1,C2
= QC′

1,C
′
2
⇐⇒ C1 = C ′

1 and C2 = C ′
2.

Proof. The implication from right to left is obvious, therefore we will focus on proving the other direction.
We will first prove that C1 = C ′

1. Suppose by contradiction that C1 ̸= C ′
1, then there is at least one

codeword w̄ such that w̄ ∈ C1\C ′
1 or w̄ ∈ C ′

1\C1. Without loss of generality we can assume that w̄ ∈ C1\C ′
1.

Now take c = 0 ∈ C2 ⊆ C1, then w̄ + c /∈ C ′
1. Hence there exist no w′ ∈ C ′

1 and c′ ∈ C ′
2 ⊆ C ′

1 for which we
would have that w̄ + c = w′ + c′. Let us recall the definition of |w̄ + C2⟩

|w̄ + C2⟩ =
1√
|C2|

∑
c∈C2

|w̄ + c⟩ .

25

Since w̄ + c ̸= w′ + c′ for all w′ ∈ C ′
1 and c′ ∈ C ′

2, we conclude that |w̄ + C2⟩ ≠ |w′ + C ′
2⟩ for any w′ ∈ C ′

2.
This is a contradiction and hence we must have C1 = C ′

1.
Now we will show that |C2| = |C ′

2|. Since QC1,C2
= QC′

1,C
′
2
, that means that for every |w + C2⟩ ∈ QC1,C2

there is a unique codeword |w′ + C ′
2⟩ ∈ QC′

1,C
′
2
such that |w + C2⟩ = |w′ + C ′

2⟩. Rewriting this equality gives

1√
|C2|

∑
c∈C2

|w + c⟩ = 1√
|C ′

2|

∑
c′∈C′

2

|w′ + c′⟩ . (4.1)

Recall that every ket is equal to a vector of the standard basis, hence the sums in Equation 4.1 contain |C2|
and |C ′

2| distinct orthogonal vectors, respectively. Hence every |w + c⟩ is equal to exactly one |w′ + c′⟩,
implying by Remark 2.2.1 that every w + c is equal to exactly one w′ + c′. This implies that the two sums
must contain the same number of elements, hence |C2| = |C ′

2|.
Finally, we prove that also C2 = C ′

2. Take |w + C2⟩ ∈ QC1,C2
and |w′ + C ′

2⟩ ∈ QC1,C′
2
such that

|w + C2⟩ = |w′ + C ′
2⟩. Taking c = 0 ∈ C2 gives |w + 0⟩ = |w′ + c′⟩ for some c′ ∈ C ′

2, which then im-
plies w = w′ + c′ and hence that w − w′ ∈ C ′

2. Since |w + C2⟩ = |w′ + C ′
2⟩, for all c ∈ C2 there exists a

unique c′ ∈ C ′
2 such that |w + c⟩ = |w′ + c′⟩, which entails c′ − c = w − w′ ∈ C ′

2. Therefore, we also have
c = c′ − (c′ − c) ∈ C ′

2 and thus C2 ⊆ C ′
2, which together with |C2| = |C ′

2| implies C2 = C ′
2.

By Proposition 4.1.1 it follows that different CSS codes correspond to different pairs of linear codes.
More precisely, the number of t-error-correcting codes QC1,C2

over Fq of length qn and dimension k is the
same as the number of linear codes (C1, C2) where C2 ⊆ C1 ⊆ Fn

q , d(C1), d(C
⊥
2) ≥ d, where t = ⌊d−1

2 ⌋
and dim(C1) − dim(C2) = k. Recall that the requirement for the dimension follows by Remark 3.1.8 and
minimum distance follows by Proposition 3.4.2. Hence the lower bound of the number of t-error-correcting
CSS codes of dimension k should be derived for fixed parameters (q, n, k, d).

4.2 Approximating the number of CSS codes

In this section we will present a lower bound on the number of CSS codes. From Proposition 3.4.2 and
the discussion after it, it follows that the number of t-error-correcting CSS codes QC1,C2 over Fq with
length qn and dimension k is the same as the number of different pairs (C1, C2) such that C2 ⊆ C1 ⊆ Fn

q

with d(C1), d(C
⊥
2) ≥ d and k = dim(C1) − dim(C2). Therefore we will focus on counting such pairs.

Throughout this section we fix integers (q, n, k, d), where 1 ≤ k ≤ n, 1 ≤ d and q > 0 is a power of a
prime.

4.2.1 Lower bounds for the number of codes C1 and the number of codes C2

To find the number of pairs of linear codes (C1, C2) with the properties we are interested in, we proceed in
the following way. First, in Lemma 4.2.1, we approximate the number of linear codes C1 with d(C1) ≥ d for
fixed (q, n, k, d). After that, in Lemma 4.2.2, we approximate the number of subcodes C2 of a code C1 for
fixed (q, n, k, d) and fixed dim(C1) = k1. Note that by fixing the dimension of C1, we obtain by Remark 3.1.8
fixed dimension also for C2, namely dim(C2) = k1 − k.

Lemma 4.2.1. (Lower bound for the number of C1’s) Let q be the power of a prime, let n, k1, d be integers
such that 1 ≤ k ≤ n and 2 ≤ d. Set FC1

:= {C1 ⊆ Fn
q | dim(C1) = k1, d(C1) ≥ d}. Then we have

|FC1 | ≥
(
n

k1

)
q

(
1− qk1 − 1

(qn − 1)(q − 1)

(
d−1∑
i=0

(q − 1)

(
n

i

)
q

− 1

))
.

Proof. By the second part of Proposition 1.3.3, we know that there are at most

qk1 − 1

(qn − 1)(q − 1)

(
n

k1

)
q

(b(d− 1)− 1)

number of codes C1 ⊆ Fn
q of dimension k1 such that d(C1) < d where 0 ≤ k1 ≤ n and d ≥ 2. This proposition

however approximates all the codes with minimum distance smaller than a fixed parameter d, but what

26

we need is the exact opposite, namely the number of codes with minimum distance greater or equal to d.
Therefore we will subtract this result from the number of all the k1-dimensional codes in Fn

q , which is by
Proposition 1.3.1 equal to (

n

k1

)
q

=
(qn − 1)(qn − q) . . . (qn − qk1−1)

(qk1 − 1)(qk1 − q) . . . (qk1 − qk1−1)
.

Note that by Remark 1.2.9 we have that b(d − 1) =
∑d−1

i=0 (q − 1)i
(
n
i

)
. Therefore the lower bound of linear

codes C1 with the desired properties is

|FC1
| ≥

(
n

k1

)
q

(
1− qk1 − 1

(qn − 1)(q − 1)

(
d−1∑
i=0

(q − 1)i
(
n

i

)
− 1

))
.

Lemma 4.2.2. (Lower bound for the number of C2’s) Fix an integer d ≥ 2 and let C1 ⊆ Fn
q be a linear code

with dim(C1) = k1 and d ≤ d(C1). Let us define the family of codes

FC2
:= {C2 ⊆ Fn

q |C2 ⊆ C1, dim(C2) = k2, d(C
⊥
2) ≥ d}.

Then we have that

|FC2
| ≥

(
k1

k1 − k2

)
q

(
1− qn−k2 − qn−k1

(q − 1)(qn − qn−k1)

(
d−1∑
i=0

(q − 1)i
(
n

i

)
− 1

))
.

Proof. Fix C1 ⊆ Fn
q with dim(C1) = k1 and an integer d ≥ 2. The family FC2

is equal to the following set

FC2
= {C2 ⊆ Fn

q |C2 ⊆ C1, dim(C2) = k2, d(C
⊥
2) ≥ d}

= {C⊥
2 ⊆ Fn

q |C⊥
1 ⊆ C⊥

2 , dim(C⊥
2) = n− k2, d(C

⊥
2) ≥ d}

= {C⊥
2 ⊆ Fn

q |C⊥
1 ⊆ C⊥

2 , dim(C⊥
2) = n− k2} \ {C⊥

2 ⊆ Fn
q |C⊥

1 ⊆ C⊥
2 , dim(C⊥

2) = n− k2, d(C
⊥
2) < d}

= Fn−k2\Fn−k2,<d

(4.2)
with the notation as in Proposition 1.3.3. This result implies that |FC2 | = |Fn−k2 | − |Fn−k2,<d|. Recall that
by Proposition 1.3.2 we have that

|Fn−k2
| =

(
n− (n− k1)

(n− k2)− (n− k1)

)
q

=

(
k1

k1 − k2

)
q

, (4.3)

and by Proposition 1.3.3 we know that if d ≥ 2 then

|Fn−k2,<d|/|Fn−k2 | ≤
qn−k2 − qn−k1

(q − 1)(qn − qn−k1)
(b(d− 1)− 1) . (4.4)

Equations (4.3) and (4.4) together allow to compute |Fn−k2,<d| as follows

|Fn−k2,<d| = (|Fn−k2,<d|/|Fn−k2
|) · |Fn−k2

|

≤ qn−k2 − qn−k1

(q − 1)(qn − qn−k1)
(b(d− 1)− 1) ·

(
k1

k1 − k2

)
q

.
(4.5)

Finally, combining Equations (4.2),(4.3) and (4.5) we obtain the desired result

|FC2
| ≥

(
k1

k1 − k2

)
q

−

(
qn−k2 − qn−k1

(q − 1)(qn − qn−k1)
(b(d− 1)− 1) ·

(
k1

k1 − k2

)
q

)

=

(
k1

k1 − k2

)
q

(
1− qn−k2 − qn−k1

(q − 1)(qn − qn−k1)
(b(d− 1)− 1)

)

=

(
k1

k1 − k2

)
q

(
1− qn−k2 − qn−k1

(q − 1)(qn − qn−k1)

(
d−1∑
i=0

(q − 1)i
(
n

i

)
− 1

))
.

27

Before we prove a lower bound for the pairs of (C1, C2), we examine how each of the bounds in Lemma 4.2.1
and Lemma 4.2.2 behave for different parameters (q, n, k, d).

4.2.2 Examples of the bounds for the number of C1 and C2

The strategy of approximating the lower bound for the number of pairs (C1, C2) is to first approximate
the number of codes C1 and then multiply it with the approximation for the number of codes C2. For
this reason we first examine how the bound for the number of C1’s in Lemma 4.2.1 behaves for different
parameters (q, n, k1, d). Note that we here fix k1 = dim(C1) instead of k = dim(Q), which will be the fixed
parameter in the final lower bound. We use a simple function called lowerboundC1 in the computer algebra
system SageMath to generate the results in the following examples. The algorithm can be found in the
Appendix 6.

Recall that d ≥ 2 and 1 ≤ k1 ≤ n. We skip the case when k1 = n because for that case C1 = Fn
q . We

denote the number of codes C1 with d(C1) ≥ d by |FC1
|.

Example 4.2.3. Let us fix q = 2 and n = 4. We vary 1 ≤ k1 < n and look at the cases when d = 2 and d = 3,
since for d = 4 the only code over F2 would be the repetition code. The lower bound from Lemma 4.2.1 of
the number of codes for parameters (q, n, k1, d) can be found bellow.

(q, n, k1, d) |FC1 |
(2, 4, 1, 2) 11
(2, 4, 2, 2) 7
(2, 4, 3, 2) −13
(2, 4, 1, 3) 5
(2, 4, 2, 3) −35
(2, 4, 3, 3) −55

In Example 4.2.3 we see that when k1 and d increase, the lower bound decreases and even attains a
negative value. Negative values are not interesting for us, since they do not give a meaningful lower bound
for the number of codes. Moreover, they can cause problems later on when we will multiply the number of
codes C1 with the number of codes C2. If both of these values are negative, multiplying them would give a
positive value that would be very likely incorrect. For this reason we want to focus on those cases where the
lower bound is non-negative.

In the next example we look at what happens when we increase the value of q.

Example 4.2.4. Let us fix q = 5, n = 4 and d = 2 and 3. We vary k1 such that 1 ≤ k1 < n. Then we get
the following outcomes from the lower bound.

(q, n, k1, d) |FC1 |
(5, 4, 1, 2) 152
(5, 4, 2, 2) 682
(5, 4, 3, 2) 32
(5, 4, 1, 3) 128
(5, 4, 2, 3) −62
(5, 4, 3, 3) −712

In Example 4.2.4 we see that again for higher values of k1, d the lower bound gives a lower outcome. Note
that also for q = 5 we have points where the lower bound is a negative number, however less of them than
we had for q = 2.

Finally, let us have a look at what happens when we increase the length n.

Example 4.2.5. Let us fix q = 5, k1 = d = 2 and then k1 = d = 3. We will vary n such that n ≥ k1.

(q, n, k1, d) |FC1
|

(5, 3, 2, 2) 13
(5, 5, 2, 2) 19526
(5, 4, 3, 3) −712
(5, 6, 3, 3) 1218360

28

In Example 4.2.5 we see that a larger value of n gives a larger value of the lower bound. Therefore we
conclude that to avoid getting negative outputs, we want to focus on the cases when k1, d are relatively small
and n is relatively large.

Now we will briefly see what happens with the lower bound of the number of subcodes C2 for those cases
when the bound in Lemma 4.2.1 gave a negative outcome. Some instances are reported in Example 4.2.6.

Example 4.2.6. In this example we look at four cases when the number |FC1
| was negative. We print |FC2

|
from Lemma 4.2.2 for the parameters (q, n, k1, k2, d).

(q, n, k1, k2, d) |FC2 |
(2, 4, 2, 1, 2) −1
(2, 4, 3, 1, 2) −5
(5, 4, 3, 1, 3) −137
(5, 4, 3, 2, 3) 3

In Example 4.2.6 we see that if we take parameters for which Lemma 4.2.1 gives a negative outcome, the
outcome of Lemma 4.2.2 might also be negative. This is a problem since as mentioned before, multiplying
the number of C1’s with the number of C2’s could in these cases give a large positive value, even though
the real number of pairs could be 0. For this reason, we must restrict the lower bound for the number of
pairs (C1, C2) for those cases when the bounds in Lemma 4.2.1 and Lemma 4.2.2 are both non-negative.

4.2.3 Lower bound for the number of CSS codes

In this section we combine the two results from Lemma 4.2.1 and Lemma 4.2.2 to give a lower bound on the
number of t-error-correcting CSS codes. As mentioned before, we consider only the cases when both |FC1

| ≥ 0
and |FC2

| ≥ 0, and if that holds, we multiply them with each other.

Proposition 4.2.7. (Lower bound for the number of CSS codes) Let (q, n, k, d) be integers such that q is a
power of a prime, 1 ≤ k ≤ n and d ≥ 2. Set t = ⌊d−1

2 ⌋. Suppose that both |FC1
| and |FC2

| from Lemma 4.2.1
and Lemma 4.2.2 are non-negative numbers. Then the number of t-error-correcting CSS codes QC1,C2 of
dimension k with C2 ⊆ C1 ⊆ Fn

q and with d(C1), d(C
⊥
2) ≥ d, is at least

n∑
k1=k+1

(
n

k1

)
q

(
k1
k

)
q

(
1− qk1 − 1

(qn − 1)(q − 1)
(b(d− 1)− 1)

)(
1− qn−(k1−k) − qn−k1

(q − 1)(qn − qn−k1)
(b(d− 1)− 1)

)
.

Proof. From Proposition 4.1.1 it follows that counting the CSS codes QC1,C2 with error correction capacity
equals to t = ⌊d−1

2 ⌋, corresponds to counting the pairs (C1, C2) such that C2 ⊆ C1 and d(C1), d(C
⊥
2) ≥ d.

Therefore to obtain a lower bound for the number of QC1,C2
, we can combine the results of Lemma 4.2.1 and

Lemma 4.2.2.
By Lemma 4.2.1 we know that

|FC1 | ≥
(
n

k1

)
q

(
1− qk1 − 1

(qn − 1)(q − 1)
(b(d− 1)− 1)

)
,

where |FC1
| denotes the number of codes C1 ⊆ Fn

q with dim(C1) = k1 and d(C1) ≥ d. For each fixed k1
which denotes the dimension of these C1, it follows by Lemma 4.2.2 that

|FC2 | ≥
(

k1
k1 − k2

)
q

(
1− qn−k2 − qn−k1

(q − 1)(qn − qn−k1)
(b(d− 1)− 1)

)
where |FC2 | denotes the number of subcodes C2 ⊆ C1 with dim(C2) = k2 and d(C⊥

2) ≥ d.
Fix k to be the dimension of the CSS codes that we want to count. Recall by Remark 3.1.8, if dim(C1) = k1

and dim(C2) = k2, then k = k1 − k2. The dimension of C1 is moreover such that k ≤ k1 ≤ n but note that
if we take k = k1, then k2 = 0, so we exclude this option. We therefore vary k < k1 ≤ n. Since we assume

29

that both |FC1 | and |FC1 | are non-negative, we can conclude that the lower bound for the number of pairs
of linear codes (C1, C2) where C2 ⊆ C1 ⊆ Fn

q and d(C1), d(C
⊥
2) ≥ d is the following

n∑
k1=k+1

(
n

k1

)
q

(
k1
k

)
q

(
1− qk1 − 1

(qn − 1)(q − 1)
(b(d− 1)− 1)

)(
1− qn−(k1−k) − qn−k1

(q − 1)(qn − qn−k1)
(b(d− 1)− 1)

)
. (4.6)

By Proposition 4.1.1 we know that counting the pairs (C1, C2) is the same as counting QC1,C2
, hence

Equation 4.6 is a lower bound for the number of t-error-correcting CSS codes with dimension k.

Remark 4.2.8. If we take dim(C1) = k1 = n, we have that C1 = Fn
q and therefore C1 has minimum dis-

tance d(C1) = 1. That implies that any subcode C2 ⊆ C1 will satisfy d(C⊥
2) ≥ d = 1. For this reason in

Chapter 5 we will omit the case when n = k1 and take the sum in Equation 4.6 from k + 1 up until n− 1.

In order to see if our lower bound is a good approximation of the actual number of CSS codes, we perform
several experiments with the SageMath computer algebra system. We compare these results with our bound
in the next chapter.

30

Chapter 5

Counting the number of CSS codes

In this chapter we will count the exact number of CSS codes QC1,C2 using a program in the SageMath
computer algebra system and then we will compare the results with the lower bound derived in Chapter 4.
Again, counting t-error-correcting codes QC1,C2

of dimension k where t = ⌊d−1
2 ⌋ is by Proposition 4.1.1 the

same as counting the pairs (C1, C2) with C2 ⊆ C1 and d(C1), d(C
⊥
2) ≥ d. That is why we focus on finding

pairs of such linear codes. From now on when mentioning the pair of the codes C1 and C2 with these specific
properties, we simply say C1 and C2 and do not state all the properties anymore.

For simplicity, the SageMath function for counting the number of CSS codes will only consider codes over
the field Fp with p a prime number. The reason for this is that for q = pr it is more complicated to implement
this, since then we work with polynomials instead of numbers.

In Section 5.1 we will explain the function for counting the number of CSS codes for Fp. At the end of
this section we will propose a solution on how to extend this algorithm for any field Fq. Then, in Section 5.2
we will compare the results of the lower bound with the exact number of CSS codes.

5.1 Description of the SageMath code countallpairs

In this section we will describe the function that counts the number of pairs (C1, C2). The function is called
countallpairs and can be seen below. It consists of two important functions, countC1 that counts the
number of codes C1 and countC2 which for each C1 counts the number of subcodes C2.

def countallpairs(p,n,k,d):

count = 0

for k1 in range(k+1,n)

allmatrices = []

midcount = 0

allmatrices = countC1(p,n,k1,d)

for G1 in allmatrices:

midcount = midcount + countC2(p,n,k1-k,d,G1)

print("For (k1,k2)=",k1,",",k1-k," we have number of pairs:",midcount)

count = count + midcount

print("The number of all pairs: ",count)

For each integer k1 such that k+1 ≤ k1 < n, we want to find the codes C1. As mentioned in Remark 4.2.8,
we exclude the case where k1 = n because this would give C1 = Fn

p . Function countC1 finds all the linear
codes C1 for a fixed dimension k1. It goes through all linear codes C ⊆ Fn

p with dim(C) = k1 and checks

if d(C), d(C⊥) ≥ d, where p, n, k, d are fixed parameters. The reason behind checking if d(C⊥) ≥ d is to
optimize the running time of the program. Since we have the inclusion C2 ⊆ C1 we automatically have
that C⊥

1 ⊆ C⊥
2 , which implies d(C⊥

1) ≥ d(C⊥
2). By Proposition 3.4.2 we want to have d(C⊥

2) ≥ d, and

31

that imposes the necessary condition onto d(C⊥
1) mentioned above. Example 5.1.1 in this section shows the

difference between the number of codes C1 with and without the condition d(C⊥
1) ≥ d.

Finding these codes boils down to finding their generator matrices. From Definition 1.2.2 we know that
the generator matrix G of a code C is a full rank k × n matrix in the reduced row echelon form. The
function countC1 will therefore output a list of all the generator matrices in reduced row echelon form for
all the linear codes with the desired properties.

Generating all matrices G of a certain form is done in the following way. We first generate all vectors of
length n that consist of the elements in Fp in list1. Afterwards only elements with at least d nonzero entries
are copied to list2, to prevent that the minimum distance d(C) would be smaller than the fixed value d.

def countC1(p,n,k1,d):

list1 = list(product(range(0,p),repeat=n))

list2 = []

for i in range(0,len(list1)):

weight = 0

for j in range(0,n):

if list1[i][j] > 0:

weight = weight + 1

if weight >= d:

list2.append(list(list1[i]))

After we have generated all the possible vectors that could generate the linear code C1, we want to find
all k1-tuples of them and then turn these tuples into matrices G. The vectors are stored as list2[i] for
all i ∈ {1, 2, . . . , length(list2)}, therefore finding all k1-tuples of them is the same as finding all k1-tuples of
their iterations. This is done using the function product. Finally, we can create matrices G.

rows = list(product(range(0,len(list2)),repeat = k1))

length = len(rows[0])

for r in rows:

G = []

for i in range(0,length):

G.append(tuple(list2[r[i]]))

G = matrix(GF(p),G)

G = G.rref()

The last step is to check if the matrices satisfy the criteria in Proposition 3.4.2, namely whether it holds
that d(C), d(C⊥) ≥ d. Then we return the list of all such matrices with the function allmatrices. This list
is used in the fourth row of the function countallpairs that was presented at the beginning of this section.

if G not in allmatrices:

if G.rank() == k1:

C = LinearCode(G)

if C.minimum_distance() >= d:

Cperp = C.dual_code()

if Cperp.minimum_distance() >= d:

allmatrices.append(G)

return allmatrices

In order to see how much the condition d(C⊥) ≥ d optimizes our program, we also give a function countC1noperp,
which is a copy of countC1 but where we drop the criterion on the minimum distance of C⊥. This function

32

is presented in the Appendix 6. The following Example 5.1.1 shows the difference between the results from
countC1 and countC1noperp for some fixed parameters.

Example 5.1.1. We fix (p, n, k, d) = (2, 4, 2, 2), then function countC1 gives the number of codes C1 with
parameters [p, n, k] = [2, 4, 2] and d(C1), d(C

⊥
1) ≥ 2 to be 9. We obtain the following generator matrices of

these codes

G1 =

[
1 1 0 0
0 0 1 1

]
G2 =

[
1 1 0 1
0 0 1 1

]
G3 =

[
1 0 1 0
0 1 0 1

]

G4 =

[
1 0 1 1
0 1 0 1

]
G5 =

[
1 0 0 1
0 1 1 0

]
G6 =

[
1 0 1 1
0 1 1 0

]

G7 =

[
1 0 0 1
0 1 1 1

]
G8 =

[
1 0 1 0
0 1 1 1

]
G9 =

[
1 0 1 1
0 1 1 1

]
.

If we drop the second requirement and run countC1noperp, we get that the number of codes C1 is 13. Apart
of matrices G1, . . . , G9 we also obtain the following four matrices

G10 =

[
0 1 0 1
0 0 1 1

]
G11 =

[
1 0 0 1
0 0 1 1

]
G12 =

[
1 0 0 1
0 1 0 1

]
G13 =

[
1 0 1 0
0 1 1 0

]
.

Each of the matrices G10, . . . , G13 has no subspace C2 satisfying d(C⊥
2 ≥ d). Hence we see that including the

requirement d(C⊥
1) ≥ d optimizes the running time of countallpairs by 4 cases for which we do not have

to go over all its subspaces.
Note that for these parameters we have that k = k1, which is the case that we otherwise exclude since then

dim(C2) = 0. However, the purpose of this example is to show the usefulness of the condition d(C⊥
1) ≥ d.

Moreover, we do not yet consider the subcode C2, so for this reason it is not a problem to have k = k1 in
this case.

The full code for countC1 can be found in the Appendix 6.

Now we return to the function countallpairs and run a for loop to go over all codes C1 in allmatrices.
We fix a code C1 and can proceed with finding its subspaces C2.

The function countC2 fixes a code C1 found in the previous function and checks all its subcodes, to find
all C2 with d(C⊥

2) ≥ d and with dim(C2) = k1 − k.

def countC2(p,n,k2,d,G1):

count = 0

allmatrices = []

C1 = LinearCode(G1)

codewords = list(C1)

codewords.remove(codewords[0])

generators = Combinations(codewords, k2)

The next step is to check if the obtained matrix is of full rank and if the linear code with this generator
matrix satisfies the criteria for the minimum distance.

33

for gens in generators:

G2 = matrix(GF(p),gens).rref()

C2 = LinearCode(G2)

if G2 not in allmatrices:

if subcode(C2,C1):

if C2.dimension() == k2:

C2perp = C2.dual_code()

if C2perp.minimum_distance() >= d:

allmatrices.append(G2)

count = count + 1

return count

The function then returns the number of subcodes C2 for a fixed code C1.

With the number of subcodes C2 for each code C1, we return to countallpairs where these results are
summed. Finally, we return this value as the number of all pairs (C1, C2) with the desired properties.

5.1.1 SageMath code for Fq

As mentioned at the beginning of this chapter, we implemented the function countallpairs only for codes
over Fp for simplicity. This can however be extrended to codes over the field Fq. If we want to do so, we
need to change function countC1, since this is the place where all the codes and their generator matrices are
generated. The main difference has to be done in the beginning of this function where we define list1. We
define a field k of q elements representing the field Fq. This field contains polynomials with the variable X.
Hence the list list1 would take polynomials instead of numbers between 0 and q.

Fq = []

k.<X> = GF(q,’X’)

for a in k:

Fq.append(a)

list1 = list(product(Fq,repeat=n))

A minor change has to be done in counting the weight of a codeword in function countC1, here we simply
change > to ̸=.

if list1[i][j] != 0:

weight = weight + 1

There are more places where the code would have to be updated, however we will not go in depth of this,
since we will only count the exact number of codes for codes over Fp. For this the original code presented in
Section 5.1 will be sufficient.

5.2 Results

In this section we compare the lower bound given in Proposition 4.2.7 with the outputs of the SageMath
function countallpairs described in Section 5.1. The lower bound is implemented in SageMath as a function
lowerbound and can be found in Appendix 6. Recall that to apply Proposition 4.2.7 we must have that
both |FC1 |, |FC2 | ≥ 0. For this reason the function lowerbound contains an if-condition, that will check
whether this holds.

34

We first want to find out which parameters give us a nonzero lower bound, since those are the ones that
we are interested in. For this we run the script below and we print all the nonzero outputs. Note that in the
script we can vary parameters d, p and rng, where rng denotes the maximal value for n.

rng = 10

d = 3

p = 5

print("rng = ",rng,", d = ",d,", p = ",p)

for n in range(1,rng):

for k in range(1,n):

if countcodes(p,n,k,d)!=0:

print("For (",p,",",n,",",k,",",d,") the lower bound: ", countcodes(p,n,k,d))

Some of the outputs of the script can be seen in Example 5.2.1.

Example 5.2.1. In the table below, we can see some outputs of the function lowerbound that approximates
the number of CSS codes for fixed parameters (p, n, k, d).

(p, n, k, d) lowerbound

(2, 6, 1, 2) 465
(2, 7, 1, 2) 16368
(3, 3, 1, 2) 1
(3, 7, 2, 2) 195052
(5, 5, 2, 2) 16927
(5, 5, 3, 2) 1
(5, 7, 1, 3) 5687456775

All the outputs for this script can be found in the Appendix 6. Note that the outputs in Appendix 6
show that that the smaller the value of p, the larger the lowest n value for which the lowerbound output is
nonzero. For example, for p = 2, the first nonzero number is for n = 6. However, for p = 3 or p = 5, the first
nonzero value is for n = 3. This indicates that for larger values of p the lower bound can be more precise.

Now we pick those parameters (p, n, k, d) for which we want to compare the lower bound to the exact
number of codes. The code countallpairs is computationally very expensive and therefore we choose the
parameters such that n, p ≤ 5 and d, k ≤ 2. Note that since we set n ≤ 5, we automatically exclude results
for p = 2, because of the previous reasoning. We also do not want the lower bound to be higher than 10 000,
because that indicates that the code countallpairs will run for a long time.

We will provide some cases where we compare the lower bound to the exact number of codes. These are
shown in the examples bellow.

Example 5.2.2. Let us fix (p, n, k, d) = (3, 3, 1, 2). Then the function lowerbound outputs 1 as the lower
bound for the number of CSS codes and the output from countallpairs is 4 CSS codes. Therefore we
conclude that the lower bound is a good approximation for these parameters.

Example 5.2.3. Let us fix (p, n, k, d) = (5, 3, 1, 2). Then we have that the function lowerbound outputs 39
and the output from countallpairs is 48 CSS codes. Therefore we conclude that the lower bound is a good
approximation for these parameters.

Example 5.2.4. Let us take (p, n, k, d) = (3, 5, 1, 2). Then we have that the lowerbound gives 4480 CSS
codes and the output from countallpairs is 5360 CSS codes. The approximation is relatively far from the
actual number of CSS codes for these parameters.

The results in the examples above show that the values from the function lowerbound are indeed lower
than the exact number of CSS codes from the function countallpairs. We conclude that if |FC1

|, |FC2
| are

positive, then the lower bound is a good approximation of the exact number of the CSS codes.

35

There are many cases for which the function lowerbound gives 0. This is because of the if-condition
in this function which checks whether both the numbers of C1’s and C2’s are non-negative. However, it is
interesting to look at the number of CSS codes for some of these parameters, for which the lower bound was
not positive, to see whether they are close to zero.

Example 5.2.5. Let us take (p, n, k, d) = (2, 3, 2, 2). Then we have that the lowerbound gives 0 CSS codes
and the output from countallpairs is 0 CSS codes. The approximated value 0 is therefore exact for these
parameters.

Example 5.2.6. Let us take (p, n, k, d) = (2, 4, 2, 2). Then we have that the lowerbound gives 0 CSS codes
and the output from countallpairs is 1 CSS codes. The approximation 0 is therefore also very precise for
these parameters.

Example 5.2.7. Let us take (p, n, k, d) = (2, 4, 1, 2). Then we have that the lowerbound gives 0 CSS codes
and the output from countallpairs is 6 CSS codes. Again, also for these parameters the value 0 is close to
the real number of CSS codes.

We see that in the examples above, all the values of the numbers of the CSS codes are very close or
equal to zero. Therefore, for small parameters such as those that were considered, we can conclude that the
numbers of the CSS codes are also well approximated. This could however behave different for larger values
of the parameters.

36

Chapter 6

Conclusion

In this thesis we studied CSS codes, which are a family of quantum error-correcting codes. The original
definition of these codes was generalized to arbitrary finite fields Fq where q is a power of a prime and where
the previous restrictions of the code dimensions were dropped. This new definition is given in Definition 3.3.1.
Afterwards, we relaxed the original Theorem by Calderbank and Shor, where they show that CSS codes are
quantum error-correcting codes. This was done by providing an alternative proof in Proposition 3.4.2. The
main result of this thesis is an approximation of the number of CSS codes, which is presented as a lower bound
in Proposition 4.2.7. The results of the approximation were compared to the exact numbers of CSS codes,
which were computed by implementing a program in the SageMath computer algebra system. Because the
SageMath program was computationally expensive, the numbers of codes that we compared were restricted
to those with parameters p, n ≤ 5 and d, k ≤ 2. For these parameters, the lower bound approximates the
number of CSS codes well.

This report also contains smaller results such as showing that CSS codes do not necessarily have to be
based on self-orthogonal codes, even thought most of the existing examples are such. We have also shown
that two CSS codes are equal if and only if their linear codes are equal in Proposition 4.1.1 which was crucial
for proving the lower bound in Proposition 4.6.

Further research could include a couple of points. In the short-term, first, the SageMath program could be
optimized to calculate the number of CSS codes in shorter amount of time. That way the results of the lower
bound could be compared for codes with larger parameters. Secondly, the lower bound could be extended to
approximate the number of codes closer to the real number of codes also for smaller values of q such as q = 2
or q = 3. Lastly, one can prove the equivalence of the Steane construction with the Calderbank and Shor
construction over Fq, that was not included in this thesis.

In the medium-term we can study whether there are different ways of using classical linear codes to correct
quantum errors. In this thesis we only studied the CSS construction.

In the long term one can study whether there are different ways to approximate the number of CSS codes.
The lower bound in this thesis is based on the paper by Byrne and Ravagnani [3]. However, using different
theory could lead to different and maybe more accurate approximations of the number of CSS codes.

37

Bibliography

[1] S. Ball, A. Centelles, and F. Huber, Quantum error-correcting codes and their geometries, arXiv
preprint arXiv:2007.05992, (2020).

[2] D. Bartoli, M. Montanucci, and G. Zini, Ag codes and ag quantum codes from the ggs curve,
Designs, Codes and Cryptography, 86 (2018), pp. 2315–2344.

[3] E. Byrne and A. Ravagnani, Partition-balanced families of codes and asymptotic enumeration in
coding theory, Journal of Combinatorial Theory, Series A, 171 (2020), p. 105169.

[4] A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Physical Review A,
54 (1996), p. 1098.

[5] S. Kumar, R. Calderbank, and H. D. Pfister, Reed-muller codes achieve capacity on the quantum
erasure channel, in 2016 IEEE International Symposium on Information Theory (ISIT), 2016, pp. 1750–
1754.

[6] G. G. La Guardia, Asymmetric quantum reed-solomon and generalized reed-solomon codes, Quantum
Information Processing, 11 (2012), pp. 591–604.

[7] N. D. Mermin, Quantum computer science: an introduction, Cambridge University Press, 2007.

[8] G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-dual codes and invariant theory, vol. 17, Springer,
2006.

[9] M. A. Nielsen and I. Chuang, Quantum computation and quantum information, 2002.

[10] M. S. Postol, A proposed quantum low density parity check code, arXiv preprint quant-ph/0108131,
(2001).

[11] J. Preskill, Quantum computation. http://theory.caltech.edu/~preskill/ph229/notes/chap7.
pdf.

[12] A. Ravagnani, Coding theory. https://a.ravagnani.win.tue.nl/coding%20th/Coding_theory_

notes.pdf.

[13] J. Roffe, Quantum error correction: an introductory guide, Contemporary Physics, 60 (2019), pp. 226–
245.

[14] P. K. Sarvepalli and A. Klappenecker, Nonbinary quantum reed-muller codes, in Proceedings.
International Symposium on Information Theory, 2005. ISIT 2005., IEEE, 2005, pp. 1023–1027.

[15] A. Steane, Multiple-particle interference and quantum error correction, Proceedings of the Royal Soci-
ety of London. Series A: Mathematical, Physical and Engineering Sciences, 452 (1996), pp. 2551–2577.

[16] J. H. Van Lint, Introduction to coding theory, vol. 86, Springer Science & Business Media, 2012.

[17] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Qudits and high-dimensional quantum computing,
Frontiers in Physics, 8 (2020), p. 589504.

38

http://theory.caltech.edu/~preskill/ph229/notes/chap7.pdf
http://theory.caltech.edu/~preskill/ph229/notes/chap7.pdf
https://a.ravagnani.win.tue.nl/coding%20th/Coding_theory_notes.pdf
https://a.ravagnani.win.tue.nl/coding%20th/Coding_theory_notes.pdf

39

Appendix

Function for counting CSS codes

from itertools import permutations,product,combinations

#Parameters for the function

p = var("p")

n = var("n")

k = var("k")

d = var("d")

#Function countC1 generates and counts all codes C in F_p^n with dimension dim(C1)=k1

#such that k<k1<n and with minimal distance d(C) >= d (for some fixed d) and then checks

#if d(C^perp) >= d

def countC1(p,n,k1,d):

allmatrices = []

count = 0

if (n>=k1):

#List 1 contains all the vectors consisting of numbers between 0 and p of length

list1 = list(product(range(0,p),repeat=n))

list2 = []

#Go over every element of list1 and check if weight is larger or equal to d, if

#yes add it into list2

for i in range(0,len(list1)):

weight = 0

for j in range(0,n):

if list1[i][j] > 0:

weight = weight + 1

if weight >= d:

list2.append(list(list1[i]))

#Now we have all the possible rows of matrix G stored in list2

#We find all the k-tuples of elements of list2, which correspond to all matrices G

rows = list(product(range(0,len(list2)),repeat = k1))

#Contruction of matrix G

length = len(rows[0])

for r in rows:

G = []

for i in range(0,length):

G.append(tuple(list2[r[i]]))

G = matrix(GF(p),G)

G = G.rref()

40

#Check if G has not occured before and whether C satisfies the criteria

if G not in allmatrices:

if G.rank() == k1:

C = LinearCode(G)

if C.minimum_distance() >= d:

Cperp = C.dual_code()

if Cperp.minimum_distance() >= d:

allmatrices.append(G)

count = count + 1

print("The number of codes:", count)

return allmatrices

#Function subcode check if a code C2 is a subcode of the code C1

def subcode(C2,C1):

for a in C2:

if a not in C1:

return 0

return 1

#Function countC2 finds all subcodes C2 of a given code C1 such that d(C1^perp)>=d

def countC2(p,n,k2,d,G1):

count = 0

allmatrices = []

#We generate all subspaces using all k2-tuples of all C1s codewords (skip the zero

#codeword)

C1 = LinearCode(G1)

codewords = list(C1)

codewords.remove(codewords[0])

generators = Combinations(codewords, k2)

#We create a generator matrix of the subcode C2 and check if it satisfies all the

#criteria

for gens in generators:

G2 = matrix(GF(p),gens).rref()

C2 = LinearCode(G2)

if G2 not in allmatrices:

if subcode(C2,C1):

if C2.dimension() == k2:

C2perp = C2.dual_code()

if C2perp.minimum_distance() >= d:

count = count + 1

return count

41

#Function countallpairs finds all pairs (C1,C2) for a quantum code Q_C1,C2

def countallpairs(p,n,k,d):

count = 0

#We vary the dimension of C1 as k2<=k1<=n and k=k1-k2

for k1 in range(k+1,n)

allmatrices = []

midcount = 0

allmatrices = countC1(p,n,k1,d)

for G1 in allmatrices:

midcount = midcount + countC2(p,n,k1-k,d,G1)

print("For (k1,k2)=",k1,",",k1-k," we have number of pairs:",midcount)

count = count + midcount

print("The number of all pairs: ",count)

42

Additional functions

from itertools import permutations,product,combinations

#Parameters for the function

p = var("p")

n = var("n")

k = var("k")

d = var("d")

#Function countC1noperp generates and counts all codes C in F_p^n with minimal distance

#d(C) >= d (for some fixed d)

def countC1noperp(p,n,k1,d):

allmatrices = []

count = 0

if (n>=k1):

#List 1 contains all the vectors consisting of numbers between 0 and p of length

list1 = list(product(range(0,p),repeat=n))

list2 = []

#Go over every element of list1 and check if weight is larger or equal to d, if

#yes add it into list2

for i in range(0,len(list1)):

weight = 0

for j in range(0,n):

if list1[i][j] > 0:

weight = weight + 1

if weight >= d:

list2.append(list(list1[i]))

#Now we have all the possible rows of matrix G stored in list2

#We find all the k-tuples of elements of list2, which correspond to all matrices G

rows = list(product(range(0,len(list2)),repeat = k1))

#Contruction of matrix G

length = len(rows[0])

for r in rows:

G = []

for i in range(0,length):

G.append(tuple(list2[r[i]]))

G = matrix(GF(p),G)

G = G.rref()

#Check if G has not occured before and whether C satisfies the criteria

if G not in allmatrices:

if G.rank() == k1:

C = LinearCode(G)

if C.minimum_distance() >= d:

allmatrices.append(G)

count = count + 1

print("The number of codes:", count)

return allmatrices

43

Lower bound from Proposition 4.2.7

def lowerboundC1(q,n,k,d):

b = 0

for i in range(0,d):

b = b + (q-1)^i*binomial(n,i)

output = q_binomial(n,k,q)*(1-((q^k-1)/((q^n-1)*(q-1)))*(b-1))

return output

def lowerboundC2(q,n,k1,k2,d):

b = 0

for i in range(0,d):

b = b + (q-1)^i*binomial(n,i)

output = q_binomial(k1,k1-k2,q)*(1-((q^(n-k2)-q^(n-k1))*(b-1))/((q-1)*(q^n-q^(n-k1))))

return output

def lowerbound(q,n,k,d):

s = 0

for k1 in range(k+1,n):

C1 = lowerboundC1(q,n,k1,d)

C2 = lowerboundC2(q,n,k1,k1-k,d)

if C1<0:

C1 = 0

if C2<0:

C2 = 0

s = s + C1*C2

return s

Outputs for the script in Section 5.2

rng = 10 , d = 2 , p = 2

For (2 , 6 , 1 , 2) the lower bound: 465

For (2 , 7 , 1 , 2) the lower bound: 16368

For (2 , 8 , 1 , 2) the lower bound: 805434

For (2 , 8 , 2 , 2) the lower bound: 93345

For (2 , 9 , 1 , 2) the lower bound: 47670720

For (2 , 9 , 2 , 2) the lower bound: 30053280

44

rng = 10 , d = 2 , p = 3

For (3 , 3 , 1 , 2) the lower bound: 1

For (3 , 5 , 1 , 2) the lower bound: 4480

For (3 , 6 , 1 , 2) the lower bound: 313874

For (3 , 6 , 2 , 2) the lower bound: 195052

For (3 , 7 , 1 , 2) the lower bound: 30368331

For (3 , 7 , 2 , 2) the lower bound: 47674809

For (3 , 7 , 3 , 2) the lower bound: 6715800

For (3 , 8 , 1 , 2) the lower bound: 4348391200

For (3 , 8 , 2 , 2) the lower bound: 18534376992

For (3 , 8 , 3 , 2) the lower bound: 5440604240

For (3 , 8 , 4 , 2) the lower bound: 133840036

For (3 , 9 , 1 , 2) the lower bound: 962731541510

For (3 , 9 , 2 , 2) the lower bound: 9235671700006

For (3 , 9 , 3 , 2) the lower bound: 10627879161720

For (3 , 9 , 4 , 2) the lower bound: 56802358580

For (3 , 9 , 5 , 2) the lower bound: 1193920

rng = 10 , d = 2 , p = 5

For (5 , 3 , 1 , 2) the lower bound: 39

For (5 , 4 , 1 , 2) the lower bound: 2228

For (5 , 4 , 2 , 2) the lower bound: 224

For (5 , 5 , 1 , 2) the lower bound: 442853

For (5 , 5 , 2 , 2) the lower bound: 16927

For (5 , 5 , 3 , 2) the lower bound: 1

For (5 , 6 , 1 , 2) the lower bound: 118907250

For (5 , 6 , 2 , 2) the lower bound: 239688900

For (5 , 7 , 1 , 2) the lower bound: 59749225683

For (5 , 7 , 2 , 2) the lower bound: 354041153067

For (5 , 7 , 3 , 2) the lower bound: 134258656896

For (5 , 8 , 1 , 2) the lower bound: 60040603657936

For (5 , 8 , 2 , 2) the lower bound: 933524668543792

For (5 , 8 , 3 , 2) the lower bound: 1037515951813328

For (5 , 8 , 4 , 2) the lower bound: 74790836493164

For (5 , 9 , 1 , 2) the lower bound: 132084261969903470

For (5 , 9 , 2 , 2) the lower bound: 4795758878860333866

For (5 , 9 , 3 , 2) the lower bound: 14258034170791913112

For (5 , 9 , 4 , 2) the lower bound: 3025430261988613908

For (5 , 9 , 5 , 2) the lower bound: 41396246606782704

rng = 10 , d = 3 , p = 2

rng = 10 , d = 3 , p = 3

For (3 , 9 , 1 , 3) the lower bound: 1003811200

45

rng = 10 , d = 3 , p = 5

For (5 , 7 , 1 , 3) the lower bound: 5687456775

For (5 , 8 , 1 , 3) the lower bound: 6902181807192

For (5 , 8 , 2 , 3) the lower bound: 2560365976896

For (5 , 9 , 1 , 3) the lower bound: 59821776967508178

46

	Introduction
	Classical linear codes
	Notation
	Linear codes
	Number of linear codes

	Quantum codes
	Qubits
	Qudits
	Quantum errors
	Quantum error-correcting codes

	Correcting quantum errors with classical codes: the CSS construction
	Definition by Calderbank and Shor
	Definition by Steane
	CSS codes over Fq
	Correcting quantum errors with classical codes

	Lower bound for the number of CSS codes
	Equality for CSS codes
	Approximating the number of CSS codes
	Lower bounds for the number of codes C1 and the number of codes C2
	Examples of the bounds for the number of C1 and C2
	Lower bound for the number of CSS codes

	Counting the number of CSS codes
	Description of the SageMath code countallpairs
	SageMath code for Fq

	Results

	Conclusion

