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Abstract

Real-time systems are systems whose correct behavior depends not only on their functional correct-
ness, but also temporal correctness. To confirm that timing requirement associated with different
tasks are met during the execution of the system, one can perform a schedulability analysis. Nasri
et al. proposed to develop a specialized model checker, called schedule-abstraction graph, tailored
to schedulability analysis.

The schedule-abstraction graph (SAG) explores the space of all possible scheduling scenarios
that could occur in the system. In case of systems with a single-core platform, it guarantees that
it does not include any impossible scheduling scenario. To defer the state-space explosion, SAG
uses efficient merging techniques and even partial-order reduction. As a result, the SAG is three
to height orders of magnitude faster than other exact schedulability analyses that are based on
formal method-based analyses such as UPPAAL and scales well in terms of the number of tasks
and processors. From these investigations, it is generally concluded that the SAG is an effective
way to perform schedulability analysis.

However, the schedule-abstraction graph still has some limitations. One of them is that it does
not provide an example of an execution scenario in which timing requirements are violated when
it deems a system unschedulable. Therefore, extending the capabilities of the schedule abstraction
graph analysis framework with the capability to generate counterexamples to schedulability should
help system designers understand why timing violations arise and what changes to the system are
required to meet associated timing requirements.

The present report proposed an approach to structurally find counterexamples using the
schedule-abstraction graph when a system fails to meet its timing requirements and assists the
system developer in finding the appropriate solutions. Our proposed solution is to implement a
plan-space algorithm which can start from the system state and proceed backwards, checking at
each point whether any potential system states can achieve the causal link onward to reach the
initial system state eventually. Consequently, a linear plan created by this algorithm represents
the schedule of specific jobs to reach a system state at which a deadline miss occurs.

To implement this plan-space algorithm mentioned above, we need to save/compute extra
features while building the schedule-abstraction graph. These features might consume a lot of
memory or significantly increase the current schedule-abstraction graph’s run time. Therefore,
instead of trying to do everything at once, we optimize the process by dividing it in three steps.
Each step executes a different algorithm. They manipulate and compute different data. At the
end of the third step, a scheduling example that leads to a deadline miss is then produced.
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Chapter 1

Introduction

Real-time systems are systems whose correct behavior depends not only on their functional cor-
rectness, but also temporal correctness [9]. Applications of real-time systems can be found in
medical equipment, aerospace, robotics, and military domains [9]. To check if a real-time system
meets its timing constraints, one can use a schedulability test [27, 9], whose goal is to determine
whether a given set of tasks will always satisfy their timing constraints when they are scheduled
by a given scheduling policy on a given platform.

Schedulability tests. There are three categorizes of schedulability tests: (i) necessary tests,
(ii) sufficient tests, and (iii) exact tests. If a task set is rejected by a necessary test, there exists
at least one scheduling scenario (a schedule generated based on a plausible combination of arrival
and execution times of the tasks) in which the timing constraints of the task set are violated. A
schedulability test is sufficient if task sets that pass the test always meet their timing constraints
when scheduled by the given scheduling policy. Examples of sufficient schedulability tests are
the test of Liu and Layland [27] or hyperbolic bound [6] for rate-monotonic scheduling policy. A
schedulability test is exact if it is both necessary and sufficient.

Even though schedulability tests are helpful means for verifying temporal correctness, they
are insufficient for the design process as a whole since they only result in a yes/no answer. They
neither provide examples of execution scenarios in which a timing property was violated, nor they
give an insight on the causes of such timing violation. The only category of schedulability tests
that can provide a counter example in case of timing violation are those that are based on model
checking (typically using UPPAAL model checker) [22, 21, 40, 37, 40] In these tests, each task is
modeled as a timed automata. The model checker checks whether a state with a missed deadline
can be reached. However, these solutions do not scale well when confronting a large number of
tasks or complex task models (e.g., when there is release jitter, execution-time variation, preced-
ence constraints, etc.), or a complex execution platform (e.g., multiprocessor platforms).

Response-time analyses. As an attempt to have a scalable solution that provides more
insight about the cause of timing violation, the response-time analysis (RTA) has been introduced
[4]. RTA provides an upper bound on the worst-case response time (WCRT) of each task in the task
set when tasks are scheduled by a given scheduling policy on a given execution platform. Hence,
they enable the system architects to know which of the tasks may miss their timing constraints.

There are two categories of response-time analyses: those that are based on closed-form equa-
tions [4, 16, 32, 10] and the schedule-abstraction graph (SAG) based analyses [29, 30, 31]. The
former category obtains the worst-case response time by forming a closed-form equation that
calculates the response time of each task when it is interfered (and hence delayed) the most by
other tasks [4, 16, 32, 10]. In other words, it has a hypothesis about what would be the worst-case
scheduling scenario that could result in the WCRT and then use that scenario to obtain the bound
of the response time. These analyses provide a tight bound on the WCRT only when that partic-
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CHAPTER 1. INTRODUCTION

ular scheduling scenario can indeed occur in the system, e.g., for preemptive or non-preemptive
sporadic tasks (with non-deterministic arrival pattern) scheduled on a single-core platform [4, 16].
In these cases, if the timing properties are violated, the worst-case scheduling scenario is the
scenario in which the timing violation has happened. However, as soon as the task or platform
models become more complex, e.g., when tasks are non-preemptive and periodic, have offsets or
release jitter, or have precedence constraints, the closed-form equation-based RTA become pess-
imistic, because the hypothetical scenario they used to derive the WCRT may never occur. As a
result, the upper bound they provide might be much larger than the actual WCRT of the task,
namely, they will have a large number of false positive as shown by [29, 30, 31, 40, 33]. Moreover, in
these cases, they cannot provide a realistic execution scenario in which a timing violation happens.

Recently, Nasri et al. [29, 30, 31, 33, 36] proposed a specialized model checker, called schedule-
abstraction graph (SAG), tailored to schedulability analysis. Instead of hypothesising a worst-case
scheduling scenario, SAG explores the space of all possible scheduling scenarios that could occur
in the system. In case of systems with a single-core platform, it guarantees that it does not in-
clude any impossible scheduling scenario. To defer the state-space explosion, SAG uses efficient
merging techniques and even partial-order reduction [35, 36]. As a result, SAG is 3000 times
faster than other exact schedulability analyses that are based on formal method-based analyses
such as UPPAAL [40] and scales well in terms of the number of tasks and processors. From these
investigations, it is generally concluded that the SAG is an effective way for schedulability ana-
lysis. However, despite its thorough search for all possible scheduling scenarios that could occur
in the system, it does not yet provide concrete counterexamples in which a timing violation occurs.

In our work, we propose an approach to structurally find counterexamples from the schedule-
abstraction graph analysis when the analysis reports a timing violation for a task set.

1.1 System Model and Background

We first introduce our system model and necessary background information to assist in under-
standing the rest of the thesis. We consider a system with multiple hard real-time periodic tasks
run on a single processor.

Job: A periodic task implements a specific functionality which is activated periodically Each
instance of a periodic task is called a job shown in Figure 1.1. Timing characteristics of a job are
typically modeled by a 4-tuple Ji =

{
[rmin

i , rmax
i ], Di, [C

min
i , Cmax

i ], pi
}
, where rmin

i and rmax
i are

the earliest and latest release times of Ji respectively. This release time interval is caused by a
non-deterministic release jitter, e.g., due to the interrupt service routine latency, kernel overheads,
etc. As a result, a job may possibly be released at rmin

i , and it will certainly have been released
at rmax

i . Furthermore, Di denots the relative deadline, Cmin
i denotes the best-case execution

time (BCET), and Cmax
i denotes the worst-case execution time (WCET) of the job Ji. Finally,

pi denotes the job-level fixed priority. We assume that a numerically smaller value of pi implies
higher priority [31].

2 Finding Counterexamples for the SAG-based Schedulability Analysis



CHAPTER 1. INTRODUCTION

Figure 1.1: A basic example for illustrating different properties of job Ji

Schedulability A task set is schedulable if and only if all jobs of all tasks meet their deadlines
Di, i.e., Ri ≤ Di,∀i, where Ri is the worst-case response time (WCRT) of the job Ji. The response
time of a job Ji is the length of the interval starting from the (earliest) release time and ending
at the finish time shown in Figure 1.2.

Figure 1.2: A basic example for explaining the response time of the job, in this example J2 ’s
response time is 12− 2 = 10.

Schedulability test. A test that checks whether a set of tasks (or jobs) could be scheduled
feasibly by the given scheduling policy, i.e., all jobs will always meet their deadlines under any
execution scenario. A schedulability test can be necessary, sufficient, or exact, as discussed in
the previous section. The test is sufficient if, when it answers “Ture”, all deadlines will be met.
A necessary test is when it answer is “False”, there must be a situation where deadlines will be
missed. The test is exact if it is both sufficient and necessary that a “Ture” answer means that
the task set is schedulable, and a “False” answer implies that the task set is not schedulable.

Figure 1.3 shows the three types schedulability tests and how they compare to each other.

Finding Counterexamples for the SAG-based Schedulability Analysis 3
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Figure 1.3: Three schedulability tests are compared to one another.

Scheduling policy: Scheduling is the process of deciding which task must be executed on
what resource at what time. A scheduling policy is an algorithm that takes those decisions at
runtime. It can be classified as:

• work-conserving or non-work-conserving. A Work-conserving scheduling policy does
not keep the processor idle while there is a ready job in the system. On the other hand,
a non-work-conserving scheduling policy may decide to keep the processor idle even when
there are jobs that are waiting to be executed. Therefore, a non-work-conserving policy may
result in idle times even though there are ready jobs.

We can also categorise the scheduling policy as

• preemptive or non-preemptive. A preemptive scheduling policy forces a lower-priority
tasks (or jobs) to yield the processor when a higher-priority job is ready to be executed even
though they might not have completed yet. A non-preemptive scheduling policy will always
execute jobs to completion once they start executing shown in Figure 1.4.

• Job-level fixed-priority (JLFP) scheduling policy: In a JLFP policy, each job has a
static priority that is known before the system starts. This policy includes a broad range
of widely known and implemented shceduling policies such as task-level fixed-priority policy
(FP), the earliest-deadline first (EDF) policy, etc. In FP scheduling, all jobs of a task
inherit the priority of the task, while in EDF scheduling, the priority of each job is equal
to its absolute deadline. Other common schemes are deadline monotonic, where the priority
depends on the relative deadline of the task (the smaller the deadline, the higher the priority),
and rate monotonic, where the priority is monotonic to the period of the task.
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Figure 1.4: It is a basic example for illustrating the preemptive and non-preemptive features of
the Scheduling policy. In preemptive mode, J1 is released when J2 is executing, and the processor
stops the lower priority job J2 and switches to run the higher priority job J1. Even if job J1
is released while J2 is executing in non-preemptive mode, the processor can start J1 until J2’s
computation time is complete.

Our system model: In this project we consider non-preemptive job-level fixed-priority
scheduling policies to schedule a set of jobs on a single core platform. In our analysis, we deem
a job set schedulable if and only if all jobs meet their deadline in every possible execution scenario
of the jobs (defined in Definition 1.1.1). A system is thus deemed unschedulable if there is at least
one execution scenario in which there is a job with a response time larger than its deadline.

Definition 1.1.1 (From [29]). An execution scenario γ = (C, r) for a set of jobs J is a sequence
of execution times C = ⟨C1, C2, . . . , Cm⟩ and release times r = ⟨r1, r2, . . . , rm⟩ such that, for each
job Ji, Ci ∈

[
Cmin

i , Cmax
i

]
and ri ∈

[
rmin
i , rmax

i

]
.

In each execution scenario, the scheduler may take different scheduling decisions, i.e., may
decide to dispatch jobs in a different order. Note however, that there is only one possible schedule
per execution scenario. One way to implicitly explore all possible execution scenarios of a job set
is by using the schedule-abstraction graph.

1.2 Challenges and Motivations

By providing a collection of jobs, a set of resources, and a assigned of underlying scheduling reg-
ulations, the schedule-abstraction graph performs the response time analysis. It determines the
worst-case response time of every job by exploring the space of possible decisions that may be
taken by a given a scheduling policy at run-time. Schedule-abstraction graph is used as an exact
schedulability test for job sets that are scheduled on a uni-processor platform using a JLFP policy
[29]. This schedule-abstraction graph is defined as a directed-acyclic graph G = (V,E), where V
is a collection of system states, and E is a collection of labelled edges shown in Figure 1.5. Every
path from an initial state to a destination state in this graph represents a sequence of scheduling
decisions for different sets of execution scenarios. The underlying scheduling technique of the
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schedule-abstraction graph makes a job-dispatch decision to dispatch a job from the source vertex
to the destination vertex of the edge.

A path is defined by the set of jobs that were already dispatched and the system state represents
the availability interval of the processing element after a set of jobs (on any path that reaches
to that state) have been dispatched on the platform. More formally, a state vp records the
availability of the processor after executing a set of jobs. This availability is represented as an
interval

[
Amin

1 , Amax
1

]
, where Amin

1 and Amax
1 represent the earliest time and the latest time at

which the processor will become available to execute new jobs. Alternatively, Amin
1 and Amax

1

may be interpreted as the earliest and latest time at which the set of jobs that are on any path
from v1 to vp will complete their execution.

Figure 1.5: A basic example for the schedule abstraction graph. A path from (a) represents a series
of scheduling decisions, an edge from (b) represents one scheduling decision. J1 is dispatched at
state v1, the interval [2, 4] is possible finished time and certainly finished time of J1

The schedule-abstraction graph is constructed in two phases: expansion and merging phases.
the expansion phase expands the not-yet-completed paths in the graph by appending a new vertex
for any job that might be dispatched next by the scheduling policy.

However, the size of the graph may grow exponentially by considering all potential combinations
of scheduling decisions as shown in Figure 1.6. To avoid such a state-space explosion, Nasri
et al.[31] introduced a merging phase that restricts the growth of the graph by combining the
terminal vertices of paths that contains the same set of dispatched jobs and have intersecting
availability intervals. When merging two states, a union of the finish-time intervals in these states
are stored as the finish-time interval of the merged state. For example, as depicted in Figure 1.7,
the Amin

1 (v4) = min{Amin
1 (v4), A

min
1 (v5)} and Amax

1 (v4) = max{Amax
1 (v4), A

max
1 (v5)}. In line

with merging phase, the label of the merged state is updated.
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Figure 1.6: A basic example for the expansion phase of schedule abstraction graph. Fig (a) is an
illustration of the expansion phase. The decision is made to dispatch jobs 1 and 2 as the next jobs
that can be dispatched in state 1. Dispatching job 1 will reach/create a state 2 (v2). As a result,
Path P is expanded from state 1(v1) to state 2 (v2). The size of a graph can be quite considerable,
as shown in Fig (b).

Figure 1.7: State 4 in Fig (b) explains the merge phase by merging v4 and v5 from the Fig (a) as
a new v4 which has a updated finish time interval.

As stated in Definition 1.1.1, various alternative release times and execution times of a set of
jobs yield different execution scenarios. Regarding a deadline miss situation, an execution scenario
that leads to such deadline miss can be defined as definition 1.2.1.

Definition 1.2.1. A deadline miss execution scenario for a job Jx ∈ J is a sequence of execution
times Cmiss = <C1, C2, ..., Cm> and release times rmiss = <r1, r2, ..., rm> such that, for each job
Ji ∈ J , Ci ∈ [Cmin

i , Cmax
i ] and ri ∈ [rmin

i , rmax
i ], and Jx finishes its execution at time t such that

t > Di.

Example 1.2.1. Consider a job set shown in Figure 1.8. In this figure, we demonstrate a graph
with no merge. We found that when job J2 is dispatched next after state v4 (resulting in the state
v6), it misses its deadline which was at time 20. In fact, every path that follows state v4 results
in deadline misses (for one or more jobs). This is due to the execution of a lower-priority job J9
which can be dispatched at time t = 9 in scenarios in which the processor becomes available at
time 8 or 9, i.e., one time unit earlier than job J2 is released.

Moreover, we see that another deadline miss may occur at state v25. Indeed, the schedul-
ing policy decided to dispatch the job J4 after state v22. This results in LFT4 = 41, which
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exceeds the deadline of J4. These observations clearly indicate that the [J1, J7, J9, J2...] and
[J1, J7, J2, J9, J3, J8, J4, J5, J6] job dispatching sequence may cause an unschedulable outcome.

Figure 1.8: This figure demonstrate all the execution scenario without apply merging tech-
nique. In total four sub paths have deadline miss result, path [J1, J7, J9, J2, J3, J4, J5, J8, J6],
[J1, J7, J9, J2, J3, J4, J8, J5, J6], [J1, J7, J9, J2, J3, J8, J4, J5, J6] and [J1, J7, J2, J9, J3, J8, J4, J5, J6],
respectively

The sequence of scheduling decisions that led to a deadline miss is clear in the previous ex-
ample (Example 1.2.1). However, in order to avoid over-consumption of the memory and slow
down the growth of the graph (to reduce the number generated states), the schedule abstraction
graph analysis merges paths which have the same set of jobs and have overlapping availability
intervals. After applying the merge phase, the schedule-abstraction graph of figure 1.8 would in
fact become like the schedule abstraction graph reported in figure 1.9.

It is still clear in the graph of figure 1.8, that a deadline miss happens. Unfortunately, the paths
shown in figure 1.9 cannot tell the exact sub-path leading to the deadline miss result. Consequently,
we cannot conclude what job dispatching sequence leads to the deadline miss. Collecting the set
of paths in the schedule-abstraction graph that result in unschedulable outcomes is hard. Thus
determining a set that leads to a deadline miss will be our challenge 1.

To solve this challenge, we must further investigate what techniques can be used to find which
sub-paths of a graph lead to a deadline miss.

Example 1.2.2. A simple deadline miss example is shown in Figure 1.10.

Our aim is to get a general picture of the deadline miss execution scenarios as the counter-
example. Assume we identified the specific path claimed as unschedulable e.g,. path [J1, J4, J5, J2]
in Example 1.2.2. However, execution scenarios with a deadline miss are not easy to demonstrate
due to how to assign the release time, start time, and execution time to the job is uncertain. In
the example trace, it appears that job J2 missed its deadline. The execution scenarios of Example
1.2.2 that result in deadline misses are not unique. Six different execution scenarios derived from
the same unschedulable path are presented in Figure 1.10. This uncertainty leads to our chal-
lenge 2 that is how to assign the release time, start time and execution time for the execution
scenario that causes a missed deadline.
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Figure 1.9: The schedule abstraction graph is depicted after involving the merge mechanism. The
state v6, v11 and v12 are the merge vertex. The labels in the merge vertex are calculated by
formula: [ep, lp]← [ep, lp] ∪ [eq, lq].

Figure 1.10: Example of a job j2 missed it deadline

Figure 1.11: Part (a) of the figure shows one execution scenario, the computation time of job J1,
J4, J5, J2 are 2, 7, 2 and 11 respectively. Similarly, part (b) - (f) of the figure demonstrated other
execution scenarios lead to deadline miss.

To make matters worse, the tool that implements the schedule abstraction graph analysis
optimizes the analysis in order to optimize memory usage. Therefore, it removes states from the
memory when they do participate to the analysis anymore. For example, the state S1 in the dot
graph (figure 1.12) will be deleted from memory after the states S2, and S3 have been generated.
As a result, our third challenge, challenge 3, is to figure out how to make a counterexample when
the existing implementation of the scheduling abstraction graph analysis does not keep track of
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the whole graph and thus reduces the amount of accessible information.

Figure 1.12: Part (a) of the figure shows an original state S1, after dispatching job ji the new
state S2 and S3 will create respectively. When the system obtained the new states S2 and S3, the
previous state S1 is erased from memory shown in part (b).

We aim to deliver a counterexample as the end goal of the project that explains why a job
deadline was missed. A counterexample based on the schedule-abstraction graph should avoid
being too expensive but still provide a detailed execution scenario, including the release time,
starting time and execution time of the jobs involved in the deadline miss execution scenario. To
construct a counterexample of an execution scenario, we might need to save/compute the extra
features while building the graph, these features, however, might consume a lot of memory or
significantly increase the current schedule-abstraction graph’s working time. This brings us to our
final challenge, challenge 4.

The current schedule-abstraction graph does not provide a counterexample when there is a
deadline miss. Building a counterexample is a complex task due to the challenges we mentioned
previously, and since the project is time-constrained, the thesis scope aims to answer the following
research question shown in the next section.

1.3 Research Question

As discussed in the previous section, the schedule abstraction graph checks whether there is an
execution scenario in which the system reaches a state with a missed deadline. Our main goal in
this project is to address the following question: How can we generate an explaining example of
an execution scenario that leads to such deadline miss using the schedule-abstraction graph? To
answer this general question, we refined it into four specific research questions (RQs).

RQ 1 How can we identify a set of paths in the schedule abstraction graph that leads to a
deadline miss?
The first question involves collecting and analysing a path representing a sequence of scheduling
decisions that led to a job missing its deadline. The challenge 1 indicated in the preceding section
will be addressed by answering RQ 1.

RQ 2 How can we generate the counterexample from a set of paths in the schedule abstraction
that lead to a deadline miss?
Using the set of paths found by answering the previous research question, we must devise a tech-
nique to generate one (or a set of) counterexample(s) that explicitly show(s) how a deadline is
missed based on a certain sets of events and scheduling decisions. RQ 2 focuses on addressing the
Challenge 2.

RQ 3 Is there already enough information available in the current implementation of the SAG
framework to build a counterexamples? If not, what is the minimal amount of information that

10 Finding Counterexamples for the SAG-based Schedulability Analysis



CHAPTER 1. INTRODUCTION

should be added to the graph?
RQ 3 is intended to identify how to acquire adequate information for generating the counter-

example due to the difficulties indicated in Challenge 3.

RQ 4 What techniques can be used to efficiently implement the counterexample generation
feature to the existing implementation of the schedule-abstraction graph framework?
We need to implement our new automatic counterexample generation technique in the existing
schedule abstraction graph framework. This built-in tool must not be a costly procedure that
consumes a lot of memory or significantly increases the current tool’s working time. Addressing
this last research question allows us to overcome Challenge 4.

1.4 Organization

The organization of this paper is laid out as follows. In Chapter 1, we introduce the topic of this
thesis, the related challenges, motivations and the specific research questions that will be addressed
during the thesis. We study the state of the art in Chapter 2. Our initial approach for gener-
ating counterexamples using the schedule-abstraction graph is described in Chapter 3. Chapter
4 explains the existing implementation of the current schedule-abstraction graph to provide a
high-level overview of the analysis tool and thus make the implementation challenges apparent.
Chapter 5 presents the thesis planning, risk analysis, and the next steps. Finally, in Chapter 6,
we conclude this report.
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Chapter 2

Related Work

This section explains the model checking, recent work in backward chain algorithms and a brief
overview of how to generate a counterexample.

2.1 Model checking

Considerable effort has been expended on the development of model-checking tools for analysis
of real-time systems because these can verify whether or not the RTS meets the specification
(timing) requirement. When a model falsifies a specification, one possibility for model checking
is to generate a counterexample. The counterexample is an error trace. By analysing it, the user
can locate the source of the error[1]. A.P. Kaleeswara et al. present a literature review about
counterexample explanation. This survey provides a conceptual model for the model checking and
counterexample explanation shown in Figure 2.1 [24]. Thus, in this chapter, we will follow the
model checking and counterexample explanation process to discuss the state of the art in research
on these topics.

So far, effective model checking tools for plan/schedule analysis have been developed, and the
table below summarizes a comparison between different model checking technologies.

Forward Looking Backward Chain
Terminology Linear Temporal Logic Landmark Discovery
Terminology Computational Tree Logic Partial Order Planning

Table 2.1: Comparison of planning/scheduling implementations

In 1977, the linear temporal logic was proposed by Pnueli [34]. This approach is applied to the
system with linear time-varying properties as the system proceeds through a sequence of discrete
states and expresses properties on a temporal level (the trace/timeline of the system). The end
goal can be achieved by satisfying the conditions over a sequence of states. One major difference
between linear temporal logic (LTL) and computation tree logic (CTL) is how the model expresses
time. In the computation tree logic, the time branches into a tree-like structure for all related
execution scenarios. Therefore, CTL explicitly introduces path quantifiers [18]. After defining the
set of formal properties of the system, the model checker can verify whether the model satisfies the
requirements. These studies hinted that the problem of schedulability analysis, i.e., determining
whether a given task set meets its deadline constraints, can be achieved by the model checker
toolbox.

Uppaal is a toolbox for modelling and verifying real-time systems that have been applied
in schedulability analysis. The query language of UPPAAL, used to specify properties to be
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checked, is a subset of CTL (computation tree logic) [5]. To facilitate modelling and debugging,
the UPPAAL model checker can automatically generate a diagnostic trace that explains why a
property is (or is not) satisfied by a system description. The diagnostic traces generated by the
model-checker can be graphically visualized using the simulator [26].

Figure 2.1: An Overview of model checking and counterexample explanation.

Many study cases by applying UPPAAL strongly prove that UPPAAL model checker can be
performed for schedulability analysis [28, 13, 23, 7, 8]. Al-Bataineh et al. proposed a comparative
study of decision diagrams for RTS model checking. The experiment focuses on three different
state-of-the-art real-time systems model checkers: UPPAAL, RED, and Rabbit. It is concluded
that for timed systems with complex modelling details, UPPAAL is highly recommended as it has
richer expressiveness in modelling systems than Rabbit and RED [2].

2.2 Reachability-based schedulability analysis of RTS

The schedulability analysis can be defined as reachability analysis on the state space of a real-time
system [19]. In this section, we describe the different reachability-based mechanisms used to model
the deadline missed scheduling problem.

2.2.1 Linear Hybrid Automaton

Linear Hybrid Automata (LHA) are finite-state automata extended with real-valued variables.
Transitions between discrete states may be conditional on the values of these variables and may
assign new values to variables. The LHA can be used to model a real-time system [39]. More
specifically, Sun et al.[37] put forward LHA to represent the tasks and the scheduler. In their
model, the counterexample can be discovered from the error locations in the automata where the
jobs missed the deadline. However, when the number of sporadic tasks grows beyond 7, and for
more than 4 processors, the tool developed by Sun et al.[37] cannot terminate on current desktop
computers due to the increased complexity.
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2.2.2 Timed Automata

To perform a schedulability test for Non-Preemptive task sets, Yalcinkaya et al. mapped the
schedulability problem to the reachability problem in timed automata (TA) [3] by using TA ex-
tensions available in UPPAAL [40]. Regrading the result (TA for sporadic tasks ) produced by
Yalcinkaya et al., the counterexample can be found from the Start state to the Miss state. Al-
though the counterexample is generated in this case, a considerable state of space is also created.
Thus, it cannot solve big problems because it takes a very long time to reach the state where
the deadline is missed. A further issue is that UPPAAL does not provide an interval of exe-
cution time and release time, so a job would still miss its deadline even if it is a sub-interval of
the original intervals. Thus we are only able to obtain one counterexample generated by UPPAAL.

Other researchers [13, 28] have tried to implement a schedulability test in UPPAAL. For
example, David et al. applied the stopwatch automata [11] in UPPAAL to solve the uncertainty
of release time, starting time and the execution time of jobs. If the query is not schedulable,
their model shows that a counterexample has been established in the over-approximation. The
system, however, may still be schedulable. This ambiguity renders the TA reachability problem
undecidable [40].

2.2.3 Schedule-abstraction Graph

Recently, Nasri et al. [29] [31] have made significant advances in global non-preemptive schedulab-
ility tests. The approach explores all possible schedules that may potentially happen at runtime.
The experimental results showed that the schedule-abstraction graph was able to identify more
task sets than the TA-based analyses within the one-hour time limit [40]. Further, Nasri et al.
demonstrated the schedule-abstraction graph is able to scale to much bigger systems which can
scale to 30+ periodic tasks with thousands of jobs [29], and this approach reduces the runtime. For
example, it requires less than 10 seconds, while UPPAAL needed tens of minutes to reach the same
result.[31]. The current schedule-abstraction graph will terminal when it reaches a deadline miss
state. Therefore, it cannot provide a counterexample directly. As a result of its efficient, interval-
based state-space exploration approach, which is adapted to the schedulability problem, unlike
UPPAAL [40]. Building the counterexample solution on top of the salable schedule-abstraction
graph should provide more than one counterexample.

2.3 Backward Chain

Research has tended to focus on model checking rather than counterexample explanation. The
recent evidence [24] suggests that there is no general agreement on explaining counterexamples
generated by model checker. Therefore the aim of our research is to extend current knowledge of
generating a counterexample on the schedule-abstraction graph. The information presented in the
counterexample should not overwhelm the system designer. A job set is marked unschedulable
once an execution scenario with a deadline miss is found. Thus the path P from the initial state
v1 to a deadline missed state vp indicates the trace of counterexample.

As we discussed earlier, LTL and CTL require forward looking condition by investigating a
given state, we can assert about what will happen in the future. However, a backward chain con-
dition is a symmetric version where we investigate a certain state and we can guarantee something
has eventually happened in the past. As mentioned by Rohit and Masesh [12], the counterexample
checking algorithm proposed by Clarke et al. [14, 15] starts from the last state of the counter-
example and proceeds backward. Karpas, Erez, et al. [25] developed a new reasoning mechanism
for the system about what must be achieved and when it must be achieved. In their research,
the goal propositions as the starting state for back chaining and stopped back chaining as soon as
a known initial state was derived. Building a sequence of actions backwards until it reaches the
initial state requires a deeper understanding of how plan-space planing works.
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To address this question, we studied plan-space planing. This planning is considered as two
independent options:

1. the choice of actions, and

2. the order of the chosen actions so as to achieve the goal.

The proposed concept of solution to the plan-space planing problem namely partial-order plans
[20]. A partial plan can be used as any subset of job-dispatching sequence that leads to the
deadline miss state. R Trinquart [38], an authority on Analyzing Reachability Within Plan Space
presents a comprehensive structure developed to analyze reachability within the plan space using
partial order planners. Thus, it is generally concluded that the partial order plan algorithm may
generate a counterexample on the schedule-abstraction graph.

Summary: So far, the partial order plan algorithm has never been applied to generate a
counterexample for the schedulability analysis. For a DAG schedule graph, building and explaining
a valid counterexample can start from the last state and proceed backwards. This is because they
are checking at each point whether any of the potential states can exhibit counterexample from
that point onward.
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Chapter 3

Implementation of the
Schedule-abstraction graph

The following chapter explains the implementation of the current schedule-abstraction graph
(SAG). This SAG implementation is aimed at providing a schedulability test for a set of non-
preemptive jobs executed on a uni-processor/multiprocessor platform by a JLFP scheduling policy.
The detailed installation and configuration of the tool can be found in appendix A.

3.1 Schedule-abstraction graph

In this section, we describe how the schedule-abstraction graph works. By following the breadth-
first approach, Nasri et al. [29, 31] built the SAG. The schedule-abstraction graph is constructed in
two phases: expansion and merging phases. The expansion phase expands the not-yet-completed
paths in the graph by appending a new vertex for any job that might be dispatched next by the
scheduling policy. A job Jj can be dispatched next after path P if its earliest start time ESTj is
not later than its latest start time LSTj , i.e., if

ESTj ≤ LSTj (3.1)

Definition 3.1.1. (From [31]) Job Jj is a direct successor of vp only if Inequality 3.1 holds.

However, the size of the graph may grow exponentially by considering all potential combinations
of scheduling decisions. To avoid such a state-space explosion, Nasri et al.[31] introduced a merging
phase that restricts the growth of the graph by combining the terminal vertices of paths that
contains the same set of dispatched jobs and have intersecting availability intervals.

Definition 3.1.2. (From [31]) Two system states vp and vq can be merged to one system state if
JP = JQ and

[
Amin

1 (vp) , A
max
1 (vp)

]
∩
[
Amin

1 (vq) , A
max
1 (vq)

]
̸= ∅.

The labels in the merge vertex are calculated by formula:[
Amin

1 (vp) , A
max
1 (vp)

]
←

[
Amin

1 (vp) , A
max
1 (vp)

]
∪
[
Amin

1 (vq) , A
max
1 (vq)

]
(3.2)

vp and vq are merged by updating vp using Equation. After that, we redirect all incoming
edges of vq to vp and remove vq from the system state set.

3.2 High-level overview of the SAG tool

Nasri and Brandenburg [29] initially proposed the SAG tool in 2017 for non-preemptive task
response-time analysis on single-core platforms. After that, the tool is extended to cover any
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global job-level fixed-priority on the multi-core systems [31]. The SAG performs both the exact
schedulability analysis and response-time analysis. The analysis is an exact schedulability ana-
lysis. This means that there is no execution scenario in a job set that is deemed schedulable by the
analysis that could result in a deadline miss[35]. The different types of options the tool supports
are shown below:

Time mode: The time mode includes two options: (1) dense-time (2) discrete-time. In our
experiment, we chose the discrete-time model.

Time limit: This mode provides an option for handling timeout. The user can specify the
maximum CPU running time (sec). Zero means no limit time.

Precedence: This mode is to support precedence constraints.

Continue after deadline miss: We can set the default to off to end the analysis on the first
missed deadline. This appears to be most appropriate to build a counterexample to schedulability.

Checking whether those time qualities are respected is one thing, but it is much more useful
if the time properties are not respected, and we can provide some example to illustrate under
what scenario the deadline miss happens. The goal of this thesis is to create a counterexample for
the current SAG uni-core system. For the uni-core system, a non-preemptive scheduling policy
establishes an efficient way to utilize the platform, requiring significantly less complexity to ana-
lyze the response time than a preemptive scheduling policy. Therefore, the scope of this project
is find one counterexample based on single-core, job level fixed priority and non-preemptive and
work-conserving scheduling policy.

Figure 3.1 illustrates a high-level overview of SAG (focusing on uni-core systems).

Figure 3.1: high-level overview of the SAG

3.3 Analysis results

To test the correctness of the code, we first applied the unit test suites as follows:

. / r un t e s t s
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The results are listed below:

[ do c t e s t ] doc t e s t v e r s i on i s ” 1 . 2 . 6 ”
[ doc t e s t ] run with ”−−help ” f o r opt ions
===============================================================================
[ doc t e s t ] t e s t c a s e s : 60 | 60 passed | 0 f a i l e d | 0 skipped
[ doc t e s t ] a s s e r t i o n s : 556 | 556 passed | 0 f a i l e d |
[ do c t e s t ] S t a tu s : SUCCESS!

As we observed, all 60 cases were passed. Thus we are able to run the tool with the fig1c.csv

example. The import data for the NP-schedulability-analysis tool has six columns, namely task
ID, job ID, starting time, computation time, deadline, and priority.

Task ID Job ID Arrival min Arrival max Cost min Cost max Deadline Priority
1 1 0 0 1 2 10 1
1 2 10 10 1 2 20 2
1 3 20 20 1 2 30 3
1 4 30 30 1 2 40 4
1 5 40 40 1 2 50 5
1 6 50 50 1 2 60 6
2 7 0 0 7 8 30 8
2 8 30 30 7 7 60 9
3 9 0 0 3 13 60 7

Table 3.1: The import CSV data for performing the schedulability-analysis

The corresponding command for running the tool with the fig1c.csv example is listed below:

. / nptes t examples / f i g 1 c . csv

The NP Schedulability result of the fig1c.csv example is demonstrated in below list.

examples / f i g 1 c . csv , 1 , 9 , 11 , 11 , 1 , 0 .000043 , 4 .628906 , 0 , 1

We can conclude that the example fig1c.csv is schedulable (i.e., the tool could prove the nine
jobs in the job set have no deadline misses). Eleven states and edges were created to build the
schedule abstraction graph during the analysis. The CPU running time is 0.000043 seconds, and
the memory usage is 4.628906 megabytes.

By installing the graph tool, we are able to generate a dot graph to visualize the full schedule
abstraction graph created during the analysis.

sudo apt i n s t a l l graphviz

Generating a graph requires a lot of CPU running time and memory occupation. The default
setting is not producing the dot graph automatically. Thus it requires us to enable the depicting
graph option in the config.h file first, and the dot graph for this example is depicted below,
generated by the following command:

dot −Tps f i g 1 c . dot −o f i g 1 c . pdf

A part of the dot graph resulting from the analysis of the input job set fig1c is depicted in
Figure B.1. In this graph, one of the node is labelled S3 : [4, 15] and the incoming edge is labelled
T3 J9 meaning there is an execution scenario where the job J9 of task T3 finishes its execution
within time interval [4, 15].

ER stands for the earliest release time for the jobs that haven’t been scheduled yet. In state
S3, the jobs left to be scheduled are J7, J2, J3, J4, J8, J5, J6 and for instance, J7 is released at time
0. Thus ER = 0 as visible at state S3.
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Figure 3.2: The part of dot graph of the example fig1c.csv, the full graph is in Appendix B.

3.4 Additional Challenges

The current schedule-abstraction graph algorithm developed by Nasri et al. [29] only keeps states
on the front of the graph in memory. For instance, Example 1.2.2, generated from the schedule-
abstraction graph shown in Figure 3.3.

Figure 3.3: Part (a) is scheduled job set computed by the scheduling police. Part (b) is the final
state which provides job J2 ’s [EFT,LFT ].

Without the job dispatching sequence, we cannot set the ordering constraints between each
action (job); consequently, the partial order plan approach is unlikely to work directly. Besides
this, to compute the partial order plan, we need to save/compute extra features while building
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the schedule-abstraction graph

In the next section, we will discuss how we can overcome the stated challenges and hence how
we can enhance and modify the schedule abstraction graph tool to produce counter-examples.
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Chapter 4

Build Counterexamples Using the
Schedule-abstraction Graph

4.1 Partial Order Plan

Partial plan is a partially ordered plan, it is a tuple consisting of four components: a subset of
the actions, a subset of the temporal constraints, a subset of rationale, and the subset of variable
binding. The formal definition of the partial plans is demonstrated below:

Definition 4.1.1 (From[20]). A partial plan is a tuple π = (A,≺, B, L), where:

• A = a1, ..., ak is a set of partially instantiated planning operators.

• ≺ is a set of ordering constraints on A of the form (ai ≺ aj).

• B is a set of binding constraints on the variables of actions in A of the form x = y, x ̸= y,
or x ∈ Dx, Dx being a subset of the domain of x.

• L is a set of causal links of the form (ai
p→ aj), such that ai and aj are actions in A, the

constraint (ai ≺ aj) is in ≺, proposition p is an effect of ai and a precondition of aj , and
the binding constraints for variables of ai and aj appearing in p are in B.

Figure 4.1: A simple example illustrating a unschedulable job set

Let us illustrate the partial plans corresponding the Example 1.2.2. The job dispatching
sequence J1, J4, J5, J2 is claimed as unschedulable. The information generated by the tool is
depicted in Figure 4.1. The set of partially instantiated planing operators is A = a1, a4, a5, a2,
where ai is the action of dispatching job Ji. The start step in the partial order plan is job J1, and
the finishing stage is job J2, which misses its deadline (Amax

1 (v6) = 24) as shown in Figure 4.2.
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Figure 4.2: Part (a) is the dummy steps in the initial plan, the start step has the initial conditions
and the finish step has the goal condition as its preconditions. Part (b) of the figure is we added
one action, the reason for adding this action is to achieve the unsatisfied preconditions.

The computation interval of the job J2 is CJ2
∈ [1, 2]. We decide to use CJ2

= 2 here. The
ordering constrain (red line) is shown in Figure 4.2, means job J5 has to complete before job J2
starts. The blue causal link in the same figure illustrates that we are going to use LFTJ5 = 22
to satisfy the precondition LSTJ2

= 22 in the finish step. Note the computation interval of the
job J5 is CJ5

∈ [3, 13], however, only CJ5
= 13 which implies LSTJ5

= 9 can be selected as
the computation time of job J5 in this case because of the schedule policy from the schedule-
abstraction graph [29]. After adding all the actions, the counterexample is built as depicted in
Figure 4.3. This plan is complete because every precondition of every step is satisfied by the effect
of the previous steps.

Figure 4.3: The complete partial plan is shown is part (a). Part (b) and part (c) in the figure are
two counterexamples derive from the partial plan.

Example 4.1.1. The example shown in Figure 4.4 is more complicated to apply the partial order
plan. The main challenges are:

1. The label of the vertex vx is updated after the merge phase.

2. The core encounters an idle time.
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Consider we know the job dispatching sequence J1, J7, J2, J9, J3, J8, J4 is unschedulable shown
in Figure 4.4.

Figure 4.4: Scheduling-abstraction graph of Example 4.1.1. In this diagram, job J4 may miss its
deadline if the lower priority job J8 executes first.

The goal of Example 4.1.1 is job J4 missing its deadline, so we consider the finish time of J4
is in the range t ∈ [41, 43]. The merge action (in step 4) is added in the partial plan shown
in Figure 4.5. This action ensures the effect of job J2 can be considered as the precondition of
dispatching the next action job J3 at [12, 25]. Further, when the core has idle time, the additional
preconditions need to be obtained (displayed in blue colour) from the schedule-abstraction graph
(Figure 4.4) to build the causal link from step 3 to step 2. Different execution scenarios of the
job J4 missed the deadline can be found in Figure 4.6.

Figure 4.5: A partial plan of the Example 4.1.1. In this graph we skip some causal links from the
preconditions in the initial to the remainder states.
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Figure 4.6: Part (a) - (f) are different execution scenarios built from the partial order graph of
Figure 4.5.
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4.2 Partial Order Plan Algorithm

This chapter explains how to generate one counterexample using a three-steps algorithm. Figure
4.7 provides a high-level overview of three steps. First the candidate counterexample job set is
created using a modified version of the SAG algorithm by Nasri et al. [29]. The modifications
to the original SAG algorithm will be presented in details in Section 4.3. On the other hand, if
the system was deemed schedulable, the program stops as there is no possible execution scenario
where a job misses its deadline that can be generated. If a candidate counterexample job set was
generated, we use it to perform the second step of the algorithm, which will be explained details in
Section 4.4. In the second step, a compressed version of the schedule abstraction graph is created.
In the third step of the algorithm, we then used the compressed schedule abstraction graph for
backward searching (see Section 4.5) to generate the counterexample.

Figure 4.7: High-level overview of three runs

4.3 Creating the candidate counterexample job set

The initial solution for building a counterexample is by looking for which jobs are actually involved
in a potential deadline miss. By limiting our attention to that reduced job set, we can avoid
considering the whole job set J when building the counterexample and thus reduce the runtime
and memory consumption of the algorithm. This subset of jobs, which is referred to as the
candidate counterexample job set, must follow a certain number of properties:

1. the candidate counterexample job set must experience a potential deadline miss under the
given scheduling policy;

2. all execution scenarios possible with the candidate counterexample job set must also be
possible with the original job set with the given scheduling policy.
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In other words, the schedule abstraction graph for the candidate reduction job set must be a
subgraph of the schedule abstraction graph of the original job set.

To create this candidate counterexample job set, we use the property proven below in Lemma
4.3.1 and Corollary 4.3.2 that any job executed before an idle time will not impact the occurrence
of a deadline miss happening after that idle time. To prove this property, we first define an idle
state as in Definition 1, using the work-conserving property of our system model, that is to say
that the processor only idle when there is no ready jobs.

Definition 4.3.1. A system state vp is an idle state for an eligible successor job Jj if Amax(vp) <
ESTj .

An example illustrating the Definition 4.3.1 is shown in Figure 4.8. Since by definition Amax(vp)
is the last time at which the processor will become available to execute the eligible successor job,
and because ESTj is the earliest time the eligible successor job may start executing on the platform,
the the platform will certainly be idle from Amax(vp) to ESTj .

Figure 4.8: The idle state illustration

Lemma 4.3.1. The set of jobs JCE scheduled after the idle state vp is not impacted by the job
set dispatched before state vp.

Proof. Consider a job Jj executed right after the idle state vp. The start time of Jj is within
the interval [ESTj(vp), LSTj(vp)] and because job Jj is eligible to be executed after vp, we have
ESTj ≤ LSTj (see Section 3.1) . Nasri et al. proved [31] that the earliest start time of job Jj is
bounded by

ESTj = max
{
rmin
j , Amax

1

}
(4.1)

Since vp is an idle state, we have by Definition 4.3.1 that Amax
1 < ESTj . Combining the latter

equation with (4.1), we conclude that the earliest start time of job Jj depends on the job Jj its
possible ready time rmin

j .

Nasri et al. [31] define the latest start time of the job Jj as follows

LSTj = min {twc, thigh − 1} (4.2)

where, thigh is the earliest point in time from which on job Jj certainly is not the highest-priority
ready job anymore and twc is an upper bound on the time at which there is certainly a ready job
that will be executed by the work-conserving scheduler policy. Those are computed with Equation
(4.3) and (4.4).

thigh ≜ min
∞

{
rmax
x | Jx ∈ J \J P ∧ px < pj

}
(4.3)

twc ≜ max
{
Amax

1 (vp) ,min
∞

{
rmax
x | Jx ∈ J \J P

}}
(4.4)
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Both (4.3) and (4.4) depend only on the set of of jobs J\JP , that is the set of jobs that have
not been scheduled yet until reaching system state vp and by extension the start time of the jobs
executed after those. Therefore, we just proved that the set of jobs executed before an idle state
vp does not affect the start time of the job dispatched at state vp. Therefore, by taking the state
vp as the new initial state, we can remove all jobs dispatched before the system state vp.

Corollary 4.3.2. Any job executing before an idle state vp will not contribute to the a deadline
miss occurring after the idle state vp.

Proof. It is a direct consequence from Lemma 4.3.1

Definition 4.3.2. The candidate counterexample job set is defined as X

X : J \
(
J P\J CE

)
(4.5)

Where J is the total job set, J P is the path that leads to the deadline miss and J CE is the
set of jobs scheduled after the latest idle state vp. As we can see from Example 4.3.1,

(
J P\J CE

)
is all jobs that have been executed before the last idle state. Hence, the candidate counterexample
job set is the entire job set excluding all jobs executed before the last idle state.

To compute the set of jobs JCE and thus the candidate counterexample job set X , we modify
the SAG algorithm. Each state vi generated by the SAG during its expansion phase carries a
set CE(vi) as a label that contains the set of jobs that were executed since the last idle state
encountered before vi i.e., CE(vi) is the set for system state vi.

Definition 4.3.3. If Ji is a direct successor job of an idle state vp, by dispatching Ji, a vertex vn
is created and added to the SAG by connecting it to vp, the CE job set in the system state vn is :

CE(vn) = {Ji} (4.6)

In the above scenario, Ji is a direct successor job of an idle state vn, For any state vn resulting
from dispatching a job Ji after a non-idle system state vm, we have:

CE(vn) = CE(vm) ∪ {Ji} (4.7)

If two states vm and vn are merged into a new single state vq during the generation of the SAG
(see the explanation of the merge phase in Section 3.1 as a means to avoid state space explosion
when building the SAG), we build the the set CE(vq) as follows

Definition 4.3.4. When merging system states vm into a new system state vq, the job set CE(vq)
of vq is given by

CE(vq)← CE(vm) ∪ CE(vn) (4.8)

Example 4.3.1. Consider the scheduling scenario of a job set j = {J1, J2, ..., J9}, the schedule-
graph of this job set is shown in the Figure 4.9. For that job set, job J4 misses its deadline
when reaching system state v10. According to Definition 4.3.1, the state v7 is the last idle state
occurring before J4 misses its deadline at v10. This is because the earliest start time of job J8 is
equal to rmin

8 = 28 and the core certainly ready time at state v7 is 27. Therefore, it holds that
rmin
8 > Amax

1 .
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Figure 4.9: The modified version of the schedule graph and the label of the CE job set (JCE) for
each vertex are calculated using Definition 4.3.3 and 4.3.4.

According to Corollary 4.3.2, in this example, none of the jobs J1, J2, J3, J7 or J9 participate
to reaching the deadline miss state. Therefore, the job set, JCE is at the deadline miss state v10
contains only the jobs {J4, J8}. Finally, according Definition 4.3.2, the candidate counterexample
job set is given by X = {J1, J2...J9} − {J1, J7, J9, J2, J3, J8, J4} + {J8, J4} = {J5, J6, J8, J4} (See
Figure 4.10).

Figure 4.10: job set {J8, J4} is the CE job set (JCE). Clearly, the SAG of the CE job set is the
one we can found in the fig (b) which is indeed a subgraph of the original SAG shown in fig (a).
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Algorithm 1 illustrates how to generate the CE job set JCE for system state vk. It follows
the SAG construction algorithm of Nasri et al.[29], with modifications made to the creation and
update of CE job sets at lines 7-13 and line 23. In summary, the CE job set JCE is updated
during each system state of SAG expansion and merge phase. If a job fails to meet its deadline,
the program stops and return the candidate counterexample job set X for that deadline miss (lines
17 to 19).

The graph is initialized in line 1 with a root vertex v1 labeled with the interval [0, 0]. The
repeating expansion phase corresponds to lines 2-20. In the expansion phase, firstly, we determine
whether system state vp is an idle state (line 7), if so, a vertex vk is created with the CE job
set label equal to the direct successor job Ji (line 9). When system state vp is not idle, it means
that previous jobs dispatched before vp may have contributed to the deadline miss. It is therefore
necessary to remember every job on the path, in addition to the direct successor job Ji (line 11).

The path P is extended at line 16 by connecting the new vertex vk to the previous vertex vp
by adding this new system state vk to the path P . The algorithm then performs the merge phase
at lines 22-26, this is the same process as the merge phase mentioned in Section 3.1, except that
we also update the CE job set via the Definition 4.3.4.

When the system is deemed unschedulable, the program stops and the candidate counter-
example job set is generated in line 18.

Algorithm 1 Algorithm for CE job set creation - idle state detection

Input: job set J
Output: CE job set CE(k), the candidate counterexample job set X

1: Initialize G by adding a root vertex v1 with interval [0, 0]
2: while (∃ path P from v1 to a leaf vp s.th. |P | < |J |) do
3: P ← the shortest path from v1 that ends in a leaf vp
4: if there is no eligible job then
5: return unschedulable
6: end if
7: for each eligible successor job Jj do
8: if rmin

j > Amax(vp) then
9: CE(k) = {Jj}

10: else
11: CE(k) = CE(p) ∪ {Jj}
12: end if
13: end for
14: Add a new vertex vk and CE(k) to V with label [EFTk, LFTk]
15: Add an edge from vi to vk with label Jj
16: Let path P ′ = P + ⟨vk⟩
17: if Jj misses its deadline then

18: X ← J\
(
JP ′\CE(k)

)
19: exit
20: end if
21: while (∃Q matches P ′ ) do
22: Update [EFTk, LFTk]← [EFTq, LFTq] ∪ [EFTk, LFTk]
23: Update CE(K)← CE(Q) ∪ CE(K)
24: Redirect all incoming edges of vq to vk
25: Remove vq from V
26: end while
27: end while
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4.4 Build the compressed SAG for backward searching

Recall that the final objective of our algorithm is to generate a concrete execution scenario in
which a job Ji misses its deadline. That is, we must find a set of which shows execution times
Cmiss = <C1, C2, ..., Cm> and release times rmiss = <r1, r2, ..., rm> such that, for each job Ji ∈ J ,
Ci ∈ [Cmin

i , Cmax
i ] and ri ∈ [rmin

i , rmax
i ], and Ji misses its deadline, i.e., finishes its execution at

time t such that t − rmin
i > Di. To reduce the search space that must be explored to find this

execution scenario, we construct a compressed version of the schedule abstraction graph using the
two following properties

Property 1. Any path such that Ji’s latest finish time is smaller than its deadline must not be in
the compressed SAG.

Property 2. The compressed SAG, should only contain jobs from JCE as returned by Algorithm
1.

Example 4.4.1. Figure 4.11 shows the complete SAG of an unschedulable job set, where job J2
may miss its deadline at time 15. This finish time t includes the possibility that t > D2 → t > 15.
In this example, J2 appears in several paths in the SAG. However, most of those path do not end
up with J2 missing its deadline. For instance, path J1 → J4 → J2 is not the deadline missed path
since the finish time of job J2 is in the range [14, 15]. Similarly, the path J1 → J5 → J4 → J2,
J1 → J5 → J2 → J3 ... J1 → J2 → J3 → J5 are not the deadline missed path because J2
completes before or at time 15 in all those paths.

Figure 4.11: The original SAG
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Figure 4.12: The smaller graph of the Example 4.4.1 job set

Accordingly, the second step algorithm will not save the edges where the finish time t of a
deadline missed job Jm is less than the deadline of Jm and will produce the smaller graph shown
in Figure 4.12 instead.

We proved in the previous section that an idle state vp can take as the initial state, we can
remove all jobs dispatched before the system state vp. Additionally, the candidate counterexample
job set (JCE) must experience a potential deadline miss under the given scheduling policy. There-
fore the compressed SAG returned by Algorithm 2 should only contain the jobs from CE job set
JCE (See Property 2). The Algorithm is explained in detail as follows:

In line 1 of Algorithm 2, we initialize the compressed SAG. During the while-loop, the al-
gorithm first selects a direct successor job Jj from the CE job set and then it checks whether Jj
is the deadline missed job (line 5). If so, we determine if Jj ’s latest finish time exceeds its dead-
line Dj (line 6). If that is the case, then we add it (vk) directly after state vp, through lines 7-9,
after that, we will exit the program as we already have the deadline miss execution scenario (line 9).

Based on the Property 1, the deadline missed job Jj is not added to the edge if the latest finish
time of Jj is less than its deadline, in order to prevent expanding non-deadline missed paths (line
11). In the case of any other non-deadline missed eligible jobs in the CE job set, we must include
these jobs in the graph (lines 14-15) according to Property 2.

As soon as we begin the merge phase, it will operate in the same manner as the original SAG,
as we explained in Section 3.1.
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Algorithm 2 Algorithm for graph creation

Input: Candidate counterexample job set X
Output: A condensed SAG includes a deadline missed path

1: Initialize G by adding a root vertex v1 with interval [0, 0]
2: while (∃ path P from v1 to a leaf vp, and leaf vp is eligible s.th. |P | < |JCE |) do
3: P ← the shortest path from v1 that ends in a leaf vp
4: for each eligible successor job Jj is in the JCE do
5: if Jj is the deadline missed job then
6: if Jj misses its deadline then
7: Add an edge from vi to vk with label Jj
8: Let path P ′ = P + ⟨vk⟩
9: Exit

10: else
11: set leaf vertex vk is not eligible
12: end if
13: else
14: Add an edge from vi to vk with label Jj
15: Let path P ′ = P + ⟨vk⟩
16: end if
17: Execute the merge phase (see Section 3.1)
18: end for
19: end while

4.5 Partial order plan for finding a counterexample (third
step)

This section we introduce the third step algorithm for finding a counterexample execution scen-
ario. According to the original SAG algorithm, it is a state-space algorithm, meaning it searches
through the space of possible states attempting to identify all solutions to the problem. Further-
more, the SAG is based on a forward search from the initial state to the goal state. Unlike the
first and second step algorithms, the third steps backward towards the initial system state. This
third step algorithm is a plan-space search through the space of partial plans, which are sets of
actions that are not necessarily ordered.

The complete Partial order plan construction procedure is given in Algorithm 3. First, we ini-
tialize the graph G with the condensed SAG return from Algorithm 2 (line 1), empty the branch
list (line 2) and mark each graph node as an unexplored node (lines 3 - 4). By inserting the
starting node of a graph in the stack we are able to begin exploring the graph in a depth-wise
manner (lines 11-18).

During exploration, we first pop the node x from the stack and add it to the visited list (line
10). Whenever there is more than one adjacent node to a node x, this node x can become a
branch point, indicating we made multiple job dispatching decisions at this system state. The
branch point is then added to the list (lines 7-9). The node v can only be added to the linear
plan if the eligibility condition is met. A detailed discussion of the eligibility conditions will follow.

Having checked all the nodes adjacent to node x, and still unable to find one which meets the
eligibility condition, we must return to the most recent branch point y, and remove all nodes from
the plan up to point y and then repeat the DFS (lines 19-24).
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Algorithm 3 Partial order plan for finding a counterexample

Input: A condensed SAG
Output: Linear plan to achieve goal

1: Initialize G ← A condensed SAG
2: Initialize branchlist = ∅
3: for each node x ∈ G do x.visited = false
4: end for
5: Initialize x ← the deadline missed job as start node
6: if x is not initial system state (v1) then
7: if size of G.Adj[x] > 1 then
8: add x to the branchlist
9: end if

10: x.visited = true
11: for each v ∈ G.Adj[x] do
12: if v.visited == false then
13: if Jj is eligible job then
14: add v to the linear plan
15: DFS(G,v)
16: end if
17: end if
18: end for
19: if no eligible job in G.Adj[x] then
20: pop x from branchlist
21: y ← branchlist.front()
22: Remove all the edges till this branch point y
23: Execute the DFS (see lines 11-18)
24: end if
25: else
26: Exit
27: end if
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Partial Order Plan Eligibility Condition: A job Ji can be added in the linear plan during
backward transition if its earliest start time ESTDM

i for deadline miss scenario is not later than
its latest start time LSTDM

i for deadline miss scenario. i.e., if

ESTDM
i ≤ LSTDM

i (4.9)

Lemma 4.5.1. Job Ji is the corresponding action of vp only if Inequality holds.

Proof. The upper bound of the time at which Ji is the corresponding action of vp is defined by
Equation (4.9) and (4.11). Therefore, if Ji cannot be dispatched by LSTDM

i , then it cannot be
a direct successor of vp. As ESTDM

i is the earliest time at which Ji can be dispatched after
vp. When the condition fails (ESTDM

i > LSTDM
i ), the algorithm should move back to the most

recent nondeterministic choice point and select another job not yet tried.

Example 4.5.1. Figure 4.13 shows an example of unschedulable job set J = {J1, J2, J3, J4},
where the finish time of deadline missed job J4 is in the range [14, 23]. Thus our goal is to finish
J4 at [14, 23], and the finish step has the goal conditions as preconditions, namely that J4 begins
at interval [13, 22]. To satisfy this precondition, we keep track of using causal links to add the job
J3 in the path. The effect of job J2 and job J1 can both satisfy the precondition of J3. Hence we
will have two possible deadline missed paths, the first one is path J1 → J2 → J3 → J4, the second
one is path J2 → J1 → J3 → J4. Nevertheless, we noticed that the start time of J1 in the path
J1 → J2 → J3 → J4 does not hold for the eligible condition ESTDM

i < LSTDM
i . Therefore, the

deadline missed path is J2 → J1 → J3 → J4.

Figure 4.13: The earliest start time and latest start time of job J1 in the path J1 → J2 → J3 → J4
is 2 and 1, respectively. Since the ESTDM

2 > LSTDM
2 , means J2 is not the successor in this path.

For the correct deadline miss path J2 → J1 → J3 → J4, it illustrates that every precondition of
every job is satisfied by the effect of some other job.

First, we make the initial plan for the third step. This initial plan contains the finish/goal
step. The goal condition is the preconditions for this finish step. After that, we iterate until the
plan is complete. We keep track of causal relationships by using causal links from the output of
the second step. This will ensure that every precondition of every job is satisfied by the effect of
some other job. The counterexample will continue to be developed until it reaches the initial state
and all the preconditions are met.
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In this section, we decided the eligibility condition ESTDM
i ≤ LSTDM

i to perform backward
transition. If this eligibility condition is false, we must go back to the most recent branch to select
a different option, from among those that have not yet been visited. If they’ve all been visited,
we must go back to the next most recent branch, and keep exploring.

In the next section we then explain how to compute ESTDM
i ≤ LSTDM

i of Ji.

4.6 Earliest and Latest Start Times for deadline missed job

For each job Ji ∈ JCE , we aim to prove a lower bound ESTDM
i (vp) and an upper bound

LSTDM
i (vp) on the time at which Ji may start executing in vp (Equations (4.9) and (4.11),

respectively).

ESTDM
Ji

=

{
max

{
rmin
i , EFTDM

Ji
− Cmax

i , EFTJi
− Cmin

i

}
if Ji misses its deadline

max
{
rmin
i , EFTDM

Ji
− Cmax

i

}
otherwise

(4.10)

LSTDM
Ji

= min
{
tDM
high − 1, LFTDM

Ji
− Cmax

i

}
(4.11)

tDM
high =

{
∞ if Ji misses its deadline

rmax
x |Depth (Jx) = n+ 1 ∩ px < pj otherwise

(4.12)

Lemma 4.6.1. Job Ji ∈ CE can not start executing (as a successor of state vp) before ESTDM
Ji

.

Proof. Job Ji ∈ JCE cannot start executing prior to the earliest time at which it may release, i.e.,
rmin
i , nor can it start executing before the earliest time at which a core may become available,
which is given by EFTDM

Ji
−Cmax

i . For the deadline miss job, it cannot start before ESTi which

defined by ESTi = EFTi − Cmin
i . Combining the facts, we observe that Ji is the certain job on

the deadline miss path only if it starts later than ESTDM
Ji

shown in equation (4.9).

The latest start time of Ji on the deadline missed path is determined by the following: the
scheduler follows a JLFP scheduling policy. tDM

high define in equation (4.12) is the earliest point in
time from which on Ji certainly is not the highest-priority ready job anymore. Since the deadline
missed job is the final job that has been released on the path, so when job Ji misses its deadline,
tDM
high is infinity. The tDM

high for a job that completed before its deadline depends on the latest release
time of the higher priority job that dispatched after it. Taking into account the following facts:
LSTDM

Ji
≤ tDM

high − 1 and LSTDM
Ji
≤ LSTDM

Ji
−Cmax

i . We decided that the latest start time of Ji
is shown in equation (4.11).

Now, consider the example in Figure 4.14 where J2 ’s ESTDM
2 is larger than LSTDM

2 in path
J3 → J2 → J1 → J4 → J5 → J6 → J7. As a result, this is not the deadline missed path.
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Figure 4.14: An example showing a scenario with the high priority job J1 dispatched later than the
lower priority job J2. Hence the tDM

high(J2) = rmax
1 = 35. The LSTDM

2 = min(34, 102− 15) = 34.

4.7 Earliest and Latest Finish Times for deadline missed
job

Our goal is generating one potential example of execution scenario that leads to the deadline
missed job Ji finishing at the interval which is later than job Ji’s deadline. Consequently, the
earliest and latest finish time of job Ji are defined as follows.

EFTDM
i = deadline(Ji) + 1 (4.13)

LFTDM
i = LFTi (4.14)

The Figure 4.15 below illustrates the finish time range of the deadline missed job.

Figure 4.15: An example where job J7 is the deadline missed job. The job J7’s deadline is 140
and it finishes its execution at time t such that t > 140. Thus the earliest finish time of job j7 is
EFTDM

J7
= 140 + 1 = 141 and latest finish time of job J7 is =LFTDM

J7
= LFTJ7

= 146.
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4.8 Completeness of the Proposed Solution

This section establishes the correctness of our analysis by showing that, for any unschedulable job
set, there exists a linear plan created by Algorithm 3 that represents the schedule of specific jobs
to reach a deadline miss execution scenario.

Theorem 4.8.1. For any deadline miss execution scenario such that a job Ji ∈ X finishes its
execution at time t such that t− rmin

i > Di, there must exist a path in the linear plan generated
by Algorithm 3.

Proof. Our proof for this property is based on contradiction. We assume that the system misses a
deadline, but the three steps algorithms do not return a counterexample. Based on this assump-
tion, we can give two hypotheses as follow:

• H0: There is no state where the eligibility condition (equation 4.9) holds.

• H1: In one state, it is held for the eligibility condition. However, in our third step, our
backward search algorithm never reaches this state.

For the hypothesis H0, it implies that for all states (generated during the first or second
step) we have ESTDM

i > LSTDM
i . For first step and second step algorithms, we search the

space by building the SAG, when we dispatch a job from state vp to state v′p, the eligibility

condition ESTi(vp) ≤ LSTi(v
′
p) must hold. Since ESTDM

i (vp) is a subset of the ESTi(vp) and

LSTi(vp) = LSTDM
i (vp), then we can reject the hypothesise H0.

We want to make a decision of hypothesis H1 by using induction structure, assume that the
path P =

{
vp, v

′
p, ..., v2, v1

}
respects the claim for jobs added in the plan before Ji in the execution

scenario that led Ji to start at time t. Notice that each state in the plan represents a single step in
the plan. An edge represents the transformation of one plan to another, such as adding a new step
between existing steps. The base case is goal state vp which is the interval [EFTDM

i , LFTDM
i ]

of the deadline missed job Ji. Here we set a requirement, for each job Jx ∈ JP , the interval
[ESTDM

x , LSTDM
x ] safely lower- and upper-bounds (i.e., it contains) the start time interval of Jx.

In the induction step, we want to prove whether there exists a vertex v′p that is directly
connected to vp with an edge labeled Ji. That requirement holds for state v′p and the interval

[ESTDM
x , LSTDM

x ] contains the start time of Ji. According to Lemma 4.9, algorithm 3 adds any
job that can possibly be added before vp, hence also for Ji. Moreover, equation (4.9) and equation
(4.11) provide a lower and upper bound on Ji’s start time. The requirement follows from the
assumption that the interval [ESTDM

x (vp), LST
DM
x (vp)] computed for every job Jx added before

Ji in a state reached prior to vpis correct.

Algorithm 3 initializes the deadline missed job ji as the first job in the plan for any state v′p
that is a direct successor of the initial system state vp. Thus, we reject hypothesis H1.

Having rejected all hypotheses, we conclude that if there is a deadline miss job in the system,
we will calculate the counterexample execution scenario using the three steps algorithm.

4.9 Correctness of the Proposed Solution

This section we want to demonstrate that the counterexample we generated from the three steps
algorithm has valid bound.

Theorem 4.9.1. For any deadline miss execution scenario such that a job Ji ∈ X finishes its
execution at time t, there exists a path P =

{
vp, v

′
p, ..., v2, v1

}
in the linear plan generated by
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Algorithm 3 such that Ji is the label of the edge from the state vp to the state v′p and t ∈
[ESTDM

i , LSTDM
i ].

Proof. It has been proved that for path P =
{
v1, v2, ..., v

′
p, vp

}
generated by first and second step

algorithms, a vertex vp has an edge labeled Ji and the start time of job Ji has the start time
interval [ESTi, LSTi]. From the equation , clearly, the EFTDM

i is always larger than the ESTi

and LSTDM
i is equal to the LSTi generated from the SAG. Due to the fact that the interval

for the path leading to the deadline missed state is a subset of the interval for the [ESTi, LSTi].
Therefore, the bound generated by the three steps algorithm is safe and correct.
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Implementation of Three Runs

This chapter discusses the implementation of the three-steps algorithm. Each step is implemented
as a different program. The two first steps are two different modifications of the original schedule
abstraction graph analysis available at https://github.com/gnelissen/np-schedulability-analysis.
The third step is implemented as an entirely new C++ program. Technical details concerning the
first step, second step, and third step are provided in Section 5.1, section 5.2 and section 5.3,
respectively. These details include the software design choices made and the associated outputs.

5.1 First step implementation

The class diagram for the first step implementation is depicted in Figure 5.1. Nasri and Branden-
burg [29] developed a breadth-first, state-space search algorithm, in which all possible scheduling
decisions are implemented in the explore class. Each of these decisions adds a new system state
and an edge to the graph. To implement the first step of our three-steps algorithm, we modified
the original SAG program implemented by Brandenburg et al. [29]. Figure 5.1 shows the pro-
cedures we added to the original implementation in red. Our first step takes place during the
expansion phase of the SAG. As soon as an idle state is detected, we modify the CE SET in the
state. Furthermore, this CE SET is updated during the states merge phase. The program stops if a
job’s finish time t exceeds its deadline d, in which case the candidate counterexample job set (the
input for the second step) and the identifier of the job that missed its deadline are saved as a csv
file.
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Figure 5.1: UML class diagram for first step implementation

An example of output produced by the first step of our three-steps algorithm is shown in table
5.1

Task ID Job ID r min r max c min c max deadline Priority deadline miss
1 1 0 35 10 15 80 1 0
1 2 0 30 15 20 80 2 0
1 3 0 40 12 16 100 3 0
1 4 30 80 10 15 115 4 0
1 5 40 45 13 19 115 5 0
1 6 50 60 4 16 135 6 0
1 7 60 85 7 15 140 7 1
1 8 75 100 4 16 155 8 0
1 9 90 115 7 15 165 9 0

Table 5.1: An example output CSV data from the first step. This table format can be compared
with the original input table 3.1. The first step output table has one extra column, namely the
deadline miss column, which indicates job J7 missed its deadline

5.2 Second step implementation

In the same way as the first step configuration, the second step implementation is built upon the
original SAG analysis implemented by Brandenburg et al. [29]. All our modifications take place
in the expansion of the SAG. A ccompressed SAG is generated when making scheduling decisions
that lead to a deadline miss. A compressed SAG = (V,E) is created during the SAG exploration.
Figure 5.2 shows the UML class diagram for the second step of the program.
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Figure 5.2: UML class diagram for second step implementation. The CE edges as a structure
contains the job, the source of this job and the target of this job. We can use the finish range

produced in the second step as part of the eligible condition in the third step implementation.

Table 5.3 is an example of the output produced by our implementation of the second step of
our algorithm. It has five columns in total. In the output table, the deadline missed job J7 (task
1) only appears once, satisfying the second step algorithm we designed in the previous chapter.
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from to task job latest start time
0 1 1 1 30
0 2 1 2 30
0 3 1 3 29
1 4 1 2 45
1 5 1 3 29
2 4 1 1 50
2 6 1 3 34
2 7 1 4 34
3 5 1 1 45
3 6 1 2 34
4 8 1 3 65
4 9 1 4 39
5 8 1 2 60
6 8 1 1 54
6 10 1 4 34
7 9 1 1 49
8 11 1 4 81
8 12 1 5 79
9 11 1 3 64
10 11 1 1 49
11 13 1 5 96
12 13 1 4 98
12 14 1 6 79
13 15 1 6 115
14 15 1 4 95
14 16 1 8 79
15 18 1 8 84
15 17 1 7 131

Table 5.2: Above is an example of compressed SAG from the second step. The last row in a CSV
file always represents a missed deadline job. As we can see, the deadline missed job J7 has been
dispatched from state v15 to state v17.

5.3 Third step implementation

The third step of our three-steps algorithm is implemented as an entirely new C++ program.
We use the outputs from the first and second step as inputs for the third step. In contrast to
the first and second steps, the third step uses a depth first approach to implement the plan state
searching algorithm. When the program finds one deadline missed execution scenario, it will stop
and produce a CSV file recording that execution scenario as the final output. The UML class
diagram for the third step is illustrated in the Figure 5.3. As part of the third step, we need to
import two CSV files into the program (that is taken care of by the two procedures in the Problem
class). The first is the candidate counterexample job set generated from the first step, and the
second is the output from the second step. The third step output is shown in table 5.3.
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Figure 5.3: UML class diagram for third step implementation

Below is the table that contains a set of deadline miss execution scenarios, the execution
sequence that leads to a deadline miss is J7 → J6 → J5 → J4 → J3 → J2 → J1, For each job in
that sequence, we also output the minimum and maximum execution time, and the earliest and
latest release time of the job such that a deadline miss occurs.

Task ID Job ID r min r max cost min cost max earliest start time latest start time
1 7 60 85 7 15 126 131
1 6 50 60 4 16 110 115
1 5 40 45 13 19 91 96
1 4 30 80 10 15 76 81
1 3 0 40 12 16 60 65
1 2 0 30 15 20 40 45
1 1 0 35 10 15 25 30

Table 5.3: The third step result.

For instance, in the example of table 5.3, J7 will miss its deadline in the execution scenario of
Figure 5.4(a) where J7 is released at 85 and executes for 15, but also in an execution scenario as
shown in Figure 5.4(b) where J7 is released at 70 and executes for 14.
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Figure 5.4: Based on the table 5.3, different execution scenarios were created

46 Finding Counterexamples for the SAG-based Schedulability Analysis



Chapter 6

Empirical Evaluation

In this chapter, we performed a large-scale analysis to evaluate the accuracy and run-time for the
implementations of three steps algorithms.

We generated task sets by modifying the established method of Stafford’s RandFixSum al-
gorithm [17]. This algorithm is implemented as a python script, which requires the python 2.7
environment. The task mode generated by Stafford’s RandFixSum algorithm is sporadic task
model. A sporadic taskset consists of n tasks that have the following properties: period or min-
imum interarrival time Ti, worst-case execution time Ci and deadline Di. Task utilisation is
expressed as Ui = Ci/Ti. The taskset parameters that are used to understand and analyze the
behavior of scheduling algorithms are

• taskset cardinality n

• total taskset utilisation u.

As a result of this algorithm, utilisation values of Ui are chosen, and a sum for n tasks is used
to achieve the target total utilisation (

∑n
i=1 Ui = u). By using the Python script, this can be

applied directly to the problem of task utilisation generation with a chosen constant total taskset
utilisation. After periods have also been generated, worst-case execution times can be calculated
by Ci = UiTi

To minimize difference in the number of schedulable tasksets at lower utilisation values over
the different taskset sizes, a log-uniform distribution of task periods can be used, with tasksets
generated for different ratios of the minimum (Tmin) to the maximum (Tmax) task period [17].

We generated 20 task sets for each configuration of release jitter (with upper limit is 25% of
the period ), execution-time variation(with upper limit of offset is period -1), and Nine different
utilization values from 0.1 to 0.9. To avoid situations where the hyperperiod is unpractically long
due to incompatible task periods, we chose periods following a log-uniform distribution in the
range [1000, 10000].

Experiments were conducted on the Dutch SURFsara Cartesius cluster (Snellius). We imple-
mented the analysis in C++ as a single-threaded program. The measured metrics are defined as
follows:

• CPU run-time: The CPU run-time indicates the time that elapses between the moment
the job set is started and then is finished. This is measured by seconds. The purpose of
this parameter is to verify the optimization performance of our three-step algorithm. The
improved results can be obtained by dividing the CPU time required for the original analysis
by the CPU time required for our implementation.
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• Memory Consumption: The memory consumption is measured the memory usage for
each job sets. Here, memory usage is measured as a peak (divided by 1024). This reports as
megabytes. We intend to optimize the memory consumption by our three-steps algorithm.

• The number of jobs in the job set: The first step is limiting our attention to a reduced
job set, therefore we can avoid considering the whole job set J . The first step performance
can be measured by the number of job in the job set.

• The number of edges that were discovered: The CPU run-time and Memory Con-
sumption are influenced by the number of edges generated on the process. Therefore, it is a
different way to calculate how much memory and run-time will be required.

6.1 First step analysis

The CPU run-time for the first step of the modified SAG implementation is depicted in Figure
6.1 (a).

Observation 6.1.1. The higher utilization, i.e., u = 0.8 and u = 0.9, show a significant difference
in runtime compared to the other utilization.

This performance can be explained by the fact that the higher the utilization, the task set is
deemed unschedulable since an execution scenario containing a deadline miss was encountered.
As soon as a deadline miss occurs, our analysis of this task set is stopped. Consequently, lower
utilization generates mostly scheduleable task sets, which tend to increase runtime. Furthermore,
the maximum run time produced by u = 0.5 is 562.31. The other maximum run time given by
u = 0.4 is 322.73.

Observation 6.1.2. The higher utilization, i.e., u = 0.8 and u = 0.9, has a low memory con-
sumption compared to the rest.

The memory usage box-plot can be found in Figure 6.1 (b), u = 0.5 consumed considerable
amount of memory (122.69 megabytes), which makes sense as it took a large amount of run-
time. On the contrary, u = 0.8 and u = 0.9 of the first step implementation have a low memory
consumption. Because the job set is deemed unschedulable in the higher utilization, an execution
scenario of J leads to a job exhibiting a response time exceeding its deadline. In other words, with
a further increase in utilization, runtime and memory consumption of the analysis decrease since
more job sets become unschedulable early in the process.

Figure 6.1: Run-time and memory consumption results for the first step.
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Observation 6.1.3. With a further increase in utilization (start at u = 0.6), more job sets become
unschedulable.

By conducting the first step, we can find the impact of utilization on the schedulability ratio
(i.e., the percentage of task sets deemed schedulable by the analysis). Whenever a job set ex-
perience a potential deadline miss under the given scheduling policy, it generates the candidate
counterexample job set as CSV file. Figure 6.2 (a) shows the result of schedulability ratio relat-
ive to the change in utilization. It can be seen the schedulability ratio decreased with a further
increase in utilization, and the schedulability ratio of u = 0.1, u = 0.2, u = 0.3, u = 0.4 are equal
to 1, meaning all the job sets are deemed to deemed schedulable, while schedulability ratio of
u = 0.8, u = 0.9 is close to 50% (table 6.1) due to high system utilization.

Figure 6.2: Schedulability ratio result

Utilization 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
# non-schedulable 0 0 0 0 1 12 27 43 48
# tests 100 100 100 100 100 100 100 100 100
Schedulability ratio 100% 100% 100% 100% 99.00% 88.00% 73.00% 57.00% 52.00%

Table 6.1: The schedulability ratio for 20 tasks when system utilization varies.

Observation 6.1.4. The job observes a deadline miss always happens at an early stage of the
system.

Our modification of the original schedule abstraction graph analysis checks whether timing
requirements are respected at every system state of the exploration. Whenever an execution
scenario containing a deadline miss occurs, our system immediately stops the exploration and
marks the job set as unscheduled. This results in a decrease in runtime as more job sets are
found to be unscheduled at an early system stage. Comparing the two results of the first step
implementation, schedulable and unschedulable, it is expected that the schedulable result would
require significantly larger run-time than the unschedulable depicted in figure 6.2 (b).

6.2 Second step analysis

For the unschedulable job set, the second step produces the compressed SAG. Taking into account
the schedulability ratio discussed in the previous section, we are only interested in the system
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utilization starting at u = 0.6.

Observation 6.2.1. The runtime and memory consumption vary slightly with an increase in
utilization.

Figure 6.3 shows how run time and memory usage vary from system utilization for the second
step algorithm. The maximum run-time is produced by u = 0.6. This may support our finding
in the first step algorithm that the lower utilization requires a longer run-time. Figure 6.3 also
shows the run-time for u = 0.8 and u = 0.9 is almost equal to the run-time for u = 0.7. This is
interesting, since, in terms of utilization variation, these run-time differ significantly for the first
step.

Figure 6.3: Run-time and memory consumption results for the second step.

6.3 Third step analysis

The third step algorithm illustrates under which execution scenario the deadline miss occurs.

Observation 6.3.1. The runtime and memory consumption of the third step is significantly
decreased compared with the two first steps algorithm (two different modifications of the original
schedule abstraction graph analysis)

To implement plan-space algorithm (third step), we need to save extra features while building
the schedule-abstraction graph. These features might consume a lot of memory or significantly
increase the current schedule-abstraction graph’s run time. Therefore, we optimize the process
by dividing it into three steps instead of trying to do everything at once. Each step executes a
different algorithm. They manipulate and compute different data. At the end of the third step, a
scheduling example as a linear plan leading to a deadline miss is produced.

This finding appears that we have successfully optimized the process. In the third step, u = 0.6
also achieves maximum run-time and memory usage (11.0012 megabytes).
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Figure 6.4: Run-time and memory consumption results for the third step.

6.4 Three-steps comparison results

In this section, we show the results obtained for the three-steps algorithm. For the first step data
in the plots of Figure 6.5, we only employ the unschedulable job set. In the first step, u = 0.9
yields 8048 of edges, while the second step yields 6547 of edges and the third step results in 100
of edges. As a result, for u = 0.9, the edges in the first step are 80 times greater than those in the
third and 1.23 times greater than those in the second step.

Figure 6.5: Number of edges for each implementation.
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Figure 6.6 shows the impact of the number of jobs on runtime for the three-steps algorithm.
The first step analysis remains sufficient for large job sets scheduled on platform. The number of
jobs from the second step is not significantly reduced compared with the first step, however, the
run-time has been drastically shortened. In addition to these improvements, it is very interesting
to note that in the third step, both the number of jobs and the run-time significantly decreased.
These trends were the same for the memory consumption shown in Figure 6.7.

Figure 6.6: Three-steps experimental results, the impact of the number of jobs on runtime.

Figure 6.7: Three-steps experimental results, the impact of the number of jobs on memory con-
sumption.
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Conclusions and Future work

7.1 Conclusions

In this report, we introduced the concept of a partial order planning algorithm for generating the
counterexample on the schedule-abstraction graph. The schedule-abstraction graph (SAG) aims
to perform a reachability-based response-time analysis. The approach of SAG entails exploring
the space of possible decisions that a scheduler can make for a set of jobs. However, the existing
SAG will terminate the analysis as soon as a deadline miss is encountered and does not return any
information that may help explain what led to such a deadline miss. Therefore, this thesis aims
to present an approach that can structurally build a counterexample that provides a detailed ex-
ecution scenario, including the release time, starting time and execution time of the jobs involved
in the deadline miss scenario.

A partial order plan algorithm can start from the deadline missed state and proceed backwards,
checking at each point whether any of the potential states can achieve the casual link onward to
reach the initial state eventually. To implement this plan-space algorithm, we developed a three-
steps algorithm to build counterexamples using partial order planning. Each step executes a
different algorithm. According to the first step algorithm, a subset of the entire job set was iden-
tified as the candidate counterexample job set. This job set must experience a potential deadline
miss under the given scheduling policy, and all execution scenarios possible with the candidate
counterexample job set must also be possible with the original job set with the given scheduling
policy. Then for the second step algorithm, we constructed a compressed version of the schedule
abstraction graph which reduce the search space that must be explored to find deadline missed
execution scenario for the third step algorithm. At the end of the third step, a scheduling example
that leads to a deadline miss is then produced.

Returning to the research questions RQ1 to RQ4 listed in Section 1.3, we then presented
conclusions derived from this graduation project that are summarized as answers to the research
questions as follows:

• RQ 1 How can we identify a set of paths in the schedule abstraction graph that leads to a
deadline miss?

The solution we provide involved two steps. As a first step, we proved that only jobs
executed after the last idle time before the deadline actually participates to the deadline
miss. Therefore, the first step of our three-steps algorithm solution identifies which jobs
participated to the deadline miss (see Section 4.3). And then, in our second step algorithm
(see Section 4.4), we used this limited job set to build a new graph that only contains paths
(i.e., job execution orderings) that can lead to a deadline miss.
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• RQ 2 How can we generate the counterexample from a set of paths in the schedule abstrac-
tion that lead to a deadline miss?

We used plan-space, backward searching algorithm mention is Section 4.5 and implemented
in Section 5.3 to successfully build a valid counterexample which start from the last state
and proceed backwards. The plan-space backward searching algorithm is implemented as the
third step of our three steps algorithm. To limit the search space of the backward searching
algorithm, it take as input the compressed graph generated at second step algorithm (Section
4.4).

• RQ 3 Is there already enough information available in the current implementation of the
SAG framework to build a counterexamples? If not, what is the minimal amount of inform-
ation that should be added to the graph?

The first answer is “No”. Since original SAG is only kept states on the front of the graph in
memory.

Due to the lack of information on the original SAG for building the counterexample, there-
fore, for each new system state generated in the SAG, we had to save the set of jobs executed
since the last idle state encountered in the SAG (Lemma 4.3.1). This can then be used in
a second step to build a compressed version of the SAG that contains only path that may
lead to a deadline miss (Section 4.4).

• RQ 4 What techniques can be used to efficiently implement the counterexample generation
feature to the existing implementation of the schedule-abstraction graph framework?

Instead of trying to build a single program that would both do the analysis as the original
SAG analysis tool and generate counterexamples at the same time, we divided the process
in three steps. This allowed us to optimize the implementation and limit the amount of
information that needs to be saved and manipulated at each step of the algorithm.

Each step executed a different algorithm. The first step algorithm created a candidate can-
didate counterexample job set which is a subgraph of the schedule abstraction graph of the
original job set. The second step produced a compressed SAG which only contain jobs re-
turned by first step algorithm. As a result of the third step, an example of an execution
scenario in which timing requirement is violated when it deems a system unschedulable is
then produced.

According to the Empire Evaluation in Chapter 6, our three-steps algorithm has proven
itself to be a successful and promising technique for finding the counterexample for schedule-
abstraction graph based analyses.

7.2 Future work

The table generated from the third step algorithm contains a set of deadline miss execution
scenarios for the job Ji that missed its deadline Di. However, the amount of information may
overwhelm a system designer. Future work should attempt to present information in a more di-
gestible manner, for instance showing an concrete schedule as a Gantt chart. It would help identify
issues more easily and thus help system designers understand why timing violations arise and what
changes to the system are required to meet associated timing requirements.
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In addition, once a job Ji fails to meet its deadline, the program stops, so we only find counter-
examples associated to that single job missing its deadline. This may lead to a user focusing on
solving that specific deadline miss to only find out that other job may also miss their deadline later
when running the analysis again. That said, the current implementation of SAG has an option
that enables the system to continue if it detects that a deadline has been missed by the system.
This mode may result in a number of jobs can have a deadline miss. Therefore, it would be useful
for future work to find all the deadline missed jobs and the corresponding execution scenarios.

In the future, our three-steps algorithm could be extended to more complex systems. For
instance, finding counterexamples when the tasks execute on multi-core platforms, uses locking
protocols to protect access to shared resources, or when jobs have precedence constraints.
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Appendix A

Installation and Configuration

The tool is able to work on Linux system, thus we installed the Linux Mint (Ubuntu Focal), version
20.3 as the operating system for the laptop computer. The following command to complete the
C++ compiler:

sudo apt i n s t a l l c lang

The correct command for installing the Intel Thread Building Block (TBB) library and parallel
runtime:

sudo apt i n s t a l l l ib tbb−dev

To compile the tool, we first enter the build directory:

cd bu i ld

Using the command in below generates the Makefile with cmake:

cmake . .

Finally we can apply the appropriate command to build the np-schedulability-analysis

make −j
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Appendix B

Dot graph

Figure B.1: The dot graph of the example fig1c.csv
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